新人教版八年级下册数学解题技巧专题练习:等腰三角形中辅助线的作法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题技巧专题:等腰三角形中辅助线的作法
——形成精准思维模式,快速解题
◆类型一利用“三线合一”作辅助线
一、已知等腰作垂线(或中线、角平分线)
1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=1,则BC的长为________.
2.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于点D,E是AD上一点,且EA=EC,连接EB,求证:EB⊥AB.
二、构造等腰三角形
3.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为() A.3
B.4
C.5
D.6
4.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE.
◆类型二 巧用等腰直角三角形构造全等
5.如图,在△ABC 中,AC =BC ,∠C =90°,D 是AB 的中点,DE ⊥DF ,点E ,F 分别在AC ,BC 上.求证:DE =DF .
◆类型三 等腰(边)三角形中截长补短或作平行线构造全等
6.(2017·郑州校级月考)如图,过等边△ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,且P A =CQ ,连
接PQ 交AC 于点D .若△ABC 的边长为6,则
DE 的长为【方法8】( )
A .2
B .3
C .4
D .不能确定
7.如图,在△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC 交AC 于点D .求证:BC =AB +CD .
参考答案与解析
1.2
2.证明:过点E 作EF ⊥AC 于点F .∵EA =EC ,∴AF =FC =12
AC .∵AC =2AB ,∴AF =AB .∵AD 平分∠BAC ,∴∠BAE =∠F AE .又∵AE =AE ,∴△ABE ≌△AFE (SAS),∴∠ABE =∠AFE =90°,∴EB ⊥AB .
3.B
4.证明:延长BA 和CE 交于点M .∵CE ⊥BD ,∴∠BEC =∠BEM =90°.∵BD 平分∠ABC ,∴∠MBE
=∠CBE .又∵BE =BE ,∴△MBE ≌△CBE ,∴EM =EC =12
MC .∵△ABC 是等腰直角三角形,∴∠BAC =∠MAC =90°,BA =AC ,∴∠ABD +∠BDA =90°.∵∠BEC =90°,∴∠ACM +∠CDE =90°.∵∠BDA =∠EDC ,∴∠ABE =∠ACM .又∵AB =AC ,∴△ABD ≌△ACM (ASA),∴DB =MC ,∴BD =2CE .
5.证明:连接CD .∵AC =BC ,∠C =90°,D 是AB 的中点,∴CD 平分∠ACB ,CD ⊥AB ,∴∠CDB =90°,∴∠BCD =∠ACD =45°,∠B =∠C =45°,∴∠ACD =∠B =∠BCD ,∴CD =BD .∵ED ⊥DF ,∴∠EDF =∠EDC +∠CDF =90°.又∵∠CDF +∠BDF =90°,∴∠EDC =∠FDB ,∴△ECD ≌△FBD ,∴DE =DF .
6.B 解析:过点P 作PF ∥BC 交AC 于点F ,∴∠AFP =∠ACB ,∠FPD =∠Q ,∠PFD =∠QCD .∵△ABC 为等边三角形,∴∠A =∠ACB =60°,∴∠AFP =60°,∴△APF 是等边三角形.∴P A =PF .又∵P A =CQ ,∴PF =QC ,∴△PFD ≌△QCD ,∴DF =CD .∵PE ⊥AC ,∴AE =EF ,∴DE =EF
+DF =12AF +12CF =12
AC .又∵AC =6,∴DE =3. 7.证明:在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD .又∵BD =BD ,∴△ABD ≌△EBD (SAS),∴∠BED =∠A =108°,∴∠CED =180°-∠BED =72°.又∵AB =AC ,
∠A =108°,∴∠ACB =∠ABC =12
×(180°-108°)=36°,∴∠CDE =180°-∠ACB -∠CED =180°-36°-72°=72°.∴∠CDE =∠DEC ,∴CD =CE ,∴BC =BE +EC =AB +CD .