河北省邢台市2016_2017学年八年级数学上学期期末试题扫描版(新)

合集下载

2017-2018学年河北省邢台市八年级第一学期期末数学试卷带答案

2017-2018学年河北省邢台市八年级第一学期期末数学试卷带答案

2017-2018学年河北省邢台市初二(上)期末数学试卷一、选择题(本大题共14小题,其中1-6小题每小题2分,7-14题每小题2分,共36分)1.(2分)﹣64的立方根是()A.﹣4B.4C.±4D.不存在2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB4.(2分)用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万5.(2分)用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b6.(2分)一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是()A.a+b B.C.D.7.(3分)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠ABC的度数是()A.30°B.35°C.36°D.60°8.(3分)估算的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间9.(3分)如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12B.14C.16D.1810.(3分)下列运算正确的是()A.+=B.•=C.=D.=3 11.(3分)一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5B.10C.25D.±2512.(3分)如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.30°C.20°D.10°13.(3分)下列算式中,你认为正确的是()A.B.C.D.14.(3分)如图,已知线段BC,分别以B、C为圆心,大于BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为()A.4B.4C.8D.8二、填空题(本大题共4小题,其中15-17题每小题3分,18小题4分,共13分)15.(3分)若在实数范围内有意义,则x的取值范围为.16.(3分)若,则=.17.(3分)如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是(填序号).18.(4分)给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是;根据你发现的规律,试写出第9个分式.三、解答题(共71分)19.(7分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.20.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.21.(8分)如图,在△ABC中,∠ABC>90°.(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).(2)在(1)的基础上,如果PD=PC,则PC:BC=.22.(8分)(1)先化简,再求值:1﹣,其中x=﹣2,y=.(2)解分式方程:.23.(10分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F 是AB的中点.(1)直接写出AB与EF的数量关系:;(2)若AD=3,BD=2,∠C=60°,求EF的长.24.(10分)如图1,射线OB与直线AN垂直于点O,线段OP在∠AOB内,一块三角板的直角顶点与点P重合,两条直角边分别与AN、OB的交于点C、D.(1)当∠POB=60°,∠OPC=30°,PC=2时,则PD=.(2)若∠POB=45°,①当PC与PO重合时,PC和PD之间的数量关系是;②当PC与PO不重合时,猜想PC与PD之间的数量关系,并证明你的结论.25.(10分)王伟和张岩今年秋冬以来进行了两次徒步爬山活动.(1)第一次爬紫金山,他们沿通往主峰的山路爬到某景点A,行程1800米,二人从山脚下同时出发,但是王伟爬的很快,平均速度是张岩的1.2倍,结果比张岩早30分钟到达景点,求王伟的平均爬山速度是每分钟多少米?(2)第二次爬天梯山,王伟爬到顶峰用了n小时(n>2),张岩爬到顶峰的时间是王伟的1.1倍还多1小时,王伟的平均爬山速度是张岩的2倍吗?请说明理由.26.(11分)在Rt△AOB 中,∠AOB=90°,∠A=45°,点P、D分别在射线AB、OB上,PO=PD.(1)如图1,若∠OPD=30°,S=9,求点D到AB的距离.△OPD(2)①如图2,作DE⊥AB于点E,当∠OPD≤90°时,PE与AB之间的数量关系是;②当∠OPD为钝角时,PE与AB之间是否存在上述关系?若存在,设AB=11,求出PE的值;若不存在,请说明理由.2017-2018学年河北省邢台市初二(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,其中1-6小题每小题2分,7-14题每小题2分,共36分)1.(2分)﹣64的立方根是()A.﹣4B.4C.±4D.不存在【解答】解:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故选:A.2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.3.(2分)如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB【解答】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.4.(2分)用四舍五入法对“145762”取近似数,要求精确到千位,下列表示正确的是()A.1.5×105B.1.46×105C.1.458×105D.15万【解答】解:近似数145762≈1.46×105(精确到千位).故选:B.5.(2分)用反证法证明“a>b”时,应假设()A.a<b B.a≤b C.a≥b D.a≠b【解答】解:用反证法证明“a>b”时,应先假设a≤b.故选:B.6.(2分)一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是()A.a+b B.C.D.【解答】解:根据工作总量=工作效率×工作时间,得甲的工作效率是,乙的工作效率是.∴甲乙两人合作一天的工作量为:+.故选D.7.(3分)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠ABC的度数是()A.30°B.35°C.36°D.60°【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选:C.8.(3分)估算的值在()A.1与2之间B.2与3之间C.3与4之间D.5与6之间【解答】解:∵25<27<36,∴5<<6,∴2<﹣3<3.故选:B.9.(3分)如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12B.14C.16D.18【解答】解:∵∠D=90°,CD=6,AD=8,∴AC==10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=16,故选:C.10.(3分)下列运算正确的是()A.+=B.•=C.=D.=3【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、原式==2,所以D选项错误.故选:B.11.(3分)一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5B.10C.25D.±25【解答】解;一个正数的平方根为2x+1和x﹣7,∴2x+1+x﹣7=0x=2,2x+1=5(2x+1)2=52=25,故选:C.12.(3分)如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.30°C.20°D.10°【解答】解:连接OA、OB,∵∠A=80°,∴∠ABC+∠ACB=100°,∵O是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴∠OAB=∠OBA,∠OCA=∠OAC,OB=OC,∴∠OBA+∠OCA=80°,∴∠OBC+∠OCB=100°﹣80°=20°,∵OB=OC,∴∠BCO=∠CBO=10°,故选:D.13.(3分)下列算式中,你认为正确的是()A.B.C.D.【解答】解:A、,错误;B、1×=,错误;C、3a﹣1=,错误;D、==,正确.故选:D.14.(3分)如图,已知线段BC,分别以B、C为圆心,大于BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为()A.4B.4C.8D.8【解答】解:如图,连接EF交BC于H.由题意EB=EC=4,EF⊥BC,∴∠B=∠C,∵∠AEC=∠B+∠C=60°,∴EH=CE=2,BH=CH=EH=2,∴BC=4,∴S=•BC•EH=×4×2=4,△EBC故选:B.二、填空题(本大题共4小题,其中15-17题每小题3分,18小题4分,共13分)15.(3分)若在实数范围内有意义,则x的取值范围为x≥2.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.16.(3分)若,则=﹣.【解答】解:∵﹣=2,∴a﹣b=﹣2ab,∴原式===﹣.故答案为:﹣.17.(3分)如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是②(填序号).【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故答案为:②18.(4分)给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是﹣;根据你发现的规律,试写出第9个分式.【解答】解:给定一列分式:,﹣,,﹣,……,(其中x≠0)用任意一个分式做除法,去除它后面一个分式得到的结果是﹣;根据你发现的规律,试写出第9个分式,故答案为:﹣;三、解答题(共71分)19.(7分)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第③步开始出错的;(2)请你给出正确的解题过程.【解答】解:(1)③(2)原式=2﹣=6﹣2=420.(7分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD,求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.21.(8分)如图,在△ABC中,∠ABC>90°.(1)先过点B画BD⊥BC交AC于点D,然后用尺规作图的方法在BC边上求作一点P,使得点P到AC的距离等于BP的长(保留作图痕迹,不写作法).(2)在(1)的基础上,如果PD=PC,则PC:BC=2:3.【解答】解:(1)如图所示:(2)∵PD=PC,∴∠PDC=∠C,∵DP平分∠BDC,∴∠BDP=∠PDC,∵∠BDP+∠PDC+∠C=90°,可得∠C=30°,∴∠BDP=30°,设BP=1,可得DP=2,即PC=2,所以PC:BC=2:(1+2)=2:3;故答案为:2:322.(8分)(1)先化简,再求值:1﹣,其中x=﹣2,y=.(2)解分式方程:.【解答】解:(1)原式=1﹣•=1﹣==﹣,当x=﹣2、y=时,原式=﹣=;(2)两边都乘以3(x﹣1),得:﹣3x=5+3(x﹣1),解得:x=﹣,检验:x=﹣时,3(x﹣1)=﹣4≠0,所以原分式方程的解为x=﹣.23.(10分)如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F 是AB的中点.(1)直接写出AB与EF的数量关系:EF=AB;(2)若AD=3,BD=2,∠C=60°,求EF的长.【解答】(1)解:结论:EF=AB理由:如图,连接BE,∵在△BCD中,DB=BC,E是CD的中点,∴BE⊥CD,∵F是AB的中点,∴在Rt△ABE中,EF是斜边AB上的中线,∴EF=AB.故答案为EF=AB.(2)解:连接BE.∵BD=BC,∠C=60°,∴△CBD是等边三角形,∴CD=BD=BC=2,∵E是BC中点,∴DE=CD=1,在Rt△BED中,∵BE===,在Rt△AEB中,AE=AD+DE=3+1=4,∴AB==,∵F是AB中点,∴EF=AB=.24.(10分)如图1,射线OB与直线AN垂直于点O,线段OP在∠AOB内,一块三角板的直角顶点与点P重合,两条直角边分别与AN、OB的交于点C、D.(1)当∠POB=60°,∠OPC=30°,PC=2时,则PD=2.(2)若∠POB=45°,①当PC与PO重合时,PC和PD之间的数量关系是PC=PD;②当PC与PO不重合时,猜想PC与PD之间的数量关系,并证明你的结论.【解答】解:(1)作PE⊥AN于E,∵∠POB=60°,OB⊥AN,∴∠AOP=30°,又∠OPC=30°,∴∠ACP=60°,∴AP=PC•sin∠ACP=,∴OP=2AP=2,∵∠POB=60°,∠OPD=60°,∴△POD是等边三角形,∴PD=PO=2,故答案为:2;(2)①当∠POB=45°时,∵三角板的直角顶点与点P重合,∴PC与PO重合时,△PCD为等腰直角三角形,∴PC=PD,故答案为:PC=PD;②PC=PD,理由如下:作PE⊥AN于E,PF⊥OB于F,∵AN⊥OB,PE⊥AN,PF⊥OB,∴四边形EOFP为矩形,∴∠EPF=90°,∴∠EPC=∠FPD,∵∠POB=45°,∴∠POA=45°,∴OP平分∠EOF,又PE⊥AN,PF⊥OB,∴PE=PF,在△EPC和△FPD中,,∴△EPC≌△FPD,∴PC=PD.25.(10分)王伟和张岩今年秋冬以来进行了两次徒步爬山活动.(1)第一次爬紫金山,他们沿通往主峰的山路爬到某景点A,行程1800米,二人从山脚下同时出发,但是王伟爬的很快,平均速度是张岩的1.2倍,结果比张岩早30分钟到达景点,求王伟的平均爬山速度是每分钟多少米?(2)第二次爬天梯山,王伟爬到顶峰用了n小时(n>2),张岩爬到顶峰的时间是王伟的1.1倍还多1小时,王伟的平均爬山速度是张岩的2倍吗?请说明理由.【解答】解:(1)设张岩的平均爬山速度为x米/分,则王伟的平均爬山速度为1.2米/分,根据题意得:+30=,解得:x=10,经检验x=10是原方程的解,所以1.2x=12,答:王伟的平均爬山速度是1.2米/分;(2)王伟的平均爬山速度不是张岩的2倍;由题意知,王伟的平均爬山速度是,张岩平均爬山速度是,÷==1.1+,∵n>2,∴<,∴1.1+<2,∴王伟的平均爬山速度不是张岩的2倍.26.(11分)在Rt△AOB 中,∠AOB=90°,∠A=45°,点P、D分别在射线AB、OB上,PO=PD.=9,求点D到AB的距离.(1)如图1,若∠OPD=30°,S△OPD(2)①如图2,作DE⊥AB于点E,当∠OPD≤90°时,PE与AB之间的数量关系是PE=AB;②当∠OPD为钝角时,PE与AB之间是否存在上述关系?若存在,设AB=11,求出PE的值;若不存在,请说明理由.【解答】解:(1)如图1中,作DF⊥OP于F,DE⊥AB于E.设DF=a.在Rt△PDF中,∵∠PFD=90°,∠DPF=30°,∴PD=2DF=OP=2a,=•OP•DF=•2a•a=9,∴S△OPD∴a=3,∵OP=PD,∴∠PDO=(180°﹣30°)=75°,∵∠PDO=∠B+∠DPB,∴75°=45°+∠DPB,∴∠DPB=∠DPO=30°,∵DF⊥OP,DE⊥AB,∴DE=DF=3.∴点D到AB的距离为3.(2)结论:PE=AB,理由如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE,∴PE=AB.(3)当∠OPD为钝角时,PE=AB.作OC⊥AB于C,同法可证∴△POC≌△DPE(AAS),∴OC=PE,∴PE=AB.∵AB=11,∴PE=AB=.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。

学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)

学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)

2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。

2016-2017学年河北省邢台市八年级(下)期末数学试卷(解析版)

2016-2017学年河北省邢台市八年级(下)期末数学试卷(解析版)

2016-2017学年河北省邢台市八年级(下)期末数学试卷一、请你仔细选一选(本大题共12个小题,每小题3分,共36分)1.(3分)下列各点中在第二象限的是()A.(3,2)B.(﹣3,﹣2)C.(﹣3,2)D.(3,﹣2)2.(3分)PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测3.(3分)如图,两个完全相同的三角尺ABC和DEF在直线l上滑动,可以添加一个条件,使四边形CBFE为菱形,下列选项中错误的是()A.BD=AE B.CB=BF C.BE⊥CF D.BA平分∠CBF 4.(3分)函数y=2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A.6月1日B.6月2日C.6月3日D.6月5日6.(3分)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间的关系如表,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为23.5cm7.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0B.2a﹣3b=0C.3a﹣2b=0D.3a+2b=0 8.(3分)某厂今年前五个月生产某种产品的总产量Q(件)与时间t(月)的函数图象如图所示,则下列说法正确的是()A.1月至3月每月产量逐月增加,4、5两月每月产量逐月减少B.1月至3月每月产量逐月增加,4、5两月每月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月停止生产D.1月至3月每月产量不变,4、5两月停止生产9.(3分)设0<k<2,关于x的一次函数y=(k﹣2)x+2,当1≤x≤2时的最大值是()A.2k﹣2B.k﹣1C.k D.k+110.(3分)以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米11.(3分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是()A.45°B.22.5°C.67.5°D.75°12.(3分)某圆形零件的制作成本y(元)与它的面积成正比例,设半径为r(cm),当r =2cm时,y=20元,那么当制作成本为125元时,半径是()A.5cm B.cm C.10cm D.25cm二、请你认真填一填(本大题共6个小题,每小题3分,共18分)13.(3分)函数y=中自变量x的取值范围是.14.(3分)若点P(1,b)到x轴的距离为2,则P点坐标为.15.(3分)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为.16.(3分)某厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样的方法抽取一个容量为n的样本,样本中A种型号产品有16件,则样本容量n =.17.(3分)如图,点O为四边形ABCD内任意一点,E,F,G,H分别为边OA,OB,OC,OD的中点,则四边形EFGH的周长=.18.(3分)如图,点A(﹣4,0),B(﹣1,0),将线段AB平移后得到线段CD,点A的对应点C恰好落在y轴上,且四边形ABDC的面积为9,则D点坐标为.三、计算与证明(本大题共2个小题,共14分)19.(7分)已知一次函数的图象经过点(﹣2,﹣2)和点(2,4).(1)求这个函数的解析式;(2)判断点P(1,1)是否在此函数图象上,并说明理由.(3)求这个函数的图象与坐标轴围成的面积.20.(7分)如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.四、操作与决策(本大题共3个小题,共22分)21.(7分)(1)描出点A(1,1),B(2,4),C(4,1),D(5,4),并依次连接A﹣B﹣C﹣D﹣A,形成一个图案.(2)将(1)中图案的A,B,C,D各点的横坐标乘以﹣,纵坐标变成原来的后的对应点分别为A1,B1,C1,D1,依次连接A1﹣B1﹣C1﹣D1﹣A1得到一个新图案.①画出这个新图案;②所得新图案与(1)中的原图案相比,有什么变化?22.(7分)某学校教师对本校学生课堂教学中的参与深度与广度进行评价调查,其评价项目为主动质疑,独立思考,专注听讲,讲解题目四项.评价组从各年级随机抽取了若干名学生的参与情况,绘制成如图1和图2所示的扇形统计图和频数分布直方图(均不完整).请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名同学;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)若全校有6000名学生,则在课堂教学中,“独立思考”的学生约有多少人?23.(8分)已知关于x的一次函数y=mx+2的图象经过点(﹣2,6).(1)求m的值;(2)画出此函数的图象;(3)平移此函数的图象,使得它与两坐标轴所围成的图形的面积为4,请直接写出此时图象所对应的函数关系式.五、应用与探究(本大题共3个小题,共30分)24.(9分)某花卉基地种植了郁金香和玫瑰两种花卉共30亩,有关数据如表:(1)设种植郁金香x亩,两种花卉总收益为y万元,求y关于x的函数关系式.(收益=销售额﹣成本)(2)若计划投入的成本的总额不超过70万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?25.(10分)如图,在正方形ABCD中.点P是对角线AC上一个动点(不与点A,C重合),连接PB,过点P 作PF⊥PB,交直线DC于点F.作PE⊥AC交直线DC于点E.连按AE,BF.(1)由题意易知,△ADC≌△ABC.观察图,请猜想另外两组全等的三角形△≌△;△≌△;(2)求证:四边形AEFB是平行四边形;(3)已知AB=2,△PFB的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.26.(11分)已知:矩形ABCD中,AB=10cm,AD=4cm.操作:如图1和如图2所示,在边AB上取点M,在边AD或边DC上取点P,连接MP,将△AMP或四边形AMPD沿着直线MP折叠得到△A′MP或四边形A′MPD′,点A 的落点为点A′,点D的落点为点D′.探究:(1)如图1,若AM=8cm,点P在AD上,点A′落在DC上,则A′C=cm;(2)如图2,若AM=5cm,点P在DC上,点A′落在DC上.①求证:△A′MP为等腰三角形;②求线段DP的长;发现:(3)若点M固定为AB中点,点P由A开始,沿A→D→C方向,在AD,DC边上运动,设点P的运动速度为2cm/s,运动时间为ts,按“操作”中的要求折叠,当边MA′与线段DC有交点时,请直接写出t的取值范围.2016-2017学年河北省邢台市八年级(下)期末数学试卷参考答案与试题解析一、请你仔细选一选(本大题共12个小题,每小题3分,共36分)1.(3分)下列各点中在第二象限的是()A.(3,2)B.(﹣3,﹣2)C.(﹣3,2)D.(3,﹣2)【解答】解:A、(3,2)在第一象限,故本选项错误;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(﹣3,2)在第二象限,故本选项正确;D、(3,﹣2)在第四象限,故本选项错误.故选:C.2.(3分)PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测【解答】解:A、选项样本容量不够大,5天太少,故A选项错误.B、选项的时间没有代表性,集中一个月没有普遍性,故B选项错误;C、选项的时间没有代表性,集中春节7天没有普遍性选项一年四季各随机选中一个星期也是样本容量不够大,故C选项错误.D、样本正好合适,故D选项正确.故选:D.3.(3分)如图,两个完全相同的三角尺ABC和DEF在直线l上滑动,可以添加一个条件,使四边形CBFE为菱形,下列选项中错误的是()A.BD=AE B.CB=BF C.BE⊥CF D.BA平分∠CBF【解答】解:根据题意可得出:四边形CBFE是平行四边形,A、当BD=AE时,无法得出平行四边形CBFE是菱形,故选项A错误,符合题意;B、当CB=BF时,平行四边形CBFE是菱形,故选项B正确,不合题意;C、当BE⊥CF时,平行四边形CBFE是菱形,故选项C正确,不合题意;D、当BA平分∠CBF时,平行四边形CBFE是菱形,故选项D正确,不合题意;故选:A.4.(3分)函数y=2x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵k=2>0,∴函数y=2x﹣1的图象经过第一,三象限;又∵b=﹣1<0,∴图象与y轴的交点在x轴的下方,即图象经过第四象限;所以函数y=﹣x﹣1的图象经过第一,三,四象限,即它不经过第二象限.故选:B.5.(3分)如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A.6月1日B.6月2日C.6月3日D.6月5日【解答】解:1日的温差为24﹣12=12(℃),2日的温差为25﹣13=12(℃),3日的温差为26﹣15=11(℃),4日的温差为25﹣14=11(℃),5日的温差为25﹣12=13(℃),6日的温差为27﹣17=10(℃),7日的温差为26﹣16=10(℃),所以5日的温差最大.故选:D.6.(3分)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间的关系如表,下列说法不正确的是()A.x与y都是变量,且x是自变量,y是x的函数B.弹簧不挂重物时的长度为0cmC.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为23.5cm【解答】解:由表格,得A、x与y都是变量,且x是自变量,y是x的函数,故A不符合题意;B、弹簧不挂重物时的长度为20cm,故B符合题意;C、物体质量每增加1kg,弹簧长度y增加0.5cm,故C不符合题意;D、所挂物体质量为7kg时,弹簧长度为20+7×0.5=23.5cm,故D不符合题意;故选:B.7.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0B.2a﹣3b=0C.3a﹣2b=0D.3a+2b=0【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选:D.8.(3分)某厂今年前五个月生产某种产品的总产量Q(件)与时间t(月)的函数图象如图所示,则下列说法正确的是()A.1月至3月每月产量逐月增加,4、5两月每月产量逐月减少B.1月至3月每月产量逐月增加,4、5两月每月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月停止生产D.1月至3月每月产量不变,4、5两月停止生产【解答】解:根据图象得:1月至3月,该产品的总产量Q(件)与时间t(月)的函数图象是正比例函数图象,所以每月产量是一样的,4月至5月,产品的总产量Q(件)没有变化,即4月、5月停止了生产.故选:D.9.(3分)设0<k<2,关于x的一次函数y=(k﹣2)x+2,当1≤x≤2时的最大值是()A.2k﹣2B.k﹣1C.k D.k+1【解答】解:∵0<k<2,∴k﹣2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k﹣2)+2=k.故选:C.10.(3分)以下是甲、乙、丙三人看地图时对四个坐标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西200米处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站()A.向南直走300米,再向西直走200米B.向南直走300米,再向西直走100米C.向南直走700米,再向西直走200米D.向南直走700米,再向西直走600米【解答】解:如图,以学校为坐标原点画出直角坐标系,1个单位长表示100m,从图书馆出发,向南直走300米,再向西直走200米可到火车站.故选:A.11.(3分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是()A.45°B.22.5°C.67.5°D.75°【解答】解:∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=67.5°,∴∠ACP=∠BCP﹣∠BCA=67.5°﹣45°=22.5°.故选:B.12.(3分)某圆形零件的制作成本y(元)与它的面积成正比例,设半径为r(cm),当r =2cm时,y=20元,那么当制作成本为125元时,半径是()A.5cm B.cm C.10cm D.25cm【解答】解:设y与r之间的函数关系式为y=kπr2,由题意,得20=4πk,解得:k=,∴y=5r2,当y=125时,125=5r2,∴r=5.故选:A.二、请你认真填一填(本大题共6个小题,每小题3分,共18分)13.(3分)函数y=中自变量x的取值范围是x≠.【解答】解:由题意得,2x﹣1≠0,解得x≠.故答案为:x≠.14.(3分)若点P(1,b)到x轴的距离为2,则P点坐标为(1,2)或(1,﹣2).【解答】解:∵点P(1,b)到x轴的距离为2,∴|b|=2,解得b=±2,∴P点坐标为(1,2)或(1,﹣2).故答案为:(1,2)或(1,﹣2).15.(3分)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为14.【解答】解:设新多边形是n边形,由多边形内角和公式得:(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故答案为:14.16.(3分)某厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样的方法抽取一个容量为n的样本,样本中A种型号产品有16件,则样本容量n =80.【解答】解:因为样本中A种型号产品有16件,占总产品的,所以样本容量n=16÷=80.17.(3分)如图,点O为四边形ABCD内任意一点,E,F,G,H分别为边OA,OB,OC,OD的中点,则四边形EFGH的周长=18.【解答】解:∵E,F,G,H分别为边OA,OB,OC,OD的中点,∴EF=AB=3,FG=BC=5,GH=CD=6,HE=AD=4,∴四边形EFGH的周长=3+5+6+4=18,故答案为:18.18.(3分)如图,点A(﹣4,0),B(﹣1,0),将线段AB平移后得到线段CD,点A的对应点C恰好落在y轴上,且四边形ABDC的面积为9,则D点坐标为(3,3).【解答】解:∵A(﹣4,0),B(﹣1,0),∴AB=3,AO=4,设C纵坐标为a,∵四边形ABDC的面积为9,∴3a=9,∴a=3,∵C(0,3),∴平移的方式为:右移4个单位、上移3个单位,则D点坐标为(﹣1+4,0+3),即(3,3),故答案为:(3,3).三、计算与证明(本大题共2个小题,共14分)19.(7分)已知一次函数的图象经过点(﹣2,﹣2)和点(2,4).(1)求这个函数的解析式;(2)判断点P(1,1)是否在此函数图象上,并说明理由.(3)求这个函数的图象与坐标轴围成的面积.【解答】解:(1)设一次函数解析式为y=kx+b(k≠0),将(﹣2,﹣2)、(2,4)代入y=kx+b中,,解得:,∴这个函数的解析式为y=x+1.(2)当x=1时,y=+1=,∵>1,∴点P(1,1)不在此函数图象上.(3)当x=0时,y=1,∴该函数图象与y轴交点坐标为(0,1);当y=0时,x+1=0,解得:x=﹣,∴该函数图象与x轴交点坐标为(﹣,0).∴这个函数的图象与坐标轴围成的面积S=×1×=.20.(7分)如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.【解答】证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD.∴∠BAE=∠DCF.又∵AE=CF,∴△ABE≌△CDF(SAS).∴BE=DF.四、操作与决策(本大题共3个小题,共22分)21.(7分)(1)描出点A(1,1),B(2,4),C(4,1),D(5,4),并依次连接A﹣B﹣C﹣D﹣A,形成一个图案.(2)将(1)中图案的A,B,C,D各点的横坐标乘以﹣,纵坐标变成原来的后的对应点分别为A1,B1,C1,D1,依次连接A1﹣B1﹣C1﹣D1﹣A1得到一个新图案.①画出这个新图案;②所得新图案与(1)中的原图案相比,有什么变化?【解答】解:(1)图象如图所示;(2)①新图案如图所示;②所得新图案与(1)中的原图案相比,形状相似,相似比为1:2.22.(7分)某学校教师对本校学生课堂教学中的参与深度与广度进行评价调查,其评价项目为主动质疑,独立思考,专注听讲,讲解题目四项.评价组从各年级随机抽取了若干名学生的参与情况,绘制成如图1和图2所示的扇形统计图和频数分布直方图(均不完整).请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名同学;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;(3)请将频数分布直方图补充完整;(4)若全校有6000名学生,则在课堂教学中,“独立思考”的学生约有多少人?【解答】解:(1)总人数=224÷40%=560人.(2)项目“主动质疑”所在的扇形的圆心角的度数=360°×=54°,故答案为54.(3)讲解题目的人数=560﹣84﹣168﹣224=84人,条形图如图所示,(4)6000×=1800,答:若全校有6000名学生,则在课堂教学中,“独立思考”的学生约有1800人.23.(8分)已知关于x的一次函数y=mx+2的图象经过点(﹣2,6).(1)求m的值;(2)画出此函数的图象;(3)平移此函数的图象,使得它与两坐标轴所围成的图形的面积为4,请直接写出此时图象所对应的函数关系式.【解答】解:(1)将x=﹣2,y=6代入y=mx+2,得6=﹣2m+2,解得m=﹣2;(2)由(1)知,该函数是一次函数:y=﹣2x+2,令x=0,则y=2;令y=0,则x=1,所以该直线经过点(0,2),(1,0).其图象如图所示:;(3)根据上图知,直线y=﹣2x+2与坐标轴所围成的三角形的面积是×1×2=1,所以,平移此函数的图象,使得它与两坐标轴所围成的图形的面积为4时,函数解析式可以是:y=﹣2x+4或y=﹣2x﹣4.五、应用与探究(本大题共3个小题,共30分)24.(9分)某花卉基地种植了郁金香和玫瑰两种花卉共30亩,有关数据如表:(1)设种植郁金香x亩,两种花卉总收益为y万元,求y关于x的函数关系式.(收益=销售额﹣成本)(2)若计划投入的成本的总额不超过70万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?【解答】解:(1)由题意可得,y=(3﹣2.4)x+(2.5﹣2)(30﹣x)=0.1x+15,即y关于x的函数关系式是y=0.1x+15;(2)由题意可得,2.4x+2(30﹣x)≤70,解得,x≤25,∵y=0.1x+15,∴当x=25时,y取得最大值,此时y=17.5,30﹣x=5,答:要使获得的收益最大,基地应种植郁金香25亩,玫瑰5亩.25.(10分)如图,在正方形ABCD中.点P是对角线AC上一个动点(不与点A,C重合),连接PB,过点P作PF⊥PB,交直线DC于点F.作PE⊥AC交直线DC于点E.连按AE,BF.(1)由题意易知,△ADC≌△ABC.观察图,请猜想另外两组全等的三角形△PEF≌△PCB;△ADE≌△BCF;(2)求证:四边形AEFB是平行四边形;(3)已知AB=2,△PFB的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.【解答】(1)解:∵四边形ABCD是平行四边形,∴AD=DC=BC,∠ACD=∠ACB=45°,∵PE⊥AC,PB⊥PF,∴∠EPC=∠BPF=90°,∴∠EPF=∠CPB,∠PEB=∠PCE=45°,∴PE=PC,在△PEF和△PCB中,,∴△PEF≌△PCB,∴EF=BC=DC,∴DE=CF,在△ADE和△BCF中,,∴△ADE≌△BCF,故答案为PEF,PCB,ADE,BCF;(2)证明:由(1)可知△PEF≌△PCB,∴EF=BC,∵AB=BC,∴AB=EF,∵AB∥EF,∴四边形AEFB是平行四边形.(3)解:存在.理由如下:∵△PEF≌△PCB,∴PF=PB,∵∠BPF=90°,∴△PBF是等腰直角三角形,∴PB最短时,△PBF的面积最小,∴当PB⊥AC时,PB最短,此时PB=AB•cos45°=2,∴△PBF的面积最小值为×2×2=2.26.(11分)已知:矩形ABCD中,AB=10cm,AD=4cm.操作:如图1和如图2所示,在边AB上取点M,在边AD或边DC上取点P,连接MP,将△AMP或四边形AMPD沿着直线MP折叠得到△A′MP或四边形A′MPD′,点A 的落点为点A′,点D的落点为点D′.探究:(1)如图1,若AM=8cm,点P在AD上,点A′落在DC上,则A′C=4+3 cm;(2)如图2,若AM=5cm,点P在DC上,点A′落在DC上.①求证:△A′MP为等腰三角形;②求线段DP的长;发现:(3)若点M固定为AB中点,点P由A开始,沿A→D→C方向,在AD,DC边上运动,设点P的运动速度为2cm/s,运动时间为ts,按“操作”中的要求折叠,当边MA′与线段DC有交点时,请直接写出t的取值范围.【解答】解:(1)如图1,过M作ME⊥CD于E,则ME=AD=4,BM=CE=8﹣5=3,由折叠得:AM=A′M=8,∴ME=A′M,∴∠MA′C=30°;∴A′E=EM=4,∴A′C=A′E+CE=4+3.故答案为4+3.(2)①如图2,∵四边形ABCD为矩形,∴AB∥CD,∴∠CPM=∠AMP,由折叠得:∠AMP=∠A′MP,∴∠CPM=∠A′MP,∴A′M=A′P,∴△MA′P是等腰三角形;②如图2,由折叠得:A′M=AM=5,A′D′=AD=4,由①得:A′M=A′P=5,在Rt△A′PD′中,PD′==3,∴PD=PD′=3cm;(3)①当P在AD上,点A′落在DC上时,如图3,过M作ME⊥CD于E,∵M是AB的中点,AB=10,∴AM=5,由折叠得:A′M=AM=5,∵MN=4,设AP=A′P=xcm,同理得:A′E=3∴A′D=DE﹣A′E=5﹣3=2,PD=4﹣x,在Rt△A′DP中,x2=22+(4﹣x)2,解得x=2.5,此时,t=s;当点P在DC上,A′也在DC上时,如图2,此时PD=3cm,t=s,∴当MA′与线段DC有交点时,t的取值范围为≤t≤;。

河北省邢台市八年级上学期期末数学试卷

河北省邢台市八年级上学期期末数学试卷

河北省邢台市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、精心选一选 (共10题;共20分)1. (2分)在代数式①;②;③;④中,属于分式的有()A . ①②B . ①③C . ①③④D . ①②③④2. (2分)下列图形中,不是轴对称图形的是()A . 角B . 等边三角形C . 平行四边形D . 圆3. (2分) (2019七下·泰兴期中) 计算a6÷a3结果正确的是()A .B .C .D .4. (2分) (2019八下·醴陵期末) 在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是()A . 电动伸缩门B . 升降台C . 栅栏D . 窗户5. (2分) (2019八上·无锡开学考) 下列从左到右的变形,属于分解因式的是()A . (a﹣3)(a+3)=a2﹣9B . x2+x﹣5=x(x+1)﹣5C . a2+a=a(a+1)D . x3y=x•x2•y6. (2分)如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需补充的条件是()A . ∠A=∠DB . ∠E=∠CC . ∠A=∠CD . ∠1=∠27. (2分) (2018八上·彝良期末) 如图4所示,在 ABC中,CD,BE分别是AB,AC边上的高,并且CD,BE交于点P,若 A= ,则 BPC等于()A . 90B . 115C . 105D . 1308. (2分)计算÷ 的结果是().A . 1B . x+1C .D .9. (2分) (2020七上·罗湖期末) 某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能符合题意解释这一现象的数学知识是()A . 两点之间线段最短B . 两点确定一条直线C . 线段的定义D . 圆弧的定义10. (2分) (2019七下·昭平期中) 若(a+b﹣1)(a+b+1)﹣4=0,则a+b的值为()A . 2B . ±2C .D . ±二、细心填一填 (共10题;共10分)11. (1分)(2020·黄浦模拟) 计算:6a4÷2a2=________.12. (1分)(2020·绥化) 在函数中,自变量x的取值范围是________.13. (1分)(2020·龙湖模拟) 因式分解: ________14. (1分)(2020·泰兴模拟) 在平面直角坐标系xOy中,点A(m,n)在双曲线上,点A关于y 轴的对点B在,则k =________.15. (1分)(2019·东营) 已知等腰三角形的底角是,腰长为,则它的周长是________.16. (1分)(2019·陇南模拟) 如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于________.17. (1分) (2019八下·大石桥期中) 如图,在Rt△ABC中,∠B=90°,AC的垂直平分线DE分别交AB,AC于D,E两点,若AB=4,BC=3,则CD的长为________.18. (1分) (a+b)(-b-a)=________.19. (1分)(2011·扬州) 如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则从C点看A、B两岛的视角∠ACB=________°.20. (1分) (2016八上·重庆期中) 如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为________°.三、耐心解一解 (共6题;共66分)21. (10分) (2020七上·孝义期中) 软笔书法承载着中华五千年的灿烂文化,练好软笔字还可以愉悦身心,陶冶性情,如图1是李叔叔的软笔作品,为了美观,李叔叔装裱此作品,装裱作品有三步,一是将作品四周裱上边衬(上、下边衬宽度相等,左、右边衬宽度也相等),二是在作品的后面装一层背板(背板与裱上边衬后的作品的大小相等),三是在边衬的外围嵌入边框(边框的宽度忽略不计).装裱后的作品如图2(装裱前、后都是长方形).(1)已知图1长,宽.在图2中,左右边衬的宽度是上下边衬的2倍,设上下边衬的宽度是,则上下左右边衬的总面积为多少?(2)装裱作品的费用由三部分组成,一是边衬的费用,二是背板费用,三是边框费用,已知边衬每平方米50元,背板每平方米60元,边框每米30元,当时,请你计算装裱此作品需要多少钱?22. (10分)(2017·天门) 如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.23. (5分) (2020八上·铁锋期末) 去年冬天某市遭遇持续暴雪天气,该市启用了清雪机,已知一台清雪机的工作效率相当于一名环卫工人工作效率的200倍,若用这台清雪机清理6000立方米的雪,要比120名环卫工人清理这些雪少用小时,试求一台清雪机每小时清雪多少立方米.24. (15分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=AD=8,求CD的长.25. (15分)小明准备用一段长40米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)求出a的取值范围.(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.26. (11分) (2019八上·江岸期中) 已知:如图,在平面直角坐标系中,A(a,0)、B(0,b),且|a+2|+(b+2a)2=0,点P为x轴上一动点,连接BP,在第一象限内作BC⊥AB且BC=AB(1)求点A、B的坐标(2)如图1,连接CP.当CP⊥BC时,作CD⊥BP于点D,求线段CD的长度(3)如图2,在第一象限内作BQ⊥BP且BQ=BP,连接PQ.设P(p,0),直接写出S△PCQ=________参考答案一、精心选一选 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、细心填一填 (共10题;共10分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、耐心解一解 (共6题;共66分)答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。

2016-2017年河北省邢台市临城县八年级上学期期末数学试卷带答案word版

2016-2017年河北省邢台市临城县八年级上学期期末数学试卷带答案word版

2016-2017学年河北省邢台市临城县八年级(上)期末数学试卷一、选择题(本大题共14个小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)是一个数的算术平方根,则这个数为()A.4B.1C.D.±2.(3分)当x=3时,下列分式无意义的是()A.B.C.D.3.(3分)是()A.无理数B.有理数C.分数D.正整数4.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A.B.C.D.5.(3分)能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60°B.95.1°,104.9°C.30°,60°D.90°,90°6.(3分)等腰三角形一个外角等于110°,则底角为()A.70°或40°B.40°或55°C.55°或70°D.70°7.(3分)如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是()A.O1B.O2C.O3D.O48.(3分)把m、n同时扩大2倍,分式值保持不变的分式是()A.B.C.D.9.(3分)Rt△ABC中,两直角边的长分别为6和8,则其斜边上的中线长为()A.10B.3C.4D.510.(3分)下列四个实数中,比5大的实数为()A.﹣1B.﹣1C.+1D.﹣1 11.(3分)已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD 与△ACD的面积之比为()A.3:2B.9:4C.2:3D.4:912.(3分)在△ABC与△DEF中,已知AB=DE,∠A=∠D,分别补充下列条件中的一个条件:①AC=DF;②∠B=∠E;③∠C=∠F;④BC=EF,其中能判断△ABC ≌△DEF的有()A.①②③B.①②④C.②③④D.①③④13.(3分)已知等腰三角形的底边长为a,底边上的高为h,用直尺和圆规作这个等腰三角形时,甲同学的作法是:先作底边BC=a,再作BC的垂直平分线MN 交BC于点D,并在DM上截取DA=h,最后连结AB、AC,则△ABC即为所求作的等腰三角形;乙同学的作法是:先作高AD=h,再过点D作AD的垂线MN,并在MN上截取BC=a,最后连结AB、AC,则△ABC即为所求作的等腰三角形.对于甲乙两同学的作法,下列判断正确的是()A.甲错误,乙正确B.甲正确,乙错误C.甲、乙均正确D.甲、乙均错误14.(3分)化简(1+)÷的结果为()A.B.1+a C.D.1﹣a二、填空题(本大题共4个小题,每小题3分,共12分)15.(3分)用四舍五入法对7.8963取近似数,精确到0.01,得到的结果是.16.(3分)如图已知OA=a,P是射线ON上一动点,∠AON=60°,当OP=时,△AOP为等边三角形.17.(3分)如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD=度.18.(3分)某大学计划为新生配备如图1所示的折叠凳,图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度也为30cm,依据是和(用文字语言叙述).三、解答题(本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.(10分)如图所示,数轴上与1,对应点分别为A,B,点B关于点A的对称点为点C,设点C表示的数为x,求BC的长.20.(10分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.21.(10分)佳佳给出的解题过程:×2﹣÷的解题过程:×2﹣÷=2﹣①=2﹣②=(2﹣1)③=④(1)佳佳从步开始产生错误;(2)请你给出正确的解题过程.22.(12分)在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.23.(12分)某新建火车站站前广场需要绿化的面积为46000m2,施工队在绿化了22000m2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少m2?24.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC 于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.2016-2017学年河北省邢台市临城县八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14个小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)是一个数的算术平方根,则这个数为()A.4B.1C.D.±【解答】解:∵()2=∴该数为故选:C.2.(3分)当x=3时,下列分式无意义的是()A.B.C.D.【解答】解:A、x=0分式无意义,不符合题意;B、x=0分式无意义,不符合题意;C、x=3分式无意义,符合题意;D、x=﹣3分式无意义,不符合题意.故选:C.3.(3分)是()A.无理数B.有理数C.分数D.正整数【解答】解:原式==,结果是无理数,故选:A.4.(3分)下列手机屏幕解锁图案中不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.5.(3分)能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60°B.95.1°,104.9°C.30°,60°D.90°,90°【解答】解:∵90°+90°=180°,而这两个角都是直角,所以D选项可能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题.故选:D.6.(3分)等腰三角形一个外角等于110°,则底角为()A.70°或40°B.40°或55°C.55°或70°D.70°【解答】解:分为两种情况:①当顶角的外角是110°时,顶角是180°﹣110°=70°,则底角是×(180°﹣70°)=55°;②当底角的外角是110°时,底角是180°﹣110°=70°;即底角为55°或70°,故选:C.7.(3分)如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是()A.O1B.O2C.O3D.O4【解答】解:如图,连接HC和DE交于O1,故选:A.8.(3分)把m、n同时扩大2倍,分式值保持不变的分式是()A.B.C.D.【解答】解:A、把m、n同时扩大2倍后,变成,分式值改变;B、把m、n同时扩大2倍后,变成,分式值改变;C、把m、n同时扩大2倍后,变成=,分式值保持不变;D、把m、n同时扩大2倍后,变成,分式值改变.故选:C.9.(3分)Rt△ABC中,两直角边的长分别为6和8,则其斜边上的中线长为()A.10B.3C.4D.5【解答】解:已知直角三角形的两直角边为6、8,则斜边长为=10,故斜边的中线长为×10=5,故选:D.10.(3分)下列四个实数中,比5大的实数为()A.﹣1B.﹣1C.+1D.﹣1【解答】解:A、∵4<<5,∴3<﹣1<4,故本选项不符合题意;B、∵5<<6,∴4<﹣1<5,故本选项不符合题意;C、∵5<<6,∴6<+1<7,故本选项符合题意;D、∵5<<6,∴4<﹣1<5,故本选项不符合题意;故选:C.11.(3分)已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD 与△ACD的面积之比为()A.3:2B.9:4C.2:3D.4:9【解答】解:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F . ∵AD 为∠BAC 的平分线, ∴DE=DF ,又AB :AC=3:2,∴S △ABD :S △ACD =(AB•DE ):(AC•DF )=AB :AC=3:2. 故选:A .12.(3分)在△ABC 与△DEF 中,已知AB=DE ,∠A=∠D ,分别补充下列条件中的一个条件:①AC=DF ;②∠B=∠E ;③∠C=∠F ;④BC=EF ,其中能判断△ABC ≌△DEF 的有( ) A .①②③B .①②④C .②③④D .①③④【解答】解:①添加AC=DF 可利用SAS 判定△ABC ≌△DEF ; ②添加∠B=∠E 可利用ASA 判定△ABC ≌△DEF ; ③添加∠C=∠F 可利用AAS 判定△ABC ≌△DEF ; ④添加BC=EF 不能判定△ABC ≌△DEF , 故选:A .13.(3分)已知等腰三角形的底边长为a ,底边上的高为h ,用直尺和圆规作这个等腰三角形时,甲同学的作法是:先作底边BC=a ,再作BC 的垂直平分线MN 交BC 于点D ,并在DM 上截取DA=h ,最后连结AB 、AC ,则△ABC 即为所求作的等腰三角形;乙同学的作法是:先作高AD=h ,再过点D 作AD 的垂线MN ,并在MN 上截取BC=a ,最后连结AB 、AC ,则△ABC 即为所求作的等腰三角形.对于甲乙两同学的作法,下列判断正确的是( )A.甲错误,乙正确B.甲正确,乙错误C.甲、乙均正确D.甲、乙均错误【解答】解:根据甲同学的作法,AD垂直平分BC,则AB=AC,所以△ABC为直角三角形,而根据乙同学的作法,AD只垂直BC,不平分BC,所以不能判断△ABC为等腰三角形,所以甲同学作法正确,乙同学作法错误.故选:B.14.(3分)化简(1+)÷的结果为()A.B.1+a C.D.1﹣a【解答】解:(1+)÷===a+1,故选:B.二、填空题(本大题共4个小题,每小题3分,共12分)15.(3分)用四舍五入法对7.8963取近似数,精确到0.01,得到的结果是7.90.【解答】解:7.8963取近似数,精确到0.01,得到的结果是7.90;故答案为:7.90.16.(3分)如图已知OA=a,P是射线ON上一动点,∠AON=60°,当OP=a时,△AOP为等边三角形.【解答】解:∵AON=60°,∴当OA=OP=a时,△AOP为等边三角形.故答案是:a.17.(3分)如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD=34度.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.18.(3分)某大学计划为新生配备如图1所示的折叠凳,图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度也为30cm,依据是全等三角形对应边相等和两边及夹角对应相等的两个三角形全等(用文字语言叙述).【解答】解:∵O是AB、CD的中点,∴OA=OB,OC=OD,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴CB=AD,∵AD=30cm,∴CB=30cm.所以,依据是两边及夹角对应相等的两个三角形全等,全等三角形对应边相等.故答案为:两边及夹角对应相等的两个三角形全等,全等三角形对应边相等.三、解答题(本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.(10分)如图所示,数轴上与1,对应点分别为A,B,点B关于点A的对称点为点C,设点C表示的数为x,求BC的长.【解答】解:设C点坐标为x,由题意,得=1,解得x=2﹣,BC=﹣(2﹣)=2﹣2.20.(10分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.21.(10分)佳佳给出的解题过程:×2﹣÷的解题过程:×2﹣÷=2﹣①=2﹣②=(2﹣1)③=④(1)佳佳从③步开始产生错误;(2)请你给出正确的解题过程.【解答】解:(1)佳佳从③步开始产生错误;(2)正确的解题过程为:原式=2﹣=2﹣=6﹣2=4.故答案为③.22.(12分)在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.【解答】解:(1)如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即CE的长为:.(2)如图(2),∵点B′落在AC的中点,∴CB′=AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=.即CE的长为:.23.(12分)某新建火车站站前广场需要绿化的面积为46000m2,施工队在绿化了22000m2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少m2?【解答】解:设该项绿化工程原计划每天完成x米2,根据题意得:﹣=4,解得:x=2000,经检验,x=2000是原方程的解.答:该绿化项目原计划每天完成2000平方米.24.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC 于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.【解答】证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF,∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE;(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF,∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF.附赠数学基本知识点1知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。

20162017学年度上学期期末八年级数学试题含答案

20162017学年度上学期期末八年级数学试题含答案

2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。

河北省邢台市八年级上学期数学期末考试试卷

河北省邢台市八年级上学期数学期末考试试卷

河北省邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若0<m<1, 则m、m2、的大小关系是()A . m<m2<B . m2<m<C . <m<m2D . <m2<m2. (2分) (2018七下·桐梓月考) 如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A . 16B . 12C . 8D . 43. (2分) (2016八下·罗平期末) 2015年1月1日起,杭州市城区实行全新的阶梯水价,之前为了解某社区居民的用水情况,随机对该社区20户居民进行了调查,下表是这20户居民2014年8月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()居民(户)128621月用水量(吨)458121520A . 平均数是10(吨)B . 众数是8(吨)C . 中位数是10(吨)D . 样本容量是204. (2分) 64的立方根是()A . 4B . ±4C . 8D . ±85. (2分)下列函数,y随x增大而减小的是()A . y=10xB . y=x﹣1C . y=﹣3+11xD . y=﹣2x+16. (2分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A . 12,14B . 12,15C . 15,14D . 15,137. (2分)如下图,以中心广场为坐标原点,建立如图所示的平面直角坐标系,已知牡丹园的坐标是(30,30),那么游乐园的坐标是()A . (-20,20)B . (20,-20)C . (200,-200)D . (100,-100)8. (2分)(2012·辽阳) 将一直角三角板和直尺如图摆放,则∠1+∠2等于()A . 30°B . 60°C . 90°D . 180°9. (2分)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A . 24B . 20C . 10D . 510. (2分)如果单项式2xm+2ny与﹣3x4y4m﹣2n是同类项,则m、n的值为()A . m=﹣1,n=2.5B . m=1,n=1.5C . m=2,n=1D . m=﹣2,n=﹣1二、填空题 (共6题;共7分)11. (1分) (2019九下·新田期中) 如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则BE=________.12. (2分)(2019·蒙自模拟) 如图,已知AB∥CD,AB=AC,∠ACD=44°,则∠ABC=________.13. (1分)(2019·南岸模拟) 如图,我校初三某班男生期末体考跳远成绩如下折线统计图,则该班男生跳远成绩的中位数是________米.14. (1分)丹东市教育局为了改善中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板需________元.15. (1分) (2018八上·巍山期中) 点P(1,-1)关于原点对称的点的坐标是________.16. (1分) (2019八下·长兴月考) 如图1,边长为6的菱形OABC的顶点O在坐标原点,点B在y轴的正半轴上,∠BAO=120°;点D是BC边的中点(1)求点D的坐标;(2)如图2,把菱形OABC绕点O顺时针旋转45°,得到菱形OA'B'C',点D的对应点为D′,求△OA'D′的面积;(3)如图3,直线y=2 与(2)中的菱形OA'B'C'的边OC′交于点M,与OA'的延长线交于点N,求△OMN 的面积三、解答题 (共9题;共58分)17. (5分) (2017八下·大庆期末) 综合题。

河北省邢台市八年级上学期期末数学试卷

河北省邢台市八年级上学期期末数学试卷

河北省邢台市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分)(2017·资中模拟) 下列实数中,有理数是()A .B .C .D . 0.1010012. (2分)已知P(x,y)是第四象限内的一点,且x2=4,|y|=3,则P点的坐标为()A . (2,3)B . (-2,3)C . (-2,-3)D . (2,-3)3. (2分)(2017·宁夏) 下列各式计算正确的是()A . 4a﹣a=3B . a6÷a2=a3C . (﹣a3)2=a6D . a3•a2=a64. (2分) (2017八下·罗山期中) 如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是()A . 13cmB . 2 cmC . cmD . 2 cm5. (2分)(2018·夷陵模拟) 一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是()A . 17B . 16C . 15D . 16或15或176. (2分)在平面直角坐标系xoy中,直线y=-x+2经过()A . 第一、二、三象限;B . 第一、二、四象限;C . 第一、三、四象限;D . 第二、三、四象限.7. (2分)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ 时,连PQ交AC边于D,则DE的长为()A .B .C .D . 不能确定8. (2分)下列说法正确的是()A . 经验、观察或实验完全可以判断一个数学结论的正确与否B . 推理是科学家的事,与我们没有多大的关系C . 对于自然数n,n2+n+37一定是质数D . 有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个9. (2分) (2020八上·淅川期末) 如图,将长方形纸片沿对角线折叠,使点落在处,交AD于E,若,则在不添加任何辅助线的情况下,则图中的角(虚线也视为角的边)的个数是()A . 5个B . 4个C . 3个D . 2二、填空题 (共9题;共10分)10. (1分)若的平方根是,则m=________ .11. (2分) (2019八下·义乌期末) 如图1是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A,B,C,D符点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来.如果已知四边形ABCD中,AB=6,CD=15,那么BC=________ ,AD=________才能实现上述的折叠变化.12. (1分) (2015八上·宝安期末) 如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是________13. (1分) (2016八下·微山期末) 已知一组数据为2、0、﹣1、3、﹣4,则这组数据的方差为________.14. (1分) (2017八下·杭州开学考) 已知点P1(a,﹣3)和点P2(3,b)关于y轴对称,则a+b的值为________.15. (1分)运动会上,生活班委拿20元钱到超市买来果汁x瓶,酸奶y瓶给运动员,已知果汁每瓶2元,酸奶每瓶3元,钱刚好用完则购买方案共有________种.16. (1分) (2017七下·江阴期中) 如图,在四边形ABCD中,点F,E分别在边AB,BC上,将△BFE沿FE 翻折,得△GFE,若GF∥AD,GE∥DC,则∠B的度数为________.17. (1分)已知(a+2)2+|2b﹣1|=0,则a102•b101=________.18. (1分)如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1 ,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2 ,以原点O为圆心,OB2长为半径画弧交x轴于点A3 ,…,按此做法进行下去,点An的坐标为________三、解答题 (共8题;共75分)19. (5分)计算:(+)×20. (5分)已知|x+y﹣17|+(5x+3y﹣75)2=0,求2x+3y的值.21. (10分) (2017七下·朝阳期中) 已知在平面直角坐标系中,已知A(3,4),B(3,﹣1),C(﹣3,﹣2),D(﹣2,3).(1)在图上画出四边形ABCD,并求四边形ABCD的面积;(2)若P为四边形ABCD形内一点,已知P坐标为(﹣1,1),将四边形ABCD通过平移后,P的坐标变为(2,﹣2),根据平移的规则,请直接写出四边形ABCD平移后的四个顶点的坐标.22. (10分) (2017七上·丹江口期末) 解答题(1)如图,已知,∠AEF=∠ACD,∠1=∠2,求证:DE∥BC.(要求:不写根据)(2)∠1=∠C,∠B=∠D,求证:∠3=∠2.(要求:不写根据;不许用三角形的内角和定理)23. (5分) (2017七下·钦北期末) 某超市开业十周年举行了店庆活动,对A、B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间,购买3件A商品和8件B商品仅需72元,求店庆期间超市的折扣是多少?24. (15分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如图的两幅统计图:(1)该调查小组共抽取了多少名学生;(2)样本学生中阳光体育运动时间为1.5小时的人数,并补全频数分布直方图;(3)请通过计算估计该市中小学生一天中阳光体育运动的平均时间.25. (10分) (2016八下·固始期末) 在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB 上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.26. (15分) (2016七下·威海期末) 如图,动点A,B从原点O同时出发,点A以每秒a个单位长度向x轴的负半轴向左运动,点B以每秒b个单位长度沿y轴的正半轴向上运动.(1)若a,b满足关系|a+b﹣3|+(a﹣ b)2=0,请求出a,b的值;(2)如图①,求当运动时间为2秒时,直线AB的函数表达式;(3)如图②,∠BAO与∠ABO的外角平分线相交于点C,随着点A,点B的运动,∠C的度数是否会发生变化?若度数变化,请说明理由;若度数不变,请求出∠C的度数.参考答案一、选择题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共9题;共10分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。

数学2016-2017学年度第一学期期末考试试题

数学2016-2017学年度第一学期期末考试试题

2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。

【精选3份合集】2017-2018年邢台市八年级上学期数学期末综合测试试题

【精选3份合集】2017-2018年邢台市八年级上学期数学期末综合测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.我们规定:[]m 表示不超过m 的最大整数,例如:[]3.13=,[]00=,[]3.14-=-,则关于x 和y 的二元一次方程组[][][]3.23.2x y x y ⎧+=⎪⎨-=⎪⎩的解为( ) A .30.2x y =⎧⎨=⎩ B .21.2x y =⎧⎨=⎩ C . 3.30.2x y =⎧⎨=⎩ D . 3.40.2x y =⎧⎨=⎩【答案】A【分析】根据[]m 的意义可得[]3.2=3,[]x 和[]y 均为整数,两方程相减可求出0.2y =,[]0y =,将[]0y =代入第二个方程可求出x.【详解】解:[][][]3.23.2x y x y ⎧+=⎪⎨-=⎪⎩①②, ∵[]m 表示不超过m 的最大整数,∴[]3.2=3,[]x 和[]y 均为整数,∴x 为整数,即[]=x x ,∴①-②得:[]0.2y y +=,∴0.2y =,[]0y =,将[]0y =代入②得:3x =, ∴30.2x y =⎧⎨=⎩, 故选:A.【点睛】本题考查了新定义以及解二元一次方程组,正确理解[]m 的意义是解题的关键.2.下列命题中,真命题是( )A .过一点且只有一条直线与已知直线平行B .两个锐角的和是钝角C .一个锐角的补角比它的余角大90°D .同旁内角相等,两直线平行【答案】C【分析】根据平行线的公理及判定、角的定义和补角和余角的定义可逐一判断.【详解】解:A 、过直线外一点有且只有一条直线与已知直线平行,是假命题;B 、两个锐角的和不一定是钝角,如20°+20°=40°,是假命题;C 、一个锐角的补角比它的余角大90°,是真命题;D 、同旁内角互补,两直线平行,是假命题;故选:C .【点睛】本题主要考查平行线的公理及性质,掌握平行线的公理及判定、角的定义和补角和余角的定义是关键. 3.如果代数式21x y -+的值为3,那么代数式的425x y -+值等于( )A .11B .9C .13D .7【答案】B【分析】先由已知可得2x-y=2,然后将425x y -+写成2(2x-y )+5,最后将2x-y=2代入计算即可.【详解】解:∵代数式2x-y+1的值为3∴2x-y=2∴425x y -+=2(2x-y )+5=2×2+5=1.故答案为B .【点睛】本题主要考查了代数式求值,根据已知求出2x-y 的值是解答本题的关键.4.把一副三角板按如图叠放在一起,则α∠的度数是( )A .165B .160C .155D .150【答案】A 【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可 【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选A .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键. 5.在平面直角坐标系中,点(5,6)关于x 轴的对称点是( )A .(6,5)B .(-5,6)C .(5,-6)D .(-5,-6)【答案】C【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可得答案.【详解】点(5,6)关于x 轴的对称点(5,-6),故选:C.【点睛】本题主要考查了关于x 轴对称点的坐标特点,熟练掌握关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数是解题关键.6.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).A .36B .1013C .60D .1213【答案】A 【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213 ∴()()22221021312x x -=-- ∴8x =∴22221086AD AB BD =-=-=∴△ABC 的面积111263622BC AD =⨯=⨯⨯= 故选:A .【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.7.如图,在ABC 中,90,4,3C AC BC ∠=︒==,将ABC 绕点A 逆时针旋转,使点C 恰好落在线段AB 上的点E 处,点B 落在点D 处,则B D ,两点间的距离为( )A .10B .8C .3D .25【答案】A 【分析】连接BD ,利用勾股定理求出AB ,然后根据旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3,从而求出∠DEB 和BE ,最后利用勾股定理即可求出结论.【详解】解:连接BD∵90,4,3C AC BC ∠=︒==∴225AC BC +=由旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3∴∠DEB=180°-∠AED=90°,BE=AB -AE=1在Rt △DEB 中,=故选A .【点睛】此题考查的是勾股定理和旋转的性质,掌握勾股定理和旋转的性质是解决此题的关键.8.分式21x x -+的值为0,则x 的值是( ) A .1x =B .2x =C .1x =-D .2x =- 【答案】B【分析】分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题. 【详解】由式21x x -+的值为1,得 20x -=,且10x +≠.解得2x =.故选:B .【点睛】此题考查分式值为1,掌握分式值为1的两个条件是解题的关键.9.A B 、两地相距200千米,甲车和乙车的平均速度之比为5:6,两辆车同时从A 地出发到B 地,乙车比甲车早到30分钟,设甲车平均速度为5x 千米/小时,则根据题意所列方程是( )A .2002003056x x-= B .2002001562x x -= C .2002001652x x -= D .2002003056x x += 【答案】B 【分析】设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【详解】解:设甲车平均速度为5x 千米/小时,则乙车平均速度为6x 千米/小时,根据题意得2002001562x x -=. 故选B .【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.10.下列运算中,不正确的是( )A .34x x x ⋅=B .53222x x x ÷=C .()23264x y x y =D .()239-x x = 【答案】D【分析】根据同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方进行计算,然后分别进行判断,即可得到答案.【详解】解:A 、34x x x ⋅=,正确;B 、53222x x x ÷=,正确;C 、()23264x y x y =,正确; D 、()236x x -=,故D 错误;故选:D .【点睛】本题考查了同底数幂乘法、单项式除以单项式、积的乘方、幂的乘方,解题的关键是熟练掌握所学的运算法则进行解题.二、填空题11.《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著 .是《算经十书》中最重要的一部,成于公元一世纪左右 .全书总结了战国、秦、汉时期的数学成就 .同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,其中有一个数学问题“今有垣厚一丈,两鼠对穿 .大鼠日一尺,小鼠亦一尺 .大鼠日自倍,小鼠日自半 .问:何日相逢?”.译文:“有一堵一丈(旧制长度单位,1丈=10尺=100寸)厚的墙,两只老鼠从两边向中间打洞 .大老鼠第一天打一尺,小老鼠也是一尺 .大老鼠每天的打洞进度是前一天的一倍,小老鼠每天的进度是前一天的一半 .问它们几天可以相逢?”请你用所学数学知识方法给出答案:______________ . 【答案】4113天 【分析】算出前四天累计所打的墙厚,得出相逢时间在第四天,设第四天,大老鼠打x 尺,小老鼠打31084x --尺,得出方程31084188x x --=,解出x ,从而得出第四天内进行的天数,再加上前3天的时间,即可得出结果.【详解】解:根据题意可得:∵墙厚:1丈=10尺,第一天:大老鼠打1尺,小老鼠打1尺,累计共2尺,第二天:大老鼠打2尺,小老鼠打12尺,累计共142尺,第三天:大老鼠打4尺,小老鼠打14尺,累计共384尺, 第四天:大老鼠打8尺,小老鼠打18尺,累计共7168尺, 故在第四天相逢, 设第四天,大老鼠打x 尺,小老鼠打31084x --尺, 则31084188x x --=, 解得:x=1613, 故第四天进行了16281313÷=天, ∴24131313+=天, 答:它们4113天可以相逢. 【点睛】本题考查了一元一次方程的应用,解题时要理解情景中的意思,仔细算出每一步的量,最后不要忘记加上前三天的时间.12.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.【答案】4913【解析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线 1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,222251213AC CG AG =+=+=13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.13.如图,等边三角形ABC 中,D 为BC 的中点,BE 平分ABC ∠,且交AD 于E .如果用“三角形三条角平分线必交于一点”来证明CE 也一定平分ACB ∠,那么必须先要证明__________.【答案】AD是∠BAC的角平分线【分析】根据等边三角形的三线合一定理,即可得到答案.【详解】解:∵等边三角形ABC中,D为BC的中点,∴AD是∠BAC的角平分线,∵BE平分ABC∠,∴点E是等边三角形的三条角平分线的交点,即点E为三角形的内心,∴CE也一定平分ACB∠;故答案为:AD是∠BAC的角平分线.【点睛】本题考查了等边三角形的性质,以及三线合一定理,解题的关键是熟练掌握三线合一定理进行解题. 14.甲、乙二人同时从A地出发,骑车20千米到B地,已知甲比乙每小时多行3千米,结果甲比乙提前20分钟到达B地,求甲、乙二人的速度。

襄城区2016-2017学年度上学期期末考试八年级数学试卷

襄城区2016-2017学年度上学期期末考试八年级数学试卷

襄城区2016-2017学年度上学期期末测试八年级数学试题一、选择题(每小题3分,共计30分)()1.下列轴对称图形中,对称轴的数量小于3的是:A. B. C. D.()2.以下列各组数据为边长,能构成三角形的是:A.4,4,8B. 2,4,7C. 4,8,8D. 2,2,7()3.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是:A.∠ACB=∠FB.∠A=∠DC.BE=CFD.AC=DFAB CD第3题图ABOCDE第4题图AB CDE第5题图()4.观察图中尺规作图痕迹,下列说法错误的是:A.OE平分∠AOBB.点C、D到OE的距离不一定相等C.OC=ODD.点E到OA、OB的距离一定相等()5.如图所示,线段AC的垂直平分线交AB于点D,∠A=43º,则∠BDC的度数为:A.90ºB.60ºC.86ºD.43º()6.一个多边形的内角和与它的外角和的比为5:2,则这个多边形的边数为:A.8B.7C.6D.5()7.下列计算结果等于6a的是:A.24aa+ B.222aaa++ C.222aaa⋅⋅ D.23aa⋅()8.计算)31)(13(xx--结果正确的是:A.192-x B.291x- C.1692-+-xx D. 1692+-xx()9.若分式11-x有意义,则x的取值范围是:A.1≠x B. 0≠x C.1>x D.1<x()10.把分式2232yxyx-+的yx、均扩大为原来的10倍后,则分式的值:A.为原分式值的101B.为原分式值的1001C.为原分式值的10倍D.不变二、填空题(每小题3分,共18分)11.当2016=x时,分式392+-xx的值=___________.12.若5,8-==+abba,则2)(ba-=___________.13.如图,在△ABC中,∠B=63º,∠C=45º,DE⊥AC于E,DF⊥AB于F,那么∠EDF=___________.14.如图,OP平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA于D,PC=10,则PD=_________.15.等腰三角形一腰上的高与另一腰的夹角为52º,则该三角形的底角的度数为________.16.如图,∠AOB=30º,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=___________.三、解答题(共72分)17.(6分)先化简,再求值:111222---++xxxxx,其中2-=x18.(8分)如图,已知,点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=21,EC=9,求BC的长.19.(每小题3分,共计9分) 因式分解:(1)822-x(2)mnnmnm251023+-(3))(9)(2abbaa-+-20.(每小题4分,共计8分)解下列分式方程:(1)1113--=+xxx(2)031962=-+-xx21.(7分)如图,在平面直角坐标系中,△ABC的顶点A)1,0(,B)2,3(,C)4,1(均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,画出图形,并写出A2,B2,C2的坐标.22.(8分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.求高速公AOBMNP第16题图ACDEF第13题图AOBCDP第14题图AB CE FO xyABC路没有开通之前,长途客车的平均速度.23. (8分)阅读与思考:整式乘法与因式分解是方向相反的变形 由pq x q p x q x p x +++=++)())((2得))(()(2q x p x pq x q p x ++=+++利用这个式子可以将某些二次项系数是1的二次三项式分解因式, 例如:将式子232++x x 分解因式.分析:这个式子的常数项,212⨯=一次项系数213+= 所以21)21(2322⨯+++=++x x x x 解:)2)(1(232++=++x x x x请仿照上面的方法,解答下列问题:(1)分解因式:2762-+x x =___________________;(2)若82++px x 可分解为两个一次因式的积,则整数p 的所有可能值是_________________;(3)利用因式分解法解方程:01242=--x x .24. (9分) 已知:△ABC 是边长为3的等边三角形,以BC 为底边作一个顶角为120º等腰△BDC.点M 、点N 分别是AB 边与AC 边上的点,并且满足∠MDN =60º.(1)如图1,当点D 在△ABC 外部时,求证:BM+CN =MN ; (2)在(1)的条件下求△AMN 的周长;(3)当点D 在△ABC 内部时,其它条件不变,请在图2中补全图形, 并直接写出△AMN 的周长.25. (9分)如图,在平面直角坐标系中,直线AB 与坐标轴分别交于A 、B 两点,已知点A 的坐标为)8,0(,点B 的坐标为)0,8(,OC 、AD 均是△OAB 的中线,OC 、AD 相交于点F,OE ⊥AD 于G 交AB 于E.(1)点C 的坐标为__________;(2)求证:△AFO ≌△OEB ; (3)求证:∠ADO =∠EDBA BC A B CD M N图1图2OxyABCDEF G。

邢台市八年级上学期数学期末考试试卷

邢台市八年级上学期数学期末考试试卷

邢台市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)在直角坐标系中,点A与点C关于直线y=2成轴对称,已知点A的坐标是(5,5),则点C的坐标是()A . (5,﹣5)B . (5,﹣1)C . (﹣2,5)D . (﹣5,1)3. (2分) (2018七下·紫金月考) 下列代数运算正确的是()A . x•x6=x6B . (x2)3=x6C . (x+2)2=x2+4D . (2x)3=2x34. (2分) (2017八下·淅川期末) 若关于x的方程﹣ =0无解,则m的值是()A . 3B . 2C . 1D . ﹣15. (2分) (2017八上·重庆期中) 若3x=3,3y=5,则3x+y等于()A . 5B . 3C . 15D . 86. (2分)下列从左边到右边的变形,是因式分解的是()A . (y+1)(y﹣3)=﹣(3﹣y)(y+1)B . m3﹣n3=(m﹣n)(m2+mn+n2)C . (3﹣x)(3+x)=9﹣x2D . 4yz﹣2y2z+z=2y(2z﹣yz)+z7. (2分) (2016九上·吉安期中) 已知ab=mn,改写成比例式错误的是()A . a:n=b:mB . m:a=b:nC . b:m=n:aD . a:m=n:b8. (2分) (2018八上·北京期末) 已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A . AB=ACB . BD=CDC . ∠B=∠CD . ∠BDA=∠CDA9. (2分)(2017·蒸湘模拟) 下列各式中计算正确的是()A . (x+y)2=x2+y2B . (3x)2=6x2C . a2+a2=a4D . (x2)3=x610. (2分)若分式的值为零,则x等于()A . 2B . -2C . ±2D . 011. (2分)如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论①AS=AR;②QP∥AR;③△BPR≌△QSP中()A . 全部正确B . 仅①和②正确C . 仅①正确D . 仅①和③正确12. (2分) (2018八上·甘肃期中) 若等腰三角形的顶角为,则它的底角度数为()A .B .C .D .二、填空题 (共8题;共8分)13. (1分) (2016八上·抚宁期中) 点P(3,1)关于x轴的对称点P′的坐标是________.14. (1分)(2018·惠阳模拟) 正六边形的每一个外角是________度15. (1分) (2015八上·丰都期末) 等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.16. (1分) (2017八上·中江期中) 如图所示,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,则∠C=________.17. (1分) (2018·广东) 分解因式:x2﹣2x+1=________.18. (1分)计算:﹣82015×(﹣0.125)2016=________。

2016-2017年河北省邢台市宁晋县八年级(上)期末数学试卷含参考答案

2016-2017年河北省邢台市宁晋县八年级(上)期末数学试卷含参考答案

2016-2017学年河北省邢台市宁晋县八年级(上)期末数学试卷一、选择题(共16小题,每题3分,共48分)1.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a62.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5B.6C.7D.83.(3分)下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部4.(3分)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)5.(3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米6.(3分)如图,三直线两两相交于A、B、C,CA⊥CB,∠1=30°,则∠2的度数为()A.50°B.60°C.70°D.80°7.(3分)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.708.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A.15B.30C.45D.609.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.10.(3分)如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或711.(3分)将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)12.(3分)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4B.3C.2D.2+13.(3分)一个四边形,截一刀后得到新多边形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能14.(3分)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息,a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:台、爱、我、邢、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.邢台游C.爱我邢台D.美我邢台15.(3分)将(﹣2)2015+(﹣2)2016因式分解后的结果是()A.22015B.﹣2C.﹣22015D.﹣116.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.(b﹣a)2=b2﹣2ab+a2C.(a+2b)(a﹣2b)=a2﹣2b2D.(a﹣b)2=a2﹣2ab﹣b2二、填空题(共4小题,每题3分,共12分)17.(3分)若a+b=3,ab=2,则(a﹣b)2=.18.(3分)分解因式:(m+1)(m﹣9)+8m=.19.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.20.(3分)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为.三、计算(共60分)21.(10分)解方程:(1)﹣=1.(2)﹣1=.22.(9分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.23.(9分)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=.②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=.③根据②求出:1+2+22+…+234+235的结果.24.(10分)在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.25.(12分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.26.(10分)2016年7月20日凌晨,河北邢台遭遇洪灾,为了保障河道通畅,减少灾害,需要对河道进行治理,现由甲乙两工程队合作20天可完成,已知甲工程队单独治理需60天完成.(1)求乙工程队单独完成河道治理需多少天?(2)若甲乙两工程队合作a天后,再由甲工程队单独做多少天(用含a的代数式表示)可完成河道治理任务?2016-2017学年河北省邢台市宁晋县八年级(上)期末数学试卷参考答案与试题解析一、选择题(共16小题,每题3分,共48分)1.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【解答】解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.2.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5B.6C.7D.8【解答】解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选:A.3.(3分)下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部【解答】解:A、三角形的中线在三角形的内部正确,故本选项错误;B、三角形的角平分线在三角形的内部正确,故本选项错误;C、只有锐角三角形的三条高在三角形的内部,故本选项正确;D、三角形必有一高线在三角形的内部正确,故本选项错误.故选:C.4.(3分)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【解答】解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.5.(3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.6.(3分)如图,三直线两两相交于A、B、C,CA⊥CB,∠1=30°,则∠2的度数为()A.50°B.60°C.70°D.80°【解答】解:∵CA⊥CB,∴∠ACB=90°,∴∠2=180°﹣∠ACB﹣∠1=180°﹣90°﹣30°=60°,故选:B.7.(3分)若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7B.10C.35D.70【解答】解:∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是:==35.故选:C.8.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A.15B.30C.45D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.9.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.10.(3分)如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或7【解答】解:因为在△ABP与△DCE中,,∴△ABP≌△DCE,由题意得:BP=t﹣2=1,所以t=3,因为在△ABP与△DCE中,,∴△ABP≌△DCE,由题意得:AP=8﹣t=1,解得t=7.所以,当t的值为3或7秒时.△ABP和△DCE全等.故选:D.11.(3分)将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【解答】解:∵将点A(3,2)向左平移4个单位长度得点A′,∴点A′的坐标为(﹣1,2),∴点A′关于y轴对称的点的坐标是(1,2),故选:D.12.(3分)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4B.3C.2D.2+【解答】解:连接CC′,如图所示.∵△ABC、△A′BC′均为正三角形,∴∠ABC=∠A′=60°,A′B=BC=A′C′,∴A′C′∥BC,∴四边形A′BCC′为菱形,∴点C关于BC'对称的点是A',∴当点D与点B重合时,AD+CD取最小值,此时AD+CD=2+2=4.故选:A.13.(3分)一个四边形,截一刀后得到新多边形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能【解答】解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能减少180°,可能不变,可能增加180°.故选:D.14.(3分)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息,a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:台、爱、我、邢、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.邢台游C.爱我邢台D.美我邢台【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,邢,台,∴结果呈现的密码信息可能是“爱我邢台”,故选:C.15.(3分)将(﹣2)2015+(﹣2)2016因式分解后的结果是()A.22015B.﹣2C.﹣22015D.﹣1【解答】解:原式=(﹣2)2015×(1﹣2)=22015,故选:A.16.(3分)下列计算正确的是()A.(a+b)2=a2+b2B.(b﹣a)2=b2﹣2ab+a2C.(a+2b)(a﹣2b)=a2﹣2b2D.(a﹣b)2=a2﹣2ab﹣b2【解答】解:A、原式=a2+2ab+b2,不符合题意;B、原式=a2﹣2ab+b2,符合题意;C、原式=a2﹣4b2,不符合题意;D、原式=a2﹣2ab+b2,不符合题意,故选:B.二、填空题(共4小题,每题3分,共12分)17.(3分)若a+b=3,ab=2,则(a﹣b)2=1.【解答】解:将a+b=3平方得:(a+b)2=a2+2ab+b2=9,把ab=2代入得:a2+b2=5,则(a﹣b)2=a2﹣2ab+b2=5﹣4=1.故答案为:118.(3分)分解因式:(m+1)(m﹣9)+8m=(m+3)(m﹣3).【解答】解:(m+1)(m﹣9)+8m,=m2﹣9m+m﹣9+8m,=m2﹣9,=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).19.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.20.(3分)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.三、计算(共60分)21.(10分)解方程:(1)﹣=1.(2)﹣1=.【解答】解:(1)去分母得:x2+2x﹣4=x2﹣4,解得:x=0,经检验x=0是分式方程的解;(2)去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.22.(9分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).23.(9分)观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…①根据以上规律,则(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1.②你能否由此归纳出一般性规律:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1.③根据②求出:1+2+22+…+234+235的结果.【解答】解:①根据题意得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②根据题意得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为:①x7﹣1;②x n+1﹣1;③236﹣124.(10分)在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.【解答】(1)证明:连接BD,∵AB=AC,AD⊥BC,∴∠BAD=∠DAC=∠BAC,∵∠BAC=120°,∴∠BAD=∠DAC=×120°=60°,∵AD=AB,∴△ABD是等边三角形;(2)证明:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BD=AD∵∠EDF=60°,∴∠BDE=∠ADF,在△BDE与△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF.25.(12分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.【解答】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).26.(10分)2016年7月20日凌晨,河北邢台遭遇洪灾,为了保障河道通畅,减少灾害,需要对河道进行治理,现由甲乙两工程队合作20天可完成,已知甲工程队单独治理需60天完成.(1)求乙工程队单独完成河道治理需多少天?(2)若甲乙两工程队合作a天后,再由甲工程队单独做多少天(用含a的代数式表示)可完成河道治理任务?【解答】解:(1)设乙工程队单独完成河道整治需x天,依题意得:(+)×20=1,解得x=30.经检验,x=30是原方程的根并符合题意.答:设乙工程队单独完成河道整治需30天;(2)设甲工程队单独做x天,依题意得:(+)×a+x=1,解得:x=60﹣3a.答:甲工程队单独做(60﹣3a)天可完成河道治理任务.。

八年级上册邢台数学全册全套试卷达标检测卷(Word版 含解析)

八年级上册邢台数学全册全套试卷达标检测卷(Word版 含解析)

八年级上册邢台数学全册全套试卷达标检测卷(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒, ∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.2.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.3.如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=1 2(∠BAF+∠C);③∠FGD=∠ABE+∠C;④∠F=12(∠BAC﹣∠C);其中正确的是_____.【答案】①②③④【解析】【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③根据垂直的定义和同角的余角相等的性质证明结论正确;④证明∠DBE=∠BAC-∠C,根据①的结论,证明结论正确.【详解】解:①∵BD ⊥FD ,∴∠FGD+∠F=90°,∵FH ⊥BE ,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH ,∴∠DBE=∠F ,故①正确;②∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∠BEF=∠CBE+∠C ,∴2∠BEF=∠ABC+2∠C ,∠BAF=∠ABC+∠C ,∴2∠BEF=∠BAF+∠C ,∴∠BEF=12(∠BAF+∠C), 故②正确;③∵∠AEB=∠EBC+∠C ,∵∠ABE=∠EBC ,∴∠AEB=∠ABE+∠C ,∵BD ⊥FC ,FH ⊥BE ,∴∠FGD=90︒-∠DFH ,∠AEB=90︒-∠DFH ,∴∠FGD=∠AEB∴∠FGD=∠ABE+∠C. 故③正确;④∠ABD=90°-∠BAC ,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC ,∵∠CBD=90°-∠C ,∴∠DBE=∠BAC-∠C-∠DBE ,由①得,∠DBE=∠F ,∴∠F=∠BAC-∠C-∠DBE ,∴∠F=12(∠BAC-∠C); 故④正确,故答案为①②③④.【点睛】 本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键4.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线, 2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________【答案】20172α【解析】 【分析】 根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解. 【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1,∴12(∠A+∠ABC )=12∠ABC+∠A 1, ∴∠A 1=12∠A , ∵∠A 1=α.同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α, ……, ∴∠A 2018=20172α, 故答案为20172α.【点睛】本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.5.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_____cm 或_____cm .【答案】22cm, 26cm【解析】【分析】题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当腰是6cm时,周长=6+6+10=22cm;(2)当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm.故答案为:22,26.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.【答案】30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.二、八年级数学三角形选择题(难)7.已知非直角三角形ABC中,∠A=45°,高BD与CE所在直线交于点H,则∠BHC的度数是()A.45°B.45° 或135°C.45°或125°D.135°【答案】B【解析】【分析】①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC是钝角三角形时,根据直角三角形两锐角互余求出∠BHC=∠A,从而得解.【详解】①如图1,△ABC是锐角三角形时,∵BD、CE是△ABC的高线,∴∠ADB=90°,∠BEC=90°,在△ABD中,∵∠A=45°,∴∠ABD=90°-45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°;②如图2,△ABC是钝角三角形时,∵BD、CE是△ABC的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD(对顶角相等),∴∠BHC=∠A=45°.综上所述,∠BHC的度数是135°或45°.故选B.【点睛】本题主要考查了三角形的内角和定理,三角形的高线,难点在于要分△ABC是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.8.在下列图形中,正确画出△ABC的AC边上的高的图形是()A.B.C.D.【答案】C【解析】【分析】△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段,根据定义即可作出判断.【详解】解:△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段.根据定义正确的只有C.故选:C.【点睛】本题考查了三角形的高线的定义,理解定义是关键.9.已知三角形的两边长分别为4和9,则此三角形的第三边长可能为()A.9 B.4 C.5 D.13【答案】A【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】设这个三角形的第三边为x.根据三角形的三边关系定理,得:9-4<x<9+4,解得5<x<13.故选A.【点睛】本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.10.若正多边形的内角和是540 ,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒【答案】C【解析】【分析】根据多边形的内角和公式()2180n-•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.11.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.12.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110︒B.115︒C.120︒D.125︒【答案】A【解析】【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.三、八年级数学全等三角形填空题(难)13.已知:如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD,CE相交于点N,则下列五个结论:①AD=BE;②AP=BM;③∠APM=60°;④△CMN是等边三角形;⑤连接CP,则CP平分∠BPD,其中,正确的是_____.(填写序号)【答案】①③④⑤.【解析】【分析】①根据△ACD≌△BCE(SAS)即可证明AD=BE;②根据△ACN≌△BCM(ASA)即可证明AN=BM,从而判断AP≠BM;③根据∠CBE+∠CDA=60°即可求出∠APM=60°;④根据△ACN≌△BCM及∠MCN=60°可知△CMN为等边三角形;⑤根据角平分线的性质可知.【详解】①∵△ABC 和△CDE 都是等边三角形∴CA =CB ,CD =CE ,∠ACB =60°,∠DCE =60° ∴∠ACE =60°∴∠ACD =∠BCE =120°在△ACD 和△BCE 中CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE (SAS )∴AD =BE ;②∵△ACD ≌△BCE∴∠CAD =∠CBE在△ACN 和△BCM 中ACN BCM CA CBCAN CBM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACN ≌△BCM (ASA )∴AN =BM ;③∵∠CAD +∠CDA =60°而∠CAD =∠CBE∴∠CBE +∠CDA =60°∴∠BPD =120°∴∠APM =60°;④∵△ACN ≌△BCM∴CN =BM而∠MCN =60°∴△CMN 为等边三角形;⑤过C 点作CH ⊥BE 于H ,CQ ⊥AD 于Q ,如图∵△ACD ≌△BCE∴CQ =CH∴CP 平分∠BPD.故答案为:①③④⑤.【点睛】本题主要考查了三角形全等的判定和性质的灵活运用,角的计算及角平分线的判定,熟练掌握三角形全等的证明方法,角平分线的判定及相关辅助线的作法是解决本题的关键.14.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,交AD于F,FG∥BC,FH∥AC,下列结论:①AE=AF;②AF=FH;③AG=CE;④AB+FG=BC,其中正确的结论有________________.(填序号)【答案】①②③④【解析】①正确.∵∠BAC=90°∴∠ABE+∠AEB=90°∴∠ABE=90°-∠AEB∵AD⊥BC∴∠ADB=90°∴∠DBE+∠BFD=90°∴∠DBE=90-∠BFD∵∠BFD=∠AFE∴∠DBE=90°-∠AFE∵BE平分∠ABC∴∠ABE=∠DBE∴90°-∠AEB=90°-∠AFE∴∠AEB=∠AFE∴AE=AF②正确.∵∠BAC=90°∴∠BAF+∠DAC=90°∴∠BAF=90°-∠DAC∵AD⊥BC∴∠ADC=90°∴∠C+∠DAC=90°∴∠C=90°-∠DAC∴∠C=∠BAF∵FH∥AC∴∠C=∠BHF∴∠BAF=∠BHF在△ABF 和△HBF 中ABE CBE BAF BHF BF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△HBF∴AF=FH③正确.∵AE=AF ,AF=FH∴AE=FH∵FG ∥BC ,FH ∥AC∴四边形FHCG 是平行四边形∴FH=GC∴AE=GC∴AE+EG=GC+EG∴AG=CE④正确.∵四边形FHCG 是平行四边形∴FG=HC∵△ABF ≌△HBF∴AB=HB∴AB+FG=HB+HC=BC故正确的答案有①②③④.15.如图,Rt △ABC 中,∠ACB =90°,AC =BC ,CF 交AB 于E ,BD ⊥CF ,AF ⊥CF ,则下列结论:①∠ACF =∠CBD ②BD =FC ③FC =FD+AF ④AE=DC 中,正确的结论是____________(填正确结论的编号)【答案】①②③【解析】【分析】根据同角的余角相等,可得到结论①,再证明△ACF ≌△CBD ,然后根据全等三角形的性质判断结论②、③、④即可.【详解】解:∵BD⊥CF,AF⊥CF,∴∠BDC=∠AFC=90°,∵∠ACB=90°,∴∠ACF+∠BCD=∠CBD+∠BCD=90°,∴∠ACF=∠CBD,故①正确;在△ACF和△CBD中,BDC AFCACF CBDAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△CBD,∴BD=FC,CD=AF,故结论②正确∴FC=FD+CD=FD+AF,故结论③正确,∵在Rt△AEF中,AE>AF,∴AE>CD,故结论④错误.综上所述,正确的结论是:①②③.【点睛】本题主要考查全等三角形的判定与性质,熟练掌握判定方法及全等的性质是解题的关键.16.如图,在△ABC中,AB=AC,点D是BC的中点,点E是△ABC内一点,若∠AEB=∠CED=90°,AE=BE,CE=DE=2,则图中阴影部分的面积等于__________.【答案】4【解析】【分析】作DG⊥BE于G,CF⊥AE于F,可证△DEG≌△CEF,可得DG=CF,则是S△BDE=S△AEC,由D 是BC中点可得S△BED=2,即可求得阴影部分面积.【详解】作DG⊥BE于G,CF⊥AE于F,∴∠DGE=∠CFE=90°,∵∠AEB=∠DEC=90°,∴∠GED+∠DEF=90°,∠DEF+∠CEF=90°,∴∠GED=∠CEF,又∵DE=EC,∴△GDE≌△FCE,∴DG=CF,∵S△BED=12BE•DG,S△BED=12AE•CF,AE=BE,∴S△BED=S△BED,∵D是BC的中点,∴S△BDE=S△EDC=1222⨯⨯=2,∴S阴影=2+2=4,故答案为4.【点睛】本题考查了全等三角形的判定与性质,正确添加辅助线构造全等三角形是解题的关键.17.已知:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC的长度是___________.【答案】2【解析】【分析】过B作BE⊥AC于E, 过D作DF⊥AC于F,构造得出BE=AF利用等腰三角形三线合一的性质得出:AF=可得BE=AF=,利用三角形ABC的面积为1进行计算即可.【详解】过B作BE⊥AC于E, 过D作DF⊥AC于F,∴∠BEA=∠AFD=90°∴∠2+∠3=90°∵∠BAD=90°∴∠1+∠2=90°∴∠1=∠3∵AB=AD∴∴BE=AF∵AD=CD,DF⊥AC∴AF=∴BE=AF=∴∴AC=2故答案为:2【点睛】本题考查了利用一线三等角构造全等三角形,以及利用三角形面积公式列方程求线段,熟练掌握辅助线做法构造全等是解题的关键.18.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,则∠D=__________.【答案】30°【解析】试题解析:(1)连接CE,∵△ABC 是等边三角形,∴AC=BC ,在△BCE 与△ACE 中,{AC BCAE BE CE CE===∴△BCE ≌△ACE (SSS )∴∠BCE=∠ACE=30°∵BE 平分∠DBC ,∴∠DBE=∠CBE ,在△BDE 与△BCE 中,{BD BCDBE CBE BE BE∠∠===∴△BDE ≌△BCE (SAS ),∴∠BDE=∠BCE=30°.四、八年级数学全等三角形选择题(难)19.如图,△ABC 是等边三角形,AQ =PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS .下列结论:①点P 在∠A 的角平分线上;②AS =AR ;③QP ∥AR ;④△BRP ≌△QSP .其中,正确的有()A .1个B .2个C .3个D .4个【答案】D【解析】∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR =PS ,∴P 在∠A 的平分线上,故①正确;由①可知,PB =PC ,∠B =∠C ,PS =PR ,∴△BPR ≌△CPS ,∴AS =AR ,故②正确;∵AQ =PQ ,∴∠PQC =2∠PAC =60°=∠BAC ,∴PQ ∥AR ,故③正确;由③得,△PQC 是等边三角形,∴△PQS ≌△PCS ,又由②可知,④△BRP ≌△QSP ,故④也正确,∵①②③④都正确,故选D .点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.20.如图,在△ABC中,AB=BC,90ABC∠=︒,点D是BC的中点,BF⊥AD,垂足为E,BF交AC于点F,连接DF.下列结论正确的是()A.∠1=∠3 B.∠2=∠3 C.∠3=∠4 D.∠4=∠5【答案】A【解析】【分析】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,先根据直角三角形两锐角互余可得BAD CBG∠=∠,再根据三角形全等的判定定理与性质推出1G∠=∠,又根据三角形全等的判定定理与性质推出3G∠=∠,由此即可得出答案.【详解】如图,过点C作BC的垂线,交BF的延长线于点G,则CG BC⊥,即90BCG∠=︒,90AB BC ABC=∠=︒45BAC ACB∠∴∠==︒904545GCF BCG ACB∴∠=∠-∠=︒-︒=︒BF AD⊥1190BAD CBG∴∠+∠=∠+∠=︒BAD CBG∴∠=∠在BAD∆和CBG∆中,90BAD CBGAB BCABD BCG∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()BAD CBG ASA∴∆≅∆,1BD CG G∴=∠=∠点D是BC的中点CD BD CG∴==在CDF∆和CGF∆中,45CD CGDCF GCFCF CF=⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS∴∆≅∆3G∴∠=∠13∠∠∴=故选:A.【点睛】本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.21.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,45APE CPFAP PCEAP C∠∠⎧⎪⎨⎪∠∠︒⎩====,∴△APE≌△CPF(ASA),∵△AEP≌△CFP,同理可证△APF≌△BPE,∴△EFP是等腰直角三角形,故③错误;∵△APE≌△CPF,∴S△APE=S△CPF,∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC.故④正确,故选C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.22.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边三角形ABC 和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③PQ∥AE;④DE=DP;⑤∠AOE=120°;其中正确结论的个数为()A.2个B.3个C.4个D.5个【答案】C【解析】【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE,故①正确;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ (ASA),所以AP=BQ;故②正确;③根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知③正确;④根据∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,可知PD≠CD,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,由平角的性质可得∠AOE=120°,可知⑤正确;【详解】①∵△ABC和△CDE为等边三角形∴AC=BC,CD=CE,∠BCA=∠DCB=60°∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)由(1)中的全等得∠CBE=∠DAC,且BC=AC,∠ACB=∠BCQ=60°∴△CQB≌△CPA(ASA),∴AP=BQ,故②正确;∵△CQB≌△CPA,∴PC=PQ,且∠PCQ=60°∴△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故③正确,∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,∴PD≠CD,∴DE≠DP,故④DE=DP错误;∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,∴∠AOE=120°,故⑤正确,故选C.【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定与性质,综合性较强,题目难度较大.23.已知等边三角形ABC的边长为12,点P为AC上一点,点D在CB的延长线上,且BD=AP,连接PD交AB于点E,PE⊥AB于点F,则线段EF的长为()A.6 B.5C.4.5 D.与AP的长度有关【答案】A【解析】【分析】作DQ⊥AB,交直线AB的延长线于点Q,连接DE,PQ,根据全等三角形的判定定理得出△APE≌△BDQ,再由AE=BQ,PE=QD且PE∥QD,可知四边形PEDQ是平行四边形,进而可得出EF=12AB,由等边△ABC的边长为12可得出DE=6.【详解】解;如图,作DQ⊥AB,交AB的延长线于点F,连接DE,PQ,又∵PE⊥AB于E,∴∠BQD=∠AEP=90°,∵△ABC是等边三角形,∴∠A=∠ABC=∠DBQ=60°,在△APE和△BDQ中,A DBQAEP BQDAP BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APE≌△BDQ(AAS),∴AE=BQ,PE=QD且PE∥QD,∴四边形PEDQ是平行四边形,∴EF=12EQ,∵EB+AE=BE+BQ=AB,∴EF=12AB,又∵等边△ABC的边长为12,∴EF=6.故选:A.【点睛】本题主要考查全等三角形的判定与性质,平行四边形的判定与性质,解此题的关键在于根据题中PE⊥AB作辅助线构成全等的三角形.24.如图,已知五边形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,则五边形ABCDE的面积为()A .2B .3C .4D .5【答案】C【解析】【分析】 可延长DE 至F ,使EF=BC ,利用SAS 可证明△ABC ≌△AEF ,连AC ,AD ,AF ,再利用SSS 证明△ACD ≌△AFD ,可将五边形ABCDE 的面积转化为两个△ADF 的面积,进而求解即可.【详解】延长DE 至F ,使EF=BC ,连AC ,AD ,AF ,在△ABC 与△AEF 中,0=90AB AE ABC AEF BC EF ⎧⎪∠∠⎨⎪⎩=== , ∴△ABC ≌△AEF (SAS ),∴AC=AF ,∵AB=CD=AE=BC+DE ,∠ABC=∠AED=90°,∴CD=EF+DE=DF ,在△ACD 与△AFD 中,AC AF CD DF AD AD ⎧⎪⎨⎪⎩=== , ∴△ACD ≌△AFD (SSS ),∴五边形ABCDE 的面积是:S=2S △ADF =2×12•DF•AE=2×12×2×2=4. 故选C.【点睛】本题主要考查了全等三角形的判定及性质以及三角形面积的计算,正确作出辅助线,利用全等三角形把五边形ABCDE 的面积转化为两个△ADF 的面积是解决问题的关键.五、八年级数学轴对称三角形填空题(难)25.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.26.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG ,利用△BDF ≌△GDE ,转换BF=GE ,然后即可求得其最小值.【详解】以BD 为边作等边三角形BDG ,连接GE ,如图所示:∵等边三角形BDG ,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG ,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD ,即∠BDF=∠GDE∴△BDF ≌△GDE (SAS )∴BF=GE当GE ⊥AC 时,GE 有最小值,如图所示GE′,作DH ⊥GE′∴BF=GE= CD+12DG=2+1=3 故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.27.如图,已知30AOB ∠=︒,点P 在边OA 上,14OD DP ==,点E ,F 在边OB 上,PE PF =.若6EF =,则OF 的长为____.【答案】18【解析】【分析】由30°角我们经常想到作垂线,那么我们可以作DM 垂直于OA 于M ,作PN 垂直于OB 于点N ,证明△PMD ≌△PND ,进而求出DF 长度,从而求出OF 的长度.【详解】如图所示,作DM 垂直于OA 于M ,作PN 垂直于OB 于点N.∵∠AOB=30°,∠DMO=90°,PD=DO=14,∴DM=7,∠NPO=60°,∠DPO=30°,∴∠NPD=∠DPO=30°,∵DP=DP,∠PND=∠PMD=90°,∴△PND≌△PMD,∴ND=7,∵EF=6,∴DF=ND-NF=7-3=4,∴OF=DF+OD=14+4=18.【点睛】本题考查了全等三角形的判定及性质定理,作辅助线构造全等三角形是解题的关键.28.如图,在Rt△ABC中,∠C=30°,将△ABC绕点B旋转α(0<α<60°)到△A′BC′,边AC和边A′C′相交于点P,边AC和边BC′相交于Q.当△BPQ为等腰三角形时,则α=__________.【答案】20°或40°【解析】【分析】过B作BD⊥AC于D,过B作BE⊥A'C'于E,根据旋转可得△ABC≌△A'BC',则BD=BE,进而得到BP平分∠A'PC,再根据∠C=∠C'=30°,∠BQC=∠PQC',可得∠CBQ=∠C'PQ=θ,即可得出∠BPQ=12(180°-∠C'PQ)=90°-12θ,分三种情况讨论,利用三角形内角和等于180°,即可得到关于θ的方程,进而得到结果.【详解】如图,过B作BD⊥AC于D,过B作BE⊥A'C'于E,由旋转可得,△ABC≌△A'BC',则BD=BE,∴BP平分∠A'PC,又∵∠C=∠C'=30°,∠BQC=∠PQC',∴∠CBQ=∠C'PQ=θ,∴∠BPQ=12(180°-∠C'PQ)=90°-12θ,分三种情况:①如图所示,当PB=PQ时,∠PBQ=∠PQB=∠C+∠QBC=30°+θ,∵∠BPQ+∠PBQ+∠PQB=180°,∴90°-12θ+2×(30°+θ)=180°,解得θ=20°;②如图所示,当BP=BQ时,∠BPQ=∠BQP,即90°-12θ=30°+θ,解得θ=40°;③当QP=QB时,∠QPB=∠QBP=90°-12θ,又∵∠BQP=30°+θ,∴∠BPQ+∠PBQ+∠BQP=2(90°-12θ)+30°+θ=210°>180°(不合题意),故答案为:20°或40°.【点睛】本题主要考查了等腰三角形的性质以及旋转的性质的运用,解决问题的关键是利用全等三角形对应边上高相等,得出BP平分∠A'PC,解题时注意分类思想的运用.29.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.30.如图,在边长为6的菱形ABCD 中,∠DAB=60°,E 是AB 的中点,F 是AC 上一个动点,则EF+BF 的最小值是________ .【答案】33【解析】试题解析:∵在菱形ABCD 中,AC 与BD 互相垂直平分,∴点B 、D 关于AC 对称,连接ED ,则ED 就是所求的EF+BF 的最小值的线段,∵E 为AB 的中点,∠DAB=60°,∴DE ⊥AB ,∴22AD AE -2263-3∴EF+BF 的最小值为3.六、八年级数学轴对称三角形选择题(难)31.已知点M(2,2),且2,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .2B .(0,4)C .(4,0)D .2) 【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且2,且点P 在坐标轴上当22OM OP ==时P 点坐标为:()(22,0,0,22±± ,A 满足;当22MO MP ==时:P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.32.如图所示,在ABC 中,AC BC =,90ACB ︒∠=,AD 平分BAC ∠,BE AD ⊥交AC 的延长线F ,E 为垂足.则有:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 利用全等三角形的判定定理及其性质以及等腰三角形的三线合一的性质逐项分析即可得出答案.【详解】解:∵AC BC =,90ACB ︒∠=∴45CAB ABC ︒∠=∠=∵AD 平分BAC ∠∴22.5BAE EAF ︒∠=∠=∵90EAF F FBC F ︒∠+∠=∠+∠=∴EAF FBC ∠=∠∴ADC BFC ≅∴AD=BF ,CF=CD ,故①②正确;∵CD=CF,∴AC+CD=AC+CF=AF∵67.5F ︒∠=∵18018067.54567.5ABF F CAB ︒︒︒︒︒∠=-∠-∠=--=∴AF=AB ,即AC+CD=AB ,故③正确;由③可知,三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = 若BE CF =,则30CBF ∠=︒与②中结论相矛盾,故④错误;∵三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = ∴BF=2BE ,故⑤正确;综上所述,正确的选项有4个.故选:D .【点睛】本题考查的知识点是全等三角形的判定定理及其性质,等腰三角形的判定与性质,等腰直角三角形的性质,掌握以上知识点是解此题的关键.33.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE 、BD 相交于点 O ,AE 、BD 分别交 CD 、CE 于 M 、N ,连接 MN 、OC ,则下列所给的结论中:①AE =BD ;②CM =CN ;③MN ∥AB ;④∠AOB =120º;⑤OC 平分∠AOB .其中结论正确的个数是( )A .2B .3C .4D .5【答案】D【解析】【分析】 由题意易证:△ACE ≅△DCB ,进而可得AE =BD ;由△ACE ≅△DCB ,可得∠CAE=∠CDB ,从而△ACM ≅△DCN ,可得:CM =CN ;易证△MCN 是等边三角形,可得∠MNC=∠BCE , 即MN ∥AB ;由∠CAE=∠CDB ,∠AMC=∠DMO ,得∠ACM=∠DOM=60°,即∠AOB =120º;作CG ⊥AE ,CH ⊥BD ,易证CG =CH ,即:OC 平分∠AOB .【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC ,CE=CB ,∠ACE=∠DCB=120°,∴△ACE ≅△DCB(SAS)∴AE =BD ,∴①正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC ,在△ACM 和△DCN 中,∵60CAE CDB AC DCACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN (ASA ),∴CM =CN ,∴②正确;∵CM =CN ,∠DCE=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE ,∴MN ∥AB ,∴③正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵∠AMC=∠DMO ,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO ,即:∠ACM=∠DOM=60°,∴∠AOB =120º,∴④正确;作CG ⊥AE ,CH ⊥BD ,垂足分别为点G ,点H ,如图,在△ACG 和△DCH 中,∵90?AMC DHC CAE CDB AC DC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG ≅△DCH (AAS ),∴CG =CH ,∴OC 平分∠AOB ,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.34.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO∠=∠,DBO DCO∠=∠,∵AB=AC,∠BAC=120∘∴30ABC ACB∠=∠=︒∴30ABO DBO∠+∠=︒,∴30APO DCO∠+∠=.故①②正确;∵OBP∆中,180BOP OPB OBP∠=︒-∠-∠,BOC∆中,180BOC OBC OCB∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP∠=∠,OBC OCB∠=∠,∴260POC ABD∠=∠=︒,∵PO OC,∴OPC∆是等边三角形,故③正确;在AB上找到Q点使得AQ=OA,则AOQ∆为等边三角形,则120BQO PAO∠=∠=︒,在BQO∆和PAO∆中,BQO PAOQBO APOOB OP∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS∆∆≌(),∴PA BQ=,∵AB BQ AQ=+,∴AB AO AP=+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO∆∆≌是解题的关键.35.如图,已知AD为ABC∆的高线,AD BC=,以AB为底边作等腰Rt ABE∆,连接ED,EC,延长CE交AD于F点,下列结论:①DAE CBE∠=∠;②CE DE⊥;③BD AF=;④AED∆为等腰三角形;⑤BDE ACES S∆∆=,其中正确的有( )A.①③B.①②④C.①③④D.①②③⑤【答案】D【解析】【分析】①根据等腰直角三角形的性质即可证明∠CBE=∠DAE,再得到△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④根据△AEF≌△BED得到DE=EF, 又DE⊥CF,故可判断;⑤易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE =S△ACE,所以S△BDE=S△ACE.【详解】①∵AD为△ABC的高线,∴CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确;在△DAE和△CBE中,AE BEDAE CBEAD BC⎧⎪∠∠⎨⎪⎩===,∴△ADE≌△BCE(SAS);②∵△ADE≌△BCE,∴∠EDA=∠ECB,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,。

八年级数学上学期期末试题(扫描版)(2021学年)

八年级数学上学期期末试题(扫描版)(2021学年)

河北省邢台市2016-2017学年八年级数学上学期期末试题(扫描版) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省邢台市2016-2017学年八年级数学上学期期末试题(扫描版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省邢台市2016-2017学年八年级数学上学期期末试题(扫描版)的全部内容。

ﻬ数学试题参考答案一、选择题(每小题3分,共42分)1-5 C C A A D 6-10 C ACDC 11-14 A AB B二、填空题(每小题3分,共12分)15.7。

9016.a17.3418.两边及夹角对应相等的两个三角形全等,全等三角形对应边相等.三、解答题(共66分)19.解:∵A,B两点表示的数分别为1,2ﻫ∴C点所表示的数是x=1-(2-1)=2-2。

..。

.。

....。

..。

.。

5分∴BC=2-(2-2)=22-2。

.。

.。

.。

....。

....。

.。

10分20.(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,ﻫ∴∠BAC=180°-30°-30°=120°。

.。

.。

.。

.。

.。

.。

.。

2分∵∠DAB=45°,∴∠DAC=∠BAC-∠DAB=120°-45°=75°。

.。

.。

.。

.。

.。

.。

5分(2)证明:∵∠DAB=45°∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC .。

.。

..。

......。

3分∴DC=AC,∴DC=AB. ....。

河北省邢台市八年级上学期期末考试数学试题

河北省邢台市八年级上学期期末考试数学试题

河北省邢台市八年级上学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·大渡口模拟) 下列图形,是轴对称图形的是()A .B .C .D .2. (2分)下列式子是分式的是()A .B .C .D .3. (2分)(2011·湛江) 四边形的内角和为()A . 180°B . 360°C . 540°D . 720°4. (2分) (2016八上·唐山开学考) 已知等腰三角形两边长为3和7,则周长为()A . 13B . 17C . 13或17D . 115. (2分) (2017八上·曲阜期末) 如图,△ABO关于x轴对称,若点A的坐标为(3,1),则点B的坐标为()A . (1,3)B . (﹣1,3)C . (3,﹣1)D . (﹣1,﹣3)6. (2分)(2016·海南) 下列计算中,正确的是()A . (a3)4=a12B . a3•a5=a15C . a2+a2=a4D . a6÷a2=a37. (2分)下列各题用分组分解法分解因式,分组不正确的是()A . 3a-bx+ax-3b=(3a+ax)-(3b+bx)B . a2-a+b-b2=(a2-a)-(b2-b)C . z2-x2+2xy-y2=z2-(x2-2xy+y2)D . ma-mb-na2+nb2=(ma-mb)-(na2-nb2)8. (2分)计算:22014﹣(﹣2)2015的结果是()A . 24029B . 3×22014C . ﹣22014D . ()20149. (2分) (2018八上·互助期末) 下列说法中,正确的是()A . 两腰对应相等的两个等腰三角形全等B . 两锐角对应相等的两个直角三角形全等C . 两角及其夹边对应相等的两个三角形全等D . 面积相等的两个三角形全等10. (2分)(2017·眉山) 如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A . 114°B . 122°C . 123°D . 132°二、填空题 (共7题;共7分)11. (1分)(2019·银川模拟) 在函数中,自变量x的取值范围是________.12. (1分)计算:()﹣2=________.13. (1分)(2010七下·浦东竞赛) 已知,点O在三角形内,且,则的度数是________度.14. (1分)(2017·罗平模拟) 分解因式:x3﹣xy2=________.15. (1分) (2017八上·顺庆期末) 近来雾霾天气严重影响了我们的生活秩序,为此,我县中小学还停止了正常上课来应对,雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,尤其是PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶”,已知1微米相当于1米的一百万分之一,那么2.5微米用科学记数法可表示为________米.16. (1分) (2017七下·天水期末) 如图所示,则∠α的度数是________.17. (1分)(2018·安顺模拟) 计算=________.三、解答题 (共9题;共60分)18. (10分)(2020·武汉模拟) 化简:19. (5分) (2017八下·万盛开学考) 先化简,再求值:,其中20. (10分) (2019八下·博罗期中) 如图,已知四边形ABCD是平行四边形.(1)作图,作∠A的平分线AE,交CD于点E,(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断AD与DE的大小关系,并说明理由.21. (5分)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°。

河北省邢台市2016-2017八年上学期期末试题及答案

河北省邢台市2016-2017八年上学期期末试题及答案

河北省邢台市2016~2017学年度八年级上学期期末数学试卷一、选择题(本大题共12个小题,1-6题,每题2分,72题,每题3分,共30分,在每小题的四个选项中,只有一项符合题意)1.若直角三角形的周长为30cm,且一条直角边为5cm,则另一条直角边长为()A.5cm B.10cm C.12cm D.13cm2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,43.下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.4.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C. D.5.已知点A的坐标为(﹣2,3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点C 关于x轴对称的点的坐标为()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)6.解为的方程组是()A.B.C.D.7.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮8.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分10.下列命题中是真命题的是()A.同位角相等B.内错角相等C.等角的余角相等D.相等的角都是对顶角11.甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是=85,=85,=85,=85,方差是S甲2=3.8,S乙2=2.3,S丙2=6.2,S丁2=5.2,则成绩最稳定的是()A.甲B.乙C.丙D.丁12.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°1.在,,,中,是分式的有()A.1个B.2个C.3个D.4个2.下列说法正确的是()A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等3.下列分式是最简分式的是()A.B.C.D.4.命题“如果两个角相等,那么它们都是直角”的逆命题是()A.如果两个角不相等,那么它们都不是直角B.如果两个角都不是直角,那么这两个角不相等C.如果两个角都是直角,那么这两个角相等D.相等的两个角都是直角5.下列各式正确的是()A.=﹣B.=﹣C.=﹣D.=﹣6.分式方程=的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣37.下列关于分式方程增根的说法正确的是()A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根8.下列分式中,无论x为何值,一定有意义的是()A.B.C.D.9.已知两个分式:,,其中x≠±2,则A与B的关系是()A.相等 B.互为倒数 C.互为相反数D.A大于B10.一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是()A.a+b B.C.D.11.化简:的结果是()A.2 B.C.D.12.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共18分)13.当x=时,分式没有意义.14.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=度,A′B′=cm.15.,,的最简公分母为.16.化简:=.17.若==≠0,则=.18.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤)19.约分:(1)=(2)=(3)=.20.通分:(1),(2),.21.如图,△ABC≌△DEF,AB和DE是对应边,∠A和∠D是对应角,找出图中所有相等的线段和角.22.计算:(1)•;(2)÷;(3)﹣;(4)﹣a﹣1.23.若﹣=2,求的值.24.解方程:(1)+1=(2)=﹣2.25.我们把分子为1的分数叫做单位分数.如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=,=,=,…(1)根据对上述式子的观察,你会发现请写出□,○所表示的数;(2)进一步思考,单位分数(n是不小于2的正整数)=,请写出△,☆所表示的式,并加以验证.26.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.1河北省邢台市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,1-6题,每题2分,72题,每题3分,共30分,在每小题的四个选项中,只有一项符合题意)1.若直角三角形的周长为30cm,且一条直角边为5cm,则另一条直角边长为()A.5cm B.10cm C.12cm D.13cm【考点】勾股定理.【分析】设出另一直角边和斜边,根据勾股定理列出方程,求解即可.【解答】解:设另一直角边长为xcm,斜边为(25﹣x)cm,根据勾股定理可得:x2+52=(25﹣x)2,解得:x=12.故选:C.【点评】本题考查了勾股定理;解这类题的关键是利用勾股定理来寻求未知系数的等量关系,列出方程.2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4【考点】勾股定理的逆定理.【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.下列无理数中,在﹣2与1之间的是()A.﹣B.﹣C.D.【考点】估算无理数的大小.【分析】根据无理数的定义进行估算解答即可.【解答】解:A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故答案为:B.【点评】此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.4.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C. D.【考点】平面展开-最短路径问题.【专题】数形结合.【分析】将长方体展开,得到两种不同的方案,利用勾股定理分别求出AB的长,最短者即为所求.【解答】解:如图(1),AB==;如图(2),AB===10.故选B.【点评】此题考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.5.已知点A的坐标为(﹣2,3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点C 关于x轴对称的点的坐标为()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:点A的坐标为(﹣2,3),点B与点A关于x轴对称,得B(﹣2,﹣3).点C与点B关于y轴对称,得C(2,﹣3).则点C关于x轴对称的点的坐标为(2,3),故选:C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.解为的方程组是()A.B.C.D.【考点】二元一次方程组的解.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.将分别代入A、B、C、D四个选项进行检验,或直接解方程组.【解答】解:将分别代入A、B、C、D四个选项进行检验,能使每个方程的左右两边相等的x、y的值即是方程的解.A、B、C均不符合,只有D满足.故选:D.【点评】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.7.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮【考点】一次函数的应用.【分析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【解答】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.【点评】本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.8.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据两种水果共花去28元,乙种水果比甲种水果少买了2千克,据此列方程组.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【考点】众数;统计表;加权平均数;中位数.【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.10.下列命题中是真命题的是()A.同位角相等B.内错角相等C.等角的余角相等D.相等的角都是对顶角【考点】命题与定理.【分析】分别根据同位角、内错角、余角的定义对各选项进行逐一分析即可.【解答】解:A、两直线平行,同位角相等,故原命题是假命题;B、两直线平行,内错角相等,故原命题是假命题;C、等角的余角相等是真命题,故本选项正确;D、相等的角不一定是对顶角,故原命题是假命题.故选C.【点评】本题考查的是命题与定理,熟知判断一件事情的语句,叫做命题是解答此题的关键.11.甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是=85,=85,=85,=85,方差是S甲2=3.8,S乙2=2.3,S丙2=6.2,S丁2=5.2,则成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】由题意易得s乙2<s甲2<s丁2<S丙2,根据方差的意义(方差反映一组数据的波动大小,方差越小,波动越小,越稳定)即可得到答案.【解答】解:∵S甲2=3.8,S乙2=2.3,S丙2=6.2,S丁2=5.2,∴s乙2<s甲2<s丁2<S丙2,∴成绩最稳定的是乙.故选B.【点评】本题考查了方差的意义,解答本题要掌握方差反映一组数据的波动大小,方差越小,波动越小,越稳定.12.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°【考点】平行线的性质.【分析】先根据直角三角形的性质求出∠D的度数,再由平行线的性质即可得出结论.【解答】解:∵FE⊥DB,∵∠DEF=90°.∵∠1=50°,∴∠D=90°﹣50°=40°.∵AB∥CD,∴∠2=∠D=40°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.二、填空题(每小题3分,共18分)13.当x=3时,分式没有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式无意义的条件是分母等于0.【解答】解:若分式没有意义,则x﹣3=0,解得:x=3.故答案为3.【点评】本题考查的是分式没有意义的条件:分母等于0,这是一道简单的题目.14.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=70度,A′B′= 15cm.【考点】全等三角形的性质.【分析】由已知条件,根据全等三角形有关性质即可求得答案.【解答】解:∵△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∴∠C′与∠C是对应角,A′B′与边AB是对应边,故填∠C′=70°,A′B′=15cm.【点评】本题主要考查了全等三角形的性质,全等三角形的对应边相等,对应角相等,是需要熟记的内容.找准对应关系是正确解答本题的关键.15.,,的最简公分母为6x2y2.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:,,的分母分别是2xy、3x2、6xy2,故最简公分母为6x2y2.故答案为6x2y2.【点评】本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.16.化简:=x+y.【考点】分式的加减法.【专题】计算题.【分析】同分母相减,分母不变,分子相减,要利用平方差公式化为最简分式.【解答】解:==x+y.【点评】本题考查了分式的加减法法则.17.若==≠0,则=.【考点】比例的性质.【分析】根据题意表示出x=3a,y=4a,z=5a,进而代入原式求出即可.【解答】解:∵==≠0,∴设x=3a,y=4a,z=5a,∴==.故答案为:.【点评】此题主要考查了比例的性质,利用一个未知数表示出x,y,z的值是解题关键.18.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程或.【考点】由实际问题抽象出分式方程.【分析】所求的是原计划的工效,工作总量是300,一定是根据工作时间来列的等量关系.本题的关键描述语是:“后来每天的工效比原计划增加20%”;等量关系为:结果共用30天完成这一任务.【解答】解:因为原计划每天铺设x(m)管道,所以后来的工作效率为(1+20%)x(m),根据题意,得=30.或故答案为:或.【点评】本题考查了由实际问题抽象出分式方程.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=按原计划的工效铺设120m的天数+后来的工效铺设的天数.三、解答题(本大题共8个小题,共72分,解答应写出文字说明、证明过程或演算步骤)19.约分:(1)=(2)=,(3)=1.【考点】约分.【分析】找出分子、分母的公因式,再约分,即可求解.【解答】解:(1)原式==,(2)原式==,(3)原式==1,故答案为,,1.【点评】本题考查了约分,涉及到积的乘方,分式的约分,按运算顺序,先算乘方,再约分.20.通分:(1),(2),.【考点】通分.【分析】(1)将两式系数取各系数的最小公倍数,相同因式的次数取最高次幂;(2)先把分母因式分解,再找出最简公分母.【解答】解:(1)∵两个分式分母分别为4a2b,6b2c未知数系数的最小公倍数为3×4=12,∵a,b,c的最高次数为2,2,1,∴最简公分母为12a2b2c,将,通分可得:和;(2)x2﹣x=x(x﹣1),x2﹣2x+1=(x﹣1)2,∴最简公分母是x(x﹣1)2,==,==.【点评】本题考查了通分,解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.21.如图,△ABC≌△DEF,AB和DE是对应边,∠A和∠D是对应角,找出图中所有相等的线段和角.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出即可.【解答】解:∵△ABC≌△DEF,∴相等的边有:AB=DE,BC=EF,AC=DF,AF=DC;相等的角有:∠A=∠D,∠B=∠E,∠ACB=∠DFE,∠BCD=∠AFE.【点评】本题考查了全等三角形的性质的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.22.计算:(1)•;(2)÷;(3)﹣;(4)﹣a﹣1.【考点】分式的混合运算.【专题】计算题.【分析】(1)原式约分即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式通分并利用同分母分式的减法法则计算,约分即可得到结果;(4)原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:(1)原式=;(2)原式=•=;(3)原式===;(4)原式==.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.若﹣=2,求的值.【考点】分式的化简求值.【分析】先根据题意得出x﹣y=﹣2xy,再分式混合运算的法则把原式进行化简,再把x﹣y=﹣2xy 代入进行计算即可.【解答】解:∵﹣=2,∴x﹣y=﹣2xy,∴原式====.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24.解方程:(1)+1=(2)=﹣2.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x+2x+6=7,移项合并得:6x=1,解得:x=,经检验是分式方程的解;(2)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,移项合并得:x=2,经检验x=2是增根,故原方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.25.我们把分子为1的分数叫做单位分数.如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=,=,=,…(1)根据对上述式子的观察,你会发现请写出□,○所表示的数;(2)进一步思考,单位分数(n是不小于2的正整数)=,请写出△,☆所表示的式,并加以验证.【考点】分式的加减法.【专题】规律型.【分析】观察每条式子各个分母的关系,做好第一问,总结了规律才能做好第二问.【解答】解:(1)□表示的数为6,○表示的数为30;(2)☆表示的式为n+1,△表示的式为n(n+1).∵=.【点评】本题是一道规律题型,找到解题规律是解题的关键.26.甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路匀速驶向C城.已知A、C两城的距离为360km,B、C两城的距离为320km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城.设乙车的速度为xkm/h.所需时间(h)【考点】分式方程的应用.【专题】行程问题.【分析】(1)设乙的速度是x千米/时,那么甲的速度是(x+10)千米/时,根据时间=可求甲、乙两辆汽车所需时间;(2)路程知道,且同时到达,可以时间做为等量关系列方程求解.【解答】解:(1)甲的速度是(x+10)千米/时,甲车所需时间是,乙车所需时间是;所需时间(h)=,解得x=80,经检验:x=80是原方程的解,x+10=90,答:甲的速度是90千米/时,乙的速度是80千米/时.【点评】本题考查理解题意能力,关键是以时间做为等量关系,根据时间=,列方程求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试题参考答案
一、选择题(每小题3分,共42分)
1-5 C C A A D 6-10 C A C D C 11-14 A A B B
二、填空题(每小题3分,共12分)
15.7.90 16.a 17.34
18.两边及夹角对应相等的两个三角形全等,全等三角形对应边相等.
三、解答题(共66分)
19.解:∵A,B两点表示的数分别为1,2
∴C点所表示的数是x=1-(2-1)=2-2 .......................5分
∴BC=2-(2-2)=22-2 ......................10分
20.(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,
∴∠BAC=180°-30°-30°=120° ..........................2分
∵∠DAB=45°,∴∠DAC=∠BAC-∠DAB=120°-45°=75° ..................5分
(2)证明:∵∠DAB=45°∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC ................3分∴DC=AC,∴DC=AB. ...................5分
21.(1)③ .................4分
(2)623243
⨯-÷
=
24 263
3
⨯-
=2188
-
= 6222
-
= 42 .........................6分
22.解:(1)如图(1),设CE=x,则BE=8-x;由题意得:AE=BE=8-x ..............2分由勾股定理得:x2+62=(8-x)2 .................5分
解得:x=7 4
即CE的长为:7
4
...............................6分
(2)如图(2),∵点B′落在AC的中点
∴CB′=1
2
AC=3;设CE=x 则EB′=EB=8-x ...........2分
可列出方程:x2+32=(8-x)2 ................5分
解得:x=55
16
.即CE的长为:
55
16
....................6分
23.解:设该项绿化工程原计划每天完成x米2 ...................1分
根据题意得:46000220004600022000
4
1.5
x x
--
-= ......................8分
解得:x=2000,经检验,x=2000是原方程的解. .......................11分答:该绿化项目原计划每天完成2000平方米. ...................12分24.证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,
∴Rt△ACF≌Rt△AEF ∴CF=EF ...................4分
∴BF+EF=BF+CF=BC ∴BF+EF=DE ......................6分
(2)如图②,(1)中的结论不成立,有DE=BF-EF ................1分
理由是:
连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90° AF=AF ∴Rt△ACF≌Rt△AEF ∴CF=EF ...............5分
∴DE=BC=BF-FC=BF-EF 即DE=BF-EF ...................6分。

相关文档
最新文档