煤层压力
直接法测定煤层瓦斯压力
聚氨酯泡沫都
是 新 型材料 , 用胶 囊 弹性 大 的特点 , 之与孔 壁 全 利 使
王文才 (93 )男 , 16一 , 教授 , 士 , 士研究 生导师 ,100内蒙 博 硕 041
摘
要 准确测 定煤 层 瓦斯 压 力是煤 矿 瓦斯 综合 治 ̄ r 的 关键 。分析 了煤 层 瓦斯 压 力直接 E: 作 -
测定的影响 因素 , 如测点位置、 封孔材料和钻孔参数等 , 对五虎山煤矿煤层的 瓦斯压力进行 了测定。 结果表明, 直接 法能较快地测定 出煤层的瓦斯压 力, 而且操作简单 , 工方便 , 施 测定成本较低 , 值得
椎 。 关键 词 直接 法 煤 层 瓦斯 压 力 测定
煤 层 瓦斯压 力是 指 煤层 孔 隙 中所 含 的游 离瓦 斯 作 用 于孔 隙壁 的压 力 , 它不 仅 决 定 着 煤 层 瓦 斯 含 量
斯 地质 单 元 的 瓦 斯 自成 一 系 j 因此 瓦 斯 压 力 测 。
定地点应避开异常地质带 , 选择具有代表性的地点 作为瓦斯压力测定点 。具体要求是 : ①瓦斯压力测 定 点距 断层 、 隙 、 成 岩 以及 其 他地 质构 造带 的距 裂 火 离不得小于 10m; 0 ②应远离采空区, 这是 因为采空 区的存在会 造成煤层 瓦斯 的涌出而使 瓦斯 压力 降 低, 应在距采空区范围 5 0m以外 ; 应考虑 瓦斯压 ③ 力 测定 钻孔 与周 边 巷 道 和 煤 层暴 露 面 的位 置 关 系 ,
力进行校正 , 从而得到原煤的瓦斯压力。
1 直 接 法 瓦 斯 压 力 的 测 定
直接法测定煤层瓦斯压力不仅 与钻孔工艺、 孔 的完整 性 和封孔 技 术 有 关 , 与 钻 孔 的参 数 和 测 点 还
《井下直接法测定煤层瓦斯压力数值模拟研究及工程指导》
《井下直接法测定煤层瓦斯压力数值模拟研究及工程指导》篇一一、引言煤层瓦斯压力是煤与瓦斯共采资源的一项关键参数,直接影响到煤炭的安全开采和瓦斯资源的有效利用。
井下直接法作为测定煤层瓦斯压力的常用方法,其准确性和可靠性对于煤矿安全生产具有重要意义。
本文旨在通过数值模拟研究井下直接法测定煤层瓦斯压力的原理及方法,并探讨其在工程实践中的应用与指导。
二、井下直接法测定煤层瓦斯压力原理井下直接法测定煤层瓦斯压力,主要依据煤层中瓦斯气体的渗流特性,通过观测压力传感器数据,从而获得煤层瓦斯压力。
其基本原理包括气体状态方程、瓦斯在煤层中的流动规律等。
数值模拟能够更直观地反映这一过程,有助于我们深入理解井下直接法的原理和操作过程。
三、数值模拟研究(一)模型建立本文采用计算机模拟技术,建立了包含煤层、岩层及井筒等在内的三维地质模型。
该模型基于地质勘查资料和矿区实际条件,真实地反映了矿区的地质结构。
(二)数值模拟过程在模型中,我们设定了合理的瓦斯气体初始状态和流动规律,通过模拟瓦斯在煤层中的渗流过程,观测压力传感器的数据变化,从而得到煤层瓦斯压力的数值。
(三)结果分析模拟结果表明,井下直接法能够有效测定煤层瓦斯压力。
同时,我们分析了不同因素(如煤层厚度、瓦斯含量、井筒结构等)对测定结果的影响,为实际工程提供了理论依据。
四、工程实践应用与指导(一)工程实践应用井下直接法在实际工程中得到了广泛应用。
通过将模拟结果与实际观测数据对比,验证了该方法的有效性和准确性。
该方法具有操作简便、成本低廉等优点,能够为煤矿安全生产提供有力支持。
(二)工程指导根据数值模拟结果,我们可以为煤矿安全生产提供以下指导:1. 合理布置井筒和压力传感器,确保测量的准确性和可靠性;2. 结合地质勘查资料,分析煤层瓦斯压力的分布规律,为煤矿安全开采提供依据;3. 针对不同地质条件和煤层特性,制定相应的安全技术措施,确保煤矿生产安全;4. 通过实时监测煤层瓦斯压力的变化,预测瓦斯突出等灾害事故的发生,及时采取措施防止事故发生。
煤矿井下煤层瓦斯压力直接测定方法
4.瓦斯压力测定工艺
▪ 胶囊-密封粘液封孔测压法封孔步骤
组装好封孔器并放入预计的封孔深度,在孔口安装好阻 退楔,连接好封孔器与密封粘液罐、压力水罐,装上各 种控制阀,安装好压力表
启动压力水罐开关向胶囊充压力水,待胶囊膨胀封住钻 孔后开启密封粘液罐往钻孔的密封段注入密封粘液,密 封粘液的压力应略高于煤层预计的瓦斯压力
煤矿井下煤层瓦斯压力直接测定方法
.2.15
主要内容
1.概述
▪ MT/T 638-1996 在观测中发现瓦斯压力值变化较大应增加观测次数 煤矿井下煤层瓦斯压力的 直接测定方法 被动测压法时,则视煤层的瓦斯压力及透气性大小的不同,需30天以上
在观测中发现瓦斯压力值变化较大应增加观测次数 测定邻近煤层的瓦斯压力或煤层群分层测压应采用注浆封孔测压法
不收缩水泥的使用量, 在观测中发现瓦斯压力值变化较大应增加观测次数 按一定比例配好封孔水 胶囊-密封粘液封孔测定本煤层瓦斯压力的封孔深度应不小于10m 本 测煤定层邻测 近压 煤孔 层封 的泥泥孔 瓦应 斯浆 浆保 压证力, 泵其 或测 煤用 一压 层室 群压 次长 分不 层气 连小 测注 续于 压应1.浆 将采用器封注浆或孔封孔测压法
选择瓦斯压力测定地点应保证有足够的封孔深 度
瓦斯压力测定地点宜选择在进风系统,行人少 且便于安设保护栅栏的地方
4.瓦斯压力测定工艺
▪ 测定方法的选择
测压处岩石坚硬、少裂隙,可采用黄泥水泥封孔测 压法
在松软岩层及煤巷中测定煤层的瓦斯压力时:
钻孔长度≤15m时采用胶囊-密封粘液封孔测压法 钻孔长度>15m时应采用注浆封孔测压法
黄泥水泥封孔测压法的封孔深度应不小于5m 胶囊-密封粘液封孔测定本煤层瓦斯压力的封孔深度应
煤层瓦斯压力快速测定关键技术
潘怀义 李军舰 ( 淮 南 矿 业( 集 团 ) 有限 责 任 公 司 )
摘要 : 煤 层 瓦斯 压 力 测定 的准 确 与 否 , 直 接 影 响 指 导 瓦斯 治 理 措 必须排 尽 孔 内积 存 的水 、 渣, 并 对测压 管 路 系 统进 行 通 畅 施, 为确 保 测 压 快 速 准 确 , 必 须 要 解 决 一 个 难 题 — — 如 何 快速 、 准 确 性 与气 密性检 查 , 钻 孔封至 待 测煤层 见煤点 。
①矿成立以通风副总为组长的测压小组,通防科、 抽
② 通防科 在 测压 孔 施工 前编 制测 压 方案 , 经 测压小 组 制水 泥 浆 , 并添 加 适 量 快速 凝 结 剂 , 用 电动注 浆泵 注 入 孔 会 审后严 格执 行 , 落 实到现 场。 返 浆 后关 闭返 浆管 闸 阀 , 间歇 性地 继续 注 浆 , 注 浆终 压 ⑧ 通防科排定测压跟班表 , 从打钻、 封孔、 压力表及在 内 ,
线安装 全过 程跟 班。同时 有计 划地排 定矿 井测压 工作 排 队 达 6 MP a后结 束注 浆。
2 . 3 . 4 注 浆封 孔 结束 , 应凝固 2 4 h后进 行压 力 表 及在 表, 做 到测压 工作 按计 划开 展 。 线 装 置的安 装 , 压 力表 装 置现 场安 装前 必须在 地 面做 好气 2 技 术保 障 密性试 验。 2 . 1巷 道顶 底板 喷注 浆 2 。 4 测 压 工 艺 测压 前 提是 保证 不 漏气 , 为 此我们 做 到 了在 施 工上 向 2 . 4 . 1 采用 主动 测压 时 ,开始 测压 时 向孔内充入 补 偿 测压 孔 区域 对巷 道 囤岩 喷浆 , 并 对巷 道 3 m 松 动 圈采 用 带 . 5 压注 浆 ,注 浆压 力最 终达 6 Mp a注入 巷 道松 动 圈范 围 , 将 气体 ,补 偿 气 体 的充 气 压 力 为预 计 煤 层 瓦斯 压 力 的 0 倍。 巷 道松 动 圈裂隙注 实密 闭。施工 下 向测压 孔时 对巷 道底板 2 . 4 _ 2 煤 岩层 赋 水地 点 测压 装 置应 安 设气 水 分 离器 , 打眼 6 m 注 浆 并 打水 泥 地 坪 ,为 施 工 测压 孔 创 造 有 利 条 并在 气水 分离器 与测压 气 室 间设置 高压 闸 阀 , 实现 在 隔离 件。
煤层瓦斯压力分布规律及预测方法
第 12
4期 月
采矿与安全工程学报
urnal of Mining & Safety Engineering
文章编号 :167323363 (2008) 0420481205
Vol. 25 No . 4 Dec. 2008
煤层瓦斯压力分布规律及预测方法
田靖安1 , 王 亮2 , 程远平2 , 马贤钦2 , 李 伟2 , 沈镇波2
基于以上对瓦斯压力与煤与瓦斯突出关系的 认识 ,国内外学者以及我国大部分规范[427] 都将瓦 斯压力作为判断煤层突出危险性的十分重要的指 标 ,特别是 2006 年 12 月出台的《煤矿瓦斯抽采基 本指标》( AQ102622006) [7] ,明确指出 :“突出煤层 工作面采掘作业前必须将控制范围内煤层的瓦斯 含量降到煤层始突深度的瓦斯含量以下或将煤层 瓦斯压力降低到煤层始突深度的煤层瓦斯压力以 下. 若没能考察出煤层始突深度的煤层瓦斯含量或 压力 ,则必须将煤层瓦斯含量降到 8 m3 / t 以下 ,或 将煤层瓦斯压力降到 0. 74 M Pa (表压) 以下”“; 低 瓦斯矿井新水平 、新水平应测定煤层原始瓦斯含量 和压力 ,高瓦斯 、煤与瓦斯突出矿井每个采区每增 加 50 m 应测定煤层原始瓦斯含量与压力. ”
3 煤层瓦斯压力理论计算方法
根据国内外对煤层瓦斯大量的观测结果显示 , 赋存在煤层中的瓦斯表现垂向分带特征 ,一般可以 分为瓦斯风化带与甲烷带[2] . 其中风化带内瓦斯含 量与瓦斯压力较小 ,风化带下部边界条件中瓦斯压 力为 P = 0. 15~0. 2 M Pa ; 在甲烷带内 , 煤层的瓦 斯压力随深度增加而增加 ,瓦斯压力梯度随地质条 件而异 ,在地质条件相近的地质块段 , 相同深度的 同一煤层具有大体相同的瓦斯压力 ,多数煤层瓦斯
煤层瓦斯压力的测定方法
煤层瓦斯压力的测定方法《煤矿安全规程》要求,为了预防石门揭穿煤层时发生突出事故,必须在揭穿突出煤层前,通过钻孔测定煤层的瓦斯压力,它是突出危险性预测的主要指标之一,又是选择石门局部防突措施的主要依据。
同时,用间接法测定煤层瓦斯含量,也必须知道煤层原始的瓦斯压力。
因此,测定煤层瓦斯压力是煤矿瓦斯管理和科研需要经常进行的一项工作。
测定煤层瓦斯压力时,通常是从石门或围岩钻场向煤层打孔径为50~75mm的钻孔,孔中放置测压管,将钻孔封闭后,用压力表直接进行测定。
为了测定煤层的原始瓦斯压力,测压地点的煤层应为未受采动影响的原始煤体。
石门揭穿突出煤层前测定煤层瓦斯压力时,在工作面距煤层法线距离5m以外,至少打2个穿透煤层全厚或见煤深度不少于10m的钻孔。
测压的封孔方法分填料法和封孔器法两类。
根据封孔器的结构特点,封孔器分为胶圈、胶囊和胶圈—黏液等几种类型。
1.填料封孔法填料封孔法是应用最广泛的一种测压封孔方法。
采用该法时,在打完钻孔后,先用水清洗钻孔,再向孔内放置带有压力表接头的测压管,管径约为6~8mm,长度不小于6m,最后用充填材料封孔。
图1-17为填料法封孔结构示意图。
图1-17 填料法封孔结构1—前端筛管;2—挡料圆盘;3—充填材料;4—木楔;5—测压管;6—压力表;7—钻孔为了防止测压管被堵塞,应在测压管前端焊接一段直径稍大于测压管的筛管或直接在测压管前端管壁打筛孔。
为了防止充填材料堵塞测压管的筛管,在测压管前端后部套焊一挡料圆盘。
测压管为紫铜管或细钢管,充填材料一般用水泥和砂子或粘土。
填料可用人工或压风送入钻孔。
为使钻孔密封可靠,每充填1m,送入一段木楔,用堵棒捣固。
人工封孔时,封孔深度一般不超过5m;用压气封孔时,借助喷射罐将水泥砂浆由孔底向孔口逐渐充满,其封孔深度可达10m以上。
为了提高填料的密封效果,可使用膨胀水泥。
填料法封孔的优点是不需要特殊装置,密封长度大,密封质量可靠,简便易行;缺点是人工封孔长度短,费时费力,且封孔后需等水泥基本凝固后,才能上压力表。
煤层地层压力和解析压力
煤层地层压力和解析压力煤层地层压力是一门研究深层煤层地层压力及其控制规律的学科,它与煤层地质学及矿山勘探工程密切相关。
煤层地层压力的研究可以帮助矿山的开采设计及钻井安全有效地实施。
地层压力是指地应力压力的代表性概念,是深层煤层里岩石间隙与地应力压力的平衡关系。
在煤层采矿过程中,既要维持地层稳定,同时又要在合理的压力范围内进行采矿活动,这就非常依赖于对地层压力的准确测量和分析。
解析压力是一种量测技术,它可以用来检测深层煤层地层压力。
它可以在采矿过程中准确定位暗层,更好地预测采矿中的风险,减少采矿的安全隐患,同时,辅助矿山在实施采矿活动前,分析地层压力变化情况,采取必要预防措施确保采矿安全可靠。
从地质理论上来讲,计算和解析深层煤层地层压力有着重要的意义:首先,它可以用定量的方法描述煤层的地应力状态,其次,它还可以帮助更好地理解深层煤层的运行规律。
解析压力有着准确、快速、精准等优点,借助它,可以获取深层煤层围岩应力及其演变规律,从而更好地了解深层煤层地层压力的变化特征。
同时,可以根据解析压力测量结果,针对不同的地质把握深层煤层围岩和支护工程的质量,保证矿山开采安全可靠。
在深层煤层采矿过程中,测量和解析地层压力的重要性不言而喻。
实际的采矿活动要建立在合理的地层压力状态上,进而确保采矿过程安全有效。
解析压力是煤层地层压力测量和研究中最重要的技术,它可以更好地解析和分析深层煤层地层压力,把控采矿过程,保证矿山开采安全可靠。
总之,煤层地层压力及其解析压力的测量和解析对于煤矿开采安全至关重要。
解析压力技术拥有准确、快速、精准的特点,有助于检测深层煤层地层压力,控制煤层采矿的过程,减少采矿活动的安全风险。
同时,要保持对煤层地层压力变化情况的监测,分析地层压力状况,采取有效的预防措施,确保煤层采矿安全有效。
煤层静水压力-概述说明以及解释
煤层静水压力-概述说明以及解释1.引言1.1 概述:概述煤层静水压力是指在煤层地层中所存在的静止状态下的水的压力。
在煤矿开采和地下工程中,煤层静水压力是一个重要的参数,影响着矿井和工程的安全和稳定性。
了解和掌握煤层静水压力的情况,可以有效地指导煤矿开采和地下工程的设计和施工,减少事故的发生率,提高工程的效率和经济效益。
本文将就煤层静水压力的定义、特点、影响因素和测量方法等进行探讨,旨在深入了解煤层静水压力的重要性,并展望未来煤层静水压力研究的方向,为煤矿开采和地下工程提供理论支持和技术指导。
1.2文章结构文章结构部分的内容如下:在本文中,我们将首先介绍煤层静水压力的定义和特点,明确了解这一概念的基本概念。
接着,我们将探讨影响煤层静水压力的因素,说明了煤层静水压力受多方面因素的影响。
然后,我们将介绍煤层静水压力的测量方法,帮助读者了解如何准确测量煤层静水压力。
最后,我们将总结煤层静水压力的重要性,展望未来煤层静水压力研究的方向,并得出结论。
通过这种结构,我们希望读者能全面了解煤层静水压力这一重要概念。
1.3 目的本文的目的是探讨煤层静水压力在煤矿开采和地下工程中的重要性和影响因素。
通过对煤层静水压力的定义和特点进行描述,分析其影响因素及测量方法,旨在深入了解煤层静水压力对矿井安全和工程施工的影响,为煤炭生产和地下工程设计提供依据和参考。
同时,通过对未来研究方向的展望,希望能够促进煤层静水压力领域的进一步研究和应用,提高煤矿和地下工程的安全性和效率。
2.正文2.1 煤层静水压力的定义和特点:煤层静水压力是指在煤层中自重及周围地层构造和水体作用下形成的压力。
煤层静水压力是煤层岩层中一种普遍存在的力,它主要由地层中的孔隙水和岩层中的岩石水构成。
煤层静水压力的特点主要有以下几点:1. 煤层静水压力的大小可以根据地质条件和孔隙裂缝特征来确定,通常随着深度的增加而增加。
这种压力具有一定的垂向分布规律,越深处压力越大。
煤层瓦斯压力
• • • • 煤层瓦斯压力的基本概念 煤层瓦斯压力的分布规律 煤层瓦斯压力的测定方法 煤层瓦斯压力的预测方法
煤层瓦斯压力的基本概念
• 煤层瓦斯压力是指煤层孔隙内游离瓦斯气体分子自由热运 动所产生的作用于孔隙壁的压力。 根据煤层是否受采动、瓦斯抽采及人为卸压等因素的 影响,将煤层瓦斯压力分为原始瓦斯压力和残余瓦斯两类。 煤层瓦斯压力这个概念对煤矿安全生产的指导意义? 煤层瓦斯压力是评价煤层突出危险性与决定煤层瓦斯 含量的一个重要指标,并在煤层突出危险性指标重要性排 序中位居前列。同时,煤层瓦斯压力还是决定瓦斯流动动 力以及瓦斯动力现象的潜能大小的基本参数,在研究与评 价瓦斯储量、瓦斯涌出、瓦斯流动、瓦斯抽采与瓦斯突出 问题中具有指导意义。
胶圈封孔器法
• 胶圈封孔是一种简便的封孔方法,它适用与岩柱完整致密 的条件。图为胶圈封孔器结构示意图。 • 封孔器由内外套管、挡圈、胶圈和压力表组成。内套管即 为测压管。封直径为50mm的钻孔时,胶圈外径为49mm, 内径为21密码,每节胶圈长度为78mm。测压管前端焊有 环形固定挡圈,当拧紧压紧螺帽时,外套管向前移动压缩 胶圈,使胶圈径向膨胀,即达到封孔目的。为
煤层瓦斯压力的分布规律
煤层瓦斯运移的总趋势是瓦斯由地层深部向地表逸散,这一规律 决定了煤层瓦斯压力和含量随深度增加而增大,如图所示为我国各主 要矿区实测煤层瓦斯压力随深度的变化规律。 由于赋存在煤中的瓦斯表现出垂向分带特征,可以分为瓦斯风化 带和甲烷带。在瓦斯风化带内,瓦斯含量与瓦斯压力较小,风化带下 部边界条件中瓦斯压力为p=0.15~0.2MPa;在甲烷带内,煤层的瓦斯 压力随深度增加而增加。 在地质条件相近的地质块段,相同深度的同一煤层具有大体相同 的瓦斯压力,多数煤层瓦斯压力随埋深呈线性增加;在某些地质条件 局部变化区域(覆盖岩层性质变化、岩浆岩侵蚀、开放式的大断层), 煤层瓦斯压力将会偏离线性规律。
2任务二 煤层瓦斯压力及其测定
任务二 煤层瓦斯压力及其测定【主要内容】一、煤层瓦斯压力及其分布规律 二、煤层瓦斯压力测定原理 二、煤层瓦斯压力测定方法四、瓦斯压力测定要求与数据处理五、实训与操作-钻机施工钻孔测定瓦斯压力《煤矿安全规程》要求,为了预防石门揭穿煤层时发生突出事故,必须在揭穿突出煤层前,通过钻孔测定煤层的瓦斯压力,它是突出危险性预测的主要指标之一,又是选择石门防突措施的主要依据。
同时,用间接法测定煤层瓦斯含量,也必须知道煤层原始的瓦斯压力。
因此,测定煤层瓦斯压力是煤矿瓦斯管理和科研工作需要经常进行的一项内容。
一、 煤层瓦斯压力及其分布规律煤层瓦斯压力是煤层裂隙和孔隙中所含游离瓦斯的气体压力,即气体作用于孔隙壁的作用力。
其单位是MPa(兆帕)。
它是煤层裂隙和孔隙内游离瓦斯热运动的结果。
根据大量的测定结果表明,在甲烷带内,煤层的瓦斯压力随深度的增加而增加,多数煤层呈线性增加,可以按下式预测深部煤层的瓦斯压力:)(00H H m p p -+= (1-2-1)式中 P ——在深度H 处的瓦斯压力,MPa ;P 0——瓦斯风化带H 0深度的瓦斯压力,MPa ,一般取0.15~0.2,预测瓦斯压力时可取0.196;H 0——瓦斯风化带的深度,m ; H ——煤层距地表的垂直深度,m ;m ——瓦斯压力梯度,MPa/m 。
可由下式计算:101=H H P P m —— (1-2-2)式中 P 1——实测瓦斯压力,MPa ;H 1——测瓦斯压力P 1地点的垂深,m 。
实际应用时,m 一般取为0.01±0.005。
煤层瓦斯的压力应该实际测量。
根据我国各煤矿瓦斯压力随深度变化的实测数据,瓦斯压力梯度m 一般在0.007~0.012 MPa/m ,而瓦斯风化带的深度则在几米至几百米之间。
表1-2-1是我国部分矿井的煤层瓦斯压力和瓦斯压力梯度实测值。
表1-2-1 我国部分矿井的煤层瓦斯压力和瓦斯压力梯度实测值对于一个生产矿井,应该注意积累和充分利用已有的实测数据,总结出适合本矿的基本规律,为深水平的瓦斯压力预测和开采服务。
煤层瓦斯基础参数测定!
煤层瓦斯参数测定技术方法总结目录第一章层瓦斯压力测定 (1)(一)固体材料封孔测定瓦斯压力 (1)(二)胶圈粘液封孔测定瓦斯压力 (2)第二章煤层瓦斯含量测定 (4)(一)采取煤样及瓦斯解吸速度测定 (5)(二)计算采样过程中的损失瓦斯量 (6)(三)残余瓦斯含量测定 (7)第三章瓦斯含量系数测定 (9)(一)测定原理 (9)(二)测定方法 (10)第四章煤层透气性系数的测定与计算 (11)(一)计算公式 (11)(二)测定与计算步骤 (12)(三)测定中的注意事项 (14)第五章煤的坚固性系数测定 (16)(一)测定原理 (16)(二)测定方法与步骤 (16)第六章煤的瓦斯放散指数测定 (17)(一)测定仪器 (17)(二)测定步骤 (17)第七章瓦斯吸附常数测定 (18)(一)瓦斯含量欲瓦斯吸附量、瓦斯压力及温度之间的关系 (18)(二)采用容量法测定等温吸附曲线计算a 、b值的原理 (20)(三)、测定过程 (20)第八章预测瓦斯突出危险性参数测定 (21)(一)单项参数测定及计算 (21)(二)区域预测 (26)(三)工作面预测 (27)(四)防突措施效果检验 (29)第九章瓦斯储量、可抽量及抽放率计算 (30)(一)瓦斯储量计算 (30)(二)可抽瓦斯量概算 (31)(三)抽放率 (31)第十章抽放管路中的瓦斯流量测定与计算 (32)(一)参数测定 (33)(二)流量计算 (33)第十一章钻孔排放瓦斯有效半径测定 (39)(一)根据瓦斯压力确定排放瓦斯有效半径的方法 (39)(二)根据瓦斯流量确定排放瓦斯有效半径的方法 (39)第十二章钻孔瓦斯流量衰减系数的测定于计算 (40)第十三章瓦斯涌出量及其计算 (41)(一)掘进巷道的瓦斯涌出 (41)(二)、回采工作面瓦斯涌出量计算 (43)第一章煤层瓦斯压力测定(一)固体材料封孔测定瓦斯压力首先在距测压煤层一定距离(≥5m)的岩巷打孔,孔径一般取φ68—φ108mm。
瓦斯压力测定标准
1AQ 1047-2007—2007 煤矿井下煤层瓦斯压力的直接测定方法S. 煤层的瓦斯压力是矿井瓦斯基本参数之一,它对于确定煤层瓦斯含量,进行矿井瓦斯涌出治理,瓦斯抽放以及煤与瓦斯突出的防治等工作均具有十分重要的意义;在治理矿井瓦斯的长期实践中,已探索出了许多井下煤层瓦斯压力的直接测定方法,在这些测定方法中,多数准确度高、易操作,但也有不少的测定方法其准确度低、可靠性差;因此,有必要对煤层瓦斯压力的测定方法进行规范,并在此基础上制定煤矿井下煤层瓦斯压力直接测定的行业标准;本标准的制定以测定方法的可靠性为主,兼顾其可操作性及已使用的程度,同时考虑瓦斯压力测定的最新科研成果;本标准遵循煤炭工业部颁布的煤矿安全规程和防治煤与瓦斯突出细则等文件的有关规定;本标准由煤炭工业部科技教育司提出;本标准由煤矿安全标准化技术委员会归口;本标准起草单位:煤炭科学研究总院重庆分院;本标准主要起草人:许英威、杜子健;本标准委托煤矿安全标准化技术委员会煤矿瓦斯防治及设备分会负责解释;1 范围本标准规定了煤矿井下直接测定煤层瓦斯压力的原理、设备材料、仪表以及打钻、封孔、测压等工艺的要求;本标准适用于煤矿井下直接测定煤层瓦斯压力简称瓦斯压力测定;2 引用标准下列标准包含的条文,通过在本标准中引用而构成为本标准的条文;本标准出版时,所示版本均为有效;所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性;JJG 52—71 工业用单圈管弹簧式压力表、真空表和真空压力表检定规程国家技术监督局防治煤与瓦斯突出细则 1995—05—01 煤炭工业部气瓶安全监察规程 1989—12—22 劳动部3 测定原理通过钻孔揭露煤层,安设测定仪表并密封钻孔,利用煤层中瓦斯的自然渗透原理测定在钻孔揭露处达到平衡的瓦斯压力;4 方法分类4.1 按测压方式分4.1.1 主动测压法钻孔封完孔后,通过钻孔向被测煤层充入补偿气体达到瓦斯压力平衡而测定煤层瓦斯压力的测压方法;补偿气体可选用高压氮气N2,高压二氧化碳气体CO2或其他惰性气体;补偿气体的充气压力应略高于预计煤层瓦斯压力;4.1.2 被动测压法钻孔封完孔后,通过被测煤层瓦斯的自然渗透,达到瓦斯压力平衡而测定其瓦斯压力的测压方法;4.2 按封孔材料分4.2.1 黄泥、水泥封孔测压法封孔材料为黄泥,水泥或黄泥水泥混合物,封孔方式为手工操作,主要适用于石门揭煤的瓦斯压力测定;4.2.2 胶囊—密封粘液封孔测压法封孔材料为胶囊、密封粘液,封孔方式为手工操作;适用于松软岩层或煤巷瓦斯压力测定;4.2.3 注浆封孔测压法封孔材料为膨胀不收缩水泥浆加粘液,封孔方式为压气注浆器或泥浆泵注浆封孔;适用于井下各种条件下的瓦斯压力测定,特别适用于近距离煤层群分煤层的瓦斯压力测定;5 设备材料、仪表及工具5.1 钻孔设备:打钻孔用的钻机可根据实际情况选用,其能力必须应满足测压钻孔长度的要求,钻头直径选用φ650~90mm;5.2 材料:木楔,压力表联接头,密封垫,密封带以及真空密封膏;5.3 仪表:压力表量程为预计煤层瓦斯压力的1.5倍,准确度优于1.5级,必须符合JJG 52的规定;5.4 工具:管钳,扳手,剪刀,皮尺,水桶,螺丝刀,手工封孔送料管;5.5 用黄泥、水泥封孔测压法时,还需:黄泥将质地致密可塑性好的粘土制成两端头呈球状,通过阴干,烤或晒,使其外皮半干,里面湿软;水泥不低于425;黄泥水泥混合物由黄泥和水泥按适当比例混合;速凝水泥凝结时间≤20min;管材φ6×1 mm紫铜管,φ6mm尼龙管,φ3mm铁管,以及相应联接头;其他木塞,挡板,铁丝,肥皂;5.6 用胶囊—密封粘液封孔测压法时,还需:密封粘液;密封粘液罐和压力水罐用于预计的煤层瓦斯压力小于 5 MPa 时的封孔,液压和水压由液态CO2提供;封孔器组件进液管、进水管、测压管、胶囊及测定仪表; 5.7 用注浆封孔测压法时,还需:手摇注液泵;压气注浆器用于测压钻孔长度小于20m时的封孔注浆,其容量应大于封20m钻孔所需的水泥浆容量,动力为井下压缩空气;泥浆泵宜用柱塞泥浆泵,其流量为20~50L/min,压力为3~4MPa;密封粘液密封粘液由骨料、填料和粘液混合而成;密封粘液封堵间隙为不大于4 mm的配方为:化学浆糊粉淀粉+防腐剂与水的比例质量比1:16制成粘液,骨料与粘液的比例体积比为1:8,填料与粘液的比例体积比为1:16;其中骨料由粒度为0.5~1.0,1.0~2.5,2.5~5.0mm的炉渣按体积比1:2:3混合而成;填料由0.25~0.5,0.5~1,1.0~2.5 mm的锯末按体积比1:1:1均匀混合而成;膨胀不收缩水泥浆由膨胀不收缩水泥与水井下清洁水按一定比例制成;测压管、注浆管φ13 mm铁管及附件;5.8 用主动测压法时,还需:高压储气罐必须符合劳动部气瓶安全监察规程的要求;充气联接装置必须联接方便、可靠;补偿气体高压N2,高压CO2气体或其他惰性气体;6 瓦斯压力测定工艺6.1 测定地点的选择6.1.1 同一地点应打两个测压钻孔,钻孔口距离应在其相互影响范围外,其见煤点的距离除石门测压外应不小于20m;石门揭煤瓦斯压力测定按防治煤与瓦斯突出细则简称细则的有关规定进行; 6.1.2 除在煤巷中测定本煤层瓦斯压力外,测定地点应选择在石门或岩巷中;6.1.3 钻孔应避开地质构造裂隙带、巷道的卸压圈和采动影响范围;6.1.4 测定煤层原始瓦斯压力的见煤点应避开地质构造裂隙带、巷道、采动及抽放等的影响范围;6.1.5 选择瓦斯压力测定地点应保证有足够的封孔深度; 6.1.6 瓦斯压力测定地点宜选择在进风系统,行人少且便于安设保护栅栏的地方;6.2 测定方法的选择6.2.1 测压处岩石坚硬、少裂隙,可采用黄泥、水泥封孔测压法; 6,2.2 在松软岩层及煤巷中测定煤层的瓦斯压力时:钻孔长度≤15m时应采用胶囊—密封粘液封孔测压法;钻孔长度>15m时应采用注浆封孔测压法;6.2.3 竖井揭煤可采用注浆封孔测压法;石门揭煤的测压,按细则的有关规定进行;6.2.4 测定邻近煤层的瓦斯压力或煤层群分层测压应采用注浆封孔测压法;6.2.5 测压时间充足时,宜采用被动测压法;测压时间较短时,应采用主动测压法;6.3 钻孔施工6.3.1 钻孔的开孔位置应选在岩石煤壁完整的位置;6.3.2 钻孔施工应保证钻孔平直、孔形完整,穿层测压钻孔宜穿煤层全厚;6.3.3 钻孔施工好后,应立即清洗钻孔,保证钻孔畅通; 6.3.4 在钻孔施工中应准确记录钻孔方位、倾角、长度、钻孔开始见煤长度及钻孔在煤层中长度,钻孔开钻时间、见煤时间及钻毕时间;6.4 封孔6.4.1 钻孔施工完后应在24h内完成封孔工作;6.4.2 准备工作:6.4.2.1 按选用的封孔方法准备好封孔材料、仪表、工具等; 6.4.2.2 检查测压管是否通畅及其与压力表联接的气密性; 6,4.2.3 钻孔为下向孔时应将钻孔水排除;6.4.3 封孔深度:6.4.3.1 封孔深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:a黄泥、水泥封孔测压法的封孔深度应不小于5m;b胶囊—密封粘液封孔测定本煤层瓦斯压力的封孔深度应不小于10m;c注浆封孔测压法的封孔深度不小于12m,煤层群分层测压时则应封堵至被测煤层在钻孔侧的顶板或底板;d应尽可能加长测压钻孔的封孔深度;6.4.3.2 本煤层测压孔封孔应保证其测压气室长不小于1.5m,穿层测压孔的封孔不宜超过被测煤层在钻孔侧的顶板或底板; 6.4.4 黄泥、水泥封孔测压法封孔步骤:a如图1所示,将挡板固定在测压管的端头,然后送至预定的封孔深度;b用送料管将封孔材料送至挡板处,轻轻捣实将测压管固定住,然后将黄泥或水泥团逐步送入孔中,并用送料管将其捣实,一直到孔口;在封孔的过程中,每隔1 m左右打入一个木塞;c在距孔口0.5m处用速凝水泥封孔,孔口用木楔固定;d封孔24h后,安装压力表;1—压力表;2—三通;3—木楔;4—测压管;5—挡板;6—煤层图1 黄泥、水泥封孔测压法示意图6.4.5 胶囊—密封粘液封孔测压法封孔步骤:a如图2所示,在测压地点先将封孔器组装好,将其放入预计的封孔深度,在钻孔孔口安装好阻退楔,联接好封孔器与密封粘液罐、压力水罐,装上各种控制阀,安装好压力表;b启动压力水罐开关向胶囊充压力水,待胶囊膨胀封住钻孔后开启密封粘液罐往钻孔的密封段注入密封粘液,密封粘液的压力应略高于煤层预计的瓦斯压力;1—三通;2—压力表;3—密封粘液罐;4—阻退楔;5—输液管;6—胶囊1;7—密封粘液;8—胶囊2;9—压力水罐;10—钻孔图2 胶囊—密封粘液封孔测压示意图6.4.6 注浆封孔测压法封孔步骤:钻孔直径为φ65~75 mm,钻孔长度为15~70m;封孔步骤为:a如图3所示,将测压管安装至预定的封孔深度,在孔口用木楔封住,并安装好注浆管;b根据封孔深度确定膨胀不收缩水泥的使用量,按一定比例配好封孔水泥浆,用压气注浆器或泥浆泵一次连续将封孔水泥浆注入钻孔内;c注浆48h后,通过测压管用手摇注液泵将粘液注入钻孔内;d撤下手摇注液泵,在孔口安装三通及压力表;1—注液泵;2—三通;3—压力表;4—木楔;5—测压管;6—煤层;7—粘液;8—水泥;9—注浆管;10—注浆泵图3 注浆封孔测压封孔示意图7 瓦斯压力观测与确定7.1 测压管理7.1.1 必须设专人负责瓦斯压力的测定工作;7.1.2 在瓦斯压力测定过程中,应作好各种参数及施工情况的记录;7.2 观测主动测压法应每天观测一次,被动测压法应至少3天观测一次;在观测中发现瓦斯压力值变化较大,则应增加观测次数;煤矿井下煤层瓦斯压力的直接测定方法标准号: MT/T638-1996 替代情况:发布单位:煤炭工业部起草单位:煤炭科学研究总院重庆分院发布日期:实施日期:点击数: 2617 更新日期:2008年12月04日-前言煤层的瓦斯压力是矿井瓦斯基本参数之一,它对于确定煤层瓦斯含量,进行矿井瓦斯涌出治理,瓦斯抽放以及煤与瓦斯突出的防治等工作均具有十分重要的意义;在治理矿井瓦斯的长期实践中,已探索出了许多井下煤层瓦斯压力的直接测定方法,在这些测定方法中,多数准确度高、易操作,但也有不少的测定方法其准确度低、可靠性差;因此,有必要对煤层瓦斯压力的测定方法进行规范,并在此基础上制定煤矿井下煤层瓦斯压力直接测定的行业标准;本标准的制定以测定方法的可靠性为主,兼顾其可操作性及已使用的程度,同时考虑瓦斯压力测定的最新科研成果;本标准遵循煤炭工业部颁布的煤矿安全规程和防治煤与瓦斯突出细则等文件的有关规定;本标准由煤炭工业部科技教育司提出;本标准由煤矿安全标准化技术委员会归口;本标准起草单位:煤炭科学研究总院重庆分院;本标准主要起草人:许英威、杜子健;本标准委托煤矿安全标准化技术委员会煤矿瓦斯防治及设备分会负责解释;1 范围本标准规定了煤矿井下直接测定煤层瓦斯压力的原理、设备材料、仪表以及打钻、封孔、测压等工艺的要求;本标准适用于煤矿井下直接测定煤层瓦斯压力简称瓦斯压力测定;2 引用标准下列标准包含的条文,通过在本标准中引用而构成为本标准的条文;本标准出版时,所示版本均为有效;所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性;JJG 52—71 工业用单圈管弹簧式压力表、真空表和真空压力表检定规程国家技术监督局防治煤与瓦斯突出细则 1995—05—01 煤炭工业部气瓶安全监察规程 1989—12—22 劳动部3 测定原理通过钻孔揭露煤层,安设测定仪表并密封钻孔,利用煤层中瓦斯的自然渗透原理测定在钻孔揭露处达到平衡的瓦斯压力;4 方法分类4.1 按测压方式分4.1.1 主动测压法钻孔封完孔后,通过钻孔向被测煤层充入补偿气体达到瓦斯压力平衡而测定煤层瓦斯压力的测压方法;补偿气体可选用高压氮气N2,高压二氧化碳气体CO2或其他惰性气体;补偿气体的充气压力应略高于预计煤层瓦斯压力;4.1.2 被动测压法钻孔封完孔后,通过被测煤层瓦斯的自然渗透,达到瓦斯压力平衡而测定其瓦斯压力的测压方法;4.2 按封孔材料分4.2.1 黄泥、水泥封孔测压法封孔材料为黄泥,水泥或黄泥水泥混合物,封孔方式为手工操作,主要适用于石门揭煤的瓦斯压力测定;4.2.2 胶囊—密封粘液封孔测压法封孔材料为胶囊、密封粘液,封孔方式为手工操作;适用于松软岩层或煤巷瓦斯压力测定;4.2.3 注浆封孔测压法封孔材料为膨胀不收缩水泥浆加粘液,封孔方式为压气注浆器或泥浆泵注浆封孔;适用于井下各种条件下的瓦斯压力测定,特别适用于近距离煤层群分煤层的瓦斯压力测定;5 设备材料、仪表及工具5.1 钻孔设备:打钻孔用的钻机可根据实际情况选用,其能力必须应满足测压钻孔长度的要求,钻头直径选用φ650~90mm;5.2 材料:木楔,压力表联接头,密封垫,密封带以及真空密封膏;5.3 仪表:压力表量程为预计煤层瓦斯压力的1.5倍,准确度优于1.5级,必须符合JJG 52的规定;5.4 工具:管钳,扳手,剪刀,皮尺,水桶,螺丝刀,手工封孔送料管;5.5 用黄泥、水泥封孔测压法时,还需:黄泥将质地致密可塑性好的粘土制成两端头呈球状,通过阴干,烤或晒,使其外皮半干,里面湿软;水泥不低于425;黄泥水泥混合物由黄泥和水泥按适当比例混合;速凝水泥凝结时间≤20min;管材φ6×1 mm紫铜管,φ6mm尼龙管,φ3mm铁管,以及相应联接头;其他木塞,挡板,铁丝,肥皂;5.6 用胶囊—密封粘液封孔测压法时,还需:密封粘液;密封粘液罐和压力水罐用于预计的煤层瓦斯压力小于 5 MPa 时的封孔,液压和水压由液态CO2提供;封孔器组件进液管、进水管、测压管、胶囊及测定仪表;5.7 用注浆封孔测压法时,还需:手摇注液泵;压气注浆器用于测压钻孔长度小于20m时的封孔注浆,其容量应大于封20m钻孔所需的水泥浆容量,动力为井下压缩空气;泥浆泵宜用柱塞泥浆泵,其流量为20~50L/min,压力为3~4MPa;密封粘液密封粘液由骨料、填料和粘液混合而成;密封粘液封堵间隙为不大于4 mm的配方为:化学浆糊粉淀粉+防腐剂与水的比例质量比1:16制成粘液,骨料与粘液的比例体积比为1:8,填料与粘液的比例体积比为1:16;其中骨料由粒度为0.5~1.0,1.0~2.5,2.5~5.0mm的炉渣按体积比1:2:3混合而成;填料由0.25~0.5,0.5~1,1.0~2.5 mm的锯末按体积比1:1:1均匀混合而成;膨胀不收缩水泥浆由膨胀不收缩水泥与水井下清洁水按一定比例制成;测压管、注浆管φ13 mm铁管及附件;5.8 用主动测压法时,还需:高压储气罐必须符合劳动部气瓶安全监察规程的要求;充气联接装置必须联接方便、可靠;补偿气体高压N2,高压CO2气体或其他惰性气体;6 瓦斯压力测定工艺6.1 测定地点的选择6.1.1 同一地点应打两个测压钻孔,钻孔口距离应在其相互影响范围外,其见煤点的距离除石门测压外应不小于20m;石门揭煤瓦斯压力测定按防治煤与瓦斯突出细则简称细则的有关规定进行;6.1.2 除在煤巷中测定本煤层瓦斯压力外,测定地点应选择在石门或岩巷中;6.1.3 钻孔应避开地质构造裂隙带、巷道的卸压圈和采动影响范围;6.1.4 测定煤层原始瓦斯压力的见煤点应避开地质构造裂隙带、巷道、采动及抽放等的影响范围;6.1.5 选择瓦斯压力测定地点应保证有足够的封孔深度;6.1.6 瓦斯压力测定地点宜选择在进风系统,行人少且便于安设保护栅栏的地方;6.2 测定方法的选择6.2.1 测压处岩石坚硬、少裂隙,可采用黄泥、水泥封孔测压法;6,2.2 在松软岩层及煤巷中测定煤层的瓦斯压力时:钻孔长度≤15m时应采用胶囊—密封粘液封孔测压法;钻孔长度>15m时应采用注浆封孔测压法;6.2.3 竖井揭煤可采用注浆封孔测压法;石门揭煤的测压,按细则的有关规定进行;6.2.4 测定邻近煤层的瓦斯压力或煤层群分层测压应采用注浆封孔测压法;6.2.5 测压时间充足时,宜采用被动测压法;测压时间较短时,应采用主动测压法;6.3 钻孔施工6.3.1 钻孔的开孔位置应选在岩石煤壁完整的位置;6.3.2 钻孔施工应保证钻孔平直、孔形完整,穿层测压钻孔宜穿煤层全厚;6.3.3 钻孔施工好后,应立即清洗钻孔,保证钻孔畅通;6.3.4 在钻孔施工中应准确记录钻孔方位、倾角、长度、钻孔开始见煤长度及钻孔在煤层中长度,钻孔开钻时间、见煤时间及钻毕时间;6.4 封孔6.4.1 钻孔施工完后应在24h内完成封孔工作;6.4.2 准备工作:6.4.2.1 按选用的封孔方法准备好封孔材料、仪表、工具等;6.4.2.2 检查测压管是否通畅及其与压力表联接的气密性;6,4.2.3 钻孔为下向孔时应将钻孔水排除;6.4.3 封孔深度:6.4.3.1 封孔深度应超过钻孔施工地点巷道的影响范围,并满足以下要求:a黄泥、水泥封孔测压法的封孔深度应不小于5m;b胶囊—密封粘液封孔测定本煤层瓦斯压力的封孔深度应不小于10m;c注浆封孔测压法的封孔深度不小于12m,煤层群分层测压时则应封堵至被测煤层在钻孔侧的顶板或底板;d应尽可能加长测压钻孔的封孔深度;6.4.3.2 本煤层测压孔封孔应保证其测压气室长不小于1.5m,穿层测压孔的封孔不宜超过被测煤层在钻孔侧的顶板或底板;6.4.4 黄泥、水泥封孔测压法封孔步骤:a如图1所示,将挡板固定在测压管的端头,然后送至预定的封孔深度;b用送料管将封孔材料送至挡板处,轻轻捣实将测压管固定住,然后将黄泥或水泥团逐步送入孔中,并用送料管将其捣实,一直到孔口;在封孔的过程中,每隔1 m左右打入一个木塞;c在距孔口0.5m处用速凝水泥封孔,孔口用木楔固定;d封孔24h后,安装压力表;6.4.5 胶囊—密封粘液封孔测压法封孔步骤:a如图2所示,在测压地点先将封孔器组装好,将其放入预计的封孔深度,在钻孔孔口安装好阻退楔,联接好封孔器与密封粘液罐、压力水罐,装上各种控制阀,安装好压力表;b启动压力水罐开关向胶囊充压力水,待胶囊膨胀封住钻孔后开启密封粘液罐往钻孔的密封段注入密封粘液,密封粘液的压力应略高于煤层预计的瓦斯压力;1—三通;2—压力表;3—密封粘液罐;4—阻退楔;5—输液管;6—胶囊1;7—密封粘液;8—胶囊2;9—压力水罐;10—钻孔图2 胶囊—密封粘液封孔测压示意图6.4.6 注浆封孔测压法封孔步骤:钻孔直径为φ65~75 mm,钻孔长度为15~70m;封孔步骤为:a如图3所示,将测压管安装至预定的封孔深度,在孔口用木楔封住,并安装好注浆管;b根据封孔深度确定膨胀不收缩水泥的使用量,按一定比例配好封孔水泥浆,用压气注浆器或泥浆泵一次连续将封孔水泥浆注入钻孔内;c注浆48h后,通过测压管用手摇注液泵将粘液注入钻孔内;d撤下手摇注液泵,在孔口安装三通及压力表;图3 注浆封孔测压封孔示意图7 瓦斯压力观测与确定7.1 测压管理7.1.1 必须设专人负责瓦斯压力的测定工作;7.1.2 在瓦斯压力测定过程中,应作好各种参数及施工情况的记录;7.2 观测主动测压法应每天观测一次,被动测压法应至少3天观测一次;在观测中发现瓦斯压力值变化较大,则应增加观测次数;记录表的格式如表1;7.3 瓦斯压力观测时间采用主动测压法时,当煤层的瓦斯压力小于4 MPa时需5~10d;当煤层的瓦斯压力大于4 MPa时,则需20~40d;被动测压法时,则视煤层的瓦斯压力及透气性大小的不同,需30d以上;7.4 瓦斯压力的确定7.4.1 将观测结果绘制在以时间d为横坐标,瓦斯压力MPa 为纵坐标的坐标图上,当测压时间达到7.3的规定,如压力变化小于0.005MPa/d,测压工作即可结束;否则,应延长测压时间;7.4.2 对于上向测压钻孔,在结束测压工作、撤卸表头时撤表头时应制定相应的安全措施,应测量从钻孔中放出的水量,根据钻孔参数、封孔参数计算出钻孔水的静水压力,并从测定压力中扣除;对水平及下向测压孔则以测定值作为瓦斯压力值;7.4.3 同一地点以最高瓦斯压力作为测定结果;。
煤层瓦斯压力、含量测定
2020/8/27
3
注浆封孔示意图 1—测压室;2—侧压管; 3—挡板;4—检查管; 5—注浆管;6—粘土; 7—水泥砂浆;8—压力表
2020/8/27
4
测压实例
测压孔表压上升曲线
坪湖矿-600东大巷东副巷,2002年6月28日至7月17 日实测瓦斯压力为4.6MPa。
2020/8/27
5
3.8MPa
2020/8/27
2
煤层瓦斯压力测定
❖ 按煤炭部颁发的行业标准MT/T638-1996《煤矿井 下煤层瓦斯压力的直接测定方法》进行。
✓ 选点、钻孔。 ✓ 装测压管,封孔。 ✓ 装压力表,观测。
井下直接测定煤层瓦斯压力,是一项比较繁重 的工作,测定地点局限性较大(钻孔要避开断层 和裂隙带,岩柱厚度不得小于5m)。
青山煤矿西4110二层测压地点及观测曲线
2020/8/27
6
煤层瓦斯压力分布的一般规律
✓ 煤层瓦斯压力的大小取决于煤生成后煤层瓦斯的 排放条件。与覆盖层厚度、透气性能、地质构造 条件众多因素密切有关。绝大多数煤层的瓦斯压 力小于或等于同水平静水压力(P=0.01H)。
✓ 我国大多数煤层的瓦斯压力随深度增加呈线性增 加,与煤的生成年代、变质程度无关。
2020/8/27
11
煤层瓦斯含量直接测定技术 ——测定步骤
1、采样、煤样瓦斯解吸速度的测定
向煤层施工取芯钻孔,将煤芯(300~400g) 从煤层深部取出,及时放入煤样罐中密封。在采 样过程中,标定取煤芯和煤样在空气中的暴露时 间;
然后测量煤样罐中煤芯的瓦斯解吸速度及解吸量, 并以此来计算瓦斯损失量Q1;
2020/8/27
12
煤层瓦斯含量直接测定技术 ——测定步骤
煤层瓦斯压力分布规律
煤层瓦斯压力分布规律1.煤层瓦斯压力煤层瓦斯压力是指赋存在煤层孔隙中的游离瓦斯游离瓦斯作用于孔隙壁的气体压力。
它是决定煤层瓦斯含量一个主要因素,当煤的孔隙率相同时,游离瓦斯量与瓦斯压力成正比;当煤的吸附瓦斯能力相同时,煤层瓦斯压力越高,煤的吸附瓦斯量越大。
煤层瓦斯压力也是间接法预测煤层瓦斯含量的必备参数。
在瓦斯喷出、煤与瓦斯突出的发生、发展过程中,瓦斯压力也起着重大作用,瓦斯压力是预测突出的主要指标之一。
2.煤层瓦斯压力分布规律研究表明,在同一深度下,不同矿区煤层的瓦斯压力值有很大的差别,但同一矿区中煤层瓦斯压力随深度的增加而增大,这一特点反映了煤层瓦斯由地层深处向地表流动的总规律,也揭示了煤层瓦斯压力分布规律。
煤层瓦斯压力的大小,取决于煤生成后煤层瓦斯的排放条件。
在漫长的地质年代中,煤层瓦斯排放条件是一个极其复杂的问题,它除与覆盖层厚度、透气性能、地质构造条件有关外,还与覆盖层的含水性密切相关。
当覆盖层充满水时,煤层瓦斯压力最大,这时瓦斯压力等于同水平的静水压力;当煤层瓦斯压力大于同水平静水压力时,在漫长的地质年代中,瓦斯将冲破水的阻力向地面逸散;当覆盖层未充满水时,煤层瓦斯压力小于同水平的静水压力,煤层瓦斯以一定压力得以保存。
图1-16是实测的我国部分局、矿煤层瓦斯压力随距地表深度变化图,从中可以看出,绝大多数煤层的瓦斯压力小于或等于同水平静水压力。
图1也反映出有少部分煤层的瓦斯压力实测值大于同水平的静水压力,这种异常现象可能与受采动影响产生的局部集中应力有关,也可能有裂隙与深部高压瓦斯相连通,造成实测的煤层瓦斯压力值偏高。
在煤层赋存条件和地质构造条件变化不大时,同一深度各煤层或同一煤层在同一深度的各个地点,煤层瓦斯压力是相近的。
随着煤层埋藏深度的增加,煤层瓦斯压力成正比例增加。
图1煤层瓦斯压力随距地表深度的变化1—重庆各局;2—北票局;3—湖南各局;4—其它局在地质条件不变的情况下,煤层瓦斯压力随深度变化的规律,通常用下式描述:()00H H m P P —+= (1-7)式中: P ——在深度H 处的瓦斯压力,MPa ;P0——瓦斯风化带H0深度的瓦斯压力,MPa ,一般取0.15~0.2,预测瓦斯压力时可取0.196;H0——瓦斯风化带的深度,m ; H ——煤层距地表的垂直深度,m ;m ——瓦斯压力梯度,MPa/m 。
煤层地层压力和解析压力
煤层地层压力和解析压力在日常的能源开采中,有一个极为重要的概念叫做“煤层地层压力与解析压力”。
它是采油和采煤的一种基础理论,在这一领域中拥有特殊的应用,并且是日常能源开采以及能源独立性状况的重要依据。
因此,本文将就煤层地层压力与解析压力进行论述,对其机理、应用和相关规定进行分析,为做出正确的采油和采煤抉择提供参考依据。
一、煤层地层压力与解析压力的机理煤层地层压力是指在煤层内,由邻近层的泥岩压力和与之相对的水膨胀压力相加而产生的压力。
它是固体层压力的主要来源,可以有效稳定煤层的岩石结构,减少因煤层膨胀和变形而对工程的影响。
解析压力是指在水体的物理变化过程中,由水体的系统变化所产生的压力,它主要来源于煤层内部物质的变化。
物质变化过程中所产生的压力,又分为“总压力”和“相对压力”。
“总压力”是指系统内物体的压力之和,而“相对压力”则是指物体在系统内的相对压力,它可以通过物质变化来解释。
二、煤层地层压力与解析压力的应用煤层地层压力和解析压力在日常的能源开采中都得到广泛的应用。
在采油运营中,煤层地层压力的应用可以帮助确定注采作业的合理位置,从而实现稳定采油,延长油田寿命。
同样,解析压力能够揭示系统内油层状态,从而有效把握采油运营中的细节,在后期采收中发挥重要作用。
此外,在采煤运营中,煤层地层压力和解析压力的合理应用,可以帮助定位煤层的最佳开采位置,并有效保证煤层开采过程的安全性和稳定性。
三、煤层地层压力与解析压力的相关规定针对煤层地层压力与解析压力的应用,相关部门和机构也纳入了一些规定,以保障能源开采活动的安全和顺利。
在煤层地层压力方面,要求采掘厂应因地制宜采取有效措施,确保采掘过程中保持煤层岩石结构稳定,进而保证煤层开采安全。
此外,在解析压力方面,要求各能源开采企业应制定相应的形势分析方案,以把握各项参数的变化,及时发现与解决问题,保障采油和采煤运营的顺利进行。
四、最后煤层地层压力和解析压力是日常能源开采活动中的重要理论依据。
煤矿井下煤层瓦斯压力的直接测定方法
煤矿井下煤层瓦斯压力的直接测定方法1 范围本标准规定了煤矿井下直接测定煤层瓦斯压力的原理、设备材料、仪表以及打钻、封孔、测压等工艺的要求。
本标准适用于煤矿井下直接测定煤层瓦斯压力(简称瓦斯压力测定)。
2 引用标准下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
JJG 52—71 工业用单圈管弹簧式压力表、真空表和真空压力表检定规程国家技术监督局防治煤与瓦斯突出细则1995—05—01 煤炭工业部气瓶安全监察规程1989—12—22 劳动部3 测定原理通过钻孔揭露煤层,安设测定仪表并密封钻孔,利用煤层中瓦斯的自然渗透原理测定在钻孔揭露处达到平衡的瓦斯压力。
4 方法分类4.1 按测压方式分4.1.1 主动测压法钻孔封完孔后,通过钻孔向被测煤层充入补偿气体达到瓦斯压力平衡而测定煤层瓦斯压力的测压方法。
补偿气体可选用高压氮气(N2),高压二氧化碳气体(CO2)或其他惰性气体。
补偿气体的充气压力应略高于预计煤层瓦斯压力。
4.1.2 被动测压法钻孔封完孔后,通过被测煤层瓦斯的自然渗透,达到瓦斯压力平衡而测定其瓦斯压力的测压方法。
4.2 按封孔材料分4.2.1 黄泥、水泥封孔测压法封孔材料为黄泥,水泥或黄泥水泥混合物,封孔方式为手工操作,主要适用于石门揭煤的瓦斯压力测定。
4.2.2 胶囊—密封粘液封孔测压法封孔材料为胶囊、密封粘液,封孔方式为手工操作。
适用于松软岩层或煤巷瓦斯压力测定。
4.2.3 注浆封孔测压法封孔材料为膨胀不收缩水泥浆加粘液,封孔方式为压气注浆器或泥浆泵注浆封孔。
适用于井下各种条件下的瓦斯压力测定,特别适用于近距离煤层群分煤层的瓦斯压力测定。
5 设备材料、仪表及工具5.1 钻孔设备:打钻孔用的钻机可根据实际情况选用,其能力必须应满足测压钻孔长度的要求,钻头直径选用φ650~90mm。
第三节 煤层气储层压力
San Juan盆地Fruitland组和Pictured Cliffs砂岩地下水系统剖面图
埋藏
抬升
三、煤层气储层异常高压的形成机制
北
(a)垂向与侧向压力梯度 南 17.87kPa/m
an K i rtl
d页 岩
Fr
m
低
ui
n t la
t组
高
0
盐度
6k . 13
Pa/
00
SMU
0 70 0
T 13 N Wyoming州 Colorado州 T 11 N
CA 60 6 5 0 0 00 7000 55 00 3
?
700 0
2
N
T 9 N
UU
e n河
盆
地
边
界
e河
G re
? ?
80
Sn
ak
0 0 70 00 65 00 60
00
6000
65 00
75
00
70
80
85
00
00
CA
7 0 50
60
C′
盆
75
N
T 9 N
UU
e n河
00
地
边
界
ake 河
0 60
0
Gre
PU
T 7 N
L it
Ya m p
等 值 线 间距 变 化 (ft)
a河
t le
Sn
AA
厚净煤区 高 阶煤 区 厚 净 煤区 Mesaverde露 头 Rock Springs隆 起 RSU SMU Sierra Madre 隆起 UU Uinta隆 起 PU Park隆起 R98W R96W
煤层气产能影响因素
气量2个参数,需要在选区时重点评价,优选高渗、
高含气量区进行开发。
在含气量和吸附等温线确定的条件下,煤层压
力越接近临界解吸压力(图1中的B点),解吸越容
易,产量越高。
5.渗透率 渗透率Fra bibliotek决定煤层气单井产量的关键因素之
一,渗透率越大,压降漏斗波及范围越大,则有效渗
流区越大,同时渗流越容易,产量也越高。圣湖安和
黑勇士盆地渗透率一般大于1×ioq,am2,特别是圣
7.相对渗透率
在有效解吸区和两相渗流区,流体渗流受相对
渗透率制约,气相相对渗透率高则气产量高,水相相
对渗透率高则水产量高。
8.临界解吸压力
在含气量和吸附等温线确定的条件下,临界解
吸压力与煤层压力越接近,解吸时间越早,有效解吸
区域越大,则产量越高。
上述8个参数为煤层的固有属性,是煤层气开
煤层厚度较大时含气量可以较低,如粉河盆地,煤储
层厚达91 m,含气量仅为2~4 m3/t,也可商业规模
开采口3。
3.吸附常数
吸附常数决定了煤层气解吸的路径,当P。一定
时,砜越大,解吸越困难,产量越低;当V。一定时,
P。越大,则低压区吸附曲线越接近线性,压力下降
早期解吸量大,产量高。
4.煤层压力
湖安盆地渗透率高达(10~50)×10_3I.Lm2,采用洞穴
完井,单井产量达5×104 m2/a以上。3。
6.孔隙度
煤层孔隙度决定水体积大小,孔隙度大,则水体
积大,产水量则大,排水降压周期将较长。煤层孔隙
度一般2%~15%,如吐哈沙尔湖侏罗系煤层属于气
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4一13突出孔洞的形成过程(a)及震动波实测曲线图(b)
了较硬的煤体或地应力与瓦斯压力降低不足以破坏煤体;二是突出孔道被堵塞,其孔壁由突出物支撑建立起新的拱平衡或孔洞瓦斯压力因其被堵塞而升高,地应力与瓦斯压力梯
度不足以剥离与破碎煤体。
但是,这时突出虽然停止了,而突出孔周围的卸压区与突出的煤涌出瓦斯的过程并没有停止,异常的瓦斯涌出还要持续相当长时间。
2)地应力与瓦斯压力在突出过程中的作用
地应力、瓦斯压力和含量在突出过程的各个阶段所起的作用可以是不同的。
在通常
情况下,突出的激发阶段,破碎煤体的主导力是地应力(包括重力应力、地质构造应力、采动引起的集中应力以及煤吸附瓦斯引起的附加应力等),因为地应力的大小,通常比瓦斯
压力高几倍,而在突出的发展阶段,剥离煤体靠地应力与瓦斯压力的联合作用,运送与粉碎煤炭是靠瓦斯内能。
根据对若干典型突出实例的统计数据进行计算,在突出过程中瓦
斯提供的能量比地应力弹性能高3~6倍以上[80]。
压出和倾出时煤体的最初破碎的主导
力也是地应力。
在极少数突出实例中也可以看到瓦斯压力为主导力发动突出的现象,这
时需要很大的瓦斯压力梯度与非常低的煤强度。
突出煤的重要力学特征是强度低和具有
揉皱破碎结构,即所谓“构造煤”。
这种煤处于约束状态时可以储存较高的能量,透气性锐减形成危险的瓦斯压力梯度;而当处于表面状态时,它极易破坏粉碎,放散瓦斯的初速度高、释放能量的功率大,因此当应力状态突然改变或者从约束状态突然变为表面状态时容易激发突出。
地应力在突出过程中的主要作用有三:一是激发突出I二是在发展阶段中与瓦斯压力梯度联合作用对煤体进行剥离、破碎;三是影响煤体内部裂隙系统的闭合程度和生成新的裂隙、控制着瓦斯的流动、卸压瓦斯流和瓦斯解吸过程,当煤体突然破坏时,伴随着卸压过程、新旧裂隙系统连通起来并处于开放状态,顿时显现卸压流动效应,形成可以携带破碎煤的有压头的膨胀瓦斯风暴。
瓦斯在突出过程中的主要作用有三:一是在某些场合,当能形成高瓦斯压力梯度(例
如2 MPa/cm)时,瓦斯可独立激发突出,在自然条件下,由于有地应力配合,可以不需要这样高的瓦斯压力梯度就可以激发突出;二是发展与实现突出的主要因素。
在突出的发
展阶段中,瓦斯压力与地应力配合连续地剥离破碎煤体使突出向深部传播;三是膨胀着的具有压头的瓦斯风暴不断地把破碎的煤运走、加以粉碎,并使新暴露的突出孔壁附近保持着较高的地应力梯度与瓦斯压力梯度,为连续剥离煤体准备好必要条件。
就这个意义上说,突出的发展或终止将取决于破碎煤炭被运出突出孔的程度,及时而流畅的运走突出物会促进突,出的发展,反之突出孔被堵塞时,突出孔壁的瓦斯压力梯度骤降,可以阻止突出的发展,以致使突出停止下来。