人教版八年级数学平行四边形全章教案

合集下载

平行四边形优秀教案6篇

平行四边形优秀教案6篇

平行四边形优秀教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、演讲致辞、条据文书、合同协议、心得体会、自我鉴定、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, written documents, contract agreements, insights, self-evaluation, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!平行四边形优秀教案6篇编写好教案可以帮助我们更好地理清教学思路和目标,提高教学的针对性和有效性,编写教案可以帮助教师更好地组织和安排教学材料和教学资源,以下是本店铺精心为您推荐的平行四边形优秀教案6篇,供大家参考。

八年级数学教案:《平行四边形》

八年级数学教案:《平行四边形》

八年级数学教案:《平行四边形》八年级数学教案:《平行四边形》(精选11篇)作为一位兢兢业业的人民教师,通常需要用到教案来辅助教学,教案是保证教学取得成功、提高教学质量的基本条件。

我们该怎么去写教案呢?以下是小编收集整理的八年级数学教案:《平行四边形》,欢迎阅读,希望大家能够喜欢。

八年级数学教案:《平行四边形》篇1教学目标理解平行四边形的定义,能根据定义探究平行四边形的性质。

教学思考1、通过观察。

实验。

猜想。

验证。

推理。

交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力。

2、能够根据平行四边形的性质进行简单的推理和计算。

解决问题通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识。

情感态度在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验。

重点平行四边形的性质的探究和平行四边形的性质的应用。

难点平行四边形的性质的应用。

教学流程安排活动流程图活动内容和目的活动1欣赏图片,了解生活中的特殊四边形活动2剪三角形纸片,拼凸四边形活动3理解平行四边形的概念活动4探究平行四边形边。

角的性质活动5平行四边形性质的应用活动6评价反思。

布置作业熟悉生活中特殊的四边形,导出课题。

通过用三角形拼四边形的过程,渗透转化思想,激发探索精神。

掌握平行四边形的定义及表示方法。

探究平行四边形的性质。

运用平行四边形的性质。

学生交流,内化知识,课后巩固知识。

教学过程设计问题与情景师生行为设计意图[活动1]下面的图片中,有你熟悉的哪些图形?(出示图片)演示图片,学生欣赏。

教师介绍四边形与我们生活密切联系,学生可再补充列举。

从实例图片中,抽象出的特殊四边形,培养学生的抽象思维。

通过举例,让学生感受到数学与我们的生活紧密联系。

问题与情景师生行为设计意图[活动2]拼一拼将一张纸对折,剪下两张叠放的三角形纸片。

将这两个三角形相等的一组边重合,你会得到怎样的图形。

八年级数学教案:《平行四边形》

八年级数学教案:《平行四边形》

《平行四边形》一、教学目标1.知识与技能目标:掌握平行四边形的定义、性质和判定定理。

2.过程与方法目标:通过观察、操作、推理,发展学生的几何直观和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养合作探究的精神。

二、教学重难点1.教学重点:平行四边形的定义、性质和判定定理。

2.教学难点:平行四边形判定定理的应用。

三、教学过程1.导入新课师:同学们,我们之前学习了三角形,那么你们知道什么是平行四边形吗?今天我们就来学习平行四边形的相关知识。

2.新课讲解(1)平行四边形的定义师:请同学们观察教材上的平行四边形,它们有什么共同特征?生:四条边两两平行。

师:很好,那么我们可以得出平行四边形的定义:在平面内,四条边两两平行的四边形叫做平行四边形。

(2)平行四边形的性质师:我们来探究平行四边形的性质。

请同学们用尺规作图,尝试作出一个平行四边形。

生(操作后回答):平行四边形的对边平行且相等,对角线互相平分。

师:非常好,这就是平行四边形的性质。

请同学们在教材上找到相应的性质,并用自己的话解释一下。

生(回答):平行四边形的对边平行且相等,对角线互相平分。

(3)平行四边形的判定定理师:我们已经知道了平行四边形的性质,那么如何判断一个四边形是平行四边形呢?这就是我们要学习的判定定理。

定理1:如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。

定理2:如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。

定理3:如果一个四边形的对角线互相平分,那么这个四边形是平行四边形。

师:请同学们在教材上找到这三个判定定理,并用自己的话解释一下。

生(回答):定理1、定理2、定理3。

3.应用拓展师:现在我们已经掌握了平行四边形的定义、性质和判定定理,那么我们来解决一些实际问题吧。

(1)判断下列四边形哪些是平行四边形:①对边平行且相等的四边形;②对角线互相平分的四边形;③一组对边平行且相等的四边形。

生(回答):①②③都是平行四边形。

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。

新人教版八年级全等平行四边形教案

新人教版八年级全等平行四边形教案

新人教版八年级全等平行四边形教案
教学目标
1. 了解全等平行四边形的定义和性质;
2. 掌握判定全等平行四边形的基本方法;
3. 理解全等平行四边形的应用。

教学重难点
1. 全等平行四边形的判定;
2. 全等平行四边形的应用。

教学过程
1. 引入新课
介绍全等平行四边形,引导学生了解其定义和性质。

通过图片和实例,让学生感受到全等平行四边形的魅力和特点。

2. 归纳总结
让学生回顾和总结前面所学过的定理和方法,了解什么情况下可以判定两个平行四边形全等。

3. 练巩固
提供大量的练题让学生巩固所学知识。

分别涉及与全等平行四边形相关的证明题和应用题。

通过不同类型的题目给学生增加解决实际问题的能力。

4. 作业布置
布置相应的作业,巩固和加深学生的研究内容。

同时,鼓励学生在生活中寻找全等平行四边形的例子。

教学反思
1. 进行典型性实例分析,帮助学生更好地理解整个知识体系;
2. 鼓励学生自主思考和创新,让研究更加有意义;
3. 补充部分细节性内容,丰富课程内容,让学生获益更多。

这是一份简单的新人教版八年级全等平行四边形教案,如有需要可以适当调整来提高学生的学习效果。

第六章 平行四边形全章教案

第六章  平行四边形全章教案

第六章平行四边形1. 平行四边形的性质(一)教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.探索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。

教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学方法:探索归纳法三、教学过程设计本节课分5个环节:第一环节:实践探索,直观感知第二环节:探索归纳,交流合作第三环节:推理论证,感悟升华第四环节:应用巩固,深化提高第五环节:评价反思,概括总结第一环节:实践探索,直观感知1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。

将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

目的:通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;平行四边形的相邻的两个顶点连成的一段叫做它的对角线。

教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示“”。

2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。

效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。

第二环节探索归纳、合作交流小组活动三:内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?⑵你还发现平行四边形的那些性质呢?活动目的:这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。

通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。

二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。

但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。

在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。

三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。

2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:平行四边形的性质及其应用。

2.难点:对角线的性质和判定平行四边形的方法。

五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。

六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。

2.课件:平行四边形的性质及其应用。

七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。

2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。

设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。

3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。

学生互相检查,教师巡回指导。

设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。

4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。

设计意图:巩固所学知识,提高学生的判断能力。

八年级数学下册《平行四边形》全章说课稿

八年级数学下册《平行四边形》全章说课稿

八年级数学下册《平行四边形》全章说课稿说课内容:新人教版八年级数学下册第十八章平行四边形一、本章的教学目标依据课标,结合教材,将本章目标确定如下:1.理解概念和关系;探索证明性质和判定定理,并能运用;了解平形线之间的距离的意义,能度量;探索并证明中位线定理。

2.通过经历平行四边形与各概念之间的联系与区别,使学生进一步认识一般与特殊的关系;通过经历性质和判定的探索证明及相关计算的过程,以及相关问题的证明和计算的过程,进一步培养和发展学生的合情推理演绎推理能力。

3.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想。

4.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲。

二、本章的重难点重点:平行四边形的概念、性质和判定。

难点:分清平行四边形与矩形、菱形、正方形之间的联系和区别。

内容标准则是在课程目标的引领下制定的,共分为:1.理解概念与关系;了解四边形的不稳定性。

2.探索证明平行四边形、矩形等的性质和判定定理。

3.了解平形线之间的距离,并能度量。

4.探索证明三角形的中位线定理。

三、教材的编写特点1、注重让学生经历知识的探索与发现过程。

本章中注意突出图形的性质和判定定理的探索与发现。

例如,这种观察、度量、猜想、证明的探究问题多处出现。

2、注重体现转化、数形结合等重要的数学思想与方法,突出逻辑思维。

像这里的花坛问题的解决就体现了转化思想,化新知为旧知,而且书写也注重体现逻辑思维。

3、注重加强知识间联系与衔接三角形中位线的证明是利用平行四边形的性质定理得到,这都体现了知识之间的紧密联系。

平行四边形又往往依靠三角形来解决问题。

4、注重呈现内容的素材贴近学生现实学生的学习是建立在自己已有知识基础上的,本章像菱形、矩形等生活实例随处可见,有助于学生更好的解决问题。

5、教材内容设计有一定弹性为了满足不同层次学生的需要,教材设计了实验与探究的内容供学有余力的学生进行学习。

四、本章的地位和作用八年级数学下册总共五章:第十六章二次根式的学习,增强了学生的运算能力,为勾股定理、平行四边形等内容的学习做好运算准备。

人教版数学八年级上册第十八章《平行四边形》教案

人教版数学八年级上册第十八章《平行四边形》教案
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器测量实际图形的边长和角度,验证平行四边形的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
(3)平行四边形面积的计算:掌握平行四边形面积的计算公式,能够准确计算各种平行四边形的面积。
-例如:平行四边形面积等于底乘以高,特殊平行四边形如矩形、菱形、正方形等有特定的面积计算方法。
2.教学难点
(1)平行四边形性质的深入理解:学生需要理解并掌握平行四边形性质的推导过程,以及如何运用这些性质解决复杂问题。
4.通过对平行四边形的学习,培养学生的几何直观和抽象思维能力,提高数学审美素养;
5.在解决平行四边形相关问题的过程中,培养学生合作交流、自主探究的学习习惯,提升学生的综合素质。
三、教学难点与重点
1.教学重点
(1)平行四边形性质的理解与应用:熟练掌握矩形、菱形、正方形、梯形的性质,并能运用这些性质解决实际问题。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,比如平行四边形在建筑设计中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
-难点举例:如何利用矩形性质解决实际生活中的问题,如房间面积的计算。
(2)平行四边形判定方法的选择与应用:在面对不同图形时,学生需要能够选择合适的判定方法,快速准确地判断图形类型。

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

第十八章平行四边形1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4.探索并证明中位线定理.1.通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系.2.通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力.1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象.本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础.本章内容主要包括:平行四边形、特殊的平行四边形.其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定.【重点】理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.【难点】分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.2.进一步培养学生的合情推理能力和演绎推理能力.从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展.18.1 平行四边形18.1.1平行四边形的性质(2课时)5课时18.1.2平行四边形的判定(3课时)18.2 特殊的平行四边形18.2.1矩形(2课时)5课时18.2.2菱形(2课时)18.2.3正方形(1课时)单元概括整合1课时18.1平行四边形1.理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质.2.理解并掌握平行四边形的判定条件,能利用平行四边形的判定条件证明四边形是平行四边形.3.掌握三角形的中位线的概念和定理.1.在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学的意识,通过对平行四边形判定方法的探究,提高学生解决问题的能力.2.通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题,渗透转化与化归意识.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用.【难点】平行四边形的判定与性质定理的综合运用.18.1.1平行四边形的性质1.理解平行四边形的概念.2.探究并掌握平行四边形的边、角、对角线的性质.3.利用平行四边形的性质来解决简单的实际问题.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的概念和性质的探索.【难点】平行四边形性质的运用.第课时1.理解平行四边形的定义及有关概念.2.探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.3.了解平行线间距离的概念.1.经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.2.在进行性质探索的活动过程中,发展学生的探究能力.3.在性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和逻辑思维能力.在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形边、角的性质探索和证明.【难点】如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法.【教师准备】教学中出示的教学插图和例题的投影图片.【学生准备】方格纸,量角器,刻度尺.导入一:[过渡语]前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法,本节开始,我们继续研究生活中的常见图形.我们一起来观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏,它们是什么几何图形的形象?学生观察,积极踊跃发言,教师从实物中抽象出平行四边形.本节课我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.[设计意图]通过图片展示,让学生真切感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.导入二:(出示本章农田鸟瞰图)观察章前图,你能从图中找出我们熟悉的几何图形吗?学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等,明确本章主要研究对象——平行四边形.[过渡语]下面我们来认识特殊的四边形——平行四边形.[设计意图]以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务.1.平行四边形的定义思路一提问:你知道什么样的图形叫做平行四边形吗?教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四边形叫做平行四边形.说明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的依据.追问:平行四边形如何好记好读呢?画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记.平行四边形用“▱”表示,平行四边形ABCD,记作“▱ABCD”.如右图所示,引导学生找出图中的对边,对角.对边:AD与BC,AB与DC;对角:∠A与∠C,∠B与∠D.进一步引导学生总结:四边形中不相邻的边,也就是没有公共顶点的边叫做对边;没有公共边的角,叫做对角.[设计意图]给出定义,强调定义的作用,让学生结合图形认识“对角”“对边”,为学习性质做好准备.思路二请举出你身边存在的平行四边形的例子.学生举出生活中常见的例子.如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏……教师点评,画出图形,如右图所示.提问:(1)你能说出平行四边形的定义吗?(2)你能表示平行四边形吗?(3)你能用符号语言来描述平行四边形的定义吗?学生阅读教材第41页,点名学生回答以上问题,教师进一步讲解:(1)两组对边分别平行的四边形叫做平行四边形.概念中有两个条件:①是一个四边形;②两组对边分别平行.(2)指出表示平行四边形错误的情况,如▱ACDB.(3)作为性质:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.作为判定:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.[设计意图]学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:两组对边分别平行.2.平行四边形边、角的性质思路一[过渡语]同学们回忆我们的学习经历,研究几何图形的一般思路是什么?一起回顾全等三角形的学习过程,得出研究的一般过程:先给出定义,再研究性质和判定.教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究.提问:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想.猜想1:四边形ABCD是平行四边形,那么AB=CD,AD=BC.猜想2:四边形ABCD是平行四边形,那么∠A=∠C,∠B=∠D.追问:你能证明这些结论吗?学生讨论,发现不添加辅助线可以证明猜想2.∵AB∥CD,∴∠A+∠D=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠D.同理可得∠A=∠C.在学生遇到困难时,教师引导学生构造全等三角形进行证明.[过渡语]我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法.学生尝试,连接平行四边形的对角线,并证明猜想,如右图所示.证明:连接AC.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.引导学生归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.追问:通过证明,发现上述两个猜想正确.这样得到平行四边形的两个重要性质.你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).[设计意图]让学生领悟证明线段相等或角相等通常采用证明三角形全等的方法,而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点.进而总结、提炼出将四边形问题化为三角形问题的基本思路.[知识拓展](1)运用平行四边形的这两条性质可以直接证明线段相等和角相等.(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决.(教材例1)如图所示,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证AE=CF.引导学生分析:要证明线段AE=CF,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明△ADE≌△CBF.由题意容易得到∠AED=∠CFB=90°,再根据平行四边形的性质可以得出∠A=∠C,AD=CB.在此基础上,引导学生写出证明过程,并组织学生进行点评.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF.∴AE=CF.[设计意图]应用性质进行推理,体会得到证明思路的方法.思路二1.提问:根据定义画一个平行四边形ABCD,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪些关系?度量一下,是不是和你的猜想一致?AB=BC=CD=AD=猜想:∠A=∠B=∠C=∠D=猜想:小组合作完成,交流自己的猜想.教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生归纳:平行四边形的对边相等;平行四边形的对角相等.2.你能证明你发现的上述结论吗?已知:如图(1)所示,四边形ABCD中,AB∥CD,AD∥BC.求证:(1)AD=BC,AB=CD;(2)∠B=∠D,∠BAD=∠DCB.小组讨论,发现:需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题来解决.证明:(1)连接AC,如图(2)所示.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.(2)∵△ABC≌△CDA(已证),∴∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.一组代表发言后,另一小组补充,我们发现不作辅助线也可以证明平行四边形的对角相等.∵AB∥CD,∴∠BAD+∠D=180°,∵AD∥BC,∴∠BAD+∠B=180°,∴∠B=∠D.同理可得∠BAD=∠DCB.教师根据学生的证明情况进行评价、总结.证明线段相等或角相等时,通常证明三角形全等,图中没有三角形怎么办?一般是连接对角线将四边形的问题转化为三角形的问题.引导学生将文字语言转化为符号语言表述,并进行笔记.∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).(补充)如图,在▱ABCD中,AC是平行四边形ABCD的对角线.(1)请你说出图中的相等的角、相等的线段;(2)对角线AC需添加一个什么条件,能使平行四边形ABCD的四条边相等?学生认真读题、思考、分析、讨论,得出有关结论.因为平行四边形的对边相等,对角相等.所以AB=CD,AD=BC,∠DAB=∠BCD,∠B=∠D,又因为平行四边形的两组对边分别平行,所以∠DAC=∠BCA,∠DCA=∠BAC.教师根据学生回答,板书有关正确的结论.解决第(2)个问题时,学生思考、交流、讨论得出:只要添加AC平分∠DAB即可.说明理由:因为平行四边形的两组对边分别平行,所以∠DCA=∠BAC,而∠DAC=∠BAC,所以∠DCA=∠DAC,所以AD=DC,又因为平行四边形的对边相等,所以AB=DC=AD=BC.[设计意图]学生通过亲自动手,提出猜想,验证猜想,得出结论,并初步应用.3.平行线间的距离[过渡语]距离是几何中的重要度量之一.前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?思路一提问:在教材的例1中,DE=BF吗?学生思考,都容易发现:由△ADE≌△CBF,容易得到DE=BF.追问:如图所示,直线a∥b,A,D为直线a上任意两点,点A到直线b的距离AB和点D到直线b的距离DC 相等吗?为什么?学生讨论,发现容易证明AB∥CD,由已知得AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD.教师引导归纳:如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.学生结合图指出:a∥b,点A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.教师点评,并强调:任意两条平行线之间的距离都是存在的、唯一的,都是夹在两条平行线之间的最短的线段的长度.[设计意图]结合例1的进一步追问,自然引出平行线间距离的概念.思路二请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线.老师边看边指导学生画图.追问:请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度,你发现了什么现象?学生发现:平行线间的所有垂线段的长度相等.教师引导归纳:如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.如右图所示,用符号语言表述为:∵l1∥l2,AB⊥l2,CD⊥l2,∴AB=CD.教师进一步强调:两平行线l1,l2之间的距离是指什么?指在一条直线l1上任取一点A,过A作AB⊥l2于点B,线段AB的长度叫做两平行线l1,l2间的距离.引导学生归纳:两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系.两平行线间的距离⇒点到直线的距离⇒点与点之间的距离.l1,l2间的距离转化为点A到l2间的距离,再转化为点A到点B的距离.追问:如果AB,CD是夹在两平行线l1,l2之间的两条平行线段,那么AB和CD仍相等吗?教师引导学生思考:(出示教材第43页图18.1-5)如图所示,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.说明:两条平行线之间的任何两条平行线段都相等.[设计意图]借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合.[知识拓展](1)当两条平行线确定后,两条平行线之间的距离是一定值,不随垂线段位置的变化而改变.(2)平行线之间的距离处处相等,因此在作平行四边形的高时,可以灵活选择位置.4.例题讲解(补充)在▱ABCD中,BC边上的高为4,AB=5,AC=2,试求▱ABCD的周长.引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导,明确思路后学生写解答过程.〔解析〕本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形.设BC边上的高为AE,分AE在▱ABCD的内部和AE在▱ABCD的外部两种情况计算.解:在▱ABCD中,AB=CD=5,AD=BC.设BC边上的高为AE.(1)若AE在▱ABCD的内部,如图①所示,在Rt△ABE中,AB=5,AE=4,根据勾股定理,得:BE====3;在Rt△ACE中,AC=2,AE=4,根据勾股定理,得:CE== ==2.∴BC=BE+CE=3+2=5.∴▱ABCD的周长为2×(5+5)=20.(2)若AE在▱ABCD的外部,如图②所示,同理可得BE=3,CE=2,∴BC=BE-CE=3-2=1,∴▱ABCD的周长为2×(5+1)=12.综上,▱ABCD的周长为20或12.[解题策略]本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度,因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论,如下图所示.本节课我们主要学习了平行四边形的定义,探索了平行四边形的两个特征,同时还学习了平行线间的距离,平行线的一些特征.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线间的距离相等,两条平行线之间的任何两条平行线段都相等.1.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°解析:∵∠A+∠C=200°,∠A=∠C,∴∠A=100°,又AD∥BC,∴∠A+∠B=180°,∴∠B=180°-∠A=80°.故选C.2.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中共有平行四边形的个数为()A.6B.7C.8D.9解析:图中的平行四边形有:平行四边形AEOG、平行四边形BHOE、平行四边形CHOF、平行四边形OFDG、平行四边形ABHG、平行四边形CHGD、平行四边形AEFD、平行四边形BEFC、平行四边形ABCD.故选D.3.如图所示,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2解析:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3.故选B.4.如图所示,在▱ABCD中,△ABC和△DBC的面积的大小关系是.解析:∵两平行线AD,BC间的距离相等,∴△ABC与△DBC是同底等高的两个三角形,∴它们的面积相等.故填相等.5.如图所示,已知在平行四边形ABCD中,∠C=60°,DE⊥AB于E,DF⊥BC于F.(1)求∠EDF的度数;(2)若AE=4,CF=7,求平行四边形ABCD的周长.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C=60°,∴∠C+∠B=180°.∵∠C=60°,∴∠B=180°-∠C=120°.∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∴∠EDF=360°-∠DEB-∠DFB-∠B=60°.(2)在Rt△ADE和Rt△CDF中,∠A=∠C=60°,∴∠ADE=∠CDF=30°,∴AD=2AE=8,CD=2CF=14,∴平行四边形ABCD 的周长为2×(8+14)=44.第1课时1.平行四边形的定义2.平行四边形边、角的性质例1例23.平行线间的距离4.例题讲解例3一、教材作业【必做题】教材第43页练习第1,2题;教材第49页习题18.1第1,2题.【选做题】教材第50页习题18.1第8题.二、课后作业【基础巩固】1.如图所示,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F等于()A.110°B.30°C.50°D.70°2.如图所示,l 1 ∥l 2,BE ∥CF ,BA ⊥l 1 于点A ,DC ⊥l 2于点C ,有下面的四个结论;(1)AB =DC ;(2)BE =CF ;(3)S △ABE =S △DCF ;(4)S 四边形ABCD =S 四边形BCFE .其中正确的有 ( ) A.4个 B.3个 C.2个 D.1个3.如图所示,点E 是▱ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF =3,DE =2,则▱ABCD 的周长为 ( )A.5B.7C.10D.144.如图所示,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的长为 ( ) A.2 B.4 C.4 D.85.如图所示,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【能力提升】6.如图所示,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,C 的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为 .7.如图所示,在▱ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则▱ABCD 的周长是 .。

数学人教版八年级下册平行四边形教案

数学人教版八年级下册平行四边形教案

4.1 平行四边形的性质(1)教学目标教学知识点1、掌握平行四边形有关概念和性质。

2、探索并掌握平行四边形的对边相等,对角相等的性质。

能力训练要求1、动手操作实践的过程中,探索发现平行四边形的性质。

2、知道解决平行四边形问题的基本思想是化为三角形问题来解决,渗透转化思想。

3、通过探索平行四边形的性质,培养学生简单的推理能力和逻辑思维能力。

情感与价值观要求1、探索平行四边形性质的过程中,感受几何图形中呈现的数学美。

2、在进行探索的活动过程中发展学生的探究意识和合作交流的习惯。

教学重点探索平行四边形的性质。

教学难点平行四边形性质的理解。

教学方法:探索归纳法教学过程:一、观赏生活中的图片,引入课题下面的图片中,有你熟悉的哪些图形?(设计这个活动,一方面可让学生认识到平行四边形在生活、生产中的应用,另一方面让学生在复杂的图形中认识平行四边形。

)二、开启智慧1、操作活动:让学生进行如下操作后,思考以下问题:将一张纸对折,剪下两张叠放的三角形纸片,设法找到某一边的中点,记作点O,将上层的三角形纸片绕点O旋转180度,下层的三角形纸片保持不动,得到一个图形。

(用几何画板平台展示整个过程)2、观察、讨论:(1)两张纸片拼成了怎样的图形?它是四边形吗?(2)这个图形中有哪些相等的角?有没有互相平行的线段?你是怎样得到的?(3)用简洁的语言刻画这个图形的特征,并与同伴交流。

3、平行四边形的定义4、介绍平行四边形的书写方式及对角线的定义。

5、请学生举出自己身边存在的平行四边形的例子。

6、学生动手画一个平行四边形,并表示出来。

三、知识源于悟:1、做一做(让学生实际动手操作)用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180度,你能平移该纸片,使它与你画的平行四边形ABCD重合吗?2、讨论:(小组交流)(1)通过以上活动,你能得到哪些结论?(2)平行四边形ABCD对边、对角分别有什么关系?能用别的方法验证你的结论吗?3、结论:平行四边形的对边相等;平行四边形的对角相等四、能力的源泉:1、如果已知平行四边形一个内角的度数,能确定其它三个内角的度数吗?说说你的理由。

(完整版)新课标人教版八年级数学十八章平行四边形教案(最新整理)

(完整版)新课标人教版八年级数学十八章平行四边形教案(最新整理)
1、知道平行四边形、两条平行线间的距离的概念;会说出并熟记平行四边 形对角相等,对边相等的性质。
2、会度量两条平行线间的距离;会利用平行四边形对边相等,对角相等的 性质进行有关的论证和计算。
3、在由点到直线的距离来定义两条平行线间的距离的过程中,让学生感受 知识之间的联系和发展,培养灵活应用所学知识解决问题的能力
角:对角相等(定理 1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理 2);对角线互相平分
(定理 3);一组对边平行且相等(定理 4);两组对角分别相等(定理 1)
二、授新
1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:
2、自学质疑:自学课本 P79-82 页,并提出疑难问题。
量一量:在图 4.3-4 中,AB∥CD,量出 AB 与 CD 之间的距离。 建议:要求学生先画出表示 AN、CD 间距离的线段,再量出它的长度。
例题解析 例:(即课本例 1)说明:(1)因为图中的平行线段多,因此可引导学生用“化
繁为简”的方法,从图 4.3-5(l)中分解出图(2)、(3)、(4)。(2)在 例中的第 2 小题,还可以用平行四边形性质定理 2 的推论来证明,证明如下:
(A)1∶5
(B)1∶4
(C)1∶3
(D)1∶2
平行四边形的性质及判定(复习) 教学目的:
1、深入了解平行四边形的不稳定性; 2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)
3、熟练掌握平行四边形的定义,平行四边形性质定理 1、定理 2 及其推论、
定理 3 和四个平行四边形判定定理,并运用它们进行有关的论证和计算;
(A)2
(B)3
(C)4

八年级 平行四边形 教案

八年级 平行四边形 教案

八年级平行四边形教案教案标题:八年级平行四边形教案教案目标:1. 通过学习平行四边形的概念和性质,学生能够准确地辨认和绘制平行四边形。

2. 帮助学生理解平行四边形的特点和性质,包括对角线互相平分、内角和为180度等。

3. 培养学生观察和分析问题的能力,以及解决平行四边形相关问题的能力。

教学准备:1. 平行四边形的教学资料、绘图工具和活动用纸。

2. 平行四边形的实物模型,如图形积木或磁性平行四边形。

3. 集体讨论和小组合作学习的活动指导。

教学流程:1. 导入(5分钟):- 引入平行四边形的概念,通过展示实物模型或图像,让学生观察并思考它们的共同特点。

- 引导学生思考平行四边形的定义,并提出问题:如何判断一个四边形是平行四边形?2. 知识探究(20分钟):- 小组活动:将学生分成小组,每个小组使用活动用纸绘制不同类型的平行四边形,并讨论如何判断它们是否为平行四边形。

- 学生展示:请几个小组展示他们绘制的平行四边形,并解释他们的判断依据。

- 教师总结归纳:根据学生的展示和解释,归纳平行四边形的定义和判断方法。

3. 性质探究(15分钟):- 引导学生观察平行四边形的对角线,提问:对角线有什么特点?如何证明对角线互相平分?- 指导学生进行活动:学生在小组内尝试证明对角线互相平分,可以利用平行线的性质和定理进行推理。

- 合班讨论:请几个小组展示他们的证明过程和结果,并与全班进行讨论。

4. 应用拓展(15分钟):- 练习题演练:教师提供一些平行四边形的练习题,学生个别或小组完成并讨论答案。

- 拓展应用:教师提供实际生活中平行四边形的例子,如建筑物或道路等,学生思考并讨论它们的特点和应用。

5. 总结与反思(5分钟):- 教师对本节课的重点知识进行总结,并检查学生的学习情况。

- 学生反思:学生通过填写反思表格或课堂讨论的形式,回答本节课的问答题和自我评估。

6. 课后作业:- 布置练习题作业,巩固学生对平行四边形知识的掌握。

人教版数学八年级下册18.1平行四边形说课稿

人教版数学八年级下册18.1平行四边形说课稿
(二)学习障碍
在学习本节课之前,学生已经掌握了四边形的基本概念、一元一次方程、不等式等前置知识。然而,他们在学习平行四边形时可能遇到以下障碍:1.对平行四边形性质的理解不够深入,容易混淆;2.对平行四边形判定方法的掌握不够熟练,难以运用到实际问题中;3.空间想象能力和逻辑推理能力有限,导致解题困难。
1.知识与技能目标:掌握平行四边形的定义、性质及判定方法,能够运用这些知识解决实际问题。
2.过程与方法目标:通过自主探究、合作交流的方式,培养学生的空间想象能力、逻辑推理能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对几何学习的兴趣,培养学生的团队合作意识和勇于探索的精神。
(三)教学重难点
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.课堂练习:设计具有代表性的题目,让学生独立完成,及时巩固所学知识。
2.小组讨论:组织学生进行小组讨论,共同解决练习中的难题,培养学生的合作能力和解决问题的能力。
3.实践活动:让学生在课后观察生活中的平行四边形,并尝试运用所学知识解释其性质和判定方法。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设生活情境,让学生认识到平行四边形在实际生活中的广泛应用,从而激发他们的学习兴趣;
2.设计有趣的问题和例题,引导学生积极参与课堂讨论,培养他们的主动思考能力;
3.组织小组合作学习,让学生在互相交流、探讨中共同进步,提高合作能力;
此外,培养学生的空间想象能力和逻辑推理能力也是本节课的教学难点。在教学过程中,教师应注重引导学生观察、思考、总结,从而提高学生的几何素养。总之,本节课的教学难点在于让学生在掌握知识的同时,培养其几何思维能力。
二、学情分析导

八年级数学上册《平行四边形》教案

八年级数学上册《平行四边形》教案

平行四边形【典型例题】(一)平行四边形:1. 平行四边形的性质:边:对边相等对边平行角:对角相等邻角互补对角线:对角线互相平分⎧⎨⎩⎧⎨⎩⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪平行四边形是中心对称图形,对角线的交点是对称中心。

2. 平行四边形的识别:(1)两组对边分别平行的四边形是平行四边形。

(2)一组对边平行且相等的四边形是平行四边形。

(3)对角线互相平分的四边形是平行四边形。

(4)两组对边分别相等的四边形是平行四边形。

(5)两组对角分别相等的四边形是平行四边形。

3. 相关链接:(1)两条平行线之间的距离:两条平行线中,一条直线上的任一点到另一条直线上的距离,叫做这两条平行直线间的距离。

性质:两条平行线间的距离处处相等。

(2)平行四边形的面积:①如图1所示:S 平行四边形ABCD =BC ·AF=CD ·AEADBCEF图1注意:这里底是相对于高而言,也就是说平行四边形任一边均可作底。

②同底(等底)同高(等高)的平行四边形面积相等。

4. 平行四边形知识的应用:(1)直接运用其特征去解决问题,求角的度数,线段长度,证明角相等,互补等,证明线段长度相等成倍分。

(2)先识别一个四边形是平行四边形,然后用其性质解决问题。

例1. 如图2,四边形ABCD 是平行四边形,且∠EAD=∠BAF ,(1)试说明△CEF 是等腰三角形,(2)△CEF 的哪两边之和恰好等于平行四边形ABCD 的周长,请说明为什么?AB CDE F图2解:(1)在平行四边形ABCD 中,AD ∥BC ,AB ∥CD 。

所以∠EAD=∠F ,∠BAF=∠E ,又已知∠EAD=∠BAF ,所以∠E=∠F 。

所以△CEF 是等腰三角形。

(2)△CEF 中,(CE+CF )与平行四边形ABCD 的周长相等。

由(1)得∠EAD=∠BAF=∠E=∠F ,所以DE=AD ,FB=AB , 所以CE+CF=CD+AD+CB+AB即有 CE+CF 与平行四边形ABCD 的周长相等。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。

2. 教学重点:勾股定理的表述和证明;勾股定理的应用。

3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。

二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。

2. 教学重点:平行四边形的定义和性质;平行四边形的判定。

3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。

三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。

2. 教学重点:三角形的定义和性质;三角形的判定。

3. 教学难点:三角形的性质证明;三角形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。

四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。

2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。

3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。

五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。

平行四边形教案(精选14篇)

平行四边形教案(精选14篇)

平行四边形教案(精选14篇)八年级数学教案:《平行四边形》篇一一、教学目标:1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。

2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。

3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。

教学重点:在制作中发现平行四边形的基本特征。

教学难点:引导学生发现平行四边形的特征。

二、教学过程:(一)创设情境,设疑激趣1.师:同学们每天都要经过校门进入校园,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?生:能师:是什么平面图形,谁能上来指一指。

生:平行四边形根据回答:教师板书:平行四边形(二)引导探究,自主建构师:同学们再看,这里面有没有平行四边形?(出示扩缩尺、升降机图片)生:谁能上来指一指?师:那同学们想一下什么样的图形是平行四边形呢?请看大屏幕(大屏幕出示平行四边形定义:两组对边分别平行的四边形叫做平行四边形)师:谁能找一下这句话里最重要的几个词,并解释一下?生:四边形师:什么样的图形是四边形?生:由四条边围成的图形师:还有哪几个词?生:两组对边分别平行师:你能上来一边用手指着一边给大家解释一下这句话吗?生:能师:除了两组对边分别平行,两组对边的长度有什么关系呢?拿出刚刚发给你的平行四边形,量一量四条边的长度,你发现了什么?生:两组对边相等师:平行四边形的两组对边平行且相等,那么平行四边形的对角有什么特点呢?继续拿出发给你的平行四边形,把两组对角像老师这样折一折,你发现了什么?生:两组对角相等师:刚才同学们说的都非常好,现在带着你的理解在研究单的方格纸上画一个平行四边形生画图,师巡视指导。

研究单在下面的方格纸上画一个平行四边形师:(选几个学生画的平行四边形粘到黑板上)孩子们,画好了吗?生:画好了师:画好了,请看黑板,思考老师这样一个问题:为什么同学们画的平行四边形都不一样大呢?随意生怎么说,只要表达出底和高的意思就行师:介绍平行四边形的底和高注:这个平行四边形的高学生画注:老师画第二种情况师:请同学们继续拿出研究单,完成研究二。

人教版八年级数学平行四边形全章教案新部编本

人教版八年级数学平行四边形全章教案新部编本

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校18.1.1 平行四边形及其性质(一)学习目标:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(10分钟)1.由__ _条线段首尾顺次连接组成的多边形叫四边形;四边形有 _条边,_ __个角,四边形的内角和等于_____度;2.如图AB与BC叫_ __边, AB与CD叫__ _边;∠A与∠B叫_ __角,∠D与∠B叫_ __角;1.多边形中不相邻顶点的连线叫对角线,如图四边形ABCD中对角线有__ _条,它们是______自学课本P83~P84,1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD记作__________。

2.如图□ABCD中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。

你能归纳ABCD的边、角各有什么关系吗?并证明你的结论。

二、合作解疑(25分钟)如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?个平行四边形的一个外角是38°,这个平行四边形的各个内角的度数分别是:(3) ABCD有一个内角等于40°,则另外三个内角分别为:(4)平行四边形的周长为50cm,两邻边之比为2:3,则两邻边分别为: 1. ABCD中,∠A︰∠B︰∠C︰∠D的值可以是()A.1︰2︰3︰4B.3︰4︰4︰3C.3︰3︰4︰4D.3︰4︰3︰42. ABCD 的周长为40cm,△ABC的周长为27cm,AC的长为()A.13cmB.3 cmC.7 cmD.11.5cm综合应用拓展1. 如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.三、限时检测(10分钟)1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.1.1 平行四边形及其性质(一)学习目标:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(10分钟)1.由__ _条线段首尾顺次连接组成的多边形叫四边形;四边形有 _条边,_ __个角,四边形的内角和等于_____度;2.如图AB与BC叫_ __边, AB与CD叫__ _边;∠A与∠B叫_ __角,∠D与∠B叫_ __角;1.多边形中不相邻顶点的连线叫对角线,如图四边形ABCD中对角线有__ _条,它们是___ ___自学课本P83~P84,1.有两组对边__________________的四边形叫平形四边形,平行四边形用“______”表示,平行四边形ABCD 记作__________。

2.如图□ABCD中,对边有______组,分别是___________________,对角有_____组,分别是_________________,对角线有______条,它们是___________________。

你能归纳ABCD的边、角各有什么关系吗?并证明你的结论。

二、合作解疑(25分钟)如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?个平行四边形的一个外角是38°,这个平行四边形的各个内角的度数分别是:(3) ABCD有一个内角等于40°,则另外三个内角分别为:(4)平行四边形的周长为50cm,两邻边之比为2:3,则两邻边分别为: 1. ABCD中,∠A︰∠B ︰∠C︰∠D的值可以是()A.1︰2︰3︰4B.3︰4︰4︰3C.3︰3︰4︰4D.3︰4︰3︰42. ABCD 的周长为40cm,△ABC的周长为27cm,AC的长为()A.13cmB.3 cmC.7 cmD.11.5cm综合应用拓展1. 如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.三、限时检测(10分钟)1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD记作__________。

2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.18.1.1平行四边形的性质.2学习目标:理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题学习重点:平行四边形对角线互相平分的性质,以及性质的应用.学习难点:综合运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(10分钟)想一想:1.平行四边形是一个特殊的图形,它的边、角各有什么性质?2.平行四边形除了边、角的性质外?还有没有其他的性质?探一探按课本85页的“探究”方法进行操作,并画出这两个平行四边形的对角线.实验后思考: (1)从这个实验中你是否发现平行四边形的边、角之间的关系?这与前面的结论一致吗?(2)线段OA 与OC ,OB 与OD 有什么关系(如下图)?由此你能发现平行四边形的对角线有什么性质?二、合作解疑(25分钟)1.在□ABCD 中,AC 、BD 交于点O ,已知AB =8cm ,BC =6cm ,△AOB 的周长是18cm ,那么△AOD 的周长是_____________.2. □ABCD 的对角线交于点O ,S △AOB =2cm 2,则S □ABCD =__________.3. □ABCD 的周长为60cm ,对角线交于点O ,△BOC 的周长比△AOB 的周长小8cm ,则AB =______cm ,BC =_______cm .4. □ABCD 中,对角线AC 和BD 交于点O ,若AC =8,AB =6,BD =m ,那么m 的取值范围是____________.5. □ABCD 中,E 、F 在AC 上,四边形DEBF 是平行四边形.求证:AE=CF .FE D CBA6.如图,田村有一口四边形的池塘,在它的四角A 、B 、C 、D 处均有一棵大桃树.田村准备开挖养鱼,想使池塘的面积扩大一倍,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,画出图形,说明理由.DCBA三、限时检测(10分钟)1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABC D 中,对角线A C 和B D 交于O ,若AC =8,BD =6,则边A B 长的取值范围是 ______.3.平行四边形周长是40cm ,则每条对角线长不能超过______cm .4.如图,在□ABCD 中,AE 、AF 分别垂直于BC 、CD ,垂足为E 、F ,若∠EAF =30°,AB =6,AD =10,则CD =______;AB 与CD 的距离为______;AD 与BC 的距离为______;∠D =______.5.□ABCD 的周长为60cm ,其对角线交于O 点,若△AOB 的周长比△BOC 的周长多10cm ,则AB =______,BC =______.6.在□ABCD 中,AC 与BD 交于O ,若OA =3x ,AC =4x +12,则OC 的长为______.7.在□ABCD 中,CA ⊥AB ,∠BAD =120°,若BC =10cm ,则AC =______,AB =______.8.在□ABCD 中,AE ⊥BC 于E ,若AB =10cm ,BC =15cm ,BE =6cm ,则□ABCD 的面积为______. 二、选择题9.有下列说法:①平行四边形具有四边形的所有性质; ②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形; ④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形. 其中正确说法的序号是( ). (A)①②④ (B)①③④ (C)①②③ (D)①②③④ 10.平行四边形一边长12cm ,那么它的两条对角线的长度可能是( ).(A)8cm 和16cm (B)10cm 和16cm (C)8cm 和14cm (D)8cm 和12cm 11.以不共线的三点A 、B 、C 为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD 中,点A 1、A 2、A 3、A 4和C 1、C 2、C 3、C 4分别是AB 和CD 的五等分点,点B 1、B 2、和D 1、D 2分别是BC 和DA 的三等分点,已知四边形A 4B 2C 4D 2的面积为1,则□ABCD 的面积为( )(A)2 (B)53 (C)35(D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n (D)6n (n +118.1.2平行四边形的判定1学习目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.学习重点:平行四边形的判定方法及应用.学习难点:平行四边形的判定定理与性质定理的灵活应用.学习过程:一、自主预习(10分钟)【活动一】提出问题:1.平行四边形的定义是什么?它有什么作用?2.平行四边形具有哪些性质?3.平行四边形的对边相等、对角相等、对角线互相平分,那么反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?【活动二】★探究:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

平行四边形判定方法2 对角线互相平分的四边形是平行四边形。

二、合作解疑(25分钟)证一证平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

证明:(画出图形)平行四边形判定方法2 对角线互相平分的四边形是平行四边形。

证明:(画出图形)例1(教材P87例3)已知:如图 ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(你还有其它的证明方法吗?比较一下,哪种证明方法简单.)综合应用拓展已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF三、限时检测(10分钟)1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.2.已知:如图, ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.3.如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:①第4个图形中平行四边形的个数为___ __.②第8个图形中平行四边形的个数为___ __.18.1.2平行四边形的判定2学习目标:1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的四种判定方法和性质来证明问题.学习重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.学习难点:平行四边形的判定定理与性质定理的综合应用.学习过程:一、自主预习(10分钟)平行四边形的判定方法有那些?取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?1.一组对边平行且相等的四边形是平行四边形.证明:一组对边平行且相等的四边形是平行四边形.已知:如图,在中,AB=CD AB∥CD,求证: .证明:2.几何语言表述:∵AB=CD,AB∥CD ∴四边形ABCD是平行四边形.二、合作解疑(25分钟)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.综合应用拓展如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.三、限时检测(10分钟)1.如图,△ABC是等边三角形,P是其内任意一点,PD∥AB,PE∥BC,DE∥AC,若△ABC周长为8,则PD+PE+PF= 。

相关文档
最新文档