机械工程材料习题集答案解析王章忠主编第二版
材料科学基础答案 王章忠
简答题第一章材料结构的基本知识1、说明结构转变的热力学条件与动力学条件的意义。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
2、说明稳态结构与亚稳态结构之间的关系。
答:稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
3、说明离子键、共价键、分子键和金属键的特点。
答:离子键、共价键、分子键和金属键都是指固体中原子(离子或分子)间结合方式或作用力。
离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原于相互作用时,产生电子得失而形成的离子固体的结合方式。
共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。
分子键是由分子(或原子)中电荷的极化现象所产生的弱引力结合的结合方式。
当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属键。
第二章材料的晶体结构1、在一个立方晶胞中确定6个表面面心位置的坐标。
6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数、各个棱边和对角线的晶向指数。
解八面体中的晶面和晶向指数如图所示。
图中A、B、C、D、E、F为立方晶胞中6个表面的面心,由它们构成的正八面体其表面和棱边两两互相平行。
ABF面平行CDE面,其晶面指数为;ABE面平行CDF面,其晶面指数为;ADF面平行BCE面,其晶面指数为;ADE面平行BCF面,其晶面指数为(111)。
棱边,,,,,,其晶向指数分别为[110],,[011],,[101]。
工程材料与机械制造基础第二版课后练习题含答案
工程材料与机械制造基础第二版课后练习题含答案第一章金属材料选择题1.金属的基本结构单位是()。
A. 原子 B. 分子 C. 离子 D. 高分子2.金属的导电性好,是因为()。
A. 金属原子共用周围电子形成了一个电子云 B. 金属原子之间的原子序数很大 C. 金属原子之间的距离很远D. 金属原子的原子半径很大3.现代材料科学的研究表明,金属的显微结构主要包括()两种结构。
A. 晶体和非晶体B. 多晶和单晶C. 非晶体和薄层结构D. 单晶和二晶轴4.在常温下铁、钨属于()。
A. 非晶态材料 B. 晶态材料 C. 二相材料 D. 单晶体材料5.劈铅试验所测试的是材料()。
A. 塑性 B. 韧性 C. 硬度 D. 强度简答题1.什么是金属材料?金属材料具有哪些特点?2.金属的结晶状态有哪些?请简述它们的特点。
3.介绍一下金属断裂的过程。
4.解释一下热处理和强化的含义。
答案选择题:1. A 2. A 3. B 4. B 5. D简答题:1.金属材料是一类以金属元素为主要组成成分的工程材料,具有一系列特点,如:密度大,强度高,塑性良好,导电导热性好等。
同时,也具有一些不足之处,如:易受腐蚀,疲劳寿命相对较短等。
2.金属的结晶状态主要有三种,分别为单晶、多晶以及非晶态。
单晶指的是具有完整晶格结构的材料,其具有优异的物理性能,但制造成本较高。
而多晶则指晶粒较小、有多个晶粒构成的材料。
这类材料具有低成本、高韧性等特点。
非晶态指材料的内部没有固定的原子排列方式,呈无序状态。
这类材料具有高强度、低应力腐蚀等特点。
3.金属断裂的过程主要包括两个阶段,分别为起始裂纹形成阶段和扩展裂纹阶段。
在起始裂纹形成阶段,由于外力作用,材料内部会出现微小的损伤,如缺陷、气孔等,这些损伤会在外力作用下产生应力集中。
当应力集中超过材料强度极限时,就会出现一条裂纹。
在扩展裂纹阶段,裂纹会不断扩大,细微损伤逐渐聚集,最终导致材料破裂。
机械工程材料习题答案 王章忠主编 第二版
例1:某工厂生产精密丝杠,尺寸为φ40×800mm,要求热处理后变形小,尺寸稳定,表面硬度为60~64HRC,用CrWMn钢制造;其工序如下:热轧钢棒下料→球化退火→粗加工→淬火、低温回火→精加工→时效→精磨。
试分析:1. 用CrWMn钢的原因。
2. 分析工艺安排能否达到要求,如何改进?丝杠是机床重要的零件之一,应用于进给机构和调节移动机构,它的精度高低直接影响机床的加工精度、定位精度和测量精度,因此要求它具有高精度和高的稳定性、高的耐磨性。
在加工处理过程中,每一工序都不能产生大的应力和大的应变;为保证使用过程中的尺寸稳定,需尽可能消除工件的应力,尽可能减少残余奥氏体量。
丝杠受力不大,但转速很高,表面要求有高的硬度和耐磨性,洛氏硬度为60~64 HRC。
根据精密丝杠的上述要求,选用CrWMn钢较为合适。
其原因如下:(1)CrWMn钢是高碳合金工具钢,淬火处理后能获得高的硬度和耐磨性,可满足硬度和耐磨性的要求。
(2)CrWMn钢由于加入合金元素的作用,具有良好的热处理工艺性能,淬透性好,热处理变形小,有利于保证丝杠的精度。
目前,9Mn2V和CrWMn用得较多,但前者淬透性差些,适用于直径较小的精密丝杠。
对原工艺安排分析:原工艺路线中,由于在球化退火前没有安排正火;机加工后没有安排去应力退火;淬火、低温回火后没有安排冰冷处理等项原因,使得精密丝杠在加工过程中会产生很大的应力和变形,很难满足精密丝杠的技术要求。
所以原工艺路线应改为:下料→正火→球化退火→粗加工→去应力退火→淬火、低温回火→冷处理→低温回火→精加工→时效→半精磨→时效→精磨。
例2:有一载重汽车的变速箱齿轮,使用中受到一定的冲击,负载较重,齿表面要求耐磨,硬度为58~62HRC齿心部硬度为30~45HRC,其余力学性能要求为σ>1000MPa,σ≥600MPa,A>48J。
试从所K OFb给材料中选择制造该齿轮的合适钢种。
35、45 、20CrMnTi 、38CrMoAl 、T12分析:从所列材料中可以看出35、45 、T12钢不能满足要求。
机械工程材料课后习题答案_(王忠)
思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
机械工程材料习题集答案
第1章材料的性能一、选择题1.表示金属材料屈服强度的符号是( B)A.σ B.σs C.σb D.σ-12.表示金属材料弹性极限的符号是( A)A.σe B.σs C.σb D.σ-13.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是( B)A.HB B.HRC C.HV D.HS4.金属材料在载荷作用下抵抗变形和破坏的能力叫(A ) A.强度 B.硬度 C.塑性 D.弹性二、填空1.金属材料的机械性能是指在载荷作用下其抵抗(变形)或(破坏)的能力。
2.金属塑性的指标主要有(伸长率)和(断面收缩率)两种。
3.低碳钢拉伸试验的过程可以分为弹性变形、(塑性变形)和(断裂)三个阶段。
4.常用测定硬度的方法有(布氏硬度测试法)、(洛氏硬度测试法)和维氏硬度测试法。
5.疲劳强度是表示材料经(无数次应力循环)作用而(不发生断裂时)的最大应力值。
三、是非题1.用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。
是2.用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW表示。
是3.金属材料的机械性能可以理解为金属材料的失效抗力。
四、改正题1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。
将冲击载荷改成交变载荷2. 渗碳件经淬火处理后用HB硬度计测量表层硬度。
将HB改成HR3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。
将疲劳强度改成冲击韧性4. 衡量材料的塑性的指标主要有伸长率和冲击韧性。
将冲击韧性改成断面收缩率5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。
将载荷改成冲击载荷五、简答题1.说明下列机械性能指标符合所表示的意思:σs、σ0.2、HRC、σ-1、σb、δ5、HBS。
σs: 屈服强度σ0.2:条件屈服强度HRC:洛氏硬度(压头为金刚石圆锥)σ-1: 疲劳极限σb: 抗拉强度σ5:l0=5d0时的伸长率(l0=5.65s01/2)HBS:布氏硬度(压头为钢球)第2章材料的结构一、选择题1. 每个体心立方晶胞中包含有(B)个原子 A.1 B.2 C.3 D.42. 每个面心立方晶胞中包含有(C)个原子 A.1 B.2 C.3 D.43. 属于面心立方晶格的金属有(C) A.α-Fe,铜B.α-Fe,钒 C.γ-Fe,铜D.γ-Fe,钒4. 属于体心立方晶格的金属有(B) A.α-Fe,铝B.α-Fe,铬 C.γ-Fe,铝D.γ-Fe,铬5. 在晶体缺陷中,属于点缺陷的有(A) A. 间隙原子 B.位错 C.晶界 D.缩孔6. 在立方晶系中,指数相同的晶面和晶向(B)A.相互平行B.相互垂直C.相互重叠D.毫无关联7. 在面心立方晶格中,原子密度最大的晶面是(C)A.(100)B.(110)C.(111)D.(122)二、是非题1. 金属或合金中,凡成分相同、结构相同,并与其他部分有界面分开的均匀组成部分称为相。
机械工程材料课后答案
工程材料习题<习题一>1、抗拉强度:是材料在破断前所能承受的最大应力。
屈服强度:是材料开始产生明显塑性变形时的最低应力。
塑性:是指材料在载荷作用下,产生永久变形而不破坏的能力。
韧性:材料变形时吸收变形力的能力。
硬度:硬度是衡量材料软硬程度的指标,材料表面抵抗更硬物体压入的能力。
刚度:材料抵抗弹性变形的能力。
疲劳强度:经无限次循环而不发生疲劳破坏的最大应力。
冲击韧性:材料在冲击载荷作用下抵抗破坏的能力。
断裂韧性:材料抵抗裂纹扩展的能力。
2 、材料的弹性模量与塑性无关。
3 、四种不同材料的应力应变曲线,试比较抗拉强度,屈服强度,刚度和塑性。
由大到小的顺序,抗拉强度: 2 、 1 、 3 、 4 。
屈服强度: 1 、 3 、 2 、 4 。
刚度:1 、3 、2 、4 。
塑性:3 、2 、4 、 1 。
4、常用的硬度测试方法有几种?这些方法测出的硬度值能否进行比较?布氏、洛氏、维氏和显微硬度。
由于各种硬度测试方法的原理不同,所以测出的硬度值不能直接进行比较。
5、以下工件应该采用何种硬度试验法测定其硬度?(1)锉刀:洛氏或维氏硬度(2)黄铜轴套:布氏硬度(3)供应状态的各种碳钢钢材:布氏硬度(4)硬质合金刀片:洛氏或维氏硬度(5)耐磨工件的表面硬化层:显微硬度6、反映材料承受冲击载荷的性能指标是什么?不同条件下测得的这些指标能否进行比较?怎样应用这些性能指标?冲击功或冲击韧性。
由于冲击功或冲击韧性代表了在指定温度下,材料在缺口和冲击载荷共同作用下脆化的趋势及其程度,所以不同条件下测得的这种指标不能进行比较。
冲击韧性是一个对成分、组织、结构极敏感的参数,在冲击试验中很容易揭示出材料中的某些物理现象,如晶粒粗化、冷脆、热脆和回火脆性等,故目前常用冲击试验来检验冶炼、热处理以及各种加工工艺的质量。
此外,不同温度下的冲击试验可以测定材料的冷脆转变温度。
同时,冲击韧性对某些零件(如装甲板等)抵抗少数几次大能量冲击的设计有一定的参考意义。
机械工程材料课后习题答案 (2)
1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度,硬度升高的现象叫做固溶强化原因:晶格畸变过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?答:①冷却速度越大,则过冷度也越大。
②随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。
机械工程材料课后习题答案
1 .可否通过增加零件的尺寸来提高其弹性模量:不能,弹性模量主要取决与材料的本性,除随温度上升而渐渐降低外,其他强化手段如热处理,冷加工,合金化等对弹性模量的影响很小。
2 .工程上的延长率与选取的样品长度有关,为什么:延长率=(LI-L2)/10,当式样dθ不变时,LO增加,则延长率下降,只有当LO/dO 为常熟市,延长率才有可比性。
3 .如何用材料的应力-应变曲线推断材料的韧性:所谓的材料韧性是指材料从变形到断裂整个过程所汲取的能量,即拉伸曲线与横坐标所包围的面积。
4 .从原子结构上说明晶体与非晶体的区分:院子在三维空间呈现规章排列的固体成为晶体,而原子在空间里无序排列的固体成为非晶体。
晶体长程有序,非晶体短程无序。
5 .立方晶系重指数相同的晶面与晶向有什么关系:相互垂直。
6 .合金肯定单相的吗,固溶体肯定是单相的吗:合金不肯定是单相的,也可以由多相组成,固溶体肯定是单相的。
7 .固态非晶合金的晶化过程是否属于同素异构转变,为什么:不属于,同素异构是物质在固态下的晶格类型随温度变化而发生变化。
8 .依据匀晶转变相图分析产生枝晶偏析的缘由:由匀晶转变相图可以知道,固溶体合金的结晶只有在充分缓慢冷却的条件下才可能得到成分匀称的固溶体组织。
然而在实际生产中,由于冷速较快,合金在结晶过程中固相和液相中的原子来不及集中,使得线结晶出的枝晶轴含有较多的高熔点元素,而后结晶的枝晶间含较多的低熔点元素,在一个枝晶范围内或一个晶粒范围内成分消失不匀称的现象,成为枝晶偏析。
9 .结合相图分析含0.45%、1.2%和3.0%的Fe-C合金在缓慢冷却过程中的转变及温室下的组织:0.45%C:L—L+δ-L+δ+γ-L+γ—γ+c-P+γ+α,室温组织:P+α1.2%C:L—L+γ-y一y+二次渗碳体一F+γ+二次渗碳体一二次渗碳体,室温组织:P+二次渗碳体3.0%C:L—L+γ-L+γ+Le―y+Le+二次渗碳体一P+y+二次渗碳体+一次渗碳体一Le'+二次渗碳体+P,室温组织:Le'+二次渗碳体+P10 .为什么室温下金属的晶粒越细,强度、硬度越高,韧性、塑性也越好:由于金属的晶粒越细,晶界总面积额越大,位错障碍越多,需协调的具有不同未向的晶粒越多,金属塑性变形的抗力越高,从而导致金属的强度和硬度越高;合金的晶粒越细,单位体积内晶粒数目越多,同时参与变形的晶粒数目越多,变形越匀称,推迟了裂纹的形成与扩展,使得在断裂前发生了较大的塑性变形,在强度和硬度同时参与的状况下,所以合金晶粒越细,其清醒和韧性也越好。
(机械制造行业)机械工程材料习题答案_王章忠主编_第二版
例1:某工厂生产精密丝杠,尺寸为φ40×800mm,要求热处理后变形小,尺寸稳定,表面硬度为60~64HRC,用CrWMn钢制造;其工序如下:热轧钢棒下料→球化退火→粗加工→淬火、低温回火→精加工→时效→精磨。
试分析:1. 用CrWMn钢的原因。
2. 分析工艺安排能否达到要求,如何改进?丝杠是机床重要的零件之一,应用于进给机构和调节移动机构,它的精度高低直接影响机床的加工精度、定位精度和测量精度,因此要求它具有高精度和高的稳定性、高的耐磨性。
在加工处理过程中,每一工序都不能产生大的应力和大的应变;为保证使用过程中的尺寸稳定,需尽可能消除工件的应力,尽可能减少残余奥氏体量。
丝杠受力不大,但转速很高,表面要求有高的硬度和耐磨性,洛氏硬度为60~64 HRC。
根据精密丝杠的上述要求,选用CrWMn钢较为合适。
其原因如下:(1)CrWMn钢是高碳合金工具钢,淬火处理后能获得高的硬度和耐磨性,可满足硬度和耐磨性的要求。
(2)CrWMn钢由于加入合金元素的作用,具有良好的热处理工艺性能,淬透性好,热处理变形小,有利于保证丝杠的精度。
目前,9Mn2V和CrWMn用得较多,但前者淬透性差些,适用于直径较小的精密丝杠。
对原工艺安排分析:原工艺路线中,由于在球化退火前没有安排正火;机加工后没有安排去应力退火;淬火、低温回火后没有安排冰冷处理等项原因,使得精密丝杠在加工过程中会产生很大的应力和变形,很难满足精密丝杠的技术要求。
所以原工艺路线应改为:下料→正火→球化退火→粗加工→去应力退火→淬火、低温回火→冷处理→低温回火→精加工→时效→半精磨→时效→精磨。
例2:有一载重汽车的变速箱齿轮,使用中受到一定的冲击,负载较重,齿表面要求耐磨,硬度为58~62HRC齿心部硬度为30~45HRC,其余力学性能要求为σb>1000MPa,σOF≥600MPa,A K >48J。
试从所给材料中选择制造该齿轮的合适钢种。
35、45 、20CrMnTi 、38CrMoAl 、T12其工艺流程如下:下料→锻造→正火→机加工→渗碳→淬火→低温回火→喷丸→磨齿。
(完整版)机械工程材料习题集答案
第1章材料的性能一、选择题1.表示金属材料屈服强度的符号是( B)A.σ B.σs C.σb D.σ-12.表示金属材料弹性极限的符号是( A)A.σe B.σs C.σb D.σ-13.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是( B)A.HB B.HRC C.HV D.HS4.金属材料在载荷作用下抵抗变形和破坏的能力叫(A ) A.强度 B.硬度 C.塑性 D.弹性二、填空1.金属材料的机械性能是指在载荷作用下其抵抗(变形)或(破坏)的能力。
2.金属塑性的指标主要有(伸长率)和(断面收缩率)两种。
3.低碳钢拉伸试验的过程可以分为弹性变形、(塑性变形)和(断裂)三个阶段。
4.常用测定硬度的方法有(布氏硬度测试法)、(洛氏硬度测试法)和维氏硬度测试法。
5.疲劳强度是表示材料经(无数次应力循环)作用而(不发生断裂时)的最大应力值。
三、是非题1.用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。
是2.用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW表示。
是3.金属材料的机械性能可以理解为金属材料的失效抗力。
四、改正题1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。
将冲击载荷改成交变载荷2. 渗碳件经淬火处理后用HB硬度计测量表层硬度。
将HB改成HR3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。
将疲劳强度改成冲击韧性4. 衡量材料的塑性的指标主要有伸长率和冲击韧性。
将冲击韧性改成断面收缩率5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。
将载荷改成冲击载荷五、简答题1.说明下列机械性能指标符合所表示的意思:σs、σ0.2、HRC、σ-1、σb、δ5、HBS。
σs: 屈服强度σ0.2:条件屈服强度HRC:洛氏硬度(压头为金刚石圆锥)σ-1: 疲劳极限σb: 抗拉强度σ5:l0=5d0时的伸长率(l0=5.65s01/2)HBS:布氏硬度(压头为钢球)第2章材料的结构一、选择题1. 每个体心立方晶胞中包含有(B)个原子 A.1 B.2 C.3 D.42. 每个面心立方晶胞中包含有(C)个原子 A.1 B.2 C.3 D.43. 属于面心立方晶格的金属有(C) A.α-Fe,铜B.α-Fe,钒 C.γ-Fe,铜D.γ-Fe,钒4. 属于体心立方晶格的金属有(B) A.α-Fe,铝B.α-Fe,铬 C.γ-Fe,铝D.γ-Fe,铬5. 在晶体缺陷中,属于点缺陷的有(A) A. 间隙原子 B.位错 C.晶界 D.缩孔6. 在立方晶系中,指数相同的晶面和晶向(B)A.相互平行B.相互垂直C.相互重叠D.毫无关联7. 在面心立方晶格中,原子密度最大的晶面是(C)A.(100)B.(110)C.(111)D.(122)二、是非题1. 金属或合金中,凡成分相同、结构相同,并与其他部分有界面分开的均匀组成部分称为相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:某工厂生产精密丝杠,尺寸为φ40×800mm,要求热处理后变形小,尺寸稳定,表面硬度为60~64HRC,用CrWMn钢制造;其工序如下:热轧钢棒下料→球化退火→粗加工→淬火、低温回火→精加工→时效→精磨。
试分析:1. 用CrWMn钢的原因。
2. 分析工艺安排能否达到要求,如何改进?丝杠是机床重要的零件之一,应用于进给机构和调节移动机构,它的精度高低直接影响机床的加工精度、定位精度和测量精度,因此要求它具有高精度和高的稳定性、高的耐磨性。
在加工处理过程中,每一工序都不能产生大的应力和大的应变;为保证使用过程中的尺寸稳定,需尽可能消除工件的应力,尽可能减少残余奥氏体量。
丝杠受力不大,但转速很高,表面要求有高的硬度和耐磨性,洛氏硬度为60~64 HRC。
根据精密丝杠的上述要求,选用CrWMn钢较为合适。
其原因如下:(1)CrWMn钢是高碳合金工具钢,淬火处理后能获得高的硬度和耐磨性,可满足硬度和耐磨性的要求。
(2)CrWMn钢由于加入合金元素的作用,具有良好的热处理工艺性能,淬透性好,热处理变形小,有利于保证丝杠的精度。
目前,9Mn2V和CrWMn用得较多,但前者淬透性差些,适用于直径较小的精密丝杠。
对原工艺安排分析:原工艺路线中,由于在球化退火前没有安排正火;机加工后没有安排去应力退火;淬火、低温回火后没有安排冰冷处理等项原因,使得精密丝杠在加工过程中会产生很大的应力和变形,很难满足精密丝杠的技术要求。
所以原工艺路线应改为:下料→正火→球化退火→粗加工→去应力退火→淬火、低温回火→冷处理→低温回火→精加工→时效→半精磨→时效→精磨。
例2:有一载重汽车的变速箱齿轮,使用中受到一定的冲击,负载较重,齿表面要求耐磨,硬度为58~62HRC齿心部硬度为30~45HRC,其余力学性能要求为σb>1000MPa,σOF≥600MPa,A K >48J。
试从所给材料中选择制造该齿轮的合适钢种。
35、45 、20CrMnTi 、38CrMoAl 、T12分析:从所列材料中可以看出35、45 、T12钢不能满足要求。
对剩余两个钢种的比较可见表1。
比较,20CrMnTi能全面满足齿轮的性能要求。
其工艺流程如下:下料→锻造→正火→机加工→渗碳→淬火→低温回火→喷丸→磨齿。
例3:机械式计数器内部有一组计数齿轮,最高转速为350r/min,该齿轮用下列哪些材料制造合适,并简述理由。
40Cr、20CrMnTi、尼龙66。
工作条件分析:计数器齿轮工作时,运转速度较低、承受的扭矩很小,齿轮间存在摩擦,因此要求摩擦系数小,耐磨性好。
由于该结构特点要求选材时重量要轻,工作噪音要小,在无润滑条件下长时间工作,制造工艺简单,价格便宜,很明显,40Cr,20CrMnTi等合金钢由于价格太贵、太重、加工复杂而不合适。
而尼龙66工程塑料较为合适。
其原因:(1)有足够的抗弯强度(≥70~90MPa)和冲击吸收功(10~45J)。
(2)耐磨、减磨、消音、耐应力开裂。
(3)-40~100℃可长期使用。
(4)有较好的弹性,吸震,防冲击,噪声小。
(5)重量轻。
(6)耐蚀性好。
(7)可用注射法一次成型,制造工艺简单,生产率高,成本低。
第一章作业1-3 现有一碳钢制支架刚性不足,采用以下三种方法中的哪种方法可有效解决此问题?为什么?①改用合金钢;②进行热处理改性强化;③改变该支架的截面与结构形状尺寸。
答:选③,改变该支架的截面与结构形状尺寸。
因为金属材料的刚度决定于基体金属的性质,当基体金属确定时,难于通过合金化、热处理、冷热加工等方法使之改变。
1-4 对自行车座位弹簧进行设计和选材,应涉及到材料的哪些主要性能指标?答:强度、弹性、疲劳极限。
1-9 传统的强度设计采用许用应力[σ]= σ0.2/n,为什么不能一定保证零件的安全性?有人说:“安全系数n越大,零件工作时便越安全可靠。
”,你怎样认识这句话?答:传统的强度设计采用[σ]= σ0.2/n ,都是假设材料是均匀无缺陷的,而实际上材料中存在着既存或后生的微小宏观裂纹,因此在实际的强度设计中还应考虑材料抵抗脆性断裂的力学性能指标—断裂韧度(KI),只考虑许用应力[σ]= σ0.2/n是不能保证零件的安全性的。
“n越大,零件越安全”也是不对的,因为[σ]= σ0.2/n,n增大就会使[σ]降低而牺牲材料的强度,将塑性和韧性取大一些,导致[σ]偏低而零件的尺寸与重量增加,浪费了原材料。
1-11 一般认为铝、铜合金的耐蚀性优于普通钢铁材料,试分析在潮湿性环境下铝与铜的接触面上发生腐蚀现象的原因。
答:潮湿环境下铝与铜的接触面上会发生电化学腐蚀,因为这时铝与铜的接触面因电极电位不同存在着电极电位差而发生电化学腐蚀。
第二章作业2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构?答:常见晶体结构有3种:⑴体心立方:-Fe、Cr、V⑵面心立方:-Fe、Al、Cu、Ni⑶密排六方:Mg、Zn2-2 已知-Fe的晶格常数(a=3.6 )要大于-Fe的晶格常数(a=2.89 ),但为什么-Fe冷却到912℃转变为-Fe时体积反而增大?答:-Fe冷却到912℃转变为-Fe时体积增大,是因为转变之后面心立方的-Fe转变为体心立方的-Fe时致密度变小。
-Fe -Fe晶胞原子数4 晶胞原子数2转变之后-Fe的体积为3.633(47.83)<2个-Fe 的体积2×2.893(48.27)。
2-3 1g Fe在室温和1000℃时各含有多少个晶胞?答:Fe在室温下为体心立方,晶胞原子数为2,这时1gFe的晶胞数=(1/56×6.02×1023)/2=5.38×1021个在1000℃时为面心立方,晶胞原子数为4,这时1gFe的晶胞数=(1/56×6.02×1023)/4=2.69×1021个2-4已知铜的原子直径为2.56 ,求其晶格常数,并计算1mm3铜中的原子数。
答: a = a= ×= ×=3.62原子数=4×晶胞数=4×=8.4×1019个2-6 总结说明实际金属晶体材料的内部结构特点。
答:实际金属晶体材料内部存在晶体缺陷:⑴点缺陷:空位、间隙原子、置换原子⑵线缺陷:位错⑶面缺陷:晶界、亚晶界第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。
答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小3-3 Si、C、N、Cr、Mn、B等元素在-Fe中各形成哪些固溶体?答:Si、Cr、Mn形成置换固溶体,C、N、B形成间隙固溶体。
3-4间隙固溶体与间隙化合物在晶体结构与性能上有何区别?举例说明。
答:间隙固溶体的晶体结构与组成合金的一个金属组元的结构相同,它是溶质原子进入金属溶剂晶格的间隙时形成的固溶体,如:F和A,形成间隙固溶体可以提高金属的强度和硬度,起到固溶强化的作用。
间隙化合物的晶体结构与组元的结构不同,间隙化合物是由H、B、C、N等原子半径较小的非金属元素(以X表示)与过渡族金属元素(以M表示)结合,且半径比rX/rM>0.59时形成的晶体结构很复杂的化合物,如Fe3C,间隙化合物硬而脆,塑性差。
3-7 为什么铸造合金常选用接近共晶成分的合金?为什么要进行压力加工的合金常选用单相固溶体成分的合金?答:共晶成分的合金熔点低,凝固温度区间最小,流动性好,适于铸造。
单相固溶体成分的合金强度均匀,塑性好,便于压力加工。
3-8 为什么钢锭希望减少柱状晶区,而铜锭、铝锭往往希望扩大柱状晶区?答:在柱状晶区,柱状晶粒彼此间的界面比较平直,气泡缩孔很小,组织比较致密。
但当沿不同方向生长的两组柱状晶相遇时,会形成柱晶间界。
柱晶间界是杂质、气泡、缩孔较密集地区,是铸锭的脆弱结合面,故钢锭应减少柱状晶区,以避免在热轧时开裂。
对塑性好的铜锭、铝锭不会因热轧而开裂,故往往希望扩大柱状晶区。
4-3 冷塑性变形与热塑性变形后的金属能否根据其显微组织加以区别?答:可以通过显微组织来判断是冷塑性变形还是热塑性变形,冷塑性变形后的晶粒形状呈扁平形或长条形,热塑性变形后的晶粒是等轴晶粒。
4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。
答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。
原因是:(1)强度高:Hall-Petch公式。
晶界越多,越难滑移。
(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。
(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。
4-5 金属铸件能否通过再结晶退火来细化晶粒?为什么?答:再结晶退火必须用于经冷塑性变形加工的材料,其目的是改善冷变形后材料的组织和性能。
再结晶退火的温度较低,一般都在临界点以下。
若对铸件采用再结晶退火,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。
4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn的最低再结晶温度分别为:TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W在1000℃时为冷加工,Sn在室温下为热加工思考题比较冲击韧度、断裂韧度的异同点和它们用来衡量材料韧性的合理性。
答:相同点:冲击韧度和断裂韧度都反映了材料在塑性变形和断裂的全过程中吸收能量的能力。
不同点:冲击韧度一般只用来评定中低强度钢的韧性,仅反映材料在一次大能量冲击加载条件下的抵抗变形与断裂的能力,只适用于均匀的无缺陷材料。
而断裂韧度是评定材料抵抗脆性断裂的力学性能指标,表征了材料抵抗裂纹失稳扩展的能力。
第五章作业5-4 根据Fe-Fe3C相图计算,室温下,分别为0.2%和1.2%的钢中组织组成物的相对量。
(1) =0.2%P%·0.77%=0.2%P%=26% ,F%=74%(2) =1.2%P%·0.77%+(1-P%)·6.69%=1.2%P%=92.7% ,Fe3CⅡ%=7.3%5-5 某仓库中积压了许多退火状态的碳钢,由于钢材混杂不知其化学成分,现找出一根,经金相分析后发现组织为珠光体和铁素体,其中珠光体占75%。