六年级奥数培训第4讲 乘法原理和加法原理

合集下载

加法原理和乘法原理

加法原理和乘法原理

加法原理和乘法原理
1.加法原理:
加法原理也称为分情形原理,是指对一个由相互独立的事件构成的事件总和,其计数等于这些事件各自计数的总和。

简单来说,当我们需要从A和B两个集合中选择元素,或者进行两个动作时,可以使用加法原理来计数。

加法原理的表达式可以表示为:,
A∪B,=,A,+,B,-,A∩B。

一个例子是,有5个红球和3个蓝球,我们要从中选3个球。

这里红球和蓝球是分别独立的集合,使用加法原理可以直接将选红球的方式数目与选蓝球的方式数目相加,即C(5,3)+C(3,3)=10+1=11
2.乘法原理:
乘法原理也称为连乘法则,是指对一个多步操作的计数问题,其计数等于每个步骤计数的乘积。

乘法原理可以用于计数多个独立事件同时发生的可能性。

乘法原理的表达式可以表示为:,A×B,=,A,×,B。

一个例子是,有4个人,每个人有3种选择,问有多少种不同的选择方式。

我们可以将这个问题分解成4个独立的选择过程,并将每个选择过程的可能性相乘:3^4=81
乘法原理还可以推广到更多步骤的操作。

比如,在一个密码中,每位密码有10个可能的选项,密码有4位。

使用乘法原理,我们可以计算出总共有10^4=10,000种不同的密码可能性。

总结起来,加法原理和乘法原理是计数问题中非常重要的基本原理。

它们可以帮助我们计算各种可能性的总数,从而解决各种实际问题。

在实际应用中,我们通常需要灵活地使用这两个原理,结合具体问题进行推理和计算。

六年级下册数学试题-迎春杯培训第4讲杂题教师版全国通用含答案

六年级下册数学试题-迎春杯培训第4讲杂题教师版全国通用含答案

第四讲杂题这一讲主要涉及逻辑推理、排列组合、最值问题、容斥原理、抽屉原理等几部分知识。

由于这些知识的题型较为灵活,因此在迎春杯中,每次都要占到2至3题。

希望同学们把这部分知识中基本题型掌握全面,并在竞赛中取得好的成绩。

知识概要:加法原理和乘法原理:在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。

做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。

抽屉原理:如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。

如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。

如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。

这些简单内的例子就是数学中的“抽屉原理”。

基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。

(2)如果把m×x×k(x>k ≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。

b、把元素放入(或取出)抽屉。

C、说明理由,得出结论。

例1.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做次,就能使这6个学生都面向北解答:最少需要转6次,我们把6个学生能编为1号-6号,第一次1号不转,第二次2号不转…第六次6号不转,所以最后每个人都转了5次,所以6个学生都面向北了.例2.某花园的小径如图50所示。

一个人能不能从图中第1个点的位置出发,不重复地走过所有小径?如果能,请标出所经过各点的顺序(如:1→2→3→…→1)。

如果不能,请标出至少必须重复的小径(如1→2,2→3,8→9或11→12等等)。

解答:这是个一笔画问题,需要考察“奇点”的个数,只有当奇点个数是0或2时才可以一笔画,而这个图里的奇点有8个,显然不能一笔画,每重复走一条小径可以消灭2个奇点所以至少要重复走4条小径,例如1->2,3->4,5->6,7->8例3.一次环保知识竞赛,一共有10道判断题。

小学奥数乘法原理与加法原理完整版

小学奥数乘法原理与加法原理完整版

小学奥数乘法原理与加法原理HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要n个步骤,其中,做第一步有n1种不同的方法,做第二步有n2种不同的方法,…,做第n步有n n种不同的方法,那么,完成这件事一共有n=n1×n2×……×n n种不同的方法.这就是乘法原理.例1. 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2. 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3. 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4. 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5. 由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6. 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.例8. 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张”.生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.一般地,如果完成一件事有n类方法,第一类方法中有n1种不同做法,第二类方法中有n2种不同做法,…,第n类方法中有n n种不同的做法,则完成这件事共有n=n1+n2+⋯…+n n种不同的方法.这就是加法原理.例1. 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?例2. 一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.例3. 如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?分析从甲地到丙地共有两大类不同的走法.第一类,由甲地途经乙地到丙地.第二类,由甲地直接到丙地.例4. 如下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.例5. 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.例6. 从1到500的所有自然数中,不含有数字4的自然数有多少个?分析从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个.这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.例7. 如图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?分析观察下页左图,注意到,从A到B要一直向右、向上,那么,经过下页右图中C、D、E、F四点中的某一点的路线一定不再经过其他的点.也就是说从A到B点的路线共分为四类,它们是分别经过C、D、E、F的路线.自我检测1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?3.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?4.在1~1000的自然数中,一共有多少个数字0?5.在1~500的自然数中,不含数字0和1的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。

奥数第四讲加法和乘法原理

奥数第四讲加法和乘法原理

奥数第四讲加法和乘法原理加法原理和乘法原理是数学中常用的计数原理。

它们适用于很多不同的问题,包括排列组合、事件的计数等等。

下面将详细介绍加法原理和乘法原理的定义和应用。

加法原理是指当两个事件A和B无重叠的时候,事件A或B发生的总数等于事件A发生的总数加上事件B发生的总数。

换句话说,如果A事件有m种可能的结果,B事件有n种可能的结果,并且A和B之间没有共同的结果,那么A或B事件的总数就是m+n。

例如,如果从1到6中选取一个数,结果可以是奇数或者大于4的数。

奇数的总数是3(1,3,5),大于4的数的总数是2(5,6)。

根据加法原理,奇数或者大于4的数的总数是3+2=5加法原理也可以扩展到多个事件之间。

如果有三个互不相交的事件A、B和C,它们发生的总数等于事件A发生的总数加上事件B发生的总数再加上事件C发生的总数。

同样的,对于更多的事件也可以类推。

乘法原理是指当两个事件A和B相互独立时,事件A和事件B同时发生的总数等于事件A发生的总数乘以事件B发生的总数。

换句话说,如果事件A有m种可能的结果,事件B有n种可能的结果,并且事件A和事件B之间没有任何依赖关系,那么事件A和事件B同时发生的总数就是m*n。

例如,如果从1到6中选取两个数,第一个数可以是奇数或者大于4的数,第二个数可以是正整数。

根据乘法原理,第一个数和第二个数同时满足条件的总数是3*6=18乘法原理也适用于更多的事件。

如果有三个独立的事件A、B和C,它们同时发生的总数等于事件A发生的总数乘以事件B发生的总数乘以事件C发生的总数,以此类推。

加法原理和乘法原理的应用非常广泛。

在排列组合中,加法原理可以用于计算所有情况的总数,而乘法原理则可以用于计算分成几个步骤的情况的总数。

例如,有两个装有红、白、蓝三种颜色球的箱子,一个球从两个箱子中挑选一个。

根据加法原理,总共有3+3=6种可能的结果。

而如果分成两个步骤,第一步从第一个箱子中挑选,有3种可能的结果,第二步从第二个箱子中挑选,同样有3种可能的结果。

六年级奥数加法原理和乘法原理知识点讲解

六年级奥数加法原理和乘法原理知识点讲解

六年级奥数加法原理和乘法原理知识点讲解【篇一】加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+m2.......+mn种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。

这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数【篇二】乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。

这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

(完整word版)小学奥数——乘法原理与加法原理

(完整word版)小学奥数——乘法原理与加法原理

乘法原理与加法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要 n 个步骤,其中,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,…,做第 n 步有 m n种不同的方法,那么,完成这件事一共有 N=m1×m2×……×m n 种不同的方法.这就是乘法原理.例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?例5.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法.例6.由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.例7.右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.例8.现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.但要注意,要求“至少取一张”.生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.一般地,如果完成一件事有 k 类方法,第一类方法中有 m1种不同做法,第二类方法中有 m2 种不同做法,…,第 k 类方法中有 m k种不同的做法,则完成这件事共有 N=m1+m2+⋯…+m k种不同的方法.这就是加法原理.例1.学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?例2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.例3.如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?分析从甲地到丙地共有两大类不同的走法.第一类,由甲地途经乙地到丙地.第二类,由甲地直接到丙地.例4.如下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.例5.有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.例6.从1到500的所有自然数中,不含有数字4的自然数有多少个?分析从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个.这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.例7.如图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?分析观察下页左图,注意到,从A到B要一直向右、向上,那么,经过下页右图中C、D、E、F四点中的某一点的路线一定不再经过其他的点.也就是说从A到B点的路线共分为四类,它们是分别经过C、D、E、F的路线.自我检测1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?3.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?4.在1~1000的自然数中,一共有多少个数字0?5.在1~500的自然数中,不含数字0和1的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。

乘法原理和加法原理

乘法原理和加法原理

乘法原理和加法原理首先,我们来介绍乘法原理。

乘法原理是指如果一个事件发生的方式有m种,另一个事件发生的方式有n种,那么这两个事件同时发生的方式有mn种。

乘法原理常常用于计算多个事件同时发生的总数。

例如,如果有一条裤子有3种颜色,一件衬衫有2种颜色,那么一套搭配的上衣和裤子的方式有32=6种。

在实际生活中,乘法原理也常常用于计算排列组合、密码锁密码的可能性等。

接下来,我们来介绍加法原理。

加法原理是指如果一个事件发生的方式有m种,另一个事件发生的方式有n种,且这两个事件没有共同的发生方式,那么这两个事件发生的总方式有m+n种。

加法原理常常用于计算多个事件中至少有一个发生的总数。

例如,某人去购物可以选择去商场或者超市,那么他购物的方式有2种。

在实际生活中,加法原理也常常用于计算不同情况下的总数,比如考试中选择题的得分可能性等。

乘法原理和加法原理在解决实际问题时常常需要结合使用。

比如,某人有3种颜色的上衣和2种颜色的裤子可以搭配,他又有4种颜色的鞋子可以选择,那么他搭配上衣、裤子和鞋子的方式有324=24种。

这个例子中就是使用了乘法原理。

又比如,某人去购物可以选择去商场或者超市,他又可以选择购买衣服或者食品,那么他购物的方式有2+2=4种。

这个例子中就是使用了加法原理。

总结来说,乘法原理和加法原理是数学中的两个基本计数原理,在实际生活和工作中也有着广泛的应用。

通过学习和掌握乘法原理和加法原理,我们可以更好地解决实际问题,提高计算能力和逻辑思维能力。

希望大家通过本文的介绍,对乘法原理和加法原理有更深入的了解,并能够灵活运用于实际生活和工作中。

奥数讲义计数专题:加法原理、乘法原理

奥数讲义计数专题:加法原理、乘法原理

华杯赛计数专题:加法原理、乘法原理基础知识:1.加法原理:如果完成一件事情可以分成几类方法,每一类又包含若干种不同方法,那么将所有类中的方法数累加就是完成这件事的所有方法数.加法原理的关键在于分类,类与类之间用加法.2.乘法原理:如果完成一件事情可以分成几个步骤,每一步又包含若干种不同方法,那么将所有步骤中的方法数连乘就是完成这件事的所有方法数.乘法原理的关键在于分步,步与步之间用乘法.3.分类原则:分类要做到“不重不漏”.任意两类之间不可以重复,这叫做不重;把所有的类别累加在一起就得到整体,这叫做不漏.4.分步原则:分步要做到“前不影响后”.无论前面步骤采取哪种方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.例题:例1.从1开始依次写下去一直到999,得到一个多位数1234567891011121314…997998999,请问:(1)这个多位数一共有多少位?(2)第999位数字是多少?(3)在这个多位数中,数字9一共出现了多少次?(4)数字0一共出现了多少次?问题(1)这个多位数一共有多少位?【答案】(1)2889;(2)9;(3)300;(4)189【解答】分析1:999个自然数构成一个多位数,可以利用加法原理分类的思想求这个多位数的位数.将这999个自然数分成3类:第1类是1位数;第2类是2位数;第3类是3位数.分别计算每一类自然数占了多少位,再求和就可以得出多位数的位数了.详解1:按照自然数的位数去分类.构成这个多位数的自然数中1位数有9个,占了9位;2位数有90个,占了2×90=180位;3位数有900个,占了3×900=2700位;所以这个多位数总共有9+180+2700=2889位.问题(2)第999位数字是多少?详解2:1位数和2位数一共占了189位,999位数数字还需要3位数占据999-189=810位.由810÷3=270…0可知第999位数字是第270个3位数的最后1位.第270个3位数是369,所以第999位数字是9.问题(3)在这个多位数中,数字9一共出现了多少次?分析3:前面2问分类的方法是按照自然数的位数去分类,1位数,2位数,3位数各自分为一类.但按照这种分类的思路来解第3问就不是很方便了:1位数含有1个9,2位数含有19个9,但是考虑3位数含有多少个9还是比较复杂.通过这种分类的思路去分析问题并没有使问题变得简单.可以考虑按照分段的方法去分类,第1类1—99;第2类100—199;第3类200—299;……;第10类900—999.分别计算每一类中包含了多少个9,然后再加和就可以了.注意利用每一类的相似性,比如第1类到第9类每一类所包含9的个数应该一样多,当然第10类900—999中9的个数比前9类要多100个.再考虑一种分类的方法,按照9出现的位置去分类.首先考虑9在百位出现了多少次;再考虑9在十位出现了多少次;最后考虑9在个位出现了多少次.详解3:按照分段的方法去分类.实际这种分类方法也是按照百位数的不同去分类,在每一类中百位数是相同的(1—99可以看成百位数为0).考虑第1类1—99中包含了多少个9,个位包含9的有:9,19,29,39,49,59,69,79,89,99一共10个;十位包含9的有:90,91,92,93,94,95,96,97,98,99也是10个.这样在1—99中9在个位和十位各出现了10次,一共是20次.同理,第2类100—199;第3类200—299;……;第9类800—899;每一类中也都包含20个9.第10类900—999中9的个数比前9类要多100个,应该是120个.所以原来的多位数中总共有20×9+120=300个9.其实更快的方法是按9出现的位置去数,应用乘法原理.问题(4)数字0一共出现了多少次?详解4:按照0出现在个位、十位去分类当0出现在十位时,百位可以为1~9,个位可以为0~9,根据乘法原理,共有9×10=90次;同理,当0出现在个位时,共有9×10+9=99次,所以原来的多位数中0出现了99+90=189次.例2.允许数字重复,那么用数字0、1、3、5、7、9最多可以组成多少个不同的三位数?【答案】180【解答】百位有5种选择,十位和个位都有6种选择.根据乘法原理,一共可以组成5×6×6=180个三位数.变化:如果不允许数字重复呢?其中被5整除的无重复数字的三位数又有多少个呢?例3.在所有的三位数中,至少出现一个2的偶数有________个.【答案】162【解答】①个位是2的有9×10=90个;②十位是2但个位不是2的偶数有9×4=36个;③百位是2但十位和个位都不是2的偶数有9×4=36个,所以一共有90+36+36=162个符合条件的三位数.例4.用1、2、3、4、5这5个数字组成四位数,至多允许有1个数字重复两次.例如1234、1233和2454是满足条件的,而1212、3335和4444就是不满足条件的.那么,所有这样的四位数共有________个.【答案】480个【解答】方法1:分类讨论.如果包含4个互不相同的数字,一共有5×4×3×2=120个;如果包含3个互不相同的数字,我们可以先从5个数字中选出3个数字,然后再从挑出的3个数字中选1个可以重复,最后把这3个数字带上1个重复的数字共4个数字排成1行.根据乘法原理,就有个,所以一共有120+360=480个四位数.方法2:排除法.所有可能的四位数有5×5×5×5=625个;只包含1个数字的有5个,包含2个数字的有5×4×(2×2×2-1)=140个.那么包含3个或4个不同数字的四位数有625-5-140=480个.例5.书架上有1本英语书,9本不同的语文书,9本不同的数学书和7本不同的历史书.现在要从中取出3本书,而且不能有两本是同一科的.那一共有多少种取法?【答案】774【解答】因为一共要4种书中选3种,所以要分4种情况讨论:如果拿的是英语、语文和数学书,根据乘法原理一共有1×9×9种方法;如果拿的是英语、语文和历史书,一共有1×9×7种拿法,同理另外两种情况分别有1×9×7种和9×9×7种拿法.最后我们根据加法原理,一共有1×9×9+1×9×7+1×9×7+9×9×7=1×9×16+10×9×7=144+630=774种拿法.例6.用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码;(2)四位数;(3)四位奇数.【答案】(1)120(个);(2)96(个);(3)36(个).【解答】(1)完成“组成无重复数字的四位密码”这件事,可以分四个步骤:第一步:选取左边第一个位置上的数字,有5种选取方法;第二步:选取左边第二个位置上的数字,有4种选取方法;第三步:选取左边第三个位置上的数字,有3种选取方法;第四步:选取左边第四个位置上的数字,有2种选取方法;由乘法原理,可组成不同的四位密码共有N=5×4×3×2=120(个).(2)完成“组成无重复数字的四位数”这件事,可以分四个步骤:第一步:从1,2,3,4中选取一个数字作千位数字,有4种选取方法;第二步:从1,2,3,4中余下的三个数字和0中选取一个数字作百位数字,有4种选取方法;第三步:从余下的三个数字中选取一个数字作十位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作个位数字,有2种选取方法;由乘法原理,可组成不同的四位数共有N=4×4×3×2=96(个).(3)完成“组成无重复数字的四位奇数”这件事,可以分四个步骤:第一步:从1,3中选取一个数字作个位数字,有2种选取方法;第二步:从1,3中余下的一个数字和2,4中选取一个数字作千位数字,有3种选取方法;第三步:从余下的三个数字中选取一个数字作百位数字,有3种选取方法;第四步:从余下的两个数字中选取一个数字作十位数字,有2种选取方法;由乘法原理,可组成不同的四位奇数共有N=2×3×3×2=36(个).例7.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?【答案】90(种)【解答】取a+b与取b+a是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由乘法原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据加法原理共有45+45=90种不同取法.例8.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案有多少种?【答案】150(种)【解答】5名志愿者分配到3个不同的奥运场馆,可以分成3,1,1和2,2,1两类,第一类:分成3,1,1,完成此件事可以分成3步,第1步:3个馆选一个馆去3个人,共有3种选法,第2步:5个人中选3个人,共有种选法,第3步:剩下的2个人分别去两个馆,所以当分配成3,1,1时,根据乘法原理,共有3×10×2=60(种);第二类:分成2,2,1,完成此件事可以分成3步,第1步:5个人中选出一个人,共有5种选法,第2步:3个馆中选出一个馆,共有3种选法,第3步:剩下的4个人中选2个人去剩下两个馆中的一个,最后一个人去另外一个馆,共有(种),所以当分配成2,2,1时,根据乘法原理,共有5×3×6=90(种);所以根据加法原理,不同的分配方案共有60+90=150(种).例9.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数有多少个?【答案】40(个)【解答】可分三步来做这件事:第一步:先将3、5放到六个数位中的两个,共有2种排法;第二步:再将4、6插空放入剩下四个数位中的两个,共有2×2=4种排法;第三步:将1、2放到3、5、4、6形成的空位中,共有5种排法.根据乘法原理:共有2×4×5=40(种).例10.在一个3行4列的方格表内放入4枚相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?在一个3行4列的方格表内放入4枚互不相同的棋子,要求每列至多只有1枚棋子,每行不做限制,那么一共有多少种不同的放法?【答案】81(种);1944(种)【解答】「问题1」4枚棋子放入4列,每一列有且仅有1枚棋子,因此总共分4个步骤考虑.第1步考虑第1列的棋子放在什么位置;第2步考虑第2列的棋子放在什么位置;第3步考虑第3列的棋子放在什么位置;第4步考虑第4列的棋子放在什么位置.每一步都有3种选择方法,所以方法数一共有3×3×3×3=81种.「问题2」假设4枚互不相同的棋子为A,B,C,D.将按照下面的4个步骤进行考虑,先放棋子A,12个格子可以随便选择,一共有12种方法.第2步放棋子B,A那一列的3个格子不能选择,其它的格子都可以放B,所以一共有9种方法.第3步放棋子C,A、B那两列一共6个格子不能选,所以一共有6种方法.第4步放棋子D,A、B、C三列一共9个格子不能选,还剩3个格子,所以一共有3种方法.利用乘法原理,放入4个不同棋子的方法数一共有12×9×6×3=1944种方法.另外一种解法.「问题2」4个棋子要占4个方格,先选出放棋子的4个方格.实际上挑出4个方格的方法数和第1问是完全相同的,总共有3×3×3×3=81种选择方法.选好方格后再将棋子排列进去,第1列的方格可以选择A,B,C,D中的任何一个棋子,所以有4种方法;第2列的方格还剩下三个棋子可供选择,所以有3种方法;第3列的方格还剩下两个棋子可供选择,有2种方法;第4列的方格只有1种方法.所以选好4个方格后排列棋子的方法数一共是4×3×2×1=24种.选4个方格有81种方法,选好4个方格后放棋子一共有24种方法,所以将表格中放入4个互不相同的棋子的总方法数是81×24=1944种.例11. 如图,把图中的8个部分用红、黄、绿、蓝4种不同的颜色着色,且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.那么,这幅图共有多少种不同的着色方法?【答案】768(种)【解答】按照A,B,D,E,C,G,F,H的步骤进行染色.对A进行染色的时候没有任何的限制,总共有4种染色的方法;对B进行染色的时候由于不能和A同色,所以有3种染色的方法;对D进行染色的时候由于不能和A,B同色,所以只剩2种染色的方法;对E进行染色时不能和B,D同色,所以有2种染色的方法;对C进行染色时不能和B,E同色,所以有2种染色方法;对G进行染色时不能和D,E同色,所以有2种染色的方法;对F进行染色时不能和D,G同色,所以有2种染色的方法;对H进行染色时不能和E,G同色,所以有2种染色的方法.综合上面的八个步骤,利用乘法原理,共有4×3×2×2×2×2×2×2=768种着色的方法.「评议」本题染色的步骤还有很多种,大家考虑一下按照A,B,C,D,E,F,G,H的步骤进行染色是否可以?可能有同学发现按照A,B,C,D,E,F,G,H的步骤进行染色会算出另外一个答案4×3×3×2×1×3×1×2=432.当然,正确答案只能有一个,那么这种分步方法到底错在哪里呢?这里要提到利用乘法原理一条重要的原则:“前不影响后”.无论前面步骤采取哪种染色方法,后面一个步骤都应该有相同多的方法数,也就是说后面一个步骤的方法数与前面步骤采取哪一种方法无关.而按照A,B,C,D,E,F,G,H的步骤来染色就违反了这个原则.请看下面图中的例子:在上面的例子中,左图前4步采取的染色方法是红、黄、绿、蓝,第5步对E进行染色时只有1种方法;右图前4步采取的染色方法是红、黄、绿、绿,这样第5步对E进行染色时有2种方法.于是第5个步骤对E进行染色无法确定到底有几种染色的方法,前4步不同的染色方案影响到了第5步的方法数,既然不能确定是1种还是2种,乘法原理自然也就无法应用了.。

数学 加法原理和乘法原理教学设计

数学 加法原理和乘法原理教学设计

加法原理和乘法原理教学目标正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.教学重点和难点重点:加法原理和乘法原理.难点:加法原理和乘法原理的准确应用.教学用具投影仪.教学过程设计(一)引入新课从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.今天我们先学习两个基本原理.(二)讲授新课1.介绍两个基本原理先考虑下面的问题:问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.这个问题可以总结为下面的一个基本原理(打出片子——加法原理):加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m 种不同的方法.n请大家再来考虑下面的问题(打出片子——问题2):问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C 村又各有2种不同的走法,因此,从A村经B村去C 村共有3×2=6种不同的走法.一般地,有如下基本原理(找出片子——乘法原理):乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n种不同的方法.2.浅释两个基本原理两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.比较两个基本原理,想一想,它们有什么区别?两个基本原理的区别在于:一个与分类有关,一个与分步有关.看下面的分析是否正确(打出片子——题1,题2):题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.1~10中一共有N=4+2+1=7个合数.题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?第一步从A村到B村有3种走法,第二步从B 村到C村有2种走法,共有N=3×2=6种不同走法.题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.也就是说:类类互斥,步步独立.(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)(三)应用举例现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原理,得到不同的取法种数是N=m1×m2×m3=3×5×6=90.故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法.(3)从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有3×5种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有3×6种方法;第三类办法是语文书、英语书各取1本,有5×6种方法.一共得到不同的取法种数是N=3×5+3×6+5×6=63.即,从书架任取不同科目的书两本的不同取法有63种.例2 由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是N =4×5×5=100.答:可以组成100个三位整数.教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础.(四)归纳小结归纳什么时候用加法原理、什么时候用乘法原理:分类时用加法原理,分步时用乘法原理.应用两个基本原理时需要注意分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.(五)课堂练习P222:练习1~4.(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)(六)布置作业P222:练习5,6,7.补充题:1.在所有的两位数中,个位数字小于十位数字的共有多少个?(提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.(提示:需要按三个志愿分成三步,共有m(m-1)(m-2)种填写方式)3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?(提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?(提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语.(1)N=5+2+3;(2)N=5×2+5×3+2×3)。

小学六年级奥数 第4讲计数原理之加乘原理

小学六年级奥数 第4讲计数原理之加乘原理

计数原理之加乘原理【例1】(★)用数字0,1,2,3,4可以组成多少个小于1000的自然数?加油站加法原理:分类计数,类类独立乘法原理:分步计数,步步相关关联词区分:可以……也可以……加法原理【例2】(★★★)(北京市人大附中分班考题)先……再……又……乘法原理由0,1,2,3,4,5组成的没有重复数字的六位数中,百位不是2的奇数有多少个?【例3】(★★★)【例5】(★★★)一个三位数,其反序数也是一个三位数,用这个三位数减去它的反序数得到的差大于0,且为4的倍数,满足条件的三位数有_____个。

在1001,1002,…,2000这1000个自然数中,可以找到多少对相邻的自然数,使它们相加时不进位?【例4】(★★★)一个至少两位的数,如果满足高数位上的数字总大于低数位上的数字,如732、85421,我们称之为“下降数”,那么“下降数”中一共有_____个偶数。

【例6】(★★★)一个七位数,其数码只能为1或3,且无两个3是邻的。

问这样的七位数共有多少个?1【例7】(★★★)【例9】(★★★★)在1~10这10个自然数中,每次取出三个不同的数,使它们的和是3的倍数有多少种不同的取法?从1到3998这3998个自然数中,有多少个数的各位数字之和能被4整除?【例8】(★★★★)从1、2、3、4、5、6、7这7个数中选出3个数,请问:⑴要使这3个数的乘积能被3整除,一共有多少种不同的选法?⑵要使这3个数的和能被3整除,一共有多少种不同的选法?【例10】(★★★★)从1到999这999个自然数中有_____个数的各位数字之和能被4整除。

本讲总结加法原理:分类计数,类类独立乘法原理:分步计数,步步相关关联词区分:可以……也可以……加法原理先……再……又……乘法原理乘法原理的前提:平等性常用方法:①优先排序法②排除法③分类讨论重点例题:例5、例7、例8、例9 2。

(六年级奥数讲义)第4讲-排列与组合(加法原理与乘法原理)(教师版)

(六年级奥数讲义)第4讲-排列与组合(加法原理与乘法原理)(教师版)

◆ 熟悉排列与组合问题。

◆ 运用加法原理和乘法原理解决问题。

在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从A 地道B 地,可以乘火车,也可以乘汽车或乘轮船。

一天中,火车有4班,汽车有3班,轮船有2班。

那么从A 地道B 地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有3条道路(如下图)。

从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。

➢ 加法原理:为了完成一件事,有几类方法。

第一类方法中有1m 种不同的方法,第二类方法中有2m 种不同的方法…….第n 类方法中有n m 种不同的方法。

那么,完成这件事共有12n N m m m =++⋅⋅⋅+种不同的方法。

➢ 乘法原理:为了完成一件事,需要n 个步骤。

做第一步有1m 种不同的方法,做第二步有2m 种不同的方法……做第n 步有n m 种不同的方法。

那么,完成这件事共有12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法。

【例题1】每天从武汉到北京去,有4班火车,2班飞机,1班汽车。

请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同的走法?解:4+2+1=7(种)【拓展1】学校开展读书竞赛活动,小明要从4本故事书、2本文艺书、3本科技书里任意选取一本书,共有多少种不同的选法?第4讲 排列与组合【例题2】如图,从家村去乙村有3条道路,从乙村去丙村有2条道路,从丙村去丁村有4条道路。

小华从甲村经乙村、丙村去丁村,共有多少种不同的走法?【拓展2】(2008年第六届“走进美妙的数学花园”中国青少年解题技能展示大赛试题)在右图的每个方格中各放1枚围棋子(黑子或白子),共有多少种不同的放法?【例题3】数学活动课上,张老师要求同学们用0、1、2、3这四个数字组成三位数,请问:(1)可以组成多少个没有重复数字的三位数?(2)可以组成多少个不相等的三位数?解:(1)3×3×2=18(个)(3)3×4×4=48(个)【拓展3】用1、2、3、4这四个数可以组成多少个没有重复数字的四位数?【例题4】十把钥匙开十把锁。

加法原理和乘法原理的综合运用ppt课件

加法原理和乘法原理的综合运用ppt课件

书,第3层放有2本不同的体育书.从
书架上任取1本书,有多少种不同的
取法?
Hale Waihona Puke 4+3+2=9(种)
答:有9种不同的取法.
精选PPT课件
2
乘法原理公式:
一般地,如果完成一件事需要几 个步骤,做第一步有m1种不同的方 法,做第二步有m2中不同的方 法,……,做第n步有mn种不同的方法, 那么,完成这件事一共有N=m1× m2×…× mn种不同的方法。
颜色涂编号为1,2,3,4的长方形,使 任何相邻的两个长方形的颜色都不同。 一共有多少种不同的涂法?
分析:按2、3号长方形的涂色情 况,可把本题的涂法分为两大类: 第一 类:3号长方形选与2号相同 的颜色。 第二类:3号长方形 与 2号都不同 的颜色。
精选PPT课件
13
第一类根据乘法原理共有不同涂 法: 4×3×3=36(种)。 第二类根据乘法原理共有不同涂 法: 4×3×2×2=48(种)。
精选PPT课件
11
模仿训练2:书架的第一层放有4本不
同的计算机书,第二层放有3本不同的文 艺书,第3层放有2本不同的体育书. 从书 架的任意两层上各取1本书,有多少种不 同的取法?
4×3 + 4×2 + 3×2=26 (种)
答:有26种不同的取法。
精选PPT课件
12
例3:如下图,用红、绿、蓝、黄四种
路,从乙地到丁地有3条路,从甲地到丙地 有4条路,从丙地到丁地有2条路。则从甲 地到丁地共有多少种不同的走法?
甲地
乙地
2×3=6
4×2=8
6+8 =14
丙地
丁地
答:从甲地到丁地共有14种不同的走法。

奥数 乘法原理与加法原理

奥数 乘法原理与加法原理

习题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。

一天中火车有4 班,汽车有 3 班,轮船有 2 班。

问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?4+3+2=9习题 2:南京去上海可以乘火车、乘飞机、乘汽车和乘轮船。

如果每天有20 班火车、 6 班飞机、 8 班汽车和 4 班轮船,那末共有多少种不同的走法?习题 3:光明小学四、五、六年级共订 300 份报纸,每一个年级至少订 99 份报纸。

问:共有多少种不同的订法?012 021 003 030 102 111 120 201 210 300习题 4:小明去食堂买饭,有3 样主食,5 样菜。

小明要买一份主食一份菜,共有多少种不同的买法?3×5=15习题 5:某小姐有三件裙子, 四件上衣,两双鞋子, 问总共有几种不同的搭配方法?3×4×2=24习题 6:图书馆中有五本不同的三民主义书和八本不同的数学书,一学生欲从三民主义和数学各选一本,共有多少种选法?5×8=40习题 7:某篮球校队是由二位高一学生, 四位高二学生,六位高三学生所组成,现在要从校队中选出三人,每年级各选一人,参加篮球讲习会, 问总共有多少种选法?2×4×6=48在做一件事时,要分几步才干完成,而在完成每一步时又有不少种不决。

在做一件事时,有几类不同的方法,每一类方法中又有几种可能的做法。

那末做这件事所有可能的做法就需要用习题 8:如图,从甲地到乙地有三条路,从乙地到丁地有三条路,从甲地到丙地有两条路,从丙地到丁地有四条路。

问:从甲地到丁地有多少条路?习题 9:用1 ,2,3,4 这四种数码组成五位数,数字可以重复,至少有连续三位是1 的五位数有多少个?1、甲班有40 位同学, 乙班有45 位同学, 丙班有50 位同学,若各班推选一人筹办文艺展览会, 共有几种选派法?40×45×50=900002、用0,1,2,3,4,5,6 组成四位数的密码共有几种?6×6×6×6×6×6×63、用0,1,2,3,4 五个数字排成的三位数有几个其中数字相异的三位数有几个?4×5×5=1004×4×3=484、从甲城到乙城有3 条不同的道路,从乙城到丙城有4 条不同的道路,那末从甲城经乙城到丙城共有多少条不同的道路?3×45、有1 角、2 角、5 角纸币各1 张,可以组成多少种面值不同的人民币。

小学数学《 乘法原理和加法原理》ppt

小学数学《 乘法原理和加法原理》ppt
完成这件事共有N=m1×m1】一天中午,某学生食堂供应4种主食、6种副 食,小明到食堂吃饭,主、副食各选一种,问他有多少种 不同的选项?
解答:4×6=24(种) 答:他有24种不同的选项。
【例2】从甲地到乙地,可以乘火车,也可乘 轮船,还可以乘飞机。在一天中,从甲地到 乙地有4班火车,2班轮船,1班飞机。那么在 一天中乘坐这些交通工具从甲地到乙地,共 有多少种不同的走法?
解答:3+2=5(种)
答:乘坐这些交通工具从甲地到乙地共有5种方法。
趣味数学游戏
• (1)大家两两握手,互相道别,请你统计 一下,大家握手次数共有多少?
• (2)老师对学生的承诺一定要实现,在上 下节课时,老师要准备一个童话故事
PK环节
• (一)基础训练
• 1. 用1,2,3,4这四个数字
• ①可以组成多少个两位数?


乘坐不同班次的火车、 轮船或飞机称为不同的走 法。从甲地到乙地乘火车 有4种走法,乘轮船有2种 走法,乘飞机有1种走法。 由于每一种走法都能从甲 地到达乙地,一天中从甲 地到乙地共有4+2+1=7种 不同的走法。
加法原理:
• (1)如果完成一件事有n类办法,只在选择 任何一类办法中的一种方法,这件事就可 以完成。
• (二)中等能力学生
• 1. 某班级有男学生5人,女学生4人 (1) 从中任选一人去领奖, 有多少种不同的 选法?
(2) 从中任选男、女学生各一人去参加 座谈会,有多少种不同的选法?
• 2. 如图,由A村去B村的道路有2条,由B 村去C村的道路有3条从A村经B村去C村, 共有多少种不同的走法?
• (三)学习优异的学生 • 1. (2009年迎春杯初试) ①有5个人排成

六年级奥数培训第4讲乘法原理和加法原理

六年级奥数培训第4讲乘法原理和加法原理

乘法原理和加法原理是数学中非常重要的概念,它们在解决问题时起到了重要的作用。

今天我们就来详细学习乘法原理和加法原理。

首先,我们来学习乘法原理。

乘法原理也叫乘法法则,它是指:如果一个事件可以分成两个独立的步骤,第一步有m种可能性,第二步有n种可能性,那么这个事件一共有m×n种可能性。

乘法原理在实际生活中也十分常见。

例如,现在小明要穿衣服去上学,他有2件上衣和3条裤子可以选择,那么他一共有2×3=6种搭配方式。

又例如,小明有3本数学书和4本英语书,他要从中选择一本书来看,那么他有3×4=12种选择的可能性。

乘法原理是非常简单的,但要注意的是,乘法原理只适用于这两个事件是相互独立的情况。

也就是说,第二个事件的结果不会受到第一个事件的结果的影响。

接下来我们来学习加法原理。

加法原理是指:如果一个事件可以分成两个互斥的部分,第一部分有m种可能性,第二部分有n种可能性,那么这个事件一共有m+n种可能性。

例如,小明想吃水果,他可以选择苹果、香蕉或者橙子,那么他有3种选择的可能性。

又例如,小红要去超市买东西,她可以选择买水果或者蔬菜,那么她有2种选择的可能性。

加法原理同样也非常简单,但需要注意的是,加法原理只适用于这两个事件不可能同时发生的情况。

乘法原理和加法原理在解决问题时非常有用,但有时候问题会比较复杂,我们需要运用这两个原理来解决。

例如,小明要做一个三道题的数学作业,第一题有2种解法,第二题有3种解法,第三题有4种解法,那么他一共有2×3×4=24种解题方法。

又例如,小红要去参加学校组织的活动,参加活动的学生可以选择合唱或者跳舞,男生可以选择跳舞或者打乒乓球,女生可以选择合唱或者打乒乓球。

如果有2个男生和3个女生要参加活动,那么一共有2×2+3×2=10种组合的可能性。

通过学习乘法原理和加法原理,我们能够更好地理解和解决问题。

在实际生活中,我们会遇到很多需要使用乘法原理和加法原理的情况,只有通过不断的实践和练习,才能真正的掌握它们。

(完整word版)小学奥数——乘法原理与加法原理

(完整word版)小学奥数——乘法原理与加法原理

乘法原理与加法原理在平常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不一样的方法,要知道完成这件事一共有多少种方法,就用我们将谈论的乘法原理来解决.比方某人要从北京到大连拿一份资料,以后再到天津开会.此中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想坐船.那么,他从北京经大连到天津共有多少种不一样的走法?解析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择坐船这一种走法,因此他从北京到天津共有下边的三种走法:3× 1=3.假如这人到大连后,可以坐船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上边谈论问题的过程中,我们把所有可能的方法一一列举出来.这类方法叫穷举法.穷举法对于谈论方法数不太多的问题是很有效的.在上边的例子中,完成一件事要分两个步骤.由穷举法获得的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,假如完成一件事需要??个步骤,此中,做第一步有 ??1种不一样的方法,做第二步有 ??2种不一样的方法,,做第 ??步有 ??种不一样的方法,那么,完成这件事一共有??= ??1×× ×????2????种不一样的方法.这就是乘法原理.例 1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不一样的买法?增补说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个相互互不影响的独立步骤来完成;②每个步骤各有若干种不一样的方法来完成.这样的问题就可以使用乘法原理解决问题.例 2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不一样的走法?例 3.书架上有6本不一样的外语书,4本不一样的语文书,从中任取外语、语文书各一本,有多少种不一样的取法?例 4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项竞赛,问:报名的结果会出现多少种不一样的情况?例 5.由数字0、1、2、3构成三位数,问:①可构成多少个不相等的三位数?②可构成多少个没有重复数字的三位数?解析在确立由 0、1、2、3 构成的三位数的过程中,应当一位一位地去确立.因此,每个问题都可以看作是分三个步骤来完成.①要求构成不相等的三位数.因此,数字可以重复使用,百位上,不可以取0,故有 3 种不一样的取法;十位上,可以在四个数字中任取一个,有 4 种不一样的取法;个位上,也有 4 种不一样的取法 .②要求构成的三位数中没有重复数字,百位上,不可以取0,有 3 种不一样的取法;十位上,因为百位已在 1、2、3 中取走一个,故只剩下0 和其余两个数字,故有 3 种取法;个位上,因为百位和十位已各取走一个数字,故只好在剩下的两个数字中取,有 2 种取法.例 6.由数字1、2、3、4、5、6共可构成多少个没有重复数字的四位奇数?解析要构成四位数,需一位一位地确立各个数位上的数字,即分四步完成,因为要求构成的数是奇数,故个位上只有能取 1、3、5 中的一个,有 3 种不一样的取法;十位上,可以从余下的五个数字中取一个,有 5 种取法;百位上有 4 种取法;千位上有 3 种取法,故可由乘法原理解决.例 7.右图中共有16个方格,要把A、B、C、D四个不一样的棋子放在方格里,并使每行每列只好出现一个棋子.问:共有多少种不一样的放法?解析因为四个棋子要一个一个地放入方格内.故可看作是分四步完成这件事.第一步放棋子 A,A 可以放在 16 个方格中的任意一此中,故有 16 种不一样的放法;第二步放棋子B,因为 A 已放定,那么放 A 的那一行和一列中的其余方格内也不可以放 B,故还剩下 9 个方格可以放 B, B 有 9 种放法;第三步放 C,再去掉 B 所在的行和列的方格,还剩下四个方格可以放 C,C 有 4 种放法;最后一步放 D,再去掉 C 所在的行和列的方格,只剩下一个方格可以放D,D 有 1 种放法,本题要由乘法原理解决.例 8.现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,假如从中最少取一张,至多取9 张,那么,共可以配成多少种不一样的钱数?解析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取 2 张一角的人民币和取 1 张贰角的人民币,获得的钱数是同样的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币 4 张和贰角的人民币 2 张一致起来考虑.即从中拿出几张构成一种面值,看共可以构成多少种.解析知,共可以构成从壹角到捌角间的任何一种面值,共8 种状况.(即取两张壹角的人民币与取一张贰角的人民币是一种状况;取4 张壹角的人民币与取 2 张贰角的人民币是一种状况.)这样一来,可以把它们看作是 8 张壹角的人民币.整个问题就变为了从 8 张壹角的人民币和 3 张壹元的人民币中分别取钱.这样,第一步,从 8 张壹角的人民币中取;第二步,从 3 张壹元的人民币中取共 4 种取法,即 0、1、2、3.但要注意,要求“最少取一张” .生活中常有这样的状况,就是在做一件事时,有几类不一样的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将谈论的加法原理来解决.比方某人从北京到天津,他可以乘火车也可以乘长途汽车,此刻知道每日有五次火车从北京到天津,有 4 趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不一样的走法?解析这个问题发现,这人去天津要么乘火车,要么乘长途汽车,有这两大类走法,假如乘火车,有 5 种走法,假如乘长途汽车,有 4 种走法.上边的每一种走法都可以从北京到天津,故共有 5+4=9 种不一样的走法.在上边的问题中,完成一件事有两大类不一样的方法.在详尽做的时候,只要采纳一类中的一种方法就可以完成.而且两大类方法是互无影响的,那么完成这件事的所有做法数就是用第一类的方法数加上第二类的方法数.一般地,假如完成一件事有??类方法,第一类方法中有??1种不一样做法,第二类方法中有??2种不一样做法,,第 ??类方法中有 ??种不一样的做法,则完成这件事共有种????= ??1 + ??2 + ?+ ????不一样的方法.这就是加法原理.例 1.学校组织读书活动,要求每个同学读一本书.小明到图书室借书时,图书室有不一样的外语书150 本,不一样的科技书 200 本,不一样的小说 100 本.那么,小明借一本书可以有多少种不一样的选法?例 2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不同样.问:①从两个口袋内任取一个小球,有多少种不一样的取法?②从两个口袋内各取一个小球,有多少种不一样的取法?增补说明:由本题应注意加法原理和乘法原理的差别及使用范围的不一样,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,常常有好多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟习加法原理和乘法原理的内容,综合使用这两个原理.例 3.如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有 3 条路可走.那么,从甲地到丙地共有多少种走法?解析从甲地到丙地共有两大类不一样的走法.第一类,由甲地路过乙地到丙地.第二类,由甲地直接到丙地.例 4.以下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不行重复经过.问:这只甲虫有多少种不一样的走法?解析从 A 点到 B 点有两类走法,一类是从 A 点先经过 C 点到 B 点,一类是从 A 点先经过 D 点到 B 点.两类中的每一种详尽走法都要分两步完成,因此每一类中,都要用乘法原理,而最后计算从 A 到 B 的所有走法时,只要用加法原理乞降即可.例 5.有两个同样的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情况?解析要使两个数字之和为偶数,只要这两个数字的奇偶性同样,即这两个数字要么同为奇数,要么同为偶数,因此,要分两大类来考虑.例 6.从1到500的所有自然数中,不含有数字4 的自然数有多少个?解析从 1 到 500 的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含 4 的有 8 个,它们是 1、2、3、5、6、7、8、9;要确立一个两位数,可以先取十位数,再取个位数,应用乘法原理.要确立一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理.增补说明:这道题也可以这样想:把一位数看作是前方有两个0 的三位数,如:把 1 看作是 001.把两位数看作是前方有一个0 的三位数.如:把11 看作 011.那么所有的从 1 到 500 的自然数都可以看作是“三位数”,除去 500 外,考虑不含有 4 的这样的“三位数”.百位上,有 0、 1、 2、 3 这四种选法;十位上,有0、1、2、3、5、6、7、8、 9 这九种选法;个位上,也有九种选法.因此,除500外,有 4× 9× 9=324 个不含 4 的“三位数”.注意到,这里面有一个数是000,应当去掉.而500 还没有算进去,应当加进去.因此,从 1 到 500 中,不含 4 的自然数仍有324 个.这是一种特别的思虑问题的方法,注意到当我们对“三位数”重新恩赐规定以后,问题很简捷地获得解决.例 7.如图,要从A点沿线段走到B,要求每一步都是向右、向上也许向斜上方.问有多少种不一样的走法?解析观察下页左图,注意到,从 A 到 B 要向来向右、向上,那么,经过下页右图中 C、D、E、F 四点中的某一点的路线必定不再经过其余的点.也就是说从 A 到 B点的路线共分为四类,它们是分别经过C、D、E、F 的路线.自我检测1. 某罪犯要从甲地路过乙地和丙地逃到丁地,此刻知道从甲地到乙地有 3 条路可以走,从乙地到丙地有 2 条路可以走,从丙地到丁地有 4 条路可以走.问,罪犯共有多少种逃脱的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以构成多少个不一样的减法算式?4.一个篮球队,五名队员 A 、B、C、 D、 E,因为某种原由, C 不可以做中锋,而其余四人可以分配到五个地点的任何一个上.问:共有多少种不一样的站位方法?5.由数字 1、 2、 3、4、5、6、 7、 8 可构成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8 的没有重复数字的三位数?⑤百位为8 的没有重复数字的三位偶数?6. 某市的电话号码是六位数的,首位不可以是0,其余各位数上可以是0~ 9 中的任何一个,而且不一样位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2. 书架上有 6 本不一样的画报和7 本不一样的书,从中最多拿两本(不可以不拿),有多少种不一样的拿法?3.以以下图中,沿线段从点 A 走最短的路线到 B,各有多少种走法?4.在 1~ 1000 的自然数中,一共有多少个数字0?5.在 1~ 500的自然数中,不含数字0 和 1 的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲乘法原理和加法原理
一、知识要点
在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。

做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。

二、精讲精练
【例题1】由数字0,1,2,3组成三位数,问:
①可组成多少个不相等的三位数?
②可组成多少个没有重复数字的三位数?
【思路导航】在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。

①要求组成不相等的三位数,所以数字可以重复使用。

百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成3×4×4=48个不相等的三位数。

②要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成3×3×2=18个没有重复数字的三位数。

练习1:
1.有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数?
2.在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式?
【例题2】有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。

将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形?
【思路导航】要使两个数字之和为偶数,就需要这两个数字的奇、偶性相
同,即两个数字同为奇数或偶数。

所以,需要分两大类来考虑:两个正方体向上一面同为奇数的共有3×3=9(种)不同的情形;
两个正方体向上一面同为偶数的共有3×3=9(种)不同的情形;
两个正方体向上一面同为偶数的共有3×3+3×3=18(种)不同的情形。

练习2:
1.在1~1000的自然数中,一共有多少个数字1?
2.在1~500的自然数中,不含数字0和1的数有多少个?
3.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问最多试开多少次,就能把锁和钥匙配起来?
【例题3】书架上层有6本不同的数学书,下层有5本不同的语文书,若任意从书架上取一本数学书和一本语文书,有多少种不同的取法?
【思路导航】从书架上任取一本数学书和一本语文书,可分两个步骤完成,第一步先取数学书,有6种不同的方法,而这6种的每一种取出后,第二步再取语文书,又有5种不同的取法,这样共有6个5种取法,应用乘法计算6×5=30(种),有30种不同的取法。

练习3:
1.商店里有5种不同的儿童上衣,4种不同的裙子,妈妈准备为女儿买上衣一件和裙子一条组成一套,共有多少种不同的选法?
2.小明家到学校共有5条路可走,从学校到少年宫共有3条路可走。

小明从家出发,经过学校然后到少年宫,共有多少种不同的走法?
【例题4】在2,3,5,7,9这五个数字中,选出四个数字,组成被3除余2的四位数,这样的四位数有多少个?
【思路导航】从五个数字中选出四个数字,即五个数字中要去掉一个数字,由于原来五个数字相加的和除以3余2,所以去掉的数字只能是3或9。

去掉的数字为3时,即选2,5,7,9四个数字,能排出4×3×2×1=24(个)符合要求的数,去掉的数字为9时也能排出24个符合要求得数,因此这样的四位数一共有24+24=48(个)
练习4:
1.在1,2,3,4,5这五个数字中,选出四个数字组成被3除余2的四位数,这样的四位数有多少个?
2.在1,2,3,4,5这五个数字中,选出四个数字组成能被3整除的四位数,这样的四位数有多少个?
【例题5】从学校到少年宫有4条东西的马路和3条南北的马路相通(如图),小明从学校出发到少年宫(只许向东或向南行进),最后有多少种走法?
【思路导航】为了方便解答,把图中各点用字母表示如图。

根据小明步行规则,显然可知由A 到T 通过AC 边上的各点和AN 边上的各点只有一条路
线,通过E 点有两条路线(即从B 点、D 点来各一条路线),通过H 点有3条路线(即从E 点来有二条路线,从G 点来有一条路线),这样推断可知通过任
何一个交叉点的路线总数等于通过该点左边、上方
的两邻接交叉点的路线的总和,因此,可求得通过S 点有4条路线,通过F 点有3条路线……由此可见,由A 点通过T 点有10条不同的路线,所以小明从学校到少年宫最多有10种走法。

练习5:
1.从学校到图书馆有5条东西的马路和5条南北的马路相通(如图)。

李菊从学校出发步行到图书馆(只许向东或向南行进),最多有多少种走法?
2.某区的街道非常整齐(如图),从西南角A 处走到东北角B 处,要求走最近的路,一共有多少种不同的走法?
346101111123B 少年宫T S N M
H G F E D C A 图书馆学校B A
三、课后作业家长签字:_________得分:
1.由数字1,2,3,4,5,6,7,8,可组成多少个:
①三位数;②三位偶数;③没有重复数字的三位偶数;④百位是8的没有重复数字的三位数;⑤百位是8的没有重复数字的三位偶数。

2. 由数字0,1,2,3,4可以组成多少个没有重复数字的三位偶数?
3. 张师傅到食堂吃饭,主食有2种,副食有6种,主、副食各选一种,他有几种不同的选法?
4. 在1,4,5,6,7这五个数字中,选出四个数字组成被3除余1的四位数,这样的四位数有多少个?
5. 如图有6个点,9条线段,一只小虫从A点出发,要沿着某几条线段爬到F点。

行进中,同一个点或同一条线段只能经过一次,这只小虫最多有多少种不同的走法?。

相关文档
最新文档