第28章《锐角三角函数》单元测试(及答案)
人教新版九年级下《第28章锐角三角函数》单元测试卷含答案解析
第28章锐角三角函数单元测试卷一.选择题(共12小题)1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1C.D.2.如图,△ABC中,CD⊥AB,BE⊥AC,=,则sinA的值为()A.B.C.D.3.在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为()A.B.C.1D.4.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C 的坐标不能表示为()A.(b+2a,2b)B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c)D.(a﹣c,﹣2a﹣2c)5.如图,△ABC中,∠A=30°,,AC=,则AB的长为()A.B.C.5D.6.如图,长方形ABCD中,AB=2,BC=3;E是AB的中点,F是BC上的一点,且CF=BC,则图中线段AC与EF之间的最短距离是()A.0.5B.C.1D.7.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A.50m B.25m C.(50﹣)m D.(50﹣25)m8.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm9.今年,重庆被“抖音”抖成了“网红城市”,其中解放碑的游客数量明显高于去年同期,如图,小冉和小田决定用所学知识测量解放碑AB的高度,按照以下方式合作并记录所得数据:小冉从大厦DG的底端D点出发,沿直线步行10.2米到达E点,再沿坡度i=1:2.4的斜坡EF行走5.2米到达F点,最后沿直线步行30米到达解放碑底部B点,小田从大厦DG的底端乘直行电梯上行到离D点51.5米的顶端G点,从G点观测到解放碑顶端A点的俯角为26°,若A,B,C,D,E,F,G在同一平面内,且B,F和C,E,D分别在同一水平线上,则解放碑AB的高度约为()米.(精确到0.1米,参考数据:sin26°≈0.44,cos26°≈.90,tan26°≈0.49)A.29.0B.28.5C.27.5D.27.010.位于南开(融侨)中学旁边的“转转桥”是重庆市网红景点之一,在桥下人形天桥(如图1),其平面图如图2所示,天桥入口D点有一台阶DC,CD=0.5米,其坡度为i=1:0.75,在DC上方有一平层BC=1米,且BC与地面MN平行,在天桥顶端A点测得B点的俯角为63°,且AD⊥MN,为知道台阶AB的长度,请根据以上信息,帮小亮计算出台阶AB的长度,约为()精确到0.1米,参考数据:sin63°≈0.90,cos63°≈0.45,tan63°≈2.00A.1.4米B.2.5米C.2.8米D.2.9米11.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时12.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中错误的是()A.①②B.②④C.①③D.③④二.填空题(共12小题)13.在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边AB边上的高CD的长为14.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.15.如图在方格纸中α,β,γ这三个角的大小关系是.16.若0°<α<90°,tanα=1,则sinα=.17.△ABC中,∠C=90°,tanA=,则sinA+cosA=.18.设α是锐角,如果tanα=2,那么cotα=.19.在Rt△ABC中,∠C=90°,若sinA=,则cosB=.20.已知,在Rt△ABC中,∠C=90°,tanB=,则cosA=.21.计算:tan45°+=;22.已知∠A是锐角,且tanA=,则∠A=.23.请从以下两个小题中任选一个作答,若多选,则按所选的第一题记分.A.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.B.用科学计算器计算:sin69°≈(精确到0.01).24.在Rt△ABC中,∠C=90°,∠A=42°,BC=3,则AC的长为.(用科学计算器计算,结果精确到0.01)三.解答题(共26小题)25.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.26.计算:sin30°﹣cos45°+tan260°.27.计算:2sin30°﹣2cos45°.28.计算:2cos230°+﹣sin60°.29.计算:3tan30°+cos245°﹣sin60°.30.(1)计算与化简:cos60°•tan30°(2)因式分解:3a2﹣6a+3.31.计算:tan260°﹣2sin30°﹣cos45°.32.计算:(3﹣π)0+﹣2cos60°.33.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A落在∠ACB的外角平分线CD上,连结AA′.(1)判断四边形ACC′A的形状,并说明理由.(2)在△ABC中,∠B=90°,AB=24,cos∠BAC=,求CB的长.34.如图,在△ABC中,∠B为锐角,AB=3,AC=5,sinC=,求BC的长.35.在平面直角坐标系中,若△ABC的三个顶点的坐标分别为A(﹣4,1),B (﹣1,3),C(﹣4,3),求sinB的值.36.如图,在△ABC中,∠B=45°,∠C=60°,AC=20.(1)求BC的长度;(2)若∠ADC=75°,求CD的长.37.C919大型客机首飞成功,激发了同学们对航空科技的兴趣.如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM ∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)38.如图,为了测量某条河的宽度,在它的对岸岸边任取一点A,再在河的这边沿河边取两点B、C,使得∠ABC=60°,∠ACB=45°,量得BC的长为30m,求这条河的宽度(结果精确到1m).(参考数据:≈1.414,≈1.732.)39.清明节假期,小红和小阳随爸妈去旅游,他们在景点看到一棵古松树,小红惊讶的说:“呀!这棵树真高!有60多米.”小阳却不以为然:“60多米?我看没有.”两个人争论不休,爸爸笑着说:“别争了,正好我带了一副三角板,用你们学过的知识量一量、算一算,看谁说的对吧!”小红和小阳进行了以下测量:如图所示,小红和小阳分别在树的东西两侧同一地平线上,他们用手平托三角板,保持三角板的一条直角边与地平面平行,然后前后移动各自位置,使目光沿着三角板的斜边正好经过树的最高点,这时,测得小红和小阳之间的距离为135米,他们的眼睛到地面的距离都是1.6米.(1)请在指定区域内画出小红和小阳测量古松树高的示意图;(2)通过计算说明小红和小阳谁的说法正确(计算结果精确到0.1)(参考数据:≈1.41,≈1.73,≈2.24)40.如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)41.如图,某市为方便行人过马路,打算修建一座高为4x(m)的过街天桥.已知天桥的斜面坡度i=1:0.75是指坡面的铅直高度DE(CF)与水平宽度AE(BF)的比,其中DC∥AB,CD=8x(m).(1)请求出天桥总长和马路宽度AB的比;(2)若某人从A地出发,横过马路直行(A→E→F→B)到达B地,平均速度是2.5m/s;返回时从天桥由BC→CD→DA到达A地,平均速度是1.5m/s,结果比去时多用了12.8s,请求出马路宽度AB的长.42.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)43.电影《厉害了,我的国》震撼上演后,引起了大家的强烈共鸣,当“复兴号”一幕又一幕的奔驰在祖国广袤的大地上,中国高铁的车轮快速的滚出了崭新中国的新画卷.中国高铁的飞速发展,使越来越多的人选择高铁出行.为了保证市民出行方便,某市的高铁站出入口与地铁站出入口进行对接.已知某人沿着坡角为30°的楼梯AB从A行至B,后沿BC路线上斜坡CD,坡角为30°,再行走一段距离DE,到达高铁入口处.若入口处楼梯EF的坡角为45°,DE∥BC∥AF,AB=20米,CD=4米,那么EF的长度是多少米?(保留0.1米)(≈1.414)44.图1是太阳能热水器装置的示意图,利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,AB ⊥BC,垂足为点B,CD∥AB,FG⊥DE,垂足为点G,若∠θ=37°50′,FG=30cm,CD=10cm,求CF的长(结果取整数,参考数据:sin37°50′≈0.6l,cos37°50′≈079,tan37°50′≈0.78)45.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)【参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70】46.如图,李强在教学楼的点P处观察对面的办公大楼,为了求得对面办公大楼的高度,李强测得办公大楼顶部点A的仰角为30°,测得办公大楼底部点B 的俯角为37°,已知测量点P到对面办公大楼上部AD的距离PM为30m,办公大楼平台CD=10m.求办公大楼的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,≈1.73)47.为了测量白塔的高度AB,在D处用高为1.5米的测角仪CD,测得塔顶A的仰角为42°,再向白塔方向前进12米,又测得白塔的顶端A的仰角为61°,求白塔的高度AB.(参考数据sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,结果保留整数)48.如图是宁夏沙坡头的沙丘滑沙场景.已知滑沙斜坡AC的坡度是tanα=,在与滑沙坡底C距离20米的D处,测得坡顶A的仰角为26.6°,且点D、C、B 在同一直线上,求滑坡的高AB.(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).49.如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A 南偏东74°方向的C处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)50.如图,在一次海警演习中,A、B两地分别同时派出甲、乙两快艇营救一货轮C,已知B地位于A地正西方向相距84海里位置,货轮C位于A地正北方向,位于B地北偏东48.2°方向(所有数据精确到个位,sin48.2°≈0.7,cos48.2°≈0.6,tan48.2°≈1.05)(1)求A、B两地分别与货轮C的距离;(2)若乙快艇每小时比甲快艇多行驶20海里,且它们同时达到货轮C位置,求甲、乙快艇的速度.答案一.选择题(共12小题)1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=()A.B.1C.D.【分析】若想利用tan∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ACD的中位线,可分别得到所求的角的正切值相关的线段的比.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,则AC=2x,∴tanA===,故选:A.【点评】本题涉及到三角形的中位线定理,锐角三角函数的定义,解答此题关键是作出辅助线构造直角三角形,再进行计算.2.如图,△ABC中,CD⊥AB,BE⊥AC,=,则sinA的值为()A.B.C.D.【分析】本题可以利用锐角三角函数的定义求解.【解答】解:∵CD⊥AB,BE⊥AC则易证△ABE∽△ACD,∴=,又∵∠A=∠A,∴△AED∽△ABC,∴==,设AD=2a,则AC=5a,根据勾股定理得到CD=a,因而sinA==.故选:B.【点评】求三角函数值的问题一般要转化为,直角三角形的边的比的问题,本题注意到△AED∽△ABC是解决本题的关键.3.在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为()A.B.C.1D.【分析】先过点A作AD⊥BC于D,构造直角三角形,结合∠B=60°,利用sin60°=,cos60°=可求DB=,AD=,把这两个表达式代入到另一个Rt△ADC的勾股定理表达式中,化简可得即a2+c2=b2+ac,再把此式代入通分后所求的分式中,可求其值等于1.【解答】解:过A点作AD⊥BC于D,在Rt△BDA中,由于∠B=60°,∴DB=,AD=c,在Rt△ADC中,DC2=AC2﹣AD2,∴(a﹣)2=b2﹣c2,即a2+c2=b2+ac,∴.故选:C.【点评】本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.4.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C 的坐标不能表示为()A.(b+2a,2b)B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c)D.(a﹣c,﹣2a﹣2c)【分析】作CH⊥x轴于H,AC交OH于F.由△CBH∽△BAO,推出===2,推出BH=﹣2a,CH=2b,推出C(b+2a,2b),由题意可证△CHF∽△BOD,可得=,推出=,推出FH=2c,可得C(﹣b﹣2c,2b),因为2c+2b=﹣2a,推出2b=﹣2a﹣2c,b=﹣a﹣c,可得C(a﹣c,﹣2a﹣2c),由此即可判断;【解答】解:作CH⊥x轴于H,AC交OH于F.∵tan∠BAC==2,∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO,∵∠CHB=∠AOB=90°,∴△CBH∽△BAO,∴===2,∴BH=﹣2a,CH=2b,∴C(b+2a,2b),由题意可证△CHF∽△BOD,∴=,∴=,∴FH=2c,∴C(﹣b﹣2c,2b),∵2c+2b=﹣2a,∴2b=﹣2a﹣2c,b=﹣a﹣c,∴C(a﹣c,﹣2a﹣2c),故选:C.【点评】本题考查解直角三角形、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考选择题中的压轴题.5.如图,△ABC中,∠A=30°,,AC=,则AB的长为()A.B.C.5D.【分析】作CD⊥AB于D,构造两个直角三角形.根据锐角三角函数求得CD、AD的长,再根据锐角三角函数求得BD的长,从而求得AB的长.【解答】解:作CD⊥AB于D.在直角三角形ACD中,∠A=30°,AC=,∴CD=,AD=3.在直角三角形BCD中,,∴BD==2.∴AB=AD+BD=5.故选:C.【点评】巧妙构造直角三角形,熟练运用锐角三角函数的知识求解.6.如图,长方形ABCD中,AB=2,BC=3;E是AB的中点,F是BC上的一点,且CF=BC,则图中线段AC与EF之间的最短距离是()A.0.5B.C.1D.【分析】过F作FG⊥AC于G,然后连接AF,根据△ACF和△ABC底和高的比例可得出△ACF的面积,然后根据S ACF=AC×FG可求出FG的长,继而得出了答案.【解答】解:过F作FG⊥AC于G,连接AF,可得:△ACF和△ABC底之比为1:3;高之比为1:1;∴△ACF和△ABC的面积之比为1:3,又∵AB=2,BC=3,∴S△ABC =3,S△ACF=1,又∵S△ACF=AC×FG,∴FG=.故选:D.【点评】本题考查了解直角三角形的知识,难度较大,首先要判断出FG可表示最短距离,然后解答本题关键的一步是利用底与高的关系求出△AFC的面积.7.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A.50m B.25m C.(50﹣)m D.(50﹣25)m【分析】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.【解答】解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).则AB=MN=(50﹣)m.故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.8.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm【分析】根据OA=OB,可知△AOB是等腰三角形,作OG⊥AB于点G,从而可以得到AG=BG,∠AOB=2∠AOG,从而可以得到OG的长.【解答】解:作OG⊥AB于点G,∵OA=OB=14厘米,∠AOB=60°,∴∠AOG=∠BOG=30°,AG=BG,∴OG=OA•cos30°=7厘米,故选:D.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数解答.9.今年,重庆被“抖音”抖成了“网红城市”,其中解放碑的游客数量明显高于去年同期,如图,小冉和小田决定用所学知识测量解放碑AB的高度,按照以下方式合作并记录所得数据:小冉从大厦DG的底端D点出发,沿直线步行10.2米到达E点,再沿坡度i=1:2.4的斜坡EF行走5.2米到达F点,最后沿直线步行30米到达解放碑底部B点,小田从大厦DG的底端乘直行电梯上行到离D点51.5米的顶端G点,从G点观测到解放碑顶端A点的俯角为26°,若A,B,C,D,E,F,G在同一平面内,且B,F和C,E,D分别在同一水平线上,则解放碑AB的高度约为()米.(精确到0.1米,参考数据:sin26°≈0.44,cos26°≈.90,tan26°≈0.49)A.29.0B.28.5C.27.5D.27.0【分析】作GH⊥BA于H,FM⊥CD于M.想办法求出BC、AH即可解决问题;【解答】解:作GH⊥BA于H,FM⊥CD于M.则四边形BCMF,四边形CDGH 是矩形.在Rt△FEM中,FM:EM=1:2.4,EF=5.2m,∴FM=BC=2m,EM=4.8m,CM=BF=30m,∴CD=CM+EM+DE=45m,∴GH=CD=45m,在Rt△AGH中,AH=GH•tan26°≈22.05m,∵CH=DG=51.5m,∴AB=CH﹣BC﹣AH=51.5﹣2﹣22.05≈27.5(m),故选:C.【点评】本题考查解直角三角形﹣仰角俯角问题,坡度坡角问题,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.10.位于南开(融侨)中学旁边的“转转桥”是重庆市网红景点之一,在桥下人形天桥(如图1),其平面图如图2所示,天桥入口D点有一台阶DC,CD=0.5米,其坡度为i=1:0.75,在DC上方有一平层BC=1米,且BC与地面MN平行,在天桥顶端A点测得B点的俯角为63°,且AD⊥MN,为知道台阶AB的长度,请根据以上信息,帮小亮计算出台阶AB的长度,约为()精确到0.1米,参考数据:sin63°≈0.90,cos63°≈0.45,tan63°≈2.00A.1.4米B.2.5米C.2.8米D.2.9米【分析】延长BC交AD于H.在Rt△DCH中,求出CH,再在Rt△ABH中求出AB即可;【解答】解:延长BC交AD于H.在Rt△CDH中,∵DH:CH=1:0.75,CD=0.5,∴DH=0.4,CH=0.3,∴BH=1.3,在Rt△ABH中,cos63°=,∴AB≈2.9(米),故选:D.【点评】本题考查解直角三角形的应用,解题的关键是理解仰角俯角的概念,理解坡度坡角的定义,学会添加常用辅助线,构造直角三角形解决问题.11.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时【分析】设巡逻船从出发到成功拦截所用时间为x小时,由题意得出∠ABC=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,由三角函数得出BD、AD的长度,得出CD=10x+6.在Rt△ACD中,由勾股定理得出方程,解方程即可.【解答】解:设巡逻船从出发到成功拦截所用时间为x小时;如图所示,由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,AB=12,∠ABD=45°+(90°﹣75°)=60°,∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt△ACD中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.故选:B.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由三角函数和勾股定理得出方程是解决问题的关键.12.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中错误的是()A.①②B.②④C.①③D.③④【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.【解答】解:如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C处的北偏西50°,故①正确;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故②错误;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=,故③正确;∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故④错误.故选:B.【点评】本题考查的是方向角,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.二.填空题(共12小题)13.在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边AB边上的高CD的长为【分析】作CD⊥AB于D,如图,在Rt△ACB中利用正弦的定义可计算出BC=,再利用勾股定理计算出AC=,然后利用面积法计算CD的长【解答】解:作CD⊥AB于D,如图,在Rt△ACB中,∵sinA==,∴BC=×4=,∴AC==,∵CD•AB=AC•BC,∴CD==,即斜边上的高为.故答案为:.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.14.如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是.【分析】根据正切函数是对边比邻边,可得答案.【解答】解:如图,tanα==故答案为:.【点评】本题考查了锐角三角函数,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.如图在方格纸中α,β,γ这三个角的大小关系是α=β>γ.【分析】首先根据锐角三角函数的概念表示出tan∠1=,tan∠4=,进一步分析平行线,再根据平行线的性质进行分析.【解答】解:如图所示,tan∠1=,tan∠4=,故∠1=∠4.根据两直线平行,内错角相等,得∠3=∠2,于是∠1+∠2=∠3+∠4,即α=β.根据两直线平行,内错角相等,得∠4=∠5,又∠3>∠6,故∠3+∠4>∠5+∠6,即β>γ.所以α=β>γ.【点评】考查了平行线的性质及识图分析能力.从图中找出同位角、内错角和同旁内角、根据平行线的性质解答.16.若0°<α<90°,tanα=1,则sinα=.【分析】由0°<α<90°、tanα=1知∠α=45°,据此可得sinα=.【解答】解:∵0°<α<90°,tanα=1,∴∠α=45°,则sinα=,故答案为:.【点评】本题主要考查特殊锐角三角函数值,解题的关键是熟记特殊锐角的三角函数值.17.△ABC中,∠C=90°,tanA=,则sinA+cosA=.【分析】根据tanA=和三角函数的定义画出图形,进而求出sinA和cosA的值,再求出sinA+cosA的值.【解答】解:如图,∵tanA==,∴设AB=5x,则BC=4x,AC=3x,则有:sinA+cosA=+=+=,故答案为:.【点评】此题考查了锐角三角函数的定义,只要画出图形,即可将正弦、余弦、正切函数联系起来,进而得出结论.18.设α是锐角,如果tanα=2,那么cotα=.【分析】根据一个角的余切等于它余角的正切,可得答案.【解答】解:由α是锐角,如果tanα=2,那么cotα=,故答案为:.【点评】本题考查了同角三角函数关系,利用一个角的余切等于它余角的正切是解题关键.19.在Rt△ABC中,∠C=90°,若sinA=,则cosB=.【分析】根据一个角的余弦等于它余角的正弦,可得答案.【解答】解:由∠C=90°,若sinA=,得cosB=sinA=,故答案为:.【点评】本题考查了互余两角的三角函数,利用一个角的余弦等于它余角的正弦是解题关键.20.已知,在Rt△ABC中,∠C=90°,tanB=,则cosA=.【分析】根据正切的定义,可得直角边,根据勾股定理,可得斜边,根据余弦函数,可得答案.【解答】解:如图,由tanB=,得AC=4k,BC=3k,由勾股定理,得AB=5k,cosA===,故答案为:.【点评】本题考查了锐角三角函数的定义,利用正切的定义得出直角边是解题关键.21.计算:tan45°+=5;【分析】先代入三角函数值、计算算术平方根,再计算加法可得答案.【解答】解:tan45°+=1+4=5,故答案为:5.【点评】本题主要考查特殊锐角的三角函数值,解题的关键是熟记特殊锐角的三角函数值和算术平方根的定义.22.已知∠A是锐角,且tanA=,则∠A=30°.【分析】将特殊角的三角函数值代入求解.【解答】解:∵∠A是锐角,tanA=,∴∠A=30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.23.请从以下两个小题中任选一个作答,若多选,则按所选的第一题记分.A.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.B.用科学计算器计算:sin69°≈ 2.47(精确到0.01).【分析】A.根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.B.直接使用科学计算器进行计算.【解答】解:A.∵AB=BC,CD=DE,∴=,=,∴+=+,∴∠BOD=90°,==π.∴S阴影=S扇形OBDB.sin69°≈2.47.故答案是:π;2.47.【点评】A.考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.B.考查了计算器的使用.24.在Rt△ABC中,∠C=90°,∠A=42°,BC=3,则AC的长为8.16.(用科学计算器计算,结果精确到0.01)【分析】根据计算器的使用,可得答案.【解答】解:tan 42≈0.9004,=0.9004,AC≈8.16,故答案为:8.16.【点评】本题考查了计算器,正确使用计算器是解题关键.三.解答题(共26小题)25.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.【分析】依题意设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,先证明△CEM是直角三角形,再利用三角函数的定义求解.【解答】解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,∴EM2+CM2=CE2,∴△CEM是直角三角形,∴sin∠ECM==.【点评】本题考查了锐角三角函数值的求法.关键是利用勾股定理的逆定理证明直角三角形,把问题转化到直角三角形中求解.26.计算:sin30°﹣cos45°+tan260°.【分析】将特殊角的三角函数值代入求值即可.【解答】解:原式=﹣×+×()2=﹣+×3=1.【点评】本题考查了特殊角的三角函数值.熟记特殊角的三角函数值即可解题,属于基础题型.27.计算:2sin30°﹣2cos45°.【分析】首先计算特殊角的三角函数,然后再计算乘法,后计算加减即可.【解答】解:原式=2×﹣2×=1﹣+2=1+.【点评】此题主要考查了特殊角的三角函数,关键是掌握30°、45°、60°角的各种三角函数值.28.计算:2cos230°+﹣sin60°.【分析】首先代入特殊角的三角函数值,然后再计算乘方,后算乘法,最后计算加减即可.【解答】解:原式=2×()2+﹣,=+﹣,=3﹣.【点评】此题主要考查了特殊角的三角函数值,关键是掌握30°、45°、60°角的各种三角函数值.29.计算:3tan30°+cos245°﹣sin60°.【分析】根据特殊角三角函数值,可得答案.【解答】解:3tan30°+cos245°﹣sin60°==.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.30.(1)计算与化简:cos60°•tan30°(2)因式分解:3a2﹣6a+3.【分析】(1)根据特殊角三角函数值,可得答案;(2)根据提公因式法、公式法,可得答案.【解答】解:(1)原式=×=;(2)3a2﹣6a+3=3(a2﹣2a+1)=3(a﹣1)2.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键,分解因式要彻底,分解到不能分解为止.31.计算:tan260°﹣2sin30°﹣cos45°.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=()2﹣2×﹣×=3﹣1﹣1=1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.32.计算:(3﹣π)0+﹣2cos60°.【分析】本题涉及实数运算、二次根式化简等多个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+3﹣=3.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.33.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A落在∠ACB的外角平分线CD上,连结AA′.(1)判断四边形ACC′A的形状,并说明理由.(2)在△ABC中,∠B=90°,AB=24,cos∠BAC=,求CB的长.【分析】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.有一组邻边相等的平行四边形是菱形推知四边形ACC'A'是菱形.(2)通过解直角△ABC得到AC的长,利用勾股定理即可得到BC的长度.【解答】解:(1)四边形ACC'A'是菱形.理由如下:。
人教版初3数学9年级下册 第28章(锐角三角函数)单元测试1(含解析)
人教版九下第28章锐角三角函数单元测试一、选择题(共10小题)1. 在△ABC中,∠C=90∘,AC=6,BC=2,那么下列各式中正确的是( )A. tan A=13B. cot A=13C. sin A=13D. cos A=132. 如图,已知Rt△ABC,CD是斜边AB边上的高,那么下列结论正确的是( )A. CD=AB⋅tan BB. CD=AD⋅cot AC. CD=AC⋅sin BD. CD=BC⋅cos A3. 在Rt△ABC中,sin A的值为12,则cos A的值等于( )A. 12B. 22C. 32D. 34. 如图,在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(0,3),以点A为圆心,AB的长为半径画弧,交x轴的负半轴于点C,连接BC,则∠C的正弦值为( )A. 13B. 3 C. 1010D. 310105. 如图,点E在矩形ABCD的边CD上,AB=2BC,则tan∠CBE+tan∠DAE的值是( )A. 2B. 2+3C. 2−3D. 2+236. 在△ABC中,AB=23,∠BAC=30∘.下列线段BC的长度不能使△ABC的形状和大小都确定的是( )A. 2B. 4C. 3D. 237. 如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物 EF ,在建筑物顶端 F 处测得信号塔顶端 D 的仰角为 37∘(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔 CD 的高度约是 ( )(参考数据:sin37∘≈0.60,cos 37∘≈0.80,tan37∘≈0.75)A. 22.5 米B. 27.5 米C. 32.5 米D. 45.0 米8. 如图,某梯子长 10 米,斜靠在竖直的墙面上,当梯子与水平地面所成角为 α 时,梯子顶端靠在墙面上的点 A 处,底端落在水平地面的点 B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为 β,已知 sin α=cos β=35,则梯子顶端上升了 ( )A. 1 米B. 1.5 米C. 2 米D. 2.5 米9. 在 Rt △ABC 中,AC =8,BC =6,则 cos A 的值等于 ( )A. 45B. 74C. 45 或 74D. 45 或 27710. 如图,电线杆 CD 的高度为 ℎ,两根拉线 AC 与 BC 互相垂直,∠CAB =α(A ,D ,B 三点在同一条直线上),则拉线 BC 的长度为 ( )A. ℎsin αB. ℎcos αC. ℎtan αD. ℎ⋅cos α二、填空题(共8小题)11. 如果在平面直角坐标系 xOy 中,点 P 的坐标为 (3,4),射线 OP 与 x 轴的正半轴所夹的角为 α,那么 α 的余弦值等于 .+∣tan B−3∣=0,那么△ABC的形状是.12. 若cos A−1213. 如图,点C在线段AB上,且AC=2BC,分别以AC,BC为边在线段AB的同侧作正方形ACDE,BCFG,连接EC,EG,则tan∠CEG=.14. 如果矩形一边的两个端点与它对边上的一点所构成的角是直角,那么我们就把这个点叫做矩形的“直角点”,如图,如果E是矩形ABCD的一个“直角点”,且CD=3EC,那么AD:AB的值是.15. 某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45∘的传送带AB调整为坡度i=1:3的新传送带AC(如图所示).已知原传送带AB的长是42 m,那么新传送带AC的长是m.16. 如图,某校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30∘,∠BCA=90∘,台阶的高BC为2 m,那么m长的地毯恰好能铺好台阶(精确到0.1 m;参考数据:2≈1.414,3≈1.732).17. 如图,在△ABC和△DEF中,∠B=40∘,∠E=140∘,AB=EF=5,BC=DE=8,则这两个三角形面积的大小关系为S△ABC S△DEF(填“>”“=”或“<”).18. 如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在,则矩形ABCD 边BC上,连接AF交DE于点N,连接BN.若BF⋅AD=15,tan∠BNF=52的面积为.三、解答题(共6小题)19. 计算:4sin260∘−2sin30∘−cot45∘.tan60∘−2cos45∘20. 已知二次函数y=ax2+x+c的图象经过点A(4,0),B(−2,0),与y轴交于点C,求∠ACB的正切值.21. 如图,已知△ABC和△DCE都是等边三角形,点B,C,E在同一直线上,连接BD交AC边于点F.(1)如果∠ABD=∠CAD,求证:BF2=DF⋅DB;(2)如果AF=2FC,S四边形ABCD=18,求S△DCF的值.22. 在数学综合实践活动课上,某小组要测量学校升旗台旗杆的高度.如图,测得BC∥AD,斜坡AB的长为6 m,坡度i=1:3,在点B处测得旗杆顶端的仰角为70∘,点B到旗杆底部C的距离为4 m.(参考数据:sin70∘≈0.94,cos70∘≈0.34,tan70∘≈2.75,结果精确到1 m)(1)求斜坡AB的坡角α的度数;(2)求旗杆顶端离地面的高度ED.23. 由于发生山体滑坡灾害,武警救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧地面上探测点A,B相距2米,探测线与该地面的夹角分别是30∘和60∘(如图所示),试确定生命所在点C的深度(参考数据:2≈1.414,3=1.732,结果精确到0.1)24. 如图所示,一幢楼房AB的后面有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60∘时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(参考数据:3≈1.73)(1)求楼房的高度约为多少米;(结果精确到0.1米)(2)过了一会儿,当α=45∘时,小猫(填“能”或“不能”)晒到太阳.答案1. A【解析】∵∠C=90∘,BC=6,AC=2,∴AB=62+22=210.A.tan A=BCAC =26=13,正确;B.cot A=ACBC =62=3,故不正确;C.sin A=BCAB =2210=1010,故不正确;D.cos A=ACAB =6210=31010,故不正确.2. D3. C【解析】∵sin A=12,∴∠A=30∘,∴cos A=cos30∘=32.故选C.4. D【解析】由题意知OA=4,OB=3,在Rt△AOB中,AB=OA2+OB2=32+42=5,∴AC=AB=5,∴OC=AC−AO=1,在Rt△BOC中,BC=OC2+OB2=12+32=10,∴sin C=OBBC =310=31010.5. A6. A【解析】如图(1),过点B作BD⊥AC于点D,×23=3,则BD=AB sin30∘=12故当BC=3,即点D与点C重合时,△ABC的形状和大小唯一确定,即C选项不符合题意;当BC=2时,如图(2),则BC1=BC2=2,此时△ABC1与△ABC2的形状和大小不相同,即选项A符合题意;当BC=23时,△ABC是等腰三角形,如图(3),此时△ABC的形状与大小确定,故选项D不符合题意;当BC=4时,如图(4),△ABC是钝角三角形,形状与大小确定,故选项B不符合题意.7. B8. C【解析】如图所示,在Rt△ABC中,AC=sinα×AB=35×10=6(米);在Rt△DEC中,DC=cosβ×DE=35×10=6(米),EC=DE2−DC2=100−36=8(米);∴AE=EC−AC=8−6=2(米).9. C【解析】存在两种情况:①当AB为斜边时,∠C=90∘,∵AC=8,BC=6,∴AB=AC2+BC2=82+62=10.∴cos A=ACAB =810=45,②当AC为斜边时,∠B=90∘,∵AC=8,BC=6,∴AB=AC2−BC2=82−62=27,∴cos A=ABAC =278=74.综上所述,cos A的值等于45或74.10. B11. 35【解析】过P作PA⊥x轴于A,∵P(3,4),∴PA=4,OA=3,由勾股定理得:OP=5,∴α的余弦值是OAOP =35.答案为:35.12. 等边三角形【解析】由题意得cos A−12=0,tan B−3=0,∴cos A=12,tan B=3,∴∠A=60∘,∠B=60∘,∴∠C=60∘,∴△ABC的形状是等边三角形.13. 12【解析】设BC=a,则AC=2a.∵正方形ACDE,∴EC=(2a)2+(2a)2=22a,∠ECD=12∠ACD=45∘.同理:CG=2a,∠GCD=12∠BCD=45∘.∴tan∠CEG=CGCE =2a22a=12.14. 2315. 8【解析】作AD⊥直线CB于点D,∵∠ABD=45∘,∴AD=BD,∵AB=42,∴AD=BD=AB sin45∘=42×22=4,∵新传带AC的坡度i=1:3,∴ADDC =4DC=13,则DC=43,∴AC=AD2+DC2=8(m).16. 5.517. =【解析】如图1,过点D作DH⊥EF,交FE的延长线于点H,∵∠DEF=140∘,∴∠DEH=40∘.∴DH=sin∠DEH⋅DE=8sin40∘,∴S△DEF=12EF⋅DH=20sin40∘.如图2,过点A作AG⊥BC于点G.∵AG=sin B⋅AB=5sin40∘,∴S△ABC=12BC⋅AG=20sin40∘,∴S△DEF=S△ABC.18. 155【解析】由折叠的性质可得AE=EF,AD=DF,AN=NF,∠EAN=∠EFN,∴∠BEF=2∠EAN.在Rt△ABF中,∵AN=NF,∴BN=AN=NF,∴∠EAN=∠EBN,∠BNF=2∠EAN,∴∠BEF=∠BNF,∵tan∠BNF=52,∴tan∠BEF=52,∴BFBE =52,设BF=5k(k>0),则BE=2k,∴AE =EF =BF 2+BE 2=3k ,∴AB =CD =5k .由折叠的性质可得 ∠EFD =∠EAD =90∘,∴∠BFE +∠CFD =90∘,又 ∵∠BEF +∠BFE =90∘,∴∠CFD =∠BEF .∴ 在 Rt △CFD 中,tan ∠CFD =CD CF =52, ∴CF =25k ,∴AD =BC =35k .∵BF ⋅AD =15,∴5k ⋅35k =15,解得 k =1(会去负值),∴AB =5,BC =35,∴矩形ABCD 的面积=AB ⋅BC =5×35=155.19. 原式==3−2=3+2.20. 解法一:根据题意,得 0=16a +4+c,0=4a−2+c.解得 a =−12,c =4.∴ 二次函数的解析式为 y =−12x 2+x +4.∴ 点 C (0,4).作 BH ⊥AC ,垂足为点 H .可求得 AH =BH =32,AC =42.∴CH =2.∴tan ∠ACB =3.【解析】解法二:设二次函数的解析式为 y =a (x−4)(x +2).展开,得 y =ax 2−2ax−8a .比较系数,得 −2a =1.a =−12.∴ 二次函数的解析式为 y =−12x 2+x +4.(下同解法一).21. (1) ∵△ABC ,△DCE 均为等边三角形,∴AB =AC ,∠BAC =∠ACB =∠DCE =60∘,∴∠ACD =180∘−∠ACB−∠DCE =60∘,∴∠BAC =∠ACD ,在 △ABF 和 △CAD 中, ∠BAC =∠ACD,∠ABD =∠CAD,AB =AC,∴△ABF ≌△CAD ,∴AD =BF ,∵∠ABD =∠FAD ,∠ADB =∠ADB ,∴△ADF ∽△BDA ,∴AD BD =DF AD ,即 AD 2=DF ⋅DB ,∵AD =BF ,∴BF 2=DF ⋅DB .(2) ∵∠AFB =∠DFC ,∠BAF =∠DCF ,∴△DCF ∽△ABF ,∴BF DF =AF FC ,∵AF =2FC ,∴BF DF =AF FC =2,∴BF =2FD ,设 S △DCF =x ,∵S △ADF S △DCF =AF FC =2,∴S △ADF =2x ,同理可得,S △ABF =4x ,S △BCF =2x ,∵S 四边形ABCD =18,∴S △DCF +S △ADF +S △ABF +S △BCF =18,即 x +2x +4x +2x =18,解得 x =2,即 S △DCF =2.22. (1) 如图,作 BF ⊥AD 于点 F ,∵i =tan ∠BAF =BF AF =13=33, ∴∠BAF =30∘,即 α=30∘.(2) ∵∠BAF =30∘,AB =6,∴CD=BF=12AB=3.在Rt△BCE中,∵∠EBC=70∘,BC=4,∴EC=BC⋅tan∠EBC=4tan70∘≈11,∴ED=EC+CD=11+3=14(m).答:旗杆顶端离地面的高度ED约为14 m.23. 如图所示,过点C作CD⊥AB,交AB的延长线于点D,由题意可知,∠CAD=30∘,∠CBD=60∘,设CD=x米,则BD=xtan60∘,AD=xtan30∘,∵AB=2米,AD=AB+BD,∴AD=2+BD,∴2+xtan60∘=xtan30∘,解得,x≈1.7.即生命所在点C的深度是1.7米.24. (1)当α=60∘时,在Rt△ABE中,∵tan60∘=ABAE =AB10,∴AB=10⋅tan60∘=103≈10×1.73=17.3(米).即楼房的高度约为17.3米.(2)能【解析】当α=45∘时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45∘时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H,如图所示.∵∠BFA=45∘,∴tan45∘=ABAF=1,此时的影长AF=AB≈17.3米,∴CF=AF−AC≈17.3−17.2=0.1(米),∴CH=CF=0.1米,∴楼房的影子落在台阶MC这个侧面上,∴小猫能晒到太阳.。
【初三数学】滁州市九年级数学下(人教版)第二十八章 《锐角三角函数》单元综合练习题(含答案解析)
九年级数学人教版《锐角三角函数》单元测试题(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在Rt △ABC 中,∠C =90°,各边都扩大2倍,则锐角A 的正弦值( )A .扩大2倍B .缩小12 C .不变 D .无法确定2.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则∠A 的余弦值是( )A.35B.34C.43D.453.已知在Rt △ABC 中,∠C =90°,∠A =α,BC =2,那么AB 的长等于( )A.2sin α B .2sin α C.2cos αD .2cos α 4.在Rt △ABC 中,∠C =90°,sinA =45,AC =6 cm ,则BC 的长度为( )A .6 cmB .7 cmC .8 cmD .9 cm 5.在Rt △ABC 中,∠B =90°,tanA =512,则cosA =( )A.125 B.1213 C.513 D.5126.三角形的三个内角之比为1∶2∶3,则最小角的正切值是( )A .1 B.22 C.33D. 3 7.(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32) 8.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2 B.255 C.55 D.129.如图,在△ABC 中,AD ⊥BC ,垂足为D.若AC =62,∠C =45°,tan ∠ABC =3,则BD 等于( )A .2B .3C .3 2D .2 310.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论不正确的是( )A .sinB =AD AB B .sinB =ACBCC .sinB =AD AC D .sinB =CDAC11.将宽为2 cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A.23 3 cm B.433 cm C. 5 cm D .2 cm12.某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13 m 至坡顶B 处,再沿水平方向行走6 m 至大树脚底点D 处,斜面AB 的坡度(或坡比)i =1∶2.4,那么大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1 mB .17.2 mC .19.7 mD .25.5 m13.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC =2BF ,连接AE ,EF.若AB =2,AD =3,则cos ∠AEF 的值是( )A. 3B.32 C.22 D.1214.如图,以坐标原点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是( )A .(sin α,sin α)B .(cos α,cos α)C .(sin α,cos α)D .(cos α,sin α)15.如图,已知点C 与某建筑物底端B 相距306米(点C 与点B 在同一水平面上),某同学从点C 出发,沿同一剖面的斜坡CD 行走195米至坡顶D 处,斜坡CD 的坡度(或坡比)i =1∶2.4,在D 处测得该建筑物顶端A 的俯视角为20°,则建筑物AB 的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米16.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上,若点P 到BD 的距离为32,则点P 的个数为( )A .1B .2C .3D .4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:cos 245°+3tan60°+cos30°+2sin30°-2tan45°= .18.张丽不慎将一道数学题沾上了污渍,变为“如图,在△ABC 中,∠B =60°,AB =63,tanC =,求BC 的长度”.张丽翻看答案后,得知BC =6+33,则部分为 . 19.如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C =1,tan ∠BA 2C =13,tan∠BA 3C =17,计算tan ∠BA 4C =113,…,按此规律,写出tan ∠BA n C = .(用含n 的代数式表示)三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)Rt△ABC中,∠C=90°,c=0.8,b=0.4,解这个直角三角形.解:21.(本小题满分9分)△ABC中,(3·tanA-3)2+|2cosB-3|=0.(1) 判断△ABC的形状;(2) 若AB=10,求BC,AC的长.解:22.(本小题满分9分)如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6 m.求树高DE.解:23.(本小题满分9分)如图,某船由西向东航行,在点A处测得小岛O在北偏东60°方向,船航行了10海里后到达点B,这时测得小岛人教版数学九年级下册第二十八章锐角三角函数单元提优卷人教版数学九年级下册第二十八章锐角三角函数单元提优卷一、选择题1.在Rt△ABC中,∠C=90°,若将各边长度都扩大为原来的5倍,则∠A的正弦值( D ) A.扩大为原来的5倍B .缩小为原来的15C .扩大为原来的10倍D .不变2.小明在某次投篮中刚好把球打到篮板的点D 处后进球.已知小明与篮框底的距离BC=5米,眼睛与地面的距离AB=1.7米,视线AD 与水平线AE 的夹角为a ,如图所示.若tana=310,则点D 到地面的距离CD 是( C )A.2.7米B.3.0米C.3.2米D.3.4米3.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60 cm 长的绑绳EF ,tan α=,则“人字梯”的顶端离地面的高度AD 是( B )A . 144 cmB . 180 cmC . 240 cmD . 360 cm4.在Rt △ABC 中,∠C =90°,BC =1,AC =,则∠A 的度数是( A )A . 30°B . 45°C . 60°D . 70°5.如图,有两个全等的正方形ABCD 和BEFC ,则tan(∠BAF +∠AFB)=( A )A.1B.56 C. 23D. 6.把Rt △ABC 各边的长度都扩大3倍得到Rt △A ′B ′C ′,那么锐角∠A 、∠A ′的余弦值的关系是( B )A .cosA =cosA ′B .cosA =3cosA ′C .3cosA =cosA ′D .不能确定7.如图,小岛在港口P 的北偏西60°方向,距港口56海里的A 处,货船从港口P 出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( A )海里/时 /时 海里/时 海里/时8.如图,在△ABC 中,AB =2,BC =4,∠ABC =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( A ) A.B.C.D.9.如图,△ABD 和△BDC 都是直角三角形,且∠ABD=∠BDC=90°,∠BAD=30°,∠DBC=45°,则tan ∠DAC 的值为( C )A.B. C. D. 310.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( D )A .26米B .28米 C.30米 D .46米11.如图,△ABC 内接于⊙0,AD 为⊙0的直径,交BC 于点E ,若DE=2,0E=3,则tan ∠ACB ·tan ∠ABC=( C )A.2B.3C.4D.5二、填空题12.在Rt △ABC 中,∠C =90°,AC ∶BC =1∶2,则sinB =________. [答案] 3413.如图,在半径为3的⊙0中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC=2,则tanD=____.[答案]14.已知对任意锐角α,β均有cos(α+β)=cos α·cos β-sin α·sin β,则cos75°=________.【答案】6-2415.如图,在△ABC 中,AB=AC=10,点D 是边上一动点(不与B ,C 重合),∠ADE=∠B=a ,DE 交AC 于点E ,且cosa=45,则线段CE 的最大值为____.【答案】6.416.一个人由山脚爬到山顶,须先爬倾斜角为30度的山坡300米到达D ,再爬倾斜角为60度的山坡200米,这座山的高度为______________(结果保留根号)【答案】(150+100)米17.如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为20 m,则电梯楼的高BC为____________米(精确到0.1).(参考数据:≈1.414≈1.732)【答案】54.618.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为_____米.【答案】5三、解答题19.在Rt△ABC中,∠C=90°,sin B=,求cos A的值.【答案】解在△ABC中,∵∠C=90°,∴∠A+∠B=90°,∴cos A=sin B=.20.被誉为“中原第一高楼”的郑州会展宾馆(俗称“玉米楼”)坐落在风景如画的如意湖畔,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华决定用自己学到的知识测量“玉米楼”的高度.如图,刘明在点C处测得楼顶B的仰角为45°,王华在高台上的D处测得楼顶的仰角为40°.若高台DE的高为5米,点D到点C的水平距离EC为47.4米,A,C,E三点共线,求“玉米楼”AB的高度.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)【解析】如图,过点D 作DM ⊥AB 于点M ,交BC 于点F ,过点C 作CG ⊥DM 于点G ,设BM=x 米,由题意,得DG=47.4米,CG=5米,∠BFM=45°,∠BDM=40°,则FM=BM=x 米,GF=CG=5米,∴DF=DG +GF=52.4米,∴DM=BM tan BDM ∠=x tan 40︒≈x0.84(米),∵DM -FM=DF ,∴x0.84-x=52.4,解得x≈275.1,∴AB=BM +AM=BM +DE ≈280米. 答:“玉米楼”AB 的高约为280米.21.计算:sin 45°+cos 230°+2sin 60°. 【答案】解 原式=×+2+2×=++=1+. 22.如图,AB 是⊙O 的直径,延长AB 至P ,使BP=OB ,BD 垂直于弦BC ,垂足为点B ,点D 在PC 上,设∠PCB=α,∠P0C=β,求证tan α·tan β=13【解析】如图,连接AC ,则∠A=12∠POC=2β. ∵AB 是⊙O 的直径,∴∠ACB=90°,∴tan 2β=BCAC.∵BD ⊥BC ,tan α=BD BC ,BD ∥AC ,∴△PBD ∽△PAC ,∴BD AC =PBPA.∵PB=OB=OA ,∴PB PA =13.∴BD AC =13.∴tan α·tan 2β=BD BC ·BC AC =BDAC人教版九年级数学下册 第二十八章锐角三角函数检测卷一、选择题(每小题3分,共30分)1.已知在Rt △ABC 中,∠C =90°,AB =8,BC =5,那么下列式子中正确的是( A )A.sin A =58B.cos A =58C.tan A =58 D.以上都不对 2.若cos A =32,则∠A 的大小是( A ) A.30° B.45° C.60° D.90°3.已知在Rt △ABC 中,∠C =90°,sin A =37,BC =4,则AB 的长度为( D ) A.43 B.74 C.8103 D.2834.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( A )A.2+ 3B.2 3C.3+ 3D.3 35.△ABC 在网格中的位置如图所示(每个小正方形边长为1),AD ⊥BC 于D ,下列四个选项中,错误的是( C )A.sin α=cos αB.tan C =2C.sin β=cos βD.tan α=16.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔为2 海里的点A处.如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是( C )A.2 海里B.2sin55°海里C.2cos55°海里D.2tan55°海里7.Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,那么c 等于( B )A.a cos A+b sin BB.a sin A+b sin BC.asin A+bsin B D.acos A+bsin B8.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( D )A.4sinθ米2 B.4cosθ米2 C.(4+tanθ4)米2 D.(4+4tanθ)米29.如图,要在宽为22米的九洲大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD 垂直.当灯罩的轴线DO通过公路路面的中心时照明效果最佳.此时,路灯的灯柱BC高度应该设计为( D )A.(11-22)米B.(113-22)米C.(11-23)米D.(113-4)米10.如图,小明爬山,在山脚下B处看山顶A的仰角为30°,小明在坡度为i=512的山坡BD上去走1300米到达D处,此时小明看山顶A的仰角为60°,则山高AC为( B )A.600-250 3B.6003-250C.350+350 3D.500 3二、填空题(每小题4分,共24分)11.计算:2sin60°12.如图,▱ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于13.传送带和地面所成斜坡的坡度为1∶0.75,它把物体从地面送到离地面高8米的地方,物体在传送带上所经过的路程为10米.14.如图所示,小芳在中心广场放风筝,已知风筝拉线长100米(假设拉线是直的),且拉线与水平地面的夹角为60°,若小芳的身高忽略不计,则风筝离水平(结果保留根号).15.如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=12 .16.△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是三、解答题(共66分)17.(6分)计算:2cos 245°-(tan60°-2)2-(sin60°-1)0+(12)-2 解:原式=2×(22)2-|3-2|-1+4=1-(2-3)-1+4=3+2.18.(6分)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解:∵在直角△ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5,∴AC =AD 2+CD 2=122+52=13,∴sin C =AD AC =1213.19.(6分)如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,求大厅两层之间的距离BC 的长.(结果精确到0.1米)(参考数据:sin31°=0.515,cos31°=0.857,tan31°=0.60)解:过B作地平面的垂线段BC,垂足为C.在Rt△ABC中,∵∠ACB=90°,∴BC=AB·sin∠BAC=12×0.515≈6.2(米).即大厅两层之间的距离BC的长约为6.2米.20.(8分)如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)解:作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.21.(8分)王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知AC=20 cm,BC=18 cm,∠ACB=50°,王浩的手机长度为17 cm,宽为8 cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)解:王浩同学能将手机放入卡槽AB内.理由:作AD⊥BC于点D,∵∠C=50°,AC=20 cm,∴AD=AC·sin50°=20×0.8=16 cm,CD=AC·cos50°=20×0.6=12 cm,∵BC=18 cm,∴DB=BC-CD=18-12=6 cm,∴AB=AD2+BD2=162+62=292,∵17=289<292,∴王浩同学能将手机放入卡槽AB内.22.(10分)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73)人教新版九年级下学期单元测试卷:《锐角三角函数》一.选择题1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tan A =()A.B.1C.D.2.若0°<∠A<45°,那么sin A﹣cos A的值()A.大于0B.小于0C.等于0D.不能确定3.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.04.关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0),合理利用这些公式可以将一些角的三角函数值转化为特殊角的三角函数来求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1利用上述公式计算下列三角函数①s in105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0其中正确的个数有()A.1个B.2个C.3个D.4个5.已知sinα=,求α,若用计算器计算且结果为“30”,最后按键()A.AC10N B.SHIET C.MODE D.SHIFT6.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为()A.(b+2a,2b)B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c)D.(a﹣c,﹣2a﹣2c)7.如图1是一种雪球夹,通过一个固定夹体和一个活动夹体的配合巧妙完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.图2是其简化结构图,当雪球夹闭合时,测得∠AOB=60°,OA=OB=14cm,则此款雪球夹从O到直径AB的距离为()A.14cm B.14cm C.7cm D.7cm8.如图,一辆小车沿坡度为的斜坡向上行驶13米,则小车上升的高度是()A.5米B.6米C.6.5米D.12米9.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置侧倾器测得楼房CD顶部点D的仰角为30°,向前走20米到达E处,测得点D的仰角为60°已知侧倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米)()A.30米B.18.9米C.32.6米D.30.6米10.如图,禁止捕鱼期间,某海上稽查队在某海域巡逻,上午某一时刻在A处接到指挥部通知,在他们东北方向距离12海里的B处有一艘捕鱼船,正在沿南偏东75°方向以每小时10海里的速度航行,稽查队员立即乘坐巡逻船以每小时14海里的速度沿北偏东某一方向出发,在C处成功拦截捕鱼船,则巡逻船从出发到成功拦截捕鱼船所用的时间是()A.1小时B.2小时C.3小时D.4小时二.填空题11.已知Rt△ABC中,∠C=90°,AC=3,∠B=37°,则BC的长为(注:tan ∠B=0.75,sin∠B=0.6,c os∠B=0.8)12.用不等号“>”或“<”连接:sin50°cos50°.13.若tanα=1(0°<α<90°),则sinα=.14.已知,在Rt△ABC中,∠C=90°,tan B=,则cos A=.15.在△ABC中,若|sin A﹣|+(cos B﹣)2=0,则∠C的度数是.16.请从下列两个小题中任选一个作答,若多选,则按第一题计分.A:一个正多边形的一个外角为36°,则这个多边形的对角线有条.B:在△ABC中AB=AC,若AB=3,BC=4,则∠A的度数约为.(用科学计算器计算,结果精确到0.1°.)17.如图,点A(t,2)在第一象限,OA与x轴所夹的锐角为α,sinα=,则t=18.如图,小明想测量学校教学楼的高度,教学楼AB的后面有一建筑物CD,他测得当光线与地面成22°的夹角时,教学楼在建筑物的墙上留下高2米高的影子CE;而当光线与地面成45°的夹角时,教学楼顶A在地面上的影子F与墙角C有13米的距离(点B,F,C在同一条直线上),则AE之间的长为米.(结果精确到lm,参考数据:sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)三.解答题19.如图,在正方形ABCD中,M是AD的中点,BE=3AE,试求sin∠ECM的值.20.我们知道:sin30°=,tan30°=,sin45°=,tan45°=1,sin60°=,tan60°=,由此我们可以看到tan30°>sin30°,tan45°>sin45°,tan60°>sin60°,那么对于任意锐角α,是否可以得到tanα>sinα呢?请结合锐角三角函数的定义加以说明.21.在Rt△ABC中,∠C=90°,若sin A=.求cos A,sin B,tan B的值.22.计算:3tan30°+cos245°﹣2sin60°.23.(1)验证下列两组数值的关系:2sin30°•cos30°与sin60°;2sin22.5°•cos22.5°与sin45°.(2)用一句话概括上面的关系.(3)试一试:你自己任选一个锐角,用计算器验证上述结论是否成立.(4)如果结论成立,试用α表示一个锐角,写出这个关系式.24.如图,在平面直角坐标系中,P是第一象限的点,其坐标为(6,y),且OP与x轴正半轴的夹角α的正切值为.求:(1)y的值;(2)角α的正弦值.25.某建筑物的金属支架如图所示,根据要求AB长为4m,C为AB的中点,点B到D的距离比立柱CD的长小0.5m,∠BCD=60°,求立柱CD长.26.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角α和坝底宽AD(结果果保留根号).参考答案一.选择题1.【解答】解:过B作BE∥AC交CD于E.∵AC⊥BC,∴BE⊥BC,∠CBE=90°.∴BE∥AC.∵AB=BD,∴AC=2BE.又∵tan∠BCD=,设BE=x,则AC=2x,∴tan A===,故选:A.2.【解答】解:∵cos A=sin(90°﹣A),余弦函数随角增大而减小,∴当0°<∠A<45°时,sin A<cos A,即sin A﹣cos A<0.故选:B.3.【解答】解:∵sinα+cosα=,∴(sinα+cosα)2=2,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.4.【解答】解:①sin105°=sin(45°+60°)=sin60°cos45°+cos60°sin45°=×+×=,故此选项正确;②tan105°=tan(60°+45°)====﹣2﹣,故此选项正确;③sin15°=sin(60°﹣45°)=sin60°cos45°﹣cos60°sin45°=×﹣×=,故此选项正确;④cos90°=cos(45°+45°)=cos45°cos45°﹣sin45°sin45°=×﹣×=0,故此选项正确;故正确的有4个.故选:D.5.【解答】解:“SHIET”表示使用该键上方的对应的功能.故选:D.6.【解答】解:作CH⊥x轴于H,AC交OH于F.∵tan∠BAC==2,∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO,∵∠CHB=∠AOB=90°,∴△CBH∽△BAO,∴===2,∴BH=﹣2a,CH=2b,∴C(b+2a,2b),由题意可证△CHF∽△BOD,∴=,∴=,∴FH=2c,∴C(﹣b﹣2c,2b),∵2c+2b=﹣2a,∴2b=﹣2a﹣2c,b=﹣a﹣c,∴C(a﹣c,﹣2a﹣2c),故选:C.7.【解答】解:作OG⊥AB于点G,∵OA=OB=14厘米,∠AOB=60°,∴∠AOG=∠BOG=30°,AG=BG,∴OG=OA•cos30°=7厘米,故选:D.8.【解答】解:作BC⊥AC.在Rt△ABC中,∵AB=13m,BC:AC=5:12,∴可以假设:BC=5k,AC=12k,∵AB2=BC2+AC2,∴132=(5k)2+(12k)2,∴k=1,∴BC=5m,故选:A.9.【解答】解:过B作BF⊥CD,作FG⊥BD,∵∠BDF=∠FDC=30°,∴EF=FH,∵∠BGF=90°,∴EF=FH=10,∴DF=20,∴DC=DH+HC=10+1.6≈18.9.故选:B.10.【解答】解:设巡逻船从出发到成功拦截所用时间为x小时;如图所示,由题意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,过点A作AD⊥CB的延长线于点D,在Rt△ABD中,AB=12,∠ABD=45°+(90°﹣75°)=60°,∴BD=AB•cos60°=AB=6,AD=AB•sin60°=6,∴CD=10x+6.在Rt△ACD中,由勾股定理得:,解得:(不合题意舍去).答:巡逻船从出发到成功拦截所用时间为2小时.故选:B.二.填空题(共8小题)11.【解答】解:∵∠C=90°,∴tan B=,∴BC===4.故答案为4.12.【解答】解:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案为>.13.【解答】解:∵tanα=1(0°<α<90°),∴∠α=45°,则sinα=,故答案为.14.【解答】解:如图,由tan B=,得AC=4k,BC=3k,由勾股定理,得AB=5k,cos A===,故答案为:.15.【解答】解:∵在△ABC中,|sin A﹣|+(cos B﹣)2=0,∴sin A=,cos B=,∴∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°.故答案为:90°.16.【解答】解:A、由一个正多边形的一个外角为36°,得360÷36=10,则这个多边形的对角线有=35,B、由AB=AC,若AB=3,BC=4,得cos A=≈0.667,A=42.5故答案为:35,42.5°.17.【解答】解:过A作AB⊥x轴于B.∴sinα=,∵sinα=,∴=,∵A(t,2),∴AB=2,∴OA=,∴t=,故答案为:.18.【解答】解:过点E作EM⊥AB,垂足为M.设AB为xm,在Rt△ABF中,∠AFB=45°,∴BF=AB=xm,∴BC=BF+FC=(x+13)m,在Rt△AEM中,AM=AB﹣BM=AB﹣CE=(x﹣2)m,又tan∠AEM=,∠AEM=22°,∴=0.4,解得x≈12,则ME=BC=BF+13≈12+13=25(m).在Rt△AEM中,cos∠AEM=,∴AE=≈≈27(m),故AE的长约为27m.故答案为:27.三.解答题(共8小题)19.【解答】解:设AE=x,则BE=3x,BC=4x,AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,∴EM2+CM2=CE2,∴△CEM是直角三角形,∴sin∠ECM==.20.【解答】解:对于任意锐角α,都有tanα>sinα,理由如下:如图,△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,设∠A=α.则tanα=,sinα=,∵b<c,∴>,∴tanα>sinα.21.【解答】解:∵sin A==,∴设AB=13x,BC=12x,由勾股定理得:AC===5x,∴cos A==,sin B=cos A=,tan B==.22.【解答】解:3tan30°+cos245°﹣2sin60°===.23.【解答】解:(1)∵2sin30°•cos30°=2××=,sin60°=.2sin22.5°•cos22.5≈2×0.38×0.92≈0.7,sin45°=≈0.7,∴2sin30°•cos30°=sin60°,2sin22.5°•cos22.5=sin45°;(2)由(1)可知,一个角正弦与余弦积的2倍,等于该角2倍的正弦值;(3)2sin15°•cos15°≈2×0.26×0.97≈,sin30°=;故结论成立;(4)2sinα•cosα=sin2α.24.【解答】解:(1)作PC⊥x轴于C.∵t anα=,OC=6,∴PC=8,即y=8.(2)∵OP==10.则sinα===.25.【解答】解:连接BD,作OB⊥CD于点O,∵在直角三角形BCO中,∠BCD=60°,AB长为4m,C为AB的中点,∴OC=m,OB=OC=m,在直角三角形BOD中,设CD为x,OD=DC﹣OC=x﹣1,BD=CD﹣0.5=x﹣0.5,OB=,可得:,解得:x=3.75,答:CD的长为3.75m.26.【解答】解:过B作BF⊥AD于F.在Rt △ABF 中,AB =5,BF =CE =4.∴AF =3.在Rt △CDE 中,tan α==i =. ∴∠α=30°且DE ==4,∴AD =AF +FE +ED =3+4.5+4=7.5+4.答:坡角α等于30°,坝底宽AD 为7.5+4.人教版九年级下学期第28章锐角三角函数 单元过关测试卷 含参考答案一、选择题(每小题3分,共18分)1、在Rt △ABC 中,∠C =90º,b=53c ,则sinB 的值是( ) A 、53 B 、54 C 、43 D 、34 2、在△ABC中,若1sin 02A B -=,则△ABC 是( ) A 、等腰三角形 B 、等腰直角三角形 C 、直角三角形 D 、等边三角形3、如图,在菱形ABCD 中,DE ⊥AB ,cosA=53,BE=2,则tan ∠DBE 的值是( ) A 、21 B 、2 C 、25 D 、554、如图,长4m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( )A .32 m B.62 m C .(32﹣2)m D .(62﹣2)m5、一人乘雪橇沿坡度为i=1:3的斜坡滑下,滑下距离S(米)与时间t (秒)之间的关(第3题) (第4题) (第6题) E D C B A D B C A B D C E A系为S=2210t t +,若滑动时间为4秒,则他下降的垂直高度为( )A 、72米B 、36米C 、336米D 、318米6、某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立 于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处, 然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么 大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A .8.1米B .17.2米C .19.7米D .25.5米二、填空题(每小题3分,共21分)7、在△ABC 中,∠C =90°,若sinB =31,则sinA 的值为 8、如图,P 是∠α 的边OA 上一点,且点P 的坐标为(3,4), 则sin α=9、升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为 . (取3=1.732,结果精确到0.1m )10、如图,线段AB 、DC 分别表示甲、乙两座楼房的高,AB ⊥BC , DC ⊥BC ,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在点A 测得D 点的仰角α=45°,则乙建筑物高DC= 米.11、如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高BC=5m ,则坡面AB 的长度是 米.12、某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为13、四边形的对角线的长分别为,可以证明当时(如图1),四边形的面积,那么当所夹的锐角为θ时(如图2),四边形的面积 .(用含的式子表示) 三、解答题(共61分)14、计算:(8分)(145sin 60)︒-︒(2)3sin60°﹣2cos30°﹣tan60°•tan45°.(第10题) (第11题) (第13题) D 图1 C 图215、(8分)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i (指坡面的铅直高度与水平宽度的比).且AB=20 m .身高为1.7 m 的小明站在大堤A 点,测得高压电线杆端点D 的仰角为30°.已知地面CB 宽30 m ,求高压电线杆CD 的高度(结果保留0.1m,1.732).16、(8分)如图,在四边形ABCD 中,∠BCD 是钝角,AB=AD ,BD 平分∠ABC ,若CD=3,BD=62,sin ∠DBC=33,求对角线AC 的长.17、(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)18、(8分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (≈1.411.73≈2.45, )AB19、(10分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
人教版九年级下册数学 第28章 锐角三角函数 单元测试卷(有答案)
2020-2021学年人教新版九年级下册数学《第28章锐角三角函数》单元测试卷一.选择题1.在Rt△ABC中,∠C=90°,各边都扩大5倍,则锐角A的三角函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定2.用计算器求sin28°,cos27°,tan26°的值,它们的大小关系是()A.tan26°<cos27°<sin28°B.tan26°<sin28°<cos27°C.sin28°<tan26°<cos27°D.cos27°<sin28°<tan26°3.已知锐角α满足cosα=,则tanα是()A.B.C.2D.24.在直角三角形中不能求解的是()A.已知一直角边和一锐角B.已知斜边和一锐角C.已知两边D.已知两角5.如图,为测一河两岸相对两电线杆A、B间的距离,在距A点15米处的C点(AC⊥BA)测得∠C=50°,则A、B间的距离应为()A.15sin50°米B.15cos50°米C.15tan50°米D.米6.如图,在高为2m,坡比为1:的楼梯上铺地毯,地毯的长度应为()A.4m B.6m C.m D.m 7.在Rt△ABC中,∠C=90°,cos A=,则sin B的值为()A.B.C.D.28.△ABC中,tan A=1,cos B=,则△ABC为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.在△ABC中,∠C=90°,a=5,c=13,用计算器求∠A约等于()A.14°38′B.65°22′C.67°23′D.22°37′10.如图,在某海岛的观察所A测得船只B的俯角是30°.若观察所的标高(当水位为0m 时的高度)是53m,当时的水位是+3m,则观察所A和船只B的水平距离BC是()A.50m B.50m C.5m D.53m二.填空题11.比较大小:sin87°tan47°.12.在Rt△ABC中,∠C=90°,AB=,BC=1,则tan B=.13.在△ABC中,∠B=74°37′,∠A=60°23′,则∠C=,sin A+cos B+tan C ≈.14.计算:tan45°+sin260°=.15.已知:∠α是锐角,且sinα•cosα=,则sinα+cosα=.16.一船向西航行,上午9时30分在小岛A的南偏东30°,距小岛A60海里的B处,上午11时,船到达小岛A的正南方向,则该船的航行速度为.17.如图,小明想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进20m至B处,测得仰角为60°,那么塔高约为m.(小明身高忽略不计,≈1.732)18.如图,已知l1∥l2,l1与l2之间的距离为,∠α=60°,则AB=.19.在Rt△ABC中,∠C=90°,若cos B=,则tan A=,若此时△ABC的周长为48,那么△ABC的面积.20.如图,△ABC中,∠C=90°,BC=4,AB的垂直平分线MN交AC于D,且CD:DA =3:5,则sin A=.三.解答题21.在Rt△ABC中,∠C=90°,AC=5cm,BC=2cm.求∠A,∠B的正弦、余弦和正切的值.22.如图,梯子AB的长为2.8m.当α=60°时,求梯子顶端离地面的高度AD和两梯脚之间的距离BC.当α=45°时呢?23.已知∠A为锐角,且cos A=,求sin A、tan A.24.观察下列等式:①sin30°=,cos60°=;②sin45°=,cos45°=;③sin60°=,cos30°=.(1)根据上述规律,计算sin2α+sin2(90°﹣α)=.(2)计算:sin21°+sin22°+sin23°+…+sin289°.25.如图,广场上空有一个气球A,地面上点B,C,D在一条直线上,BC=20m,在点B,C分别测得气球A的仰角∠ABD为45°,∠ACD为56°,求气球A离地面的高度AD(精确到0.1m).26.在直角坐标系中,点P(x,6)在第一象限,且OP与x轴正半轴的夹角α的正切值是.求x的值,及角α的正弦和余弦值.27.用“<”符号连接下列各三角函数cos15°、cos30°、cos45°、cos60°、cos75°.参考答案与试题解析一.选择题1.解:因为三角函数值与对应边的比值有关,所以各边的长度都扩大5倍后,锐有A的各三角函数值没有变化,故选:A.2.解:∵tan26°≈0.488,cos27°≈0.891,sin28°≈0.469.故sin28°<tan26°<cos27°.故选:C.3.解:∵cosα==,∴可设b=x,则c=3x,∵a2+b2=c2,∴a=2x,∴tanα===2.故选:D.4.解:A、已知一直角边和一锐角能够求解;B、已知斜边和一锐角能够求解;C、已知两边能求解;D、已知两角不能求解.故选:D.5.解:因为AC=15米,∠C=50°,在直角△ABC中tan50°=,所以AB=15•tan50°米.故选:C.6.解:如图,根据题意得:AC=2m,i=AC:BC=1:,∴BC=AC=2m,∴地毯的长度应为:AC+BC=2+2(m).故选:D.7.解:在△ABC中,∠C=90°,∠A+∠B=90°,则sin B=cos A=.故选:A.8.解:由tan A=1,cos B=,得A=45°,B=30°,由三角形内角和定理,得C=180°﹣A﹣B=105°,故选:B.9.解:sin A==≈0.385,A=sin﹣10.385=22.64°=22°37′,故选:D.10.解:由题意得,AC=50米,∠ABC=30°,在Rt△ABC中,BC=AC cot∠ABC=50(米).故选:B.二.填空题11.解:∵sin87°<1,tan47°>tan45°=1,∴sin87°<tan47°,故答案为:<.12.解:∵∠C=90°,AB=,BC=1,∴AC==2,∴tan B==2,故答案为:2.13.解;∠C=180°﹣(∠A+∠B)=180°﹣135°=45°.sin A+cos B+tan C≈0.86935+0.26527+1≈2.1346.故答案为:45°;2.1346.14.解:tan45°+sin260°=1+()2=1.故答案为:1.15.解:∵(sinα+cosα)2=sin2α+2sinα•cosα+cos2α=1+2sinα•cosα,∴当sinα•cosα=时,原式=1+=,则sinα+cosα=±=±,∵∠α是锐角,sinα,cosα都为正数,∴sinα+cosα=.故答案为:.16.解:如图在Rt△ABC中,∠BAC=90°﹣60°=30°,AB=60海里,故BC=30海里,11时﹣9时30分=1.5小时,船航行的速度为30÷1.5=20海里/时.故答案为:20海里/时.17.解:∵∠DAB=30°,∠DBC=60°,∴BD=AB=20m.∴DC=BD•sin60°=20×≈17.32(m).故答案为:17.32.18.解:如图,过点B作BC⊥l2于点C,则BC=,在Rt△ABC中,∠BAC=α=60°,BC=,所以AB===2.故答案是:2.19.解:设c=5k,a=3k.由勾股定理得:b===4k.∴tan A==.∵△ABC的周长为48,∴5k+3k+4k=48.解得:k=4.∴3k=3×4=12,4k=4×4=16.∴△ABC的面积==96.故答案为:;96.20.解:如图,连BD,设CD=3x,则DA=5x,又∵MN垂直平分AB,∴DB=DA=5x,在Rt△BCD中,BC=4,∵BD2=CD2+BC2,∴(5x)2=(3x)2+42,∴x=1,∴AC=AD+DC=5x+3x=8x=8,在Rt△ABC中,AB===4.sin A=.故答案为:三.解答题21.解:由勾股定理得:AB===7(cm).∴sin A==,cos A==,tan A==,sin B==,cos B==,tan B===.22.解:∵AB=AC,AD⊥BC,∴BC=2BD,∠ABD=∠ACD.当α=60°时,在Rt△ABD中,∠ADB=90°,AB=2.8m,∠ABD=60°,∴BD=AB•cos∠ABD=1.4m,AD=AB•sin∠ABD=m,∴BC=2BD=2.8m;当α=45°时,在Rt△ABD中,∠ADB=90°,AB=2.8m,∠ABD=45°,∴BD=AB•cos∠ABD=m,AD=AB•sin∠ABD=m,∴BC=2BD=m.23.解:∵sin2A+cos2A=1,即sin2A+()2=1,∴sin2A=,∴sin A=或﹣(舍去),∴sin A=,∵tan A=,∴tan A==.24.解:(1)∵根据已知的式子可以得到sin(90°﹣α)=cosα,∴sin2α+sin2(90°﹣α)=1;(2)sin21°+sin22°+sin23°+…+sin289°=(sin21°+sin289)+(sin22°+sin288°)+…+sin245°=1+1+…1+=44+=.25.解:根据题意,得∠ADB=90°,∠ABD=45°,∴∠DAB=45°,∴AD=BD,∴CD=BD﹣BC=AD﹣20,在Rt△ADC中,∠ACD=56°,∴tan56°=,即1.48≈,解得AD≈61.7(m).答:气球A离地面的高度AD约为61.7m.26.解:如图所示,过点P作PQ⊥x轴于点Q,由P(x,6)且P在第一象限知OQ=x,PQ=6,∵tan∠POQ=tanα=,∴=,即=,解得x=9,则OP===3,∴sinα===,cosα===.27.解:∵75°>60°>30°>15°,∴cos75°<cos60°<cos30°<cos15°.。
九年级下册《第二十八章 锐角三角函数》单元检测试卷及答案(共八套)
九年级下册《第二十八章锐角三角函数》章节测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.sin60°的值等于()A.12 B.2CD2.已知α为锐角,sin(α﹣20°),则α=()A.20° B.40° C.60° D.80°3.在正方形网格中,∠α的位置如图所示,则tanα的值是()ABC.12D.24.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,下列各式成立的是()A.b=a•sinB B.a=b•cosB C.a=b•tanB D.b=a•tanB5.在Rt△ABC中,各边都扩大5倍,则角A的三角函数值()A.不变 B.扩大5倍 C.缩小5倍 D.不能确定6.在△ABC中,∠C=90°,tanA=13,则cosA的值为()AB.23C.34D7.在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()ABCD8.如图,山顶一铁塔AB在阳光下的投影CD的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB的高为()A .3米B .C .D .9.坡度等于1) A .30°B .40°C .50°D .60°10.济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A 处仰望塔顶,测得仰角为30°,再往楼的方向前进60m 至B 处,测得仰角为1.7,结果精确到1m ,则该楼的高度CD 为( )A .47mB .51mC .53mD .54m二、填空题(共6小题,每小题3分,共18分) 11.求值:sin60°﹣tan30°= .12.如图,在直角三角形ABC 中,∠C=90°,AB=10,则∠A= 度.13.如图,将∠AOB 放置在5×5的正方形网格中,则cos ∠AOB 的值是 .A CBA14.△ABC 中,∠C=90°,斜边上的中线CD=6,sinA=13,则S △ABC = . 15.如图,身高1.6m 的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m ,那么这棵树高为(其中小丽眼睛距离地面高度近似为身高) .16.在我们生活中通常用两种方法来确定物体的位置.如小岛A 在码头O 的南偏东60°方向的14千米处,若以码头O 为坐标原点,正东方向为x 轴的正方向,正北方向为y 轴的正方向,1千米为单位长度建立平面直角坐标系,则小岛A 也可表示成_________________. 三、解答题(共8题,共72分)17.(本题8分)已知α为一锐角,sinα=45,求tanα.18.(本题8分)如图,在△ABC 中,∠C=90°,BC=1,AB=2,求sinA 的值.19.(本题8分)如图,已知AC=4,求AB 和BC 的长.BCBA C20.(本题8分)如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm )(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.(本题8分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB 长为AC 的长度.22.(本题10分)某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为45°,沿山坡向上走到B 处测得宣传牌底部C 的仰角为30°.已知山坡AB 的坡度i=1AB=10米,AE=15米,求这块宣传牌CD 的高度.23.(本题10分)如图,在一笔直的海岸线上有A ,B 两个观测站,A 观测站在B 观测站的正东方向,有一艘小船在点P 处,从A 处测得小船在北偏西60°方向,D从B处测得小船在北偏东45°的方向,点P到点B的距离是千米.(注:结果有根号的保留根号)(1)求A,B两观测站之间的距离;(2)小船从点P处沿射线AP/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°方向,求小船沿途考察的时间.24.(本题12分)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C 在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)答案解析一、选择题1. 【答案.故选C . 2.【答案】∵α为锐角,sin (α﹣20°)=,∴α﹣20°=60°,∴α=80°,故选D .3.【答案】由图可得,tanα=2÷1=2.故选D .4.【答案】A 、∵sinB=b c,∴b=c•sinB,故选项错误; B 、∵cosB=a c,∴a=c•cosB,故选项错误; C 、∵tanB=b a ,∴a=btan B,故选项错误; D 、∵tanB=b a ,∴b=a•tanB,故选项正确. 故选D .5.【答案】∵各边都扩大5倍,∴新三角形与原三角形的对应边的比为5:1, ∴两三角形相似, ∴∠A 的三角函数值不变, 故选A .6. 【答案】如图,∵tanA=13,∴设BC=x ,则AC=3x ,∴,∴. 故选D .7. 【答案】延长BA 过点C 作CD ⊥BA 延长线于点D ,A∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°, ∵AB=4,AC=2,∴AD=1,BD=5, ∴sinB=CD BC=故选:B .8.【答案】设直线AB 与CD 的交点为点O . ∴BO DO AB CD =.∴AB=BO CDDO⨯.∵∠ACD=60°.∴∠BDO=60°. 在Rt △BDO 中,tan60°=BODO. ∵CD=6.∴AB=BODO×故选B .9.【答案】坡角α,则α=30°.故选A . 10.【答案】根据题意得:∠A=30°,∠DBC=60°,DC ⊥AC , ∴∠ADB=∠DBC ﹣∠A=30°, ∴∠ADB=∠A=30°, ∴BD=AB=60m ,51(m ). 故选B .DA二、填空题 11.【答案】原式. 12.【答案】∵∠C=90°,AB=10, ∴cosA=AC AB,∴∠A=30°, 故答案为:30°.13.【答案】由图可得cos ∠AOB=32. 故答案为:32.14.【答案】在Rt △ABC 中, ∵斜边上的中线CD=6,∴AB=12.∵sinA=13,∴BC=4,S △ABC =12AC•BC=16 15. 【答案】由题意得:AD=6m , 在Rt △ACD 中,∴AB=1.6m ∴, 所以树的高度为()m . 16.【答案】过点A 作AC ⊥x 轴于C .B在直角△OAC 中,∠AOC=90°﹣60°=30°,OA=14千米,则AC=12OA=7千米,OC=7因而小岛A 所在位置的坐标是(7). 故答案为:(7).三、解答题17.【解答】由sinα=45,设a=4x ,c=5x ,则b=3x ,故tanα=43.18.【解答】sinA=BC AB =12. 19.【解答】作CD ⊥AB 于点D ,在Rt △ACD 中,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,CD=12AC=2,AD=AC•cosA=2在Rt △CDB 中,∵∠DCB=∠ACB ﹣∠ACD=45°,∴BD=CD=2,∴,∴aCD20.【解答】作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180 º-∠BAD=180 º-90 º=90 º, ∠ADF+∠DAF=90 º, ∴∠ADF=36 º.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sinα=BEAB ,∴AB=oBEsin36=240.60=40mm在Rt△ADF中,cos∠ADF==DFAD,∴AD=oDFcos36=48600.80=mm.∴矩形ABCD的周长=2(40+60)=200mm.21.【解答】如图,在Rt△ABD=4.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=8.即新传送带AC的长度约为8米;22.【解答】过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABG中,i=tan∠,∴∠BAG=30°,∴BG=12AB=5,.在Rt△BFC中,∵∠CBF=30°,∴CF:,∴在Rt△ADE中,∠DAE=45°,AE=15,∴DE=AE=15,∴CD=CF+FE﹣﹣15=(5)m.答:宣传牌CD高约(5)米.23.【解答】(1)如图,过点P作PD⊥AB于点D.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=3千米.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴PA=6千米.∴;(2)如图,过点B作BF⊥AC于点F.根据题意得:∠ABC=105°,在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=12AB=千米.在△ABC中,∠C=180°﹣∠BAC﹣∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴PC=AF+CF﹣故小船沿途考察的时间为:(小时).24.【解答】(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=AMME ,则x22x255-=+,解得:x=20.即教学楼的高20m .(2)由(1)可得ME=BC=x+25=20+25=45.在Rt △AME 中,cos22°=ME AE .∴AE=oME cos 22, 即A 、E 之间的距离约为48m九年级下册《第二十八章 锐角三角函数》章节测试卷(二)一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)1.将Rt △ABC 各边的长度都扩大3倍得到Rt △A ′B ′C ′,那么锐角∠A,∠A ′的余弦值的关系为( )A .cosA =cosA ′B .cosA =3cosA ′C .3cosA =cosA ′D .不能确定2.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( )A.13B.12C.22D .3 3.在Rt △ABC 中,∠C =90°,cosA =15,则tanA 等于( ) A .2 6 B.62 C.265D .24 4.等腰三角形底边与底边上的高的比是2∶3,则顶角为( )A .60°B .90°C .120°D .150°5.如图,BD 是菱形ABCD 的对角线,CE ⊥AB 于点E ,交BD 于点F ,且点E 是AB 中点,则tan ∠BFE 的值是( )A.12 B .2 C.33D. 3 6.已知α为锐角,且3tan 2α-(1+3)tan α+1=0,则α的度数为( )A .30°B .45°C .30°或45°D .45°或60°7.如图,在▱ABCD 中,点E 是AD 的中点,延长BC 到点F ,使CF∶BC=1∶2,连接DF ,EC.若AB =5,AD =8,sinB =45,则DF 的长等于( )A.10B.15C.17 D .2 58.如图,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tanB 等于( )A .2 3B .2 2 C.114 D.554二、填空题(本大题共6个小题,每小题3分,共18分)9.计算:tan 45°-2cos 60°=________.10.在Rt △ABC 中,∠C =90°,BC =6,sin A =23,那么AB =________. 11.如图,一束光线照在坡度1∶3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是________度.12.如图,在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC =6,sin A =35,则DE =________.13.如图,小明从A 地沿北偏东60°方向走2千米到B 地,再从B 地向正南方向走3千米到C 地,此时小明距离A 地________千米.(结果保留根号)14.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且BD 平分AC.若BD =8,AC =6,∠BOC =120°,则四边形ABCD 的面积为________.(结果保留根号)三、解答题(共9个小题,共70分)15.(5分)计算:20160-|-2|+(13)-1+2sin 45°.16.(6分)如图,在Rt △ABC 中,∠ACB =90°,AB =5,sin B =45,求AB 边上的高CD.17.(6分)如图是一座人行天桥的示意图,天桥的高是10米,CB ⊥DB ,坡面AC 的倾斜角为45°,为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=3∶3,若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:2≈1.414,3≈1.732)18.(7分)如图是某儿童乐园为小朋友设计的滑梯平面图,已知BC=4米,AB=6米,中间平台宽度DE=1米.EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)19.(7分)如图所示,在等腰△ABC中,AB=BC,AE⊥BC于点E,EF⊥AB于点F,若CE=2,cos∠AEF=45,求BE的长.20.(8分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C 两点间的距离(结果精确到0.1m)(参考数据:2≈1.414,3≈1.732)21.(9分)某海域有A,B,C三艘船正在捕鱼作业,C船突然出现故障,向A,B 两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.(1) 求∠ABC的度数;(2) A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时,参考数据:2≈1.414,3≈1.732)22.(10分)如图,在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a.求证:(1) tan A=sin A cos A;(2) sin2A+cos2A=1;(3) tan A·sin Atan A-sin A=tan A+sin Atan A·sin A.23.(12分)如图,在等边△ABC中,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD.(1) 求证:DF是⊙O的切线;(2) 求FG的长;(3) 求tan∠FGD的值.参考答案:一、1---8 AAAAD CCB二、9. 010. 911. 3012. 15413. 7 14. 12 3三、15. 解:原式=1-2+3+2×22=4 16. 解:在Rt △ABC 中,AC =AB·sin B =4,∵∠ACD =∠B(同角的余角相等),∴AD =AC·sin ∠ACD =165,在Rt △ACD 中,CD =AC 2-AD 2=12517. 解:∵BC=10,∠CAB =45°,∠CBA=90°,∴AB =10,∵tan ∠CDB =BC BD =33,∴BD =3BC 3=3×10=17.32(米),∴DA =DB -AB =17.32-10=7.32(米),∵7.32+3=10.32>10,∴离原坡角10米的建筑物需要拆除18. 解:设DF =x ,在Rt △DFC 中,∠CDF =45°·∴CF =tan 45°,DF =x ,又∵CB=4,∴BF =4-x ,∵AB =6,DE =1,BM =DF =x ,∴AN =5-x ,EN =DM =BF =4-x ,在Rt △ANE 中,∠EAB =31°,EN =4-x ,AN =5-x ,tan 31°=EN AN =4-x 5-x=0.60,解得x =2.5.答:DM 和BC 的水平距离BM 为2.5米19. 解:∵AE⊥BC 于点E ,EF ⊥AB 于点F ,∴∠AEB =∠AFE=90°,∴∠B +∠BAE=∠BAE+∠AEF=90°,∴∠B =∠AEF.设BE =4a ,∵cos ∠B =cos ∠AEF =BE AB,AB =BC ,∴AB =BC =5a ,CE =BC -BE =a.又∵CE=2,∴a =2,∴BE =8 20. 解:过点D 作DF⊥AB 于点F ,过点C 作CH⊥DF 于点H.则DE =BF =CH =10 m ,在直角△ADF 中,∵AF =80 m -10 m =70 m ,∠ADF =45°,∴DF =AF =70 m .在直角△CDE 中,∵DE =10 m ,∠DCE =30°,∴CE =DE tan 30°=1033=103(m ),∴BC =BE -CE =70-103≈70-17.32≈52.7(m ).答:障碍物B ,C 两点间的距离约为52.7 m21. 解:(1)由题意可知DB∥AE,∠DBA +∠BAE=180°,∴∠DBA =108°,∠CBA =108°-78°=30°,∠C =180°-30°-72°-33°=45°(2)过点A 作AF⊥BC 于点F ,AF AB =sin ∠CBA =12,∴AF =12AB =12,在Rt △CFA 中,FA CA =sin C =22,∴CA =2AF ,∴AC =122,设A 船经过t 小时到出事地点,则30t =122,t =12230≈0.57(小时),所以A 船经过0.57小时能到出事地点 22. 证明:(1)由三角函数可得tan A =a b ,sin A =a c ,cos A =b c .等式左边=tan A =a b ,等式右边=ac b c=a b ,左边=右边,∴tan A =sin A cos A(2)sin 2A +cos 2A =(a c )2+(b c )2=a 2+b 2c2,∵△ABC 是直角三角形且∠C=90°,∴a 2+b 2=c 2,∴sin 2A +cos 2B =c 2c 2=1 (3)由(2)得sin 2A +cos 2A =1,由(1)得tan A ·cos A =sin A ,∴sin 2A =(1+cos A)(1-cos A),∴sin A 1-cos A =1+cos A sin A ,等式两边分子、分母均乘以tan A ,得tan A ·sin A tan A -sin A=tan A +sin A tan A ·sin A23. 解:(1)证明:连接OD ,∵△ABC 为等边三角形,∴∠C =∠A=∠B=60°,而OD =OB ,∴△ODB 是等边三角形,∠ODB =60°,∴∠ODB =∠C,∴OD ∥AC ,∵DF ⊥AC ,∴OD ⊥DF ,∴DF 是⊙O 的切线(2)∵OD∥AC,点O 为AB 的中点,∴OD 为△ABC 的中位线,∴BD =CD =6,在Rt△CDF 中,∠C =60°,∴∠CDF =30°,∴CF =12CD =3,∴AF =AC -CF =12-3=9,在Rt △AFG 中,∵∠A =60°,∴FG =AF·sin A =9×32=932(3)过D 作DH⊥AB 于H ,∵FG ⊥AB ,DH ⊥AB ,∴FG ∥DH ,∴∠FGD =∠GDH.在Rt△BDH 中,∠B =60°,∴∠BDH =30°,∴BH =12BD =3,DH =3BH =33,在Rt △AFG 中,∵∠AFG =30°,∴AG =12AF =92,∵GH =AB -AG -BH =12-92-3=92,∴tan ∠GDH =GH DH =9233=32,∴tan ∠FGD =tan ∠GDH =32九年级下册《第二十八章 锐角三角函数》章节测试卷(三)一、选择题(每小题4分,共32分)1、cos60°的值等于( )。
人教版九年级下册数学《第28章 锐角三角函数》单元测试卷(有答案)
2020-2021学年人教新版九年级下册数学《第28章锐角三角函数》单元测试卷一.选择题1.已知a=sin25°,b=tan46°,c=cot17°,m=cos20°,则a、b、c、m的大小关系()A.a<b<c<m B.b<m<c<a C.a<m<b<c D.m<a<b<c 2.下列等式中正确的是()A.cos2α+sin2α=1 B.cos30°+cos45°=cos75°C.tan30°﹣tan60°=D.2cot22°30′=cot45°=13.sin2θ+sin2(90°﹣θ)(0°<θ<90°)等于()A.0 B.1 C.2 D.2sin2θ4.的值为()A.﹣1B.C.﹣D.1﹣5.四位学生用计算器求sin62°20′的值正确的是()A.0.8857B.0.8856C.0.8852D.0.88516.正六边形的两条互相平行的对边相距12cm,这个正六边形的边长为()A.7.5cm B.cm C.cm D.cm7.某个水库大坝的横断面为梯形,迎水坡的坡度是1:,背水坡为1:1,那么两个坡的坡角和为()A.90°B.75°C.60°D.105°8.在Rt△ABC中,∠C=90°,a=5,b=12,c=13,则cos A的值为()A.B.C.D.以上都不对9.甲、乙、丙三人放风筝,各人放出的风筝线长分别为60m、50m、40m,线与地平面所成的角分别为30°、45°、60°,假设风筝线近似看作是拉直的,则所放风筝最高的是()A.甲B.乙C.丙D.不能确定10.如图,某建筑物BC的楼顶上有一避雷针AB,在距此建筑物12米的D处安置﹣高度为1.5米的测倾器DE,测得避雷针顶端的仰角为60°,又知建筑物共有六层,每层层高为3米,则避雷针AB的长度(结果精确到0.1米).(参考数据≈1.41,≈1.73)为()A.2.76米B.2.8米C.4.26米D.4.3米二.填空题11.△ABC中∠A=40°,∠C=90°,a=4.2,则b≈,c≈(保留2个有效数字).12.已知α为锐角,若cosα=,则sinα=,tan(90°﹣α)=.13.斜坡AB=50m,水平距离40m,则垂直距离m,坡度是.14.如图,一个长为3米的梯子斜靠在墙壁上,若梯子与地面所成的角为60°,则此时梯子顶端到地面的距离为米.15.在△ABC中,AC=,BC=2,∠A=45°,则∠B=.16.若sin47°=cosα,则锐角α=.17.5sin2(90°﹣α)+5sin2α=.18.已知45°<α<90°,用“>”或“<”符号填空:sinαcosα;tanαcotα;sinαtanα.19.如图所示,在数学活动课上,老师带学生去测河宽,某学生在A处观测到河对岸有一点C,并测得∠CAD=45°,在距离A点30m的B处测得∠CBD=30°,则河宽CD是m.(答案保留根号)20.如图,某电视塔AB和楼CD的水平距离为100m,从楼顶C处及楼底D处测得塔顶A。
九年级下学期第28章《锐角三角函数》达标检测卷含答案
九年级下学期第28章《锐角三角函数》达标检测卷时间:100分钟 满分:120分 一、选择题(每题3分,共30分) 1.cos 45°的值为( ) A.12 B.22 C.32 D .12.如图,CD 是Rt △ABC 斜边上的高.若AB =5,AC =3,则tan ∠BCD 为( )A.43B.34C.45D.35(第2题) (第4题) (第5题) (第6题) 3.在△ABC 中,若⎪⎪⎪⎪⎪⎪cos A -12+(1-tan B )2=0,则∠C 的度数是( )A .45°B .60°C .75°D .105°4.如图,A ,B ,C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ′B ′,则tan B ′的值为( ) A.12B.13C.14D.245.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24 m ,那么旗杆AB 的高度是( ) A .12 mB .8 3 mC .24 mD .24 3 m6.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10 m ,坝高12 m ,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( ) A .26 mB .28 mC .30 mD .46 m7.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°,则调整后的楼梯AC 的长为( ) A .2 3 mB .2 6 mC .(23-2)mD .(26-2)m(第7题)(第8题)8.如图,过点C(-2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan ∠OAB等于()A.25 B.23 C.52 D.329.如图,菱形ABCD的周长为20 cm,DE⊥AB,垂足为E,sin A=35,则下列结论中正确的有()①DE=3 cm;②BE=1 cm;③菱形的面积为15 cm2;④BD=210 cm.A.1个B.2个C.3个D.4个(第9题)(第10题) (第12题)10.如图,在Rt△ABC中,∠B=90°,∠BAC=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A,D为圆心,AB的长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312 B.36 C.33 D.32二、填空题(每题3分,共24分)11.已知α为锐角,sin(α-20°)=32,则α=________.12.如图,若点A的坐标为(1,3),则∠1=________.13.已知锐角A的正弦sin A是一元二次方程2x2-7x+3=0的根,则sin A=________.(第14题) (第15题) (第16题) (第18题)14.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,若sin ∠CAM =35,则tan B =________.15.如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD 为90 m ,那么该建筑物的高度BC 约为________m(精确到1 m ,参考数据:3≈1.73). 16.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D =________.17.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为________. 18.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF ∥MN ,小聪在河岸MN 上点A 处用测角仪测得河对岸小树C 位于东北方向,然后沿河岸走了30 m ,到达B 处,测得河对岸电线杆D 位于北偏东30°方向,此时,其他同学测得CD =10 m .请根据这些数据求出河的宽度为______________m. 三、解答题(19,21,24题每题12分,其余每题10分,共66分) 19.计算:(1)(-2)3+16-2sin 30°+(2 019-π)0;(2)sin 2 45°-cos 60°-cos 30°tan 45°+2sin 2 60°·tan 60°.20.在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.已知2a =3b,求∠B的正弦、余弦和正切值.21.如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sin A=45,求AD的长.(第21题)22.数学拓展课程《玩转学具》课堂中,小陆同学发现,一副三角尺中,含45°角的三角尺的斜边与含30°角的三角尺的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角尺直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,求AF的长.请你运用所学的数学知识解决这个问题.(第22题)23.如图,天星山山脚下西端A处与东端B处相距800(1+3)m,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为22m/s.若小明与小军同时到达山顶C处,则小明的行走速度是多少?(第23题)24.如图,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3 m到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2 m,∠BCA=30°,且B,C,D三点在同一直线上.求:(1)树DE的高度;(2)食堂MN的高度.(第24题)答案一、1. B 2. A 3. C 4. B 5. B 6. D7.B 8. B 9. C10.B 点拨:如图,设BC =x .在Rt △ABC 中,∠B =90°,∠BAC =30°,∴AC =2BC =2x ,AB =3BC =3x .根据题意,得AD =BC =x ,AE =DE =AB =3x ,过点E 作EM ⊥AD 于点M ,则AM =12AD =12x .在Rt △AEM 中,cos ∠EAD =AM AE =12x3x=36.(第10题)二、11. 80° 12. 60° 13. 12 14. 23 15. 20816.22 点拨:如图,连接BC ,易知∠D =∠A .∵AB 是⊙O 的直径,∴∠ACB =90°.∵AB =3×2=6,AC =2,∴BC 2=62-22=32, ∴BC =4 2.∴tan D =tan A =BC AC =422=2 2.(第16题)17.123 点拨:如图,过A 点作AD ⊥CB ,交CB 的延长线于点D ,则∠ABD =180°-120°=60°.在Rt △ABD 中,AD =AB ·sin ∠ABD =6×32=33,∴S △ABC =12AD ·BC =12×33×8=12 3.(第17题)18.(30+103)三、19.解:(1)原式=-8+4-2×12+1=-8+4-1+1=-4;(2)原式=(22)2-12-32+2×(32)2×3= 3.20.解:由2a =3b ,可得a b =32.设a =3k (k >0),则b =2k ,由勾股定理,得c =a 2+b 2=9k 2+4k 2=13k ,∴sin B =b c =2k 13k =21313,cos B =a c =3k 13k =31313,tan B =b a =2k 3k =23.21.解:(1)在Rt △ABE 中,∵∠A =60°,∠ABE =90°,AB =6,tan A =BEAB ,∴∠E =30°,BE =AB ·tan A =6×tan 60°=6 3.在Rt △CDE 中,∵∠CDE =90°,CD =4,sin E =CDCE ,∠E =30°, ∴CE =CD sin E =412=8.∴BC =BE -CE =63-8.(2)∵∠ABE =90°,AB =6,sin A =45=BEAE ,∴可设BE =4x (x >0),则AE =5x ,由勾股定理可得AB =3x , ∴3x =6,解得x =2. ∴BE =8,AE =10.∴tan E =AB BE =68=CD DE =4DE , 解得DE =163.∴AD=AE-DE =10-163=143.22.解:在Rt△ABC中,BC=2,∠A=30°,∴AC=BCtan A=2 3.∴EF=AC=2 3.∵∠E=45°,∴FC=EF·sin E= 6.∴AF=AC-FC=23- 6.23.解:如图,过点C作CD⊥AB于点D,设AD=x,小明的行走速度是a.(第23题)∵∠A=45°,CD⊥AB,∴CD=AD=x,∴AC=2x.在Rt△BCD中,∵∠B=30°,∴BC=CDsin 30°=x12=2x.∵小军的行走速度为22m/s,小明与小军同时到达山顶C处,∴2x22=2xa,解得a=1(m/s).答:小明的行走速度是1 m/s. 24.解:(1)设DE=x.∵AB=DF=2,∴EF=DE-DF=x-2.∵∠EAF=30°,∴AF=EFtan∠EAF=x-233=3(x-2).又∵CD=DEtan ∠DCE =x3=33x,BC=ABtan ∠ACB=233=23,∴BD=BC+CD=23+3 3x.由AF=BD可得3(x-2)=23+33x,解得x=6(m).答:树DE的高度为6 m.(2)如图,延长N M交DB的延长线于点P,则AM=B P=3.(第24题)由(1)知CD=33x=33×6=23,BC=23,∴PD=BP+BC+CD=3+23+23=3+4 3. ∵∠NDP=45°,∴NP=PD=3+4 3.∵MP=AB=2,∴NM=NP-MP=3+43-2=1+43(m).答:食堂M N的高度为(1+43)m.。
人教版九年级数学下册第28章:锐角三角函数 全章测试含答案
人教版初中数学九年级下册第28章《锐角三角函数》全章测试一、选择题1. 在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( )A. 都扩大1倍B.都缩小为原来的一半C.都没有变化D. 不能确定2.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132 3.已知β为锐角,cos β≤21,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 4.化简:140tan 240tan 2+-︒︒ 的结果为( )A.1+tan40°B. 1-tan40°C. tan40°-1D. tan 240°+1 5.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3486.如图,△ABC 中,,90︒=∠C AD 是BAC ∠的角平分线,交BC 于点D ,那么CDACAB -=( )(A )BAC ∠sin (B )BAC ∠cos (C )BAC ∠tan (D )无法确定7.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 18.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( )A .15mB .12mC .9mD .7m 9. 已知α是锐角,且sin α+cos α=332,则sin α·cos α值为( ) A. 32 B. 23 C. 61D. 110.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin RB .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R二、填空题11. 计算:1sin 60cos302-= . 12.ABC △中,90C =∠,若1tan 2A =,则sin ______A =13. 已知山坡的坡度i =1,则坡角为________.14. 在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______. 15. 在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度. 第6题 第7题16. 菱形的两条对角线长分别为23和6,则菱形的相邻的两内角分别为_________.17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示). 20.在数学活动课上,小敏,小颖分别画了△ABC •和△DEF ,数据如图7,如果把小敏画的三角形面积记作ABC S ∆,小颖画的三角形面积记作DEF S ∆,那么你认为小敏和小颖画的两个三角形的面积的大小关系是ABC S ∆ DEF S ∆.(填“>,<,或=”) 三、解答题 21.计算:(1) 200822)45cot (30cot 60tan 60cot 30sin 2︒-+︒︒-︒+︒ (2) 130cos 260sin 60tan 45tan 2+︒-︒+︒-︒ (3)已知α是锐角,且sin (α+15°)=32,求8 -4cos α—( 2 -1)0+tan α的值. 22. 在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.23由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中∠A =30°,tan B = ▲,AC =AB 的长”。
人教版数学九年级下学期第28章《锐角三角函数》单元测试卷(配答案)
人教版数学九年级下学期第28章《锐角三角函数》单元测试卷(配答案解析)(满分120分,限时120分钟)一、选择题(每小题3分,共30分) 1.tan 45°的值为( B )A.12 B .1 C.22 D. 2 2.在Rt △ABC 中,∠C =90°,sin A =35,则tan B 的值为( A )A.43B.45C.54D.343.在等腰△ABC 中,AB =AC =5,BC =6,那么sin B 的值是( C ) A.35 B.34 C.45 D.434.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( D ) A.55 B.255 C .2 D.12,第4题图) ,第5题图) ,第6题图),第7题图)5.如图,在Rt △ABC 中,CD 是斜边AB 上的高,已知∠ACD 的正弦值是23,则ACAB 的值是( D )A.25B.35C.52D.236.如图,在△ABC 中,AD ⊥BC ,垂足为D ,若AC =62,∠C =45°,tan ∠ABC =3,则BD 等于( A ) A .2 B .3 C .3 2 D .2 37.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD ,测得电视塔顶端A 的仰角为30°,再向电视塔方向前进100米到达F 处,又测得电视塔顶端A 的仰角为60°,则这个电视塔的高度AB(单位:米)为( C )A .50 3B .51C .503+1D .1018.如图,在▱ABCD 中,点E 是AD 的中点,延长BC 到点F ,使CF ∶BC =1∶2,连接DF ,EC.若AB =5,AD =8,sin B =45,则DF 的长等于( C )A.10B.15C.17 D .2 5,第8题图) ,第9题图) ,第10题图)9.如图,两个宽度都为1的平直纸条,交叉叠放在一起,两纸条边缘的夹角为α,则它们重叠部分(图中阴影部分)的面积为( C )A .1B .sin α C.1sin α D.1sin 2α10.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( B )A .4 kmB .(2+2)kmC .2 kmD .(4-2)km 二、填空题(每小题3分,共24分)11.在Rt △ABC 中,∠C =90°,AB =5,BC =1,则tan B =__2__. 12.在△ABC 中,AC ∶BC ∶AB =3∶4∶5,则sin A +sin B =__75__.13.如图,AB 是圆O 的直径,弦AC ,BD 相交于点E ,且AC =BD ,若∠BEC =60°,C 是BD ︵的中点,则tan ∠ACD =__33__. ,第13题图) ,第14题图) ,第15题图),第16题图)14.如图,一束光线照在坡度为1∶3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是__30__度.15.如图,菱形的两条对角线分别是8和4,较长的一条对角线与菱形的一边的夹角为θ,则cos θ=__255__. 16.为测量某观光塔的高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°.已知楼房高AB 约是45 m ,根据以上观测数据可求观光塔的高CD 是__135__米.17.如图,河流两岸a ,b 互相平行,点A ,B 是河岸a 上的两座建筑物,点C ,D 是河岸b 上的两点,A ,B 的距离约为200米.某人在河岸b 上的点P 处测得∠APC =75°,∠BPD =30°,则河流的宽度约为__100__米.18.已知△ABC 中,tan B =23,BC =6,过点A 作BC 边上的高,垂足为点D ,且满足BD ∶CD =2∶1,则△ABC 面积的所有可能值为__8或24__.三、解答题(共66分) 19.(8分)计算:(1)3tan 30°+cos 245°-2sin 60°; (2)tan 260°-2sin 45°+cos 60°. 解:原式=12 解:原式=72-220.(8分)△ABC 中,∠C =90°.(1)已知c =83,∠A =60°,求∠B ,a ,b ; (2)已知a =36,∠A =30°,求∠B ,b ,c. 解:(1)∠B =30°,a =12,b =43 (2)∠B =60°,b =92,c =6621.(8分)如图,在Rt △ABC 中,∠ABC =90°,BD ⊥AC 于点D ,E 点为线段BC 的中点,AD =2,tan ∠ABD =12.(1)求AB 的长;(2)求sin ∠EDC 的值.解:(1)∵AD =2,tan ∠ABD =12,∴BD =2÷12=4,∴AB =AD 2+BD 2=22+42=25(2)∵BD ⊥AC ,E 点为线段BC 的中点,∴DE =CE ,∴∠EDC =∠C ,∵∠C +∠CBD =90°,∠CBD +∠ABD =90°,∴∠C =∠ABD ,∴∠EDC =∠ABD ,在Rt △ABD 中,sin ∠ABD =AD AB =225=55,即sin ∠EDC =5522.(10分)在一次地震灾区抢险工作中,如图,某探测队在地面A ,B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB =4米,求该生命迹象所在位置C 的深度.(结果精确到1米.参考数据:sin 25°≈0.4,cos 25°≈0.9,tan 25°≈0.5,3≈1.7)解:作CD ⊥AB 交AB 延长线于点D ,设CD =x 米.Rt △ADC 中,∠DAC =25°,∴tan25°=CDAD =0.5,∴AD =CD 0.5=2x.Rt △BDC 中,∠DBC =60°,∴tan 60°=CD BD ,∴x2x -4=3,解得x ≈3,∴生命迹象所在位置C 的深度约为3米23.(10分)如图,AB 是⊙O 的直径,AB =10,DC 与⊙O 相切于点C ,AD ⊥DC ,垂足为D ,AD 交⊙O 于点E.(1)求证:AC 平分∠BAD ;(2)若sin ∠BEC =35,求DC 的长.解:(1)连接OC ,∵DC 是切线,∴OC ⊥DC ,又∵AD ⊥DC ,∴AD ∥OC ,∴∠DAC =∠ACO ,又OA =OC ,∴∠BAC =∠ACO ,∴∠DAC =∠BAC ,∴AC 平分∠BAD(2)∵AB 为直径,∴∠ACB =90°,又∠BAC =∠BEC ,∴BC =AB ·sin ∠BAC =6,∴AC =8,∴CD =AC ·sin ∠DAC =24524.(10分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度.如图,老师测得升旗台前斜坡FC 的坡度为i =1∶10(即EF ∶CE =1∶10),学生小明站在离升旗台水平距离为35 m (即CE =35 m )处的C 点,测得旗杆顶端B 的仰角为α.已知tan α=37,升旗台高AF =1 m ,小明身高CD =1.6 m ,请帮小明计算出旗杆AB 的高度.解:作DG ⊥AE 于点G ,则∠BDG =α,易知四边形DCEG 为矩形,∴DG =CE =35 m ,EG =DC =1.6 m ,在直角三角形BDG 中,BG =DG ·tan α=35×37=15(m ),∴BE =15+1.6=16.6(m ).∵斜坡FC的坡度为i =1∶10,CE =35m ,∴EF =35×110=3.5(m ),∵AF =1 m ,∴AE =AF +EF =1+3.5=4.5(m ),∴AB =BE -AE =16.6-4.5=12.1(m ),则旗杆AB 的高度为12.1 m25.(12分)如图,“中国海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B ,C 两地相距120海里.(1)求出此时点A 到岛礁C 的距离;(2)若“中国海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A ′时,测得点B 在A ′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(结果保留根号)解:(1)如图,过点C 作CD ⊥BA 交BA 的延长线于点D ,由题意可得∠CBD =30°,BC =120海里,则DC =60海里,故cos30°=DC AC =60AC =32,∴AC =403,则点A 到岛礁C 的距离为403海里 (2)如图,过点A ′作A ′N ⊥BC 于点N ,可得∠1=30°,∠BA ′A =45°,则∠2=15°,即A ′B 平分∠CBA ,∴A ′N =A ′E ,设AA ′=x ,则A ′E =32x ,故CA ′=2A ′N =2×32x =3x ,∵3x +x =403,∴x =(60-203),则此时“中国海监50”的航行距离为(60-203)海里。
2020-2021学年人教版九年级下册数学《第28章 锐角三角函数》单元测试卷(有答案)
2020-2021学年人教新版九年级下册数学《第28章锐角三角函数》单元测试卷一.选择题1.在△ABC中,∠C=90°,cos A=,那么sin A的值等于()A.B.C.D.2.在△ABC中,∠C=90°,AB=10,tan A=,则BC的长为()A.2B.6C.8D.103.在Rt△ABC中,∠C=90°,若tan B=,则锐角A满足()A.0°<A<30°B.30°<A<45°C.45°<A<60°D.60°<A<90°4.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°5.在Rt△ABC中,∠C=90°,则下列式子定成立的是()A.sin A=sin B B.cos A=cos B C.tan A=tan B D.sin A=cos B 6.如图为张小亮的答卷,每个小题判断正确得20分,他的得分应是()A.100分B.80分C.60分D.40分7.如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=,则点F的坐标是()A.(8,)B.(8,12)C.(6,)D.(6,10)8.如图是我们数学课本上采用的科学计算器面板,利用该型号计算器计算sin52°,按键顺序正确的是()A.B.C.D.9.秀秀和山山在水平的地面上放风筝,某一时刻两人的风筝正好都停在对方的正上方,即此时AC⊥AB,DB⊥AB,两人之间的距离AB为120米,若两人的风筝线与水平线的夹角分别为a和β,则两人放出的风筝线AD与BC的长度和为(忽略两人的身高与手臂长度)()米.A.120tanα+120tanβB.+C.120cosα+120cosβD.+10.如图大坝的横断面,斜坡AB的坡比i=1:2,背水坡CD的坡比i=1:1,若坡面CD 的长度为米,则斜坡AB的长度为()A.B.C.D.24二.填空题11.cos30°的值等于.12.如图,边长为1的小正方形网格中,点A,B,C,D,E均在格点上,半径为2的⊙A 与BC交于点F,则tan∠DEF=.13.小明为测量校园里一棵大树AB的高度,在树底部B所在的水平面内,将测角仪CD竖直放在与B相距8m的位置,在D处测得树顶A的仰角为52°.若测角仪的高度是1m,则大树AB的高度约为.(结果精确到1m.参考数据:sin52°≈0.78,cos52°≈0.61,tan52°≈1.28)14.在△ABC中,∠C=90°,若tan A=,则cos B=.15.已知sinα+cosα=,则sinαcosα=.16.比较大小:sin40°cos50°(填“>”、“<”或“=”)17.再如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为多少km.18.如图,△ABC的三个顶点均在格点上,则tan A的值为.19.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.若正多边形的一个内角等于140°,则这个正多边形的边数是.B.用科学计算器计算:13××sin14°≈(结果精确到0.1)20.门环,在中国绵延了数千多年的,集实用、装饰和门第等级为一体的一种古建筑构件,也成为中国古建“门文化”中的一部分,现有一个门环的示意图如图所示.图中以正六边形ABCDEF的对角线AC的中点O为圆心,OB为半径作⊙O,AQ切⊙O于点P,并交DE于点Q,若AQ=12cm,则(1)sin∠CAB=;(2)该圆的半径为cm.三.解答题21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.计算:(1)cos245°+tan245°﹣tan260°.(2).23.目前,各大城市都在积极推进公共自行车建设,努力为人们绿色出行带来方便.图(1)所示的是一辆自行车的实物图.图(2)是自行车的车架示意图.CE=30cm,DE=20cm,AD=25cm,DE⊥AC于点E,座杆CF的长为15cm,点A,E,C,F在同一直线上,且∠CAB=75°,公共自行车车轮的半径约为30cm,且AB与地面平行.(1)求车架中AE的长;(2)求车座点F到地面的距离.(结果精确到1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)24.如图,在△ABC中,AD是BC边上的高,BC=14,AD=12,sin B=.(1)求线段CD的长度;(2)求cos∠C的值.25.在Rt△ABC中,∠C=90°,若,求cos A,sin B,cos B.26.淮安华联商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯,如图所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为45°,改造后的斜坡式自动扶梯的坡角∠ACB为15°,改造后的斜坡式自动扶梯水平距离增加了BC,请你计算BC的长度.(结果精确到1m,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.41)27.如图,将含30°角的直角三角板ABC(∠A=30°)绕其直角顶点C顺时针旋转α角(0°<α<90°),得到Rt△A′B′C,A′C与AB交于点D,过点D作DE∥A′B′交CB′于点E,连接BE.易知,在旋转过程中,△BDE为直角三角形.设BC=1,AD =x,△BDE的面积为S.(1)当α=30°时,求x的值.(2)求S与x的函数关系式,并写出x的取值范围;(3)以点E为圆心,BE为半径作⊙E,当S=S时,判断⊙E与A′C的位置关系,△ABC并求相应的tanα值.参考答案与试题解析一.选择题1.解:∵cos2A+sin2A=1,cos A=,∴sin2A=1﹣=,∴sin A=或sin A=﹣(舍去).故选:B.2.解:设BC=3x,∵tan A=,∴=,∴AC=4x,由勾股定理得,BC2+AC2=AB2,即(3x)2+(4x)2=102,解得,x=2,∴BC=3x=6,故选:B.3.解:∵tan30°=≈0.58,tan45°=1,tan B=,∴30°<B<45°,∴45°<A<60°.故选:C.4.解:∵cos A=,∴∠A=30°.故选:A.5.解:∵∠C=90°,∴∠A+∠B=90°,∴sin A=cos B.故选:D.6.解:∵cos60°=,∴1的判断正确;∵=2,∴﹣1和5的平均数是2,则2的判断正确;第3题应先把数据从小到大进行排列:﹣1、1、3,则中位数为:1,故3的判断错误;4的判断正确;5.在半径为1的圆中,60°的圆心角所对的弧长为:=,∴5的判断正确.综上,正确的判断有1,2,4,5,则张小亮可以得80分.故选:B.7.解:过点F作AB⊥y轴交y轴于点A,过点G作GB⊥AB于B,则∠FGO+∠FGB=90°,∠BFG+∠FGB=90°,∠AEF+∠AFE=90°,∴∠BFG=∠FGO,∵AB⊥y轴,GB⊥AB,∠AOG=90°,∴四边形AOGB为矩形,∴AO=GB,AB=OG=17,∵∠EFG=90°,∴∠AFE+∠BFG=90°,∴AEF=∠BFG=∠FGO,在Rt△AEF中,cos∠AEF=,即=,解得,AE=6,由勾股定理得,AF==8,∴BF=AB﹣AF=17﹣8=9,在Rt△BFG中,cos∠BFG=,即=,解得,FG=15,由勾股定理得,BG==12,则点F的坐标是(8,12),故选:B.8.解:利用该型号计算器计算sin52°,按键顺序正确的是:故选:B.9.解:在Rt△ABD中,AD==(米);在Rt△ABC中,BC==(米);故两人放出的风筝线AD与BC的长度和为(+)米.故选:D.10.解:过B作BE⊥AD于E,过C作CF⊥AD于F,如图所示:则四边形BEFC是矩形,∴BE=CF,∵背水坡CD的坡比i=1:1,CD=米,∴CF=DF=CD=6(米),∴BE=CF=6米,又∵斜坡AB的坡比i=1:2=,∴AE=2BE=12(米),∴AB===6(米),故选:C.二.填空题11.解:cos30°=,故答案为:.12.解:由题意可得:∠DBC=∠DEF,则tan∠DEF=tan∠DBC==.故答案为:.13.解:如图,过点D作DE⊥AB,垂足为E,由题意得,BC=DE=8,∠ADE=52°,BE=CD=1在Rt△ADE中,AE=DE•tan∠ADE=8×tan52°≈10.24,∴AB=AE+BE=10.24+1≈11(米)故答案为:11.14.解:如图所示:∵∠C=90°,tan A==,∴设BC=x,则AC=2x,故AB=x,∴cos B===.故答案为:.15.解:把sinα+cosα=,两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=,则sinαcosα=,故答案是:.16.解:∵cos50°=sin(90°﹣50°)=sin40°,∴sin40°=cos50°.故答案为:=.17.解:如图,过B作BE⊥AC于E,过C作CF∥AD,则CF∥AD∥BG,∠AEB=∠CEB=90°,∴∠ACF=∠CAD=20°,∠BCF=∠CBG=40°,∴∠ACB=20°+40°=60°,由题意得,∠CAB=65°﹣20°=45°,AB=30km,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30km,∴AE=BE=AB=30(km),在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===10(km),∴AC=AE+CE=30+10(km),∴A,C两港之间的距离为(30+10)km,故答案为:(30+10).18.解:如图所示:连接BD,BD==,AD==2,AB==,∵BD2+AD2=2+8=10=AB2,∴△ADB为直角三角形,∴∠ADB=90°,则tan A===.故答案为:.19.解:A.∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,则这个正多边形的边数为:360°÷40°=9.故答案为:9.B.13××sin14°≈13×3.61×0.24≈11.3,故答案为:11.3.20.解:(1)连接OB,OP,∵AB=BC,O为AC的中点,∴OB⊥AC,∵∠ABC=120°,∴∠ACB=∠CAB=30°,∴sin∠CAB=sin30°=.故答案为;(2)∵AQ是⊙O的切线,∴OP⊥AQ,设该圆的半径为r,∴OB=OP=r,∵∠ACB=∠CAB=30°,∴AB=BC=CD=2r,AO=r,∴AC=r,∴sin∠PAO=,过Q作QG⊥AC于G,过D作DH⊥QG于H,则四边形DHGC是矩形,∴HG=CD,DH=CG,∠HDC=90°,∴sin∠PAO=,∠QDH=120°﹣90°=30°,∴QG=12,∴AG=,∴QH=12﹣2r,DH=,∴tan∠QDH=tan30°=,解得r=,∴该圆的半径为()cm.故答案为().三.解答题21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.解:(1)原式=()2﹣+1﹣()2=﹣1+1﹣3=﹣;(2)原式=3×﹣2+2×+﹣1=﹣2+2+﹣1=2﹣1.23.解:(1)∵DE⊥AC,DE=20,AD=25,∴AE===15(cm);(2)在图(2)中,作FG⊥AB于G,延长FG交地平线于点Q.∵AE=15,CE=30,CF=15,∴FA=FC+CE+EA=15+30+15=60.∵sin∠CAB=,∴FG=FA•sin∠CAB≈60×0.97=58.2(cm),∴FQ=FG+GQ=58.2+30=88.2≈88(cm).答:车座点F到地面的距离约为88cm.24.解:(1)∵AD是BC上的高,∴∠ADB=∠ADC=90°.∵sin B=,AD=12,∴AB=15,∴BD===9,∵BC=14,∴DC=BC﹣BD=14﹣9=5;(2)由(1)知,CD=5,AD=12,∴AC===13,cos C==.25.解:∵∠C=90°,sin A=,∴cos A==,∵∠A+∠B=90°,∴sin B=cos A=,cos B=sin A=.26.解:在Rt△ABD中,∠ABD=45°,AB=10,∴AD=BD=AB•sin∠ABD=10×=5≈7,∵∠ACD=15°,tan∠ACD=,∴CD≈≈≈26,∴BC=CD﹣BD=26﹣7=19.故BC的长度约为19米.27.解:(1)∵∠A=a=30°,又∵∠ACB=90°,∴∠ABC=∠BCD=60°.∴AD=BD=BC=1.∴x=1;(2)∵∠DBE=90°,∠ABC=60°,∴∠A=∠CBE=30°.∴AC=BC=,AB=2BC=2.由旋转性质可知:AC=A′C,BC=B′C,∠ACD=∠BCE,∴△ADC∽△BEC,∴=,∴BE=x.∵BD=2﹣x,∴s=×x(2﹣x)=﹣x2+x.(0<x<2)(3)∵s=s△ABC∴﹣+=,∴4x2﹣8x+3=0,∴,.①当x=时,BD=2﹣=,BE=×=.∴DE==.∵DE∥A′B′,∴∠EDC=∠A′=∠A=30°.∴EC=DE=>BE,∴此时⊙E与A′C相离.过D作DF⊥AC于F,则,.∴.∴.(12分)②当时,,.∴,∴,∴此时⊙E与A'C相交.同理可求出.。
人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】
人教版九年级数学下册第28章《锐角三角函数》单元测试一.选择题(共10小题,满分30分)1.在Rt△ABC中,∠C=90°,若cos A=( )A.B.C.D.2.在边长相等的小正方形组成的网格中,点A,B,C都在格点上( )A.B.C.D.3.在Rt△ABC中,∠C=90°,BC=1,那么tan B的值是( )A.B.C.D.4.∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°5.在Rt△ABC中,∠C=90°,AB=5,则tan A的值是( )A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,则sin B=( )A.B.2C.D.7.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是( )A.B.C.D.8.如图,AD是△ABC的高,AB=4,tan∠CAD=,则BC的长为( )A. +1B.2+2C.2+1D. +49.如图,半径为3的⊙O内有一点A,OA=,当∠OPA最大时,S△OPA等于( )A.B.C.D.110.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,∠C=42°,AB=60( )A.60sin50°B.C.60cos50°D.60tan50°二.填空题(共10小题,满分30分)11.在Rt△ABC中,∠C=90°,sin A= .12.用科学计算器计算: tan16°15′≈ (结果精确到0.01)13.在△ABC中,若,∠A,∠B都是锐角 三角形.14.在Rt△ABC中,∠C=90°,AC=6,那么AB的长为 .15.比较大小:sin80° tan50°(填“>”或“<”).16.在Rt△ABC中,∠C=90°,cos A= .17.在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 .18.如图,在Rt△ABC中,CD是斜边AB上的中线,AC=6,则tan A的值为 .19.如图,在Rt△ABC中,∠ACB=90°,连接CD,过点B作CD的垂线,tan A=,则cos∠DBE的值为 .20.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),水平宽度AC=m 米.三.解答题(共7小题,满分6021.已知cos45°=,求cos21°+cos22°+…+cos289°的值.22.如图,在Rt△ABC中,∠C=90°,BC=5.求sin A,cos A和tan A.23.如图,在Rt△ABC中,∠C=90˚,BC=6,求AC的长和sin A的值.24.计算:cos60°﹣2sin245°+tan230°﹣sin30°.25.计算:(1);(2)sin245°+cos245°+tan30°tan60°﹣cos30°.26.2022年8月21日,重庆市北碚区缙云山突发山火,山火无情,各地消防迅速出动,冲锋在前,然后沿着坡比为5:12的斜坡前进104米到达B处平台,继续前进到达C,沿斜坡CD前行800米到达着火点D.(1)求着火点D距离山脚的垂直高度;(2)已知消防员在平地的平均速度为4m/s,求消防员通过平台BC的时间.(保留一位小数)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈,≈1.732)27.如图,已知∠ABC和射线BD P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,并给出证明.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:如图,∵∠C=90°,∴设AC=5k,AB=13k,根据勾股定理得,BC==,所以,sin A===.故选:D.2.解:设点C到AB的距离为h,由勾股定理可知:AC==2=,由于S△ABC=32﹣×6×2﹣×7×3=9﹣8﹣3=4.∴AB•h=4,∴h=,∴sin∠BAC==,∴cos∠BAC=,故选:A.3.解:∵∠C=90°,∴tan B===.故选:D.4.解:∵∠β为锐角,且2cosβ﹣1=8,∴cosβ=,∴∠β=60°.故选:B.5.解:∵∠C=90°,AB=5,∴AC===4,∴tan A==,故选:D.6.解:∵∠C=90°,tan A=2,∴BC=2AC,∴,∴,故C正确.故选:C.7.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.8.解:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,在Rt△ABD中,cos∠BAD=,∴cos60°=,sin60°=,∴AD=4cos60°=7×=5=4,在Rt△ADC中,tan∠CAD=,∴=,解得CD=1,∴BC=BD+CD=2+1.故选:C.9.解:如图所示:∵OA、OP是定值,∴PA⊥OA时,∠OPA最大,在直角三角形OPA中,OA=,∴PA==,∴S△OPA=OA•AP=××=.故选:B.10.解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.二.填空题(共10小题,满分30分)11.解:由sin A=知,可设a=6x,b=3x.∴tan A=.故答案为:.12.解: tan16°15′≈0.71,故答案为:4.71.13.解:∵,∴sin A=,cos B=,∴∠A=60°,∠B=60°,∴△ABC是等边三角形.故答案为:等边.14.解:∵cos A==,AC=7,∴AB==8,故答案为:8.15.解:∵tan50°>tan45°,tan45°=1,∴tan50°>1,又sin80°<2,∴sin80°<tan50°;故答案为:<.16.解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.17.解:∵|sin A﹣|+(2=2,∴sin A﹣=4,,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.18.解:在Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD=10,∵AC=6,∴BC===8,∴tan A===,故答案为:.19.解:过点C作CF⊥AB,垂足为F,在Rt△ABC中,AC=3a=,∴BC=4a,AB=5a,∵D是AB的中点,∴CD=AB=a,∵△ABC的面积=AB•CF=,∴AB•CF=AC•CB,∴5aCF=3a×4a,∴CF=a,∴cos∠DCF==,∵BE⊥CD,∴∠E=90°,∴∠EDB+∠EBD=90°,∵∠FCD+∠CDF=90°,∠CDF=∠BDE,∴∠EBD=∠DCF,∴cos∠DBE=cos∠DCF=,故答案为:.20.解:∵河坝横断面迎水坡AB的坡比是1:,AC=m,∴=,∴BC=AC==3(m),在Rt△ABC中,由勾股定理得:AB==,故答案为:6.三.解答题(共7小题,满分60分)21.解:原式=(cos21°+cos289°)+(cos22°+cos588°)+…+(cos244°+cos246°)+cos445=(sin21°+cos51°)+(sin22°+cos22°)+…+(sin844°+cos244°)+cos245=44+()2=44.22.解:在Rt△ABC中,∠C=90°,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.23.解:∵△ABC中,tan A=,∴=,∴AC=8,∴AB===10,∴sin A==24.解:原式=﹣4×()6+×()2﹣=﹣2×+×﹣=﹣2+﹣=﹣.25.解:(1)=﹣4﹣7+1=﹣4;(2)sin645°+cos245°+tan30°tan60°﹣cos30°===.26.(1)如图所示,过点B,C,D分别作水平线的垂线,F,G,延长BC交AG于点H,BHGE是矩形,依题意,,AB=104米,CD=800米,在Rt△ABE中,,设BE=8k米,∴AB=13k,∵AB=104米,∴k=8,∴BE=5×2=40(米),AE=12×8=96(米),在Rt△DCH中,CD=800米,∴DG=DH+HG=DH+BE=480+40=520(米),即着火点D距离山脚的垂直高度为520米;(2)依题意,∠DAG=30°,∴米,∵Rt△DCH中,CH=cos37°×CD=≈0.8×800=640(米),又AE=96米,∴(米),∵消防员在平地的平均速度为4m/s,∴消防员通过平台BC的时间为(秒).27.解:(1)在Rt△BPE中,sin∠EBP=在Rt△BPF中,sin∠FBP=又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα=sinβ又∵α>β∴sinα>sinβ∴PE>PF.。
人教版九年级下《第二十八章锐角三角函数》单元测试题含答案
第二十八章 锐角三角函数一、选择题(每小题3分,共30分) 1.sin60°的值等于( ) A.12 B.22 C.32 D.332.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( )A.83B .6C .12D .8 3.已知α为锐角,且cos(90°-α)=12,则cos α的值为( )A.33 B.22 C.12 D.324.如图1,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是( )图1A .1B .1.5C .2D .35.如图2,∠AOB 在正方形网格中,则cos ∠AOB 的值为( )图2A.12B.22C.32D.336.如图3,将△ABC 放在每个小正方形的边长都为1的网格中,点A ,B ,C 均在格点上,则tan A 的值是( )图3A.55 B.105 C .2 D.127.如图4,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )图4A.53B.2 55C.52 D.238.如图5,某酒店大门的旋转门内部由三块宽为2米,高为3米的玻璃隔板组成,三块玻璃摆放时夹角相同.若入口处两根立柱之间的距离为2米,则两立柱底端中点到转轴底端的距离为( )图5A.3米 B .2米 C .2 2米 D .3米9.如图6,轮船沿正南方向以30海里/时的速度匀速航行,在M 处观测到灯塔P 在南偏西22°方向上.航行2小时后到达N 处,观测灯塔P 在南偏西44°方向上,若该船继续向南航行至离灯塔最近的位置,则此时轮船离灯塔的距离约为(参考数据:sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)( )图6A .22.48海里B .41.68海里C .43.16海里D .55.63海里10.如图7,四边形BDCE 内接于以BC 为直径的⊙A ,已知BC =10,cos ∠BCD =35,∠BCE =30°,则线段DE 的长是( )图7A.89 B .7 3 C .4+3 3 D .3+4 3 请将选择题答案填入下表:题号 12345678910总分答案第Ⅱ卷 (非选择题 共70分)二、填空题(每小题3分,共18分)11.如图8,在△ABC 中,∠B =45°,cos C =35,AC =5a ,则△ABC 的面积用含a 的式子表示是________.图812.为解决停车难的问题,在一段长56米的路段上开辟停车位,如图9,每个车位是长为5米、宽为2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出________个这样的停车位.(参考数据:2≈1.4)图913.如图10,在等腰三角形ABC 中,AB =AC ,BC =4,D 为BC 的中点,点E ,F 在线段AD 上,tan ∠ABC =3,则阴影部分的面积是________.图1014.已知△ABC ,若⎪⎪⎪⎪sin A -12与(tan B -3)2互为相反数,则∠C 的度数是________. 15.如图11,已知四边形ABCD 是正方形,以CD 为一边向CD 两旁分别作等边三角形PCD 和等边三角形QCD ,那么tan ∠PQB 的值为________.图1116.如图12,已知点A(5 3,0),直线y =x +b(b >0)与y 轴交于点B ,连接AB.若∠α=75°,则b =________.图12三、解答题(共52分)17.(5分)计算:cos30°tan60°-cos45°sin45°-sin260°.18.(5分)如图13,在△ABC中,AB=4,AC=6,∠ABC=45°,求BC的长及tan C 的值.图1319.(5分)如图14,在半径为1的⊙O中,∠AOB=45°,求sin C的值.图1420.(5分)如图15,AB是长为10 m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈35,tan37°≈34,sin65°≈910,tan65°≈157)图1521.(7分)如图16,菱形ABCD的对角线AC与BD相交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.图1622.(7分)如图17,市防汛指挥部决定对某水库的水坝进行加高加固,设计师提供的方案是:水坝加高1米(EF=1米),背水坡AF的坡度i=1∶1,已知AB=3米,∠ABE=120°,求水坝原来的高度.图1723.(9分)阅读下面的材料:小凯遇到这样一个问题:如图18①,在四边形ABCD中,对角线AC,BD相交于点O,AC=4,BD=6,∠AOB=30°,求四边形ABCD的面积.小凯发现,分别过点A,C作直线BD的垂线,垂足分别为E,F,设AO为m,通过计算△ABD与△BCD的面积和可以使问题得到解决(如图②).请回答:(1)△ABD 的面积为________(用含m 的式子表示); (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图③,在四边形ABCD 中,对角线AC ,BD 相交于点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为________(用含a ,b ,α的式子表示).图1824.(9分)观察与思考:阅读下列材料,并解决后面的问题.在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,过点A 作AD ⊥BC 于点D(如图19①),则sin B =AD c ,sin C =ADb ,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即b sin B =csin C ,同理有c sin C =a sin A ,a sin A =b sin B ,所以a sin A =b sin B =c sin C. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题:(1)如图②,△ABC 中,∠B =45°,∠C =75°,BC =60,则∠A =________°,AC =________;(2)如图③,在某次巡逻中,渔政船在C 处测得海岛A 在其北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得海岛A 在其北偏西75°的方向上,求此时渔政船距海岛A 的距离AB.(结果精确到0.01海里,6≈2.449)图19详解详析1.C2.B [解析] 由题意可得sin A =23=BCAB.因为BC =4,所以AB =6.3.D [解析] 因为cos(90°-α)=12,α为锐角,所以90°-α=60°,所以α=30°,所以cos α=32. 4.C [解析] ∵点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,∴tan α=3t =32,∴t =2. 5.B [解析] 如图,连接AC .由网格图的特点,易得△ACO 是等腰直角三角形,所以∠AOB =45°,所以cos ∠AOB 的值为22.6.D [解析] 如图,连接BD .由网格图的特点可知AD ⊥BD ,由AD =2 2,BD =2,可得tan A 的值为12.7.A [解析] 在Rt △ABC 中,根据勾股定理可得AB 2=AC 2+BC 2=(5)2+22=9,∴AB =3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin B =AC AB =53.故选A. 8.A [解析] 如图,设转轴底端为A ,两立柱底端的点为B ,C ,BC 的中点为D ,则有AB =AC =2米,所以AD ⊥BC ,且CD =1米,所以AD =3米.9.B [解析] 如图,过点P 作P A ⊥MN 于点A ,MN =30×2=60(海里).∵∠PMN =22°,∠PNA =44°, ∴∠MPN =∠PNA -∠PMN =22°, ∴∠PMN =∠MPN , ∴MN =PN =60海里. ∵∠PNA =44°,∴在Rt △NAP 中,P A =PN ·sin ∠PNA ≈60×0.6947≈41.68(海里). 故选B.10.D [解析] 如图,过点B 作BF ⊥DE 于点F .在Rt △CBD 中,∵BC =10,cos ∠BCD =35,∴DC =6,∴BD =8.在Rt △BCE 中,BC =10,∠BCE =30°, ∴BE =5.在Rt △BDF 中,∠BDF =∠BCE =30°,BD =8, ∴DF =BD ·cos30°=4 3.在Rt △BEF 中,∠BEF =∠BCD , 即cos ∠BEF =cos ∠BCD =35,∴EF =BE ·cos ∠BEF =3,∴DE =EF +DF =3+4 3. 11.14a 2 12.1713.6 [解析] 由等腰三角形的轴对称性可知阴影部分的面积等于△ABC 的面积的一半.因为BD =12BC =2,AD ⊥BC ,tan ∠ABC =3,所以AD =6,所以△ABC 的面积为12,所以阴影部分的面积为6.14.90° [解析] 由题意得sin A =12,tan B =3,所以∠A =30°,∠B =60°,所以∠C的度数是90°.15.2-3 [解析] 延长QP 交AB 于点F .∵四边形ABCD 是正方形,△PCD 和△QCD 是以CD 为边的等边三角形, ∴四边形PCQD 是菱形.设正方形ABCD 的边长为a ,则可得PE =QE =32a ,DE =EC =12a ,FB =12a , ∴tan ∠PQB =FBFQ=12a a +32a=2- 3. 16.5 [解析] 设直线y =x +b (b >0)与x 轴交于点C ,易得C (-b ,0),B (0,b ), 所以OC =OB , 所以∠BCO =45°.又因为α=75°,所以∠BAO =30°. 因为OA =5 3,所以OB =5,所以b =5. 17.1418.解:如图,过点A 作AD ⊥BC 于点D .在Rt △ABD 中,∠B =45°, ∵sin B =ADAB,∴AD =AB ·sin B =4×sin45°=4×22=2 2, ∴BD =AD =2 2.在Rt △ADC 中,AC =6,由勾股定理,得DC =AC 2-AD 2=62-(2 2)2=2 7, ∴BC =BD +DC =2 2+2 7,tan C =AD DC =2 22 7=147. 19.解:如图,过点A 作AD ⊥OB 于点D . ∵在Rt △AOD 中,∠AOB =45°, ∴OD =AD =OA ·cos45°=1×22=22, ∴BD =OB -OD =1-22, ∴AB =AD 2+BD 2=(22)2+(1-22)2=2- 2. ∵AC 是⊙O 的直径,∴∠ABC =90°,AC =2,∴sin C =ABAC =2-22.20.解:如图,过点B 作BF ⊥AE 于点F , 则BF =DE .在Rt △ABF 中,sin ∠BAF =BF AB, 则BF =AB ·sin ∠BAF ≈10×35=6(m).在Rt △CDB 中,tan ∠CBD =CD BD ,则CD =BD ·tan65°≈10×157≈21(m). 则CE =DE +CD =BF +CD ≈6+21=27(m).答:大楼CE 的高度约是27 m.21.解:(1)∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠ABC +∠BAD =180°. 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°.∵四边形ABCD 是菱形, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan30°=33. (2)证明:∵四边形ABCD 是菱形, ∴∠BOC =90°.∵BE ∥AC ,CE ∥BD ,∴∠OBE =∠BOC =∠OCE =90°, ∴四边形OBEC 是矩形.22.解:如图所示,过点E 作EC ⊥BD 于点C , 设BC =x 米.∵∠ABE =120°, ∴∠CBE =60°. 在Rt △BCE 中, ∵∠CBE =60°,∴tan60°=CE BC =3,即CE =3x 米. ∵背水坡AF 的坡度i =1∶1,∴CF AC=1. ∵AC =(3+x )米,CF =(1+3x )米, ∴1+3x 3+x=1,解得x =3+1, ∴EC =3x =(3+3)米.答:水坝原来的高度为(3+3)米.23.解:(1)∵AO =m ,∠AOB =30°,∴AE =12m , ∴△ABD 的面积为12×12m ×6=32m . 故答案为32m. (2)由(1)得S △ABD =32m . 同理,CF =12(4-m ), ∴S △BCD =12BD ·CF =6-32m . ∴S 四边形ABCD =S △ABD +S △BCD =6.解决问题:分别过点A ,C 作直线BD 的垂线,垂足分别为E ,F ,设AO 为x .∵∠AOB =α,∴AE =x ·sin α,∴S △ABD =12BD ·AE =12b ·x ·sin α. 同理,CF =(a -x )·sin α,∴S △BCD =12BD ·CF =12b ·(a -x )·sin α. ∴S 四边形ABCD =S △ABD +S △BCD =12b ·x ·sin α+12b ·(a -x )·sin α=12ab ·sin α. 故答案为12ab ·sin α. 24.解:(1)60 20 6(2)依题意,得BC =40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,ABsin∠ACB=BC sin A,即ABsin60°=20sin45°,解得AB=10 6≈24.49(海里).答:渔政船距海岛A的距离AB约为24.49海里.。
人教版九年级下册数学 第28章 锐角三角函数 单元测试卷(含答案)
人教版九年级下册数学 第28章 锐角三角函数 单元测试卷(全卷总分150分,考试时间120分钟)一、选择题(每小题4分,共40分)1.下列各种现象属于中心投影现象的是( )A .上午10点时,走在路上的人的影子B .晚上10点时,走在路灯下的人的影子C .中午用来乘凉的树影D .升国旗时,地上旗杆的影子2.下列立体图形中,俯视图是正方形的是( )A B C D3.计算6tan45°-2cos60°的结果是( )A .4 3B .4C .5 3D .54.如图所示,为测得楼房BC 的高,在距楼房30 m 的A 处,测得楼顶的仰角为α,则楼房BC 的高为( )A .30tan α m B.30tan α m C .30sin α m D.30sin α m第4题图 第5题图 第5题图 第7题图5.如图是某物体的三视图,则这个物体的形状是( ) A .四面体 B .直三棱柱 C .直四棱柱 D .直五棱柱6.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值,错误的是( )A.BDBC B.BCAB C.ADAC D.CDAC7.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A.33B.55C.233D.2558.在△ABC 中,∠A =120°,AB =4,AC =2,则sinB 的值是( )A.5714 B.35 C.217 D.21149.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πD .160π10.如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD 长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC 高度应该设计为( )A .(11-22)米B .(113-22)米C .(11-23)米D .(113-4)米二、填空题(每小题3分,共30分)11. 计算8-2sin45°的结果是 .12.如图是两棵小树在同一时刻的影子,可以断定这是 投影,而不是 投影.13.如图,已知平面直角坐标系xOy 中,O 为坐标原点,点P 的坐标为(5,12),那么OP 与x 轴正半轴所夹角的余弦值为 .第12题图 第13题图 第15题图14.已知一个斜坡的坡度i =1∶3,那么该斜坡的坡角的度数是 度.15.如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为 cm 2.16.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为 cm.(参考数据:sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766.精确到0.1 cm)17.如图,边长为1的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的余弦值是255.第16题图 第17题图 第18题图 第20题图18.如图,由三个棱长均为1 cm 的小立方体搭成的几何体的主视图的面积是 cm 2.19.若规定sin(α-β)=sin αcos β-cos αsin β,则sin15°= .20.如图,在Rt △ABC 中,∠C =90°,边AB 的垂直平分线分别交边BC ,AB 于点D ,E.如果BC =8,tanA =43,那么BD = .三、(本大题12分)21.计算:|2|+(π-3)0+(12)-1-2cos45°.四、(本大题12分)22.△ABC 中,∠C =90°.(1)已知:c =83,∠A =60°,求∠B ,a ,b ;(2)已知:a =36,∠A =45°,求∠B ,b ,c.五、(本大题14分)23.已知:如图,AB 和DE 是直立在地面上的两根立柱,AB =5 m ,某一时刻,AB 在阳光下的投影BC =4 m.(1)请你在图中画出此时DE 在阳光下的投影,并简述画图步骤;(2)在测量AB 的投影长时,同时测出DE 在阳光下的投影长为6 m ,请你计算DE 的长.六、(本大题14分)24.如图,AD 是△ABC 的中线,tanB =13,cosC =22,AC = 2.求: (1)BC 的长;(2)sin ∠ADC 的值.七、(本大题12分)25.如图,AB 为⊙O 的直径,BC 为⊙O 的切线,AC 交⊙O 于点E ,D 为AC 上一点,∠AOD =∠C.(1)求证:OD ⊥AC ;(2)若AE =8,tanA =34,求OD 的长.。
人教版九年级下《第28章锐角三角函数》单元测试卷(有答案)
的路程是________.
12. 如图,一艘轮船以20海里/小时速度从南向北航行,当航行至������处时,测得小岛������在轮船的北偏 东45度的方向处,航行一段时间后到达������处,此时测得小岛������在轮船的南偏东60度的方向处.若 ������������ = 40海里,则轮船航行的时间为________.
∘
19. 分别求出图中∠������、∠������的正切值:(其中∠������ = 90 ) , 由上面的例子可以得出结论:直角三角形的两个锐角的正切值互为________.
∘
15. 如图,一束光线从������轴上点������(0, 1)出发,经过������轴上点������反射后经过点������(3, 3),则光线从������点到 ������点经过的路线长是________.
4
3
3
4
A.3
B.4
2
C.5
D.5
4. ������为锐角,若������������������������ + ������������������������ = 2,则������������������������ ‒ ������������������������的值为( )
1
������������������������ = 2 9. 已知∠������是锐角,且 ,那么∠������等于( ) D.0
1 2
A.5
B.9
C.5
D.9
6. 如图,在边长为1的小正方形组成的网格中, △ ������������������的三个顶点均在格点上,则������������������∠������������������的值 为( )
精品解析:人教版九年级下册数学第28章锐角三角函数单元检测卷(解析版).docx
人教版九年级下册数学第28章锐角三角函数单元检测卷->选择题(每小题3分;共33分)1. 计算5sin30o+2cos245°-tan260°的值是()厂 1 1A. &B. -C.-—D.1v 2 2【答案】B【解析】试题分析:根据特殊角的锐角三角函数值计算即可得到结果.5sin30°+2cos245°-tan260°一丄十2x(2^':一"岳:-l-b2xl-3 -丄■ ■ ■ ■ ■故选B.考点:特殊角的锐角三角函数值点评:计算能力是学生必须具备的基本能力,中考中各种题型中均会涉及到计算问题,因而学生应该努力提升白己的计算能力.2. 如图,河堤横断面迎水坡AB的坡比是1:不,堤高BC=10m,则坡面AB的长度是()BA. 15mB. 20^3mC. 20mD. logm【答案】C【解析】试题分析:RtZ\ABC中,BC=10m, tanA=l:^3;AC=BC-rta nA=10^/3 m, ・・.AB二Jio' + UO 间2 = 20m. 故选:C 考点:解直角三角形 3.在RtAABC中,ZC=90°,当已知ZA和a时,求c,应选择的关系式是() a a aA. c = -------B. c = ----------------------------C. ata nAD. c = -------------------sinA cosA tanA【答案】A【解析】在RtAABC中,ZC=90°,. aAsinA=-,a/• c ——sinA故选A.【点睛】本题主要考查解三角形,解题的关键是熟练运用三角函数的定义求解.4. 在RtAABC 中,ZC=90^, c=5, a=4,则sinA 的值为( )3 4 3 4A. —B.—C. —D. -5 5 4 3【答案】BQ 4【解析】由锐角三角函数的定义,sin/! = - = -,所以选B学壬科¥网…学¥科¥网…学¥科¥网…学¥科c 5¥网…学¥科¥网…学¥科¥网…学¥科¥网…学¥科¥网…5. 在RtAABC 中,ZC=90°,下列等式:(1) sin A=sin B; (2) a=c sin B; (3) sin A=tan A cos A; (4) sin2A+cos2A =1.其中一定能成立的有( )A. 1个B. 2个C. 3个D. 4个【答案】B・・A計• n P人打 4 A甜• sinA= —, sinB= — , cosA= — , tanA二一, <•r r h.•.sinAHsinB,所以(1)错误;a=c-sinA,所以(2)错误;VtanA-cosA= —• — =sinA,所以(3)正确;h rsin2A+cos2A= ( — ) 2+ ( — ) 2= =1,所以(4)正确.故选B.6.如图,在边长为1的小正方形组成的网格中,点A、B、0为格点,贝ij tanZAOB=( )【答案】A【解析】过点A 作AD 丄0B 垂足为D, 如图,在直角AABD 屮,AD=1, 0D=2,则 tanZAOB —=-, OD 27.如图,在RtAABC 中,ZC=90°, AM 是BC 边上的中线,sinZCAM=-,则tanB 的值为(4 D. 3【答案】B设 CM=3x,则 AM=5x,根据勾股定理得:AC=^AM 2-CM 2^4x,又M 为BC 的中点,/. BC=2CM=6x,z z |AC 4x 2在 RtAABC 中,tanB=——=—=一,BC 6x 3 故选B.8.如图,一艘轮船在B 处观测灯塔A 位于南偏东50。
人教版数学九年级下册第28章测试题(含答案)
人教版数学九年级下册第28章测试题(含答案)28.1《锐角三角函数》一、选择题1.2cos60°=()A.1B.C.D.2.在菱形ABCD中,BD为对角线,AB=BD,则sin∠BAD=()A. B. C. D.3.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,下列线段的比值等于cosA的值的有()个(1)(2)(3)(4).A.1B.2C.3D.44.tan45°sin45°﹣2sin30°cos45°+tan30°=()A. B. C. D.5.计算的值是()A. B. C. D.6.如图,在由边长为1的小正方形组成的网格中,点A、B、C都在小正方形的顶点上,则tan∠CAB的值为()A.1B.C.D.7.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A. B. C. D.8.计算sin60°+cos45°的值等于()A. B. C. D.9.sin60°的值等于()A. B. C. D.10.在△ABC中,若三边BC、CA、AB满足 BC∶CA∶AB=5∶12∶13,则sinA的值是( )A. B. C. D.11.tan30°的值为()A. B. C. D.12.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定二、填空题13.计算;sin30°•tan30°+cos60°•tan60°= .14.已知在△ABC中,AB=AC=4,BC=6,那么cosB=____________.15.△ABC中,∠A,∠B都是锐角,若sinA=,cosB=,则∠C= .16.在△ABC中,∠B=45°,cosA=,则∠C的度数是________.17.计算:=18.△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是三角形.三、计算题19.计算:20.计算:四、解答题21.先化简,再求值,其中a=1+2cos45°;b=1-2sin45°22.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=sin αcos β+cos αsin β;sin(α-β)=sin αcos β-cos αsin β.例如sin 90°=sin(60°+30°)=sin 60°cos 30°+cos 60°sin 30°=×+×=1.类似地,可以求得sin 15°的值是___________________.23.小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(1)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.24.如图,四边形ABCD是平行四边形,以AB为直径的⊙0经过点D,E是⊙O上一点,且∠AED=45°,(1)求证:CD是⊙O的切线.(2)若⊙O的半径为3,AE=5,求∠ADE的正弦值.参考答案1.答案为:A;.2.答案为:C3.答案为:C4.答案为:D.5.答案为:A;6.答案为:C.7.答案为:A;8.答案为:B;9.答案为:C10.答案为:C11.答案为:B;.12.答案为:C13.答案为:14.答案为:0.75;15.答案为:60°.16.答案为:75°17.答案为:18.答案为:直角.19.原式=120.原式=721.原式=22.原式=.23.解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.24.解:(1)CD与⊙O相切.理由是:连接OD.则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°.∴OD⊥CD,∴CD与⊙O相切.(2)连接BE,由圆周角定理,得∠ADE=∠ABE.∵AB是⊙O的直径,∴∠AEB=90°,AB=2×3=6(cm).在Rt△ABE中,sin∠ABE==,∴sin∠ADE=sin∠ABE=.28.2解直角三角形及其应用一.选择题1.如图,在Rt△ABC中,∠C=90°,BC=,AB=2,则∠B等于()A.15°B.20°C.30°D.60°2.在△ABC中,∠ACB=90°,若AC=8,BC=6,则sin A的值为()3.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.4.如图,传送带和地面所成斜坡的坡度为1:3,若它把物体从地面点A处送到离地面1米高的点B处,则物体从A到B所经过的路程为()A.3米B.米C.2米D.3米5.如图,在国旗台DF上有一根旗杆AF,国庆节当天小明参加升旗仪式,在B处测得旗杆顶端的仰角为37°,小明向前走4米到达点E,经过坡度为1的坡面DE,坡面的水平距离是1米,到达点D,测得此时旗杆顶端的仰角为53°,则旗杆的高度约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.6.29B.4.71C.4D.5.336.如图,AB是斜靠在墙上的长梯,AB与地面夹角为α,当梯顶A下滑1m到A′时,梯脚B 滑到B′,A'B'与地面的夹角为β,若tanα=,BB'=1m,则cosβ=()7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为()米(结果精确到1米)(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)A.27B.28C.29D.308.数学兴趣小组的同学们要测量某大桥主架顶端离水面的高CD.在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为45°,测得与大桥主架的水平距离AB为100米.则大桥主架顶端离水面的高CD为()A.(100+100•sinα)米B.(100+100•tanα)米C.(100+)米D.(100+)米9.某兴趣小组想测量一座大楼AB的高度,如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测量仪测得大楼顶端A的仰角为37°,测角仪DE的高度为1.5米,求大楼AB的高度约为多少米?()(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)A.39.3B.37.8C.33.3D.25.710.在数学综合实践课上,老师和同学们一起测量学校旗杆的高度,他们首先在旗杆底部C地测得旗杆顶部A的仰角为45°,然后沿着斜坡CD到斜坡顶部D点处再测得旗杆顶部A的仰角为37°(身高忽略不计),已知斜坡CD的坡度i=1:2.4,坡面CD长2.6米,旗杆AB所在旗台高度为1.4米,旗杆、旗台底部、斜坡在同一平面,则旗杆AB的高度为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.9.5米B.9.6米C.9.7米D.9.8米二.填空题11.如图,在正方形网格中,小正方形的边长为1,点A,B,C,D都在格点上,AB与CD相交于点O,则∠AOC的正切值是.12.如图,在平面直角坐标系中有一点P(6,8),那么OP与x轴的正半轴的夹角α的余弦值为.13.一座建于若干年前的水库大坝,目前坝高4米,现要在不改变坝高的情况下修整加固,将背水坡AB的坡度由1:0.75改为1:2,则修整后的大坝横截面积增加了平方米.14.如图,点P、A、B、C在同一平面内,点A、B、C在同一直线上,且PC⊥AC,在点A处测得点P在北偏东60°方向上,在点B处测得点P在北偏东30°方向上,若AP=12千米,则A,B两点的距离为千米.15.如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,则教学楼BC的高度为.(点A,B,C,D都在同一平面上,结果保留根号)三.解答题16.如图,在△ABC中,AD是BC边上的高,BC=4,AD=12,sin B=.求:(1)线段CD的长;(2)sin∠BAC的值.17.石室联合中学金沙校区位于三环跨线桥旁边,为了不影响学生上课,市政在桥旁安装了隔音墙,交通局也对此路段设置了限速,九年级学生为了测量汽车速度做了如下实验:在桥上依次取B、C、D三点,再在桥外确定一点A,使得AB⊥BD,测得AB之间15米,使得∠ADC =30°,∠ACB=60°.(1)求CD的长(精确到0.01,≈1.73,≈1.41).(2)交通局对该路段限速30千米/小时,汽车从C到D用时2秒,汽车是否超速?说明理由.18.如图,一艘渔船沿南偏东42°方向航行,在A处测得一个小岛P在其南偏东64°方向.又继续航行(40﹣16)海里到达B处,测得小岛P位于渔船的南偏东72°方向,已知以小岛P为圆心,半径16海里的圆形海域内有暗礁.如果渔船不改变航向有没有触礁的危险,请通过计算加以说明.如果有危险,渔船自B处开始,沿南偏东多少度的方向航行,能够安全通过这一海域?(参考数据:sin22°=,cos22°=,tan22°=)参考答案一.选择题1.解:∵∠C=90°,BC=,AB=2,∴cos B==,∴∠B=30°,故选:C.2.解:在△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10,∴sin A===.故选:A.3.解:如图,作CD⊥AB于点D,作AE⊥BC于点E,由已知可得,AC==,AB=5,BC==5,CD=3,∵S△ABC=AB•CD=BC•AE,∴AE===3,∴CE===1,∴cos∠ACB===,故选:B.4.解:过B作BC⊥地面于C,如图所示:∵BC:AC=1:3,即1:AC=1:3,∴AC=3(米),∴AB===(米),即物体从A到B所经过的路程为米,故选:B.5.解:过点D作DM⊥BC,垂足为M,由题意得,∠B=37°,∠ADF=53°,BE=4,EM=1,∵坡面DE的坡度为1,∴=1,∴DM=EM=1=FC,在Rt△ADF中,∠DAF=90°﹣∠ADF=90°﹣53°=37°,∵tan∠DAF=≈0.75,设AF=x,则DF=0.75x=MC,在Rt△ABC中,∵tan∠B=,∴tan37°=≈0.75,解得x=≈6.29(米),故选:A.6.解:如图.∵在直角△ABC中,∠ACB=90°,tanα=,∴可设AC=4x,那么BC=3x,∴AB===5x,∴A′B′=AB=5x.∵在直角△A′B′C中,∠A′CB′=90°,A′C=4x﹣1,B′C=3x+1,∴(4x﹣1)2+(3x+1)2=(5x)2,解得x=1,∴A′C=3,B′C=4,A′B′=5,∴cosβ=.故选:A.7.解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=20米,DE=40米,BF=CG,在Rt△CDG中,i=1:2.4,CD=26米,∴BF=CG=10米,GD=24米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=84米,∠E=24°,∴AF=FE•tan24°≈84×0.45=37.8(米),∴AB=AF﹣BF=37.8﹣10≈28(米);即建筑物AB的高度为28米;故选:B.8.解:在Rt△ABC中,,∴BC=AB•tanα,在Rt△ABD中,tan45°=,∴BD=AB•tan45°=AB,∴CD=a=BC+BD=AB•tanα+AB=(100+100•tanα)米,故选:B.9.解:如图,延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.∵在Rt△BCF中,BF:CF=1:,∴设BF=k,则CF=k,∴BC=2k.又∵BC=12,∴k=6,∴BF=6,CF=6,∵DF=DC+CF,∴DF=40+6在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+6)≈37.785(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.785﹣4.5≈33.3.答:大楼AB的高度约为33.3米.故选:C.10.解:作DH⊥FC交FC的延长线于点H,延长AB交CF的延长线于点T,作DJ⊥AT于点J,如图所示:则四边形EFTB与四边形DHTJ都是矩形,∴BT=EF=1.4米,JT=DH,在Rt△DCH中,CD=2.6米,=,∴DH=1(米),CH=2.4(米),∵∠ACT=45°,∠T=90°,∴AT=TC,设AT=TC=x.则DJ=TH=(x+2.4)米,AJ=(x﹣1)米,在Rt△ADJ中,tan∠ADJ==0.75,∴=0.75,解得:x=11.2,∴AB=AT﹣BT=11.2﹣1.4=9.8(米),故选:D.二.填空题11.解:如图取格点K,连接BK,过点K作KH⊥AB于H,如图所示:∵DB=CK=2,DB∥CK,∴四边形CDBK是平行四边形,∴CD∥BK,∴∠AOC=∠ABK,过点K作KH⊥AB于H.∵AB==,S△ABK=•AK•4=•AB•KH=20,∴HK==,∵BK==2,∴BH===,∴tan∠AOC=tan∠ABK===,故答案为:.12.解:如图作PH⊥x轴于H.∵P(6,8),∴OH=6,PH=8,∴OP==10,∴cosα===.故答案为:.13.解:∵背水坡AB的坡度为1:0.75,AC=4,∴=0.75,解得,BC=3,∵坡AD的坡度为1:2,AC=4,∴CD=8,∴BD=DC﹣BC=5,∴△ADB的面积=×5×4=10(平方米),故答案为:10.14.解:∵PC⊥AC,在点A处测得点P在北偏东60°方向上,∴∠PCA=90°,∠P AC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在点B处测得点P在北偏东30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴BC===2千米,∴AB=AC﹣BC=6﹣2=4(千米),故答案为:4千米.15.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=30°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan30°=,即=,∴AE=30,∵AB=57,∴BE=AB﹣AE=57﹣30,∵四边形BCFE是矩形,∴CF=BE=57﹣30.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=57﹣30,∴BC=EF=30﹣57+30=(30﹣27)米.答:教学楼BC高约(30﹣27)米.故答案为:(30﹣27)米.三.解答题16.解:(1)∵AD是BC边上的高,∴∠D=90°,在Rt△ABD中,∵sin B=.∴=,又∵AD=12,∴AB=15,∴BD==9,又∵BC=4,∴CD=BD﹣BC=9﹣4=5;答:线段CD的长为5;(2)如图,过点C作CE⊥AB,垂足为E,∵S△ABC=BC•AD=AB•CE∴×4×12=×15×CE,∴CE=,在Rt△AEC中,∴sin∠BAC===,答:sin∠BAC的值为.17.解:(1)在Rt△ABC中,∠ABC=90°,∠ACB=60°,AB=15米,∴BC===5米,在Rt△ABD中,∠ABD=90°,∠ADB=30°,∴BD=AB=15米,∴CD=BD﹣BC=10≈17.32米,∴CD的长为17.32米;(2)∵30千米/小时=30000÷3600=米/秒,而10÷2≈8.66>,∴汽车超速.18.解:如图1,过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠P AC=64°﹣42°=22°,∠PBC=72°﹣42°=30°,AB=40﹣16,设PC=x,在Rt△PBC中,∵∠PBC=30°,∴BC=PC=x,∴AC=AB+BC=40﹣16+x,在Rt△P AC中,∵∠P AC=22°,∴tan∠P AC=,即=,解得,x=16,即PC=16,BP=2PC=32,∵16<16,∴有危险.如图2,渔船沿着BD方向航行,过点P作PD⊥BD,垂足为D,在Rt△PBD中,∵sin∠PBD===,∴∠PBD=45°,∴∠QBD=∠QBP﹣∠DBP=72°﹣45°=27°,即渔船自B处开始,沿南偏东27°的方向航行,能够安全通过这一海域.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28章 锐角三角函数 单元测试一、选择题(每题3分,共30分)1.在Rt △ABC 中,∠C=90°,下列式子不一定成立的是( )A .sinA=sinB B .cosA=sinBC .sinA=cosBD .∠A+∠B=90° 2.在直角三角形中,各边的长度都扩大3倍,则锐角A 的三角函数值( ) A 扩大3倍 B 缩小3倍 C 都不变 D 有的扩大,有的缩小3.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )A .c =sin a A B .c =cos a AC .c =a ·tanAD .c =a ·cotA 4、若tan(α +10°)=3,则锐角α的度数是 ( )A 、20°B 、30°C 、35°D 、50° 5.已知△ABC 中,∠C=90°,设sinA=m ,当∠A 是最小的内角时,m 的取值范围是( ) A .0<m <12 B .0<m <22 C .0<m <33 D .0<m <326.小明沿着坡角为30°的坡面向下走了2米,那么他下降( ) A .1米 B . 3 米 C .2 3 米 D .233米7.已知Rt △ABC 中,∠C=90°,tanA=43,BC=8,则AC 等于( )A .6B . 323C .10D .128.sin 2θ+sin 2(90°-θ) (0°<θ<90°)等于( ) A 0 B 1 C 2 D 2sin 2θ 9.如图,在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC于D ,连结BD ,若cos ∠BDC= 35,则BC 的长是( )A 、4 cmB 、6 cmC 、8 cmD 、10 cm 10.以直角坐标系的原点O 为圆心,以1为半径作圆。
若点P 是该圆上第一象限内的一点,且OP 与x 轴正方向组成的角为α,则点P 的坐标为( ) A (cos α ,1) B (1 , sin α) C (sin α , cos α) D (cos α , sin α) (附加)小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( ) A .9米 B .28米 C .(7+3)米 D .(14+23)米 二、填空题:(每题3分,共30分) 1.已知∠A 是锐角,且sinA=32,那么∠A = . 2.已知α为锐角,且sin α =cos500,则α = . 3.已知3tan A -3=0,则∠A = .(第9题)(附加题)4.在△ABC 中,∠C =90°,a =2,b =3,则cosA = ,sinB = ,tanB = . 5.直角三角形ABC 的面积为24cm 2,直角边AB 为6cm ,∠A 是锐角,则sinA = . 6.已知tan α=512,α是锐角,则sin α= .7.如图,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米。
8.cos 2(50°+α)+cos 2(40°-α)-tan(30°-α)tan(60°+α)= . 9.等腰三角形底边长10cm ,周长为36cm ,则一底角的正切值为 . 10.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= .(附加)如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N ,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角45°,则这间房子的宽AB 是 米。
三、解答题(共60分)1、计算(每题5分,共10分):(1) 4sin30°-2cos45°+3tan60° (2) tan30°sin60°+cos 230°-sin 245°tan45°2、(8分) 在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,已知c =83,∠A =60°,解这个直角三角形.ABCDO (第10题)NMA45°75°(附加题)3.(8分)如图,一个等腰梯形的燕尾槽,外口AD 宽10cm ,燕尾槽深10cm ,AB 的坡度i=1:1,求里口宽BC 及燕尾槽的截面积.4.(8分)如图,矩形ABCD 中AB =10,BC =8,E 为AD 边上一点,沿CE 将△CDE 对折,点D 正好落在AB 边上的F 处,求 tan ∠AFE ?5.(8分)如图①,一栋旧楼房由于防火设施较差,需要在侧面墙外修建简易外部楼梯,由地面到二楼,再由二楼到三楼,共两段(图②中AB 、BC 两段),其中BB ′=3.2 m ,BC ′=4.3m .结合图中所给的信息,求两段楼梯A B 与BC 的长度之和(结果保留到0.1 m ). (参考数据sin30°≈0.50,cos30°≈0.87,sin35°≈0.57,cos35°≈0.82)A B D CEF①E②6.(8分)如图,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南东34°方向上的B 处。
这时,海轮所在的B 处距离灯塔P 有多远(精确到1海里)?(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)7.(10分)如图山脚下有一棵树AB ,小强从点B 沿山坡向上走50m 到达点D ,用高为1.5m 的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高.(精确到0.1m )(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)A B DC E 10°15°P BP C65° 34°A第28章 锐角三角函数 单元测试(参考答案) 一、选择题:1.A 2.C 3.A 4.D 5.B 6.A 7.A 8.B 9.A 10.D (附加题:D ) 二、填空题:1.60° 2.40° 3.30° 4.3313;3313; 32 5.45 6.513 7.35 8.09.125 10.35 ;45 (附加题:a )三、解答题:1.(1)解:原式=4×12 -2×22+3×3=2-1+3=4(2)解:原式=33×32+(32)2-(22)2×1=12+34-12=342.解:∵ ∠A =60° ∴∠B =90°-∠A =30° ∴ b =12c =12×83=43∴ a =c 2-b 2=(83)2-(43)2=123. 解:如图,作DF ⊥BC 于点F .由条件可得四边形AEFD 是矩形,AD=EF=10.∵ AB 的坡角为1:1,∴ AEBE =1,∴ BE=10. 同理可得CF=10. ∴ 里口宽BC =BE+EF+FC =30 cm .∴ 截面积为 12×(10+30)×10=200 cm 24.解:由题意可知 ∠EFC =∠D =90°, CF =CD =10∴ ∠AFE +∠BFC =90°∵ ∠BCF +∠BFC =90°∴ ∠AFE =∠BCF在Rt △CBF 中,∠B =90°,CF =10,BC =8∴ BF =CF 2-BC 2=102-82=6∴ tan ∠BCF =BF CF =68=34∴ tan ∠AFE =tan ∠BCF =345.解:在Rt △AB ′B 中,∠AB ′B =90°,∠B ′AB =30°,B ′B =3.2∵ sin30°=B ′BAB∴ AB =B′B sin30°=3.20.5≈6.4A BD CEF在Rt △BC ′C 中,∠BC ′C =90°,∠C BC ′=35°,BC ′=4.3∵ cos35°= BC ′BC∴ BC =BC ′ cos35°≈4.30.82≈5.24∴ AB +BC =6.4+5.24=11.6 (m )答:两段楼梯A B 与BC 的长度之和约为11.6 m .6.解:在Rt △ACP 中,∠ACP =90°,∠A =65°,AP =80∵ sinA =PCAP∴PC =AP ·sinA =80×sin65°≈80×0.91≈72.8 在Rt △BCP 中,∠BCP =90°,∠B =34°,PC =72.8∵ sin B =PCPB∴ PB =PC sin B =72.8sin 34°≈72.80.56≈130(海里)答:这时,海轮所在的B 处距离灯塔P 约有130海里.7.解:延长CD 交PB 于F ,则DF ⊥PB在Rt △BFD 中,∠BFD =90°,∠FBD =15°,BD =50∵ sin ∠FBD =DF BD cos ∠FBD =BF BD∴ DF =BD ·sin ∠FBD =BD ·sin15°≈50×0.26=13.0BF =BD ·cos ∠FBD =BD ·cos15°≈50×0.97=48.5 在Rt △AEC 中,∠AEC =90°,∠ACE =10°,CE =BF =48.5 ∵tan ∠ACE =AE CE∴ AE =CE ·tan ∠ACE =CE ·tan10°≈48.5×0.18=8.73 ∴ AB =AE+CD+DF =8.73+1.5+13≈23.2(米) 答:树AB 高约为23.2米.A。