生产者消费者问题
操作系统生产者消费者问题实验报告
实验报告二实验名称:一、生产者-消费者问题的多线程解决方案二、设计一个执行矩阵乘法的多线程程序日期:2015-10-22 班级:13级计科学号:姓名:一、实验目的1.掌握线程的同步与互斥2.掌握生产者消费者的实现问题3.掌握多线程的编程方法4.掌握矩阵乘法的基本计算原理以及实现二、实验内容1.生产者-消费者问题的多线程解决方案2.设计一个执行矩阵乘法的多线程程序三、项目要求与分析1.请查阅资料,掌握线程创建的相关知识以及矩阵乘法的相关知识,了解java语言程序编写的相关知识2.理解线程的实验步骤在本次试验中,以“生产者-消费者”模型为依据,提供了一个多线程的“生产者-消费者”实例,编写java代码调试运行结果,得出相应的结论。
理解矩阵乘法的实验步骤四、具体实现1.生产者-消费者实例(1)创建一个缓冲信息发送接收通道接口,并创建邮箱盒子类实现,主要代码如下://通道接口public interface Channelpublic abstract void send(Object item);public abstract Object receive();}//实现接口public class MessageQueue implements Channel{private Vector queue;public MessageQueue(){queue=new Vector();}public void send(Object item){queue.addElement(ite m);}public Object receive(){if(queue.size()==0)return null;elsereturn queue.remove(0);}}(2)创建一个工厂多线程类(启动生产者和消费者),并且添加main函数进行测试,主要代码如下://工厂类与主方法public class Factory{public Factory(){Channel mailBox=new MessageQueue();Thread producerThread=new Thread(newProducer(mailBox));Thread consumerThread=new Thread(newConsumer(mailBox));producerThread.start();consumerThread.start();}public static void main(String[] args)Factory server=new Factory();}(3)创建一个线程睡眠类,用于测试,主要代码如下:public class SleepUtilities{public static void nap(){nap(NAP_TIME);}public static void nap(int duration){int sleeptime = (int)(NAP_TIME * Math.random());try{ Thread.sleep(sleeptime*1000); }catch (InterruptedException e) {}}private static final int NAP_TIME = 5;(4)创建生产者类实现Runnable,主要代码如下:public class Producer implements Runnable{private Channel mbox;public Producer(Channel mbox){this.mbox=mbox;}public void run(){Date message;while(true){SleepUtilities.nap();message=new Date();System.out.println("Producer produced "+message);mbox.send(message);}}}(5)创建消费者类实现Runnable,主要代码如下:public class Consumer implements Runnable{private Channel mbox;public Consumer(Channel mbox){this.mbox=mbox;}public void run(){Date message;while(true){SleepUtilities.nap();message=(Date)mbox.receive();if(message!=null)System.out.println("Consumer consumed "+message);}}}(6)调试程序,运行结果:2.矩阵乘法实例(1)初始化矩阵(便于观察,这里使用随机数生成矩阵),主要初始化代码如下matrix1 = new int[m][k];matrix2 = new int[k][n];matrix3 = new int[m][n];//随机初始化矩阵a,bfillRandom(matrix1);fillRandom(matrix2);static void fillRandom(int[][] x){for (int i=0; i<x.length; i++){for(int j=0; j<x[i].length; j++){//每个元素设置为0到99的随机自然数x[i][j] = (int) (Math.random() * 100);}}}(2)打印输出矩阵函数,主要代码如下:static void printMatrix(int[][] x){for (int i=0; i<x.length; i++){for(int j=0; j<x[i].length; j++){System.out.print(x[i][j]+" ");}System.out.println("");}System.out.println("");}(3)创建多线程类,并实现Runnable接口同步对矩阵进行分行计算,主要代码如下://创建线程,数量 <= 4for(int i=0; i<4; i++){if(index < m){Thread t = new Thread(new MyThread());t.start();}else{break;}synchronized static int getTask(){if(index < m){return index++;}return -1;}}class MyThread implements Runnable{int task;//@Overridepublic void run(){MultiThreadMatrix.threadCount++;while( (task = MultiThreadMatrix.getTask()) != -1 ) {System.out.println("进程:"+Thread.currentThread().getName()+"\t开始计算第"+(task+1)+"行");for(int i=0; i<MultiThreadMatrix.n; i++) {for(int j=0; j<MultiThreadMatrix.k; j++) {MultiThreadMatrix.matrix3[task][i] +=MultiThreadMatrix.matrix1[task][j] *MultiThreadMatrix.matrix2[j][i];}}}MultiThreadMatrix.threadCount--;}(4)通过不断改变矩阵大小,线程数目,,调试程序,运行结果:五、所遇问题与解决方法1.在生产者-消费者多线程试验中,刚开始没有考虑到使用线程睡眠,运行结果速度之快,没法观看数据变化,后面定义了睡眠控制,使得问题得以解决2.在多线程矩阵开发实验中,刚开始定义矩阵太小,测试结果不太明显,后面通过把矩阵改大,并且线程数目不断变化使得结果明显。
生产者与消费者问题
⽣产者与消费者问题⽣产者与消费者问题是Java多线程中⼀道⾮常经典的问题,问题如下: ⽣产者与消费者问题也称缓存问题,⽣产者与消费者即Java 中的线程,⽣产者与消费者问题即⽣产者⽣产⼀定数量的线程放⼊缓存区中,供消费者消费者消费,在消费和⽣产的过程中,如果⽣产者⽣产的产品超过了缓存区的上限则停⽌⽣产,等待消费者消费,如果缓存区的产品被消费完,消费者则停⽌消费,等待⽣产者⽣产 ⾸先,我们来看题⽬,从题⽬中我们⼀个可以抽取出⼏个实体类呢?答案是4个 Consumer(消费者),Producer(⽣产者),Product(产品),WareHouse(缓冲区,也叫仓库),于是项⽬结构如下,main 为测试类产品类package ProducersAndConsumers;//产品public class Product {//产品需要⼀个id 来表明产品的唯⼀性private Integer productId;//id直接由构造⽅法传⼊public Product(Integer productId) {this.productId = productId;}public Integer getProductId() {return productId;}@Overridepublic String toString() {return "Product{" +"productId=" + productId +'}';}}仓库package ProducersAndConsumers;import java.util.LinkedList;//仓库类public class WareHouse {//仓库容量,我们设置为10个private final int max = 10;//仓库基础的数量private final int base = 0;//我们设置⼀个集合来存放⽣产的产品,由于我们需要⼀个可以弹出最后⼀个产品的⽅法,所以我们在这⾥使⽤LinkedListprivate LinkedList<Product> products = new LinkedList<>();//⽣产⽅法public synchronized void push(Product product) {//判断是否有空间存放产品while(max==products.size()){try{System.out.println("仓库已满,消费者快来消费"+Thread.currentThread().getName()+"停⽌⽣产");//仓库满后停⽌当前线程this.wait();}catch (Exception ex){ex.printStackTrace();}}//⽣产商品products.addLast(product);System.out.println(Thread.currentThread().getName()+"⽣产了⼀个产品:"+product.getProductId()+"号");try{//等待1秒,⽅⾯我们观察Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}notifyAll();}//消费⽅法public synchronized void pop() {//判断是否有产品while (products.size()==base){try{System.out.println("仓库空了,⽣产者快点⽣产"+Thread.currentThread().getName()+"停⽌消费");//仓库空后停⽌当前线程this.wait();} catch (InterruptedException e) {e.printStackTrace();}}//消费商品System.out.println(Thread.currentThread().getName()+"消费了⼀个产品:"+products.getLast().getProductId()+"号"); products.removeLast();try{//等待1秒,⽅⾯我们观察Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}notifyAll();}}⽣产者package ProducersAndConsumers;//⽣产者public class Producer implements Runnable {//⽣产产品的idprivate int count = 0;//仓库private WareHouse wareHouse;//⽣产者和消费者都是⽤同⼀个仓库,所以我们只要声明⼀个仓库,在由构造⽅法传⼊即可public Producer(WareHouse wareHouse) {this.wareHouse = wareHouse;}//⽣产⽅法@Overridepublic void run() {while (true){Product product = new Product(count);wareHouse.push(product);// 产品id不可重复,所以我们使⽤⾃增策略count++;}}}消费者package ProducersAndConsumers;public class Consumer implements Runnable{//仓库private WareHouse wareHouse;//⽣产者和消费者都是⽤同⼀个仓库,所以我们只要声明⼀个仓库,在由构造⽅法传⼊即可public Consumer(WareHouse wareHouse) {this.wareHouse = wareHouse;}//消费⽅法@Overridepublic void run() {while (true){wareHouse.pop();}}}最后测试类package ProducersAndConsumers;//测试类public class Main {public static void main(String[] args) {WareHouse wareHouse = new WareHouse();Producer producer = new Producer(wareHouse);Consumer consumer = new Consumer(wareHouse); Thread producerT = new Thread(producer,"⽣产者"); Thread consumerT = new Thread(consumer,"消费者"); producerT.start();consumerT.start();}}。
生产者消费者问题例题及详解
生产者消费者问题例题及详解生产者消费者问题是一个经典的并发问题,涉及到两个独立的线程:生产者和消费者。
生产者生产物品,消费者消费物品。
生产者、消费者共享一个公共的固定大小的缓冲区。
以下是一个简单的生产者消费者问题的例子:假设有一个固定大小的缓冲区,大小为N。
生产者负责生成数据放入缓冲区,而消费者负责从缓冲区取出数据并处理。
1. 当缓冲区为空时,消费者被阻塞,等待生产者生产数据。
2. 当缓冲区满时,生产者被阻塞,等待消费者消费数据。
3. 缓冲区的每个元素只能被消费一次。
4. 缓冲区是循环使用的,即当缓冲区的最后一个元素被消费后,下一个元素将是缓冲区的第一个元素。
问题:如何实现这个生产者消费者模型?解答:可以使用条件变量和互斥锁来实现这个模型。
首先,定义一个缓冲区数组和一个计数器变量来跟踪缓冲区的使用情况。
然后,定义两个条件变量:一个用于生产者等待缓冲区非空,另一个用于消费者等待缓冲区非空。
最后,使用互斥锁来保护对缓冲区和计数器的访问。
以下是使用C++实现的代码示例:```cppinclude <iostream>include <thread>include <mutex>include <condition_variable>const int N = 5; // 缓冲区大小int buffer[N]; // 缓冲区数组int count = 0; // 计数器变量,表示缓冲区的使用情况std::mutex mutex; // 互斥锁std::condition_variable cv_prod; // 生产者等待条件变量std::condition_variable cv_cons; // 消费者等待条件变量void producer() {for (int i = 0; i < N 2; i++) {std::unique_lock<std::mutex> lock(mutex);cv_(lock, []{ return count < N; }); // 等待缓冲区非空buffer[count] = i; // 生产数据放入缓冲区std::cout << "Producer produced " << i << std::endl;count++; // 更新计数器变量if (count == N) count = 0; // 循环使用缓冲区cv__one(); // 通知消费者消费数据}}void consumer() {for (int i = 0; i < N 2; i++) {std::unique_lock<std::mutex> lock(mutex);cv_(lock, []{ return count > 0; }); // 等待缓冲区非空int data = buffer[count]; // 从缓冲区取出数据并处理 std::cout << "Consumer consumed " << data << std::endl;count--; // 更新计数器变量if (count == -1) count = N - 1; // 循环使用缓冲区cv__one(); // 通知生产者生产数据}}int main() {std::thread prod(producer); // 创建生产者线程 std::thread cons(consumer); // 创建消费者线程 (); // 等待生产者线程结束(); // 等待消费者线程结束return 0;}```。
操作系统中的经典问题——生产者消费者问题(两种方式实现)
操作系统中的经典问题——⽣产者消费者问题(两种⽅式实现)操作系统中的经典问题——⽣产者消费者问题(两种⽅式实现)1、问题引⼊:什么是⽣产者消费者问题?⽣产者消费者问题(英语:Producer-consumer problem),也称有限缓冲问题(英语:Bounded-buffer problem),是⼀个多线程同步问题的经典案例。
该问题描述了共享固定⼤⼩缓冲区的两个线程——即所谓的“⽣产者”和“消费者”——在实际运⾏时会发⽣的问题。
⽣产者的主要作⽤是⽣成⼀定量的数据放到缓冲区中,然后重复此过程。
与此同时,消费者也在缓冲区消耗这些数据。
该问题的关键就是要保证⽣产者不会在缓冲区满时加⼊数据,消费者也不会在缓冲区中空时消耗数据。
.要解决该问题,就必须让⽣产者在缓冲区满时休眠(要么⼲脆就放弃数据),等到下次消费者消耗缓冲区中的数据的时候,⽣产者才能被唤醒,开始往缓冲区添加数据。
同样,也可以让消费者在缓冲区空时进⼊休眠,等到⽣产者往缓冲区添加数据之后,再唤醒消费者。
通常采⽤进程间通信的⽅法解决该问题。
如果解决⽅法不够完善,则容易出现死锁的情况。
出现死锁时,两个线程都会陷⼊休眠,等待对⽅唤醒⾃⼰。
该问题也能被推⼴到多个⽣产者和消费者的情形。
2、问题分析该问题需要注意的⼏点:1. 在缓冲区为空时,消费者不能再进⾏消费2. 在缓冲区为满时,⽣产者不能再进⾏⽣产3. 在⼀个线程进⾏⽣产或消费时,其余线程不能再进⾏⽣产或消费等操作,即保持线程间的同步4. 注意条件变量与互斥锁的顺序由于前两点原因,因此需要保持线程间的同步,即⼀个线程消费(或⽣产)完,其他线程才能进⾏竞争CPU,获得消费(或⽣产)的机会。
对于这⼀点,可以使⽤条件变量进⾏线程间的同步:⽣产者线程在product之前,需要wait直⾄获取⾃⼰所需的信号量之后,才会进⾏product的操作;同样,对于消费者线程,在consume之前需要wait直到没有线程在访问共享区(缓冲区),再进⾏consume的操作,之后再解锁并唤醒其他可⽤阻塞线程。
生产者消费者问题实验报告
河北建筑工程学院实验报告年月日班级物联121姓名连龙学号2012326134评分实验台号同组人员实验名称生产者消费者问题实验课程名称操作系统仪器名称型号规格仪器编号PC机Window XP或Windows 7一、实验目的理解生产者消费者问题,理解生产者产生任务进入缓存或队列排队等待处理,消费者在队列等待或进行任务处理的过程二、实验设备PC 机三、实验内容在java开发环境下模拟经典进程同步问题,生产者——消费者问题。
四、程序主要代码import java.awt.*;import javax.swing.*;import javax.swing.border.TitledBorder;import java.awt.event.*;public class abc extends JFrame implements ActionListener{static abc frm=new abc();static JButton bun1=new JButton("生产者1");static JButton bun2=new JButton("生产者2");static JButton bun3=new JButton("生产者3");static JButton bun4=new JButton("消费者1");static JButton bun5=new JButton("消费者2");static JButton bun6=new JButton("消费者3");static JTextField jt1 = new JTextField(" ");static JTextField jt2 = new JTextField(" ");static JTextField jt3 = new JTextField(" ");static JTextField jt4 = new JTextField(" ");static JTextField jt5 = new JTextField(" ");static JTextField jt6 = new JTextField(" ");static JTextField jt7 = new JTextField(" "); static JTextField jt8 = new JTextField(" ");public static void main(String[] args) {frm.setLayout(null);frm.setSize(800,450);frm.setLocation(500,300);bun1.addActionListener(frm);bun2.addActionListener(frm);bun3.addActionListener(frm);bun4.addActionListener(frm);bun5.addActionListener(frm);bun6.addActionListener(frm);bun1.setSize(80,40);bun1.setLocation(60,325);frm.add(bun1);bun2.setSize(80,40);bun2.setLocation(170,325);frm.add(bun2);bun3.setSize(80,40);bun3.setLocation(280,325);frm.add(bun3);bun4.setSize(80,40);bun4.setLocation(400,325);frm.add(bun4);bun5.setSize(80,40);bun5.setLocation(510,325);frm.add(bun5);bun6.setSize(80,40);bun6.setLocation(620,325);frm.add(bun6);jt1.setSize(80,40);jt1.setLocation(400,200);frm.add(jt1);jt2.setSize(80,40);jt2.setLocation(280,200);frm.add(jt2);jt3.setSize(80,40);jt3.setLocation(60,95);frm.add(jt3);jt4.setSize(80,40);jt4.setLocation(170,95);frm.add(jt4);jt5.setSize(80,40);jt5.setLocation(280,95);frm.add(jt5);jt6.setSize(80,40);jt6.setLocation(400,95);frm.add(jt6);jt7.setSize(80,40);jt7.setLocation(510,95);frm.add(jt7);jt8.setSize(80,40);jt8.setLocation(620,95);frm.add(jt8);frm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);frm.setVisible(true);}public void actionPerformed(ActionEvent e){JButton bun=(JButton)e.getSource();if(bun==bun1){if(jt6.getText().equals(" ")){if(jt1.getText().equals(" ")){jt1.setText(bun1.getText());}else if(jt2.getText().equals(" ")){jt2.setText(bun1.getText());}else if(jt3.getText().equals(" ")){jt3.setText(bun1.getText());bun1.setEnabled(false);}else if(jt4.getText().equals(" ")){jt4.setText(bun1.getText());bun1.setEnabled(false);}else if(jt5.getText().equals(" ")){jt5.setText(bun1.getText());bun1.setEnabled(false);}}else{if(jt7.getText().equals(" ")){jt6.setText(" ");bun4.setEnabled(true);bun5.setEnabled(true);bun6.setEnabled(true);}else if(jt8.getText().equals(" ")){jt6.setText(jt7.getText());jt7.setText(" ");if(jt6.getText().equals("消费者1")) {bun4.setEnabled(false);bun5.setEnabled(true);bun6.setEnabled(true);}else if(jt6.getText().equals("消费者2")) {bun4.setEnabled(true);bun5.setEnabled(false);bun6.setEnabled(true);}else{bun4.setEnabled(true);bun5.setEnabled(true);bun6.setEnabled(false);}}else{if(jt6.getText().equals("消费者1")) {bun4.setEnabled(true);bun5.setEnabled(false);bun6.setEnabled(false);}else if(jt6.getText().equals("消费者2")) {bun4.setEnabled(false);bun5.setEnabled(true);bun6.setEnabled(false);}else{bun4.setEnabled(false);bun5.setEnabled(false);bun6.setEnabled(true);}jt6.setText(jt7.getText());jt7.setText(jt8.getText());jt8.setText(" ");}}}else if(bun==bun2){if(jt6.getText().equals(" ")){if(jt1.getText().equals(" ")){jt1.setText(bun2.getText());}else if(jt2.getText().equals(" ")){jt2.setText(bun2.getText());}else if(jt3.getText().equals(" ")){jt3.setText(bun2.getText());bun2.setEnabled(false);}else if(jt4.getText().equals(" ")){jt4.setText(bun2.getText());bun2.setEnabled(false);}else if(jt5.getText().equals(" ")){jt5.setText(bun2.getText());bun2.setEnabled(false);}}else{if(jt7.getText().equals(" ")){jt6.setText(" ");bun4.setEnabled(true);bun5.setEnabled(true);bun6.setEnabled(true);}else if(jt8.getText().equals(" ")){jt6.setText(jt7.getText());jt7.setText(" ");if(jt6.getText().equals("消费者1")) {bun4.setEnabled(false);bun5.setEnabled(true);bun6.setEnabled(true);}else if(jt6.getText().equals("消费者2")) {bun4.setEnabled(true);bun5.setEnabled(false);bun6.setEnabled(true);}else{bun4.setEnabled(true);bun5.setEnabled(true);bun6.setEnabled(false);}}else{if(jt6.getText().equals("消费者1")) {bun4.setEnabled(true);bun5.setEnabled(false);bun6.setEnabled(false);}else if(jt6.getText().equals("消费者2")) {bun4.setEnabled(false);bun5.setEnabled(true);bun6.setEnabled(false);}else{bun4.setEnabled(false);bun5.setEnabled(false);bun6.setEnabled(true);}jt6.setText(jt7.getText());jt7.setText(jt8.getText());jt8.setText(" ");}}}else if(bun==bun3){ if(jt6.getText().equals(" ")){if(jt1.getText().equals(" ")){jt1.setText(bun3.getText());}else if(jt2.getText().equals(" ")){jt2.setText(bun3.getText());}else if(jt3.getText().equals(" ")){jt3.setText(bun3.getText());bun3.setEnabled(false);}else if(jt4.getText().equals(" ")){jt4.setText(bun3.getText());bun3.setEnabled(false);}else if(jt5.getText().equals(" ")){jt5.setText(bun3.getText());bun3.setEnabled(false);}}else{if(jt7.getText().equals(" ")){jt6.setText(" ");bun4.setEnabled(true);bun5.setEnabled(true);bun6.setEnabled(true);}else if(jt8.getText().equals(" ")){jt6.setText(jt7.getText());jt7.setText(" ");if(jt6.getText().equals("消费者1")) {bun4.setEnabled(false);bun5.setEnabled(true);bun6.setEnabled(true);}else if(jt6.getText().equals("消费者2")) {bun4.setEnabled(true);bun5.setEnabled(false);bun6.setEnabled(true);}else{bun4.setEnabled(true);bun5.setEnabled(true);bun6.setEnabled(false);}}else{if(jt6.getText().equals("消费者1")){bun4.setEnabled(true);bun5.setEnabled(false);bun6.setEnabled(false);}else if(jt6.getText().equals("消费者2")){bun4.setEnabled(false);bun5.setEnabled(true);bun6.setEnabled(false);}else{bun4.setEnabled(false);bun5.setEnabled(false);bun6.setEnabled(true);}jt6.setText(jt7.getText());jt7.setText(jt8.getText());jt8.setText(" ");}}}else if(bun==bun4){ if(jt1.getText().equals(" ")){if(jt6.getText().equals(" ")){jt6.setText(bun4.getText());bun4.setEnabled(false);}else if(jt7.getText().equals(" ")){jt7.setText(bun4.getText());bun4.setEnabled(false);}else if(jt8.getText().equals(" ")){jt8.setText(bun4.getText());bun4.setEnabled(false);}}elseif(jt2.getText().equals(" ")){jt1.setText(" ");}else if(jt3.getText().equals(" ")&jt4.getText().equals(" ")&jt5.getText().equals(" ")){ jt1.setText(jt2.getText());jt2.setText(" ");}else if(jt4.getText().equals(" ")&jt5.getText().equals(" ")){jt1.setText(jt2.getText());jt2.setText(jt3.getText());jt3.setText(" ");bun1.setEnabled(true);bun2.setEnabled(true);bun3.setEnabled(true);}else if(jt5.getText().equals(" ")){jt1.setText(jt2.getText());jt2.setText(jt3.getText());jt3.setText(jt4.getText());jt4.setText(" ");if(jt3.getText().equals("生产者1")) {bun1.setEnabled(false);bun2.setEnabled(true);bun3.setEnabled(true);}else if(jt3.getText().equals("生产者2")) {bun1.setEnabled(true);bun2.setEnabled(false);bun3.setEnabled(true);}else{bun1.setEnabled(true);bun2.setEnabled(true);bun3.setEnabled(false);}}else{jt1.setText(jt2.getText());jt2.setText(jt3.getText());jt3.setText(jt4.getText());jt4.setText(jt5.getText());jt5.setText(" ");if(jt2.getText().equals("生产者1")) {bun1.setEnabled(true);bun2.setEnabled(false);bun3.setEnabled(false);}else if(jt2.getText().equals("生产者2")) {bun1.setEnabled(false);bun2.setEnabled(true);bun3.setEnabled(false);}else{bun1.setEnabled(false);bun2.setEnabled(false);bun3.setEnabled(true);}}}else if(bun==bun5){ if(jt1.getText().equals(" ")){if(jt6.getText().equals(" ")){jt6.setText(bun5.getText());bun5.setEnabled(false);}else if(jt7.getText().equals(" ")){jt7.setText(bun5.getText());bun5.setEnabled(false);}else if(jt8.getText().equals(" ")){jt8.setText(bun5.getText());bun5.setEnabled(false);}}elseif(jt2.getText().equals(" ")){jt1.setText(" ");}else if(jt3.getText().equals(" ")&jt4.getText().equals(" ")&jt5.getText().equals(" ")){ jt1.setText(jt2.getText());jt2.setText(" ");}else if(jt4.getText().equals(" ")&jt5.getText().equals(" ")){jt1.setText(jt2.getText());jt2.setText(jt3.getText());jt3.setText(" ");bun1.setEnabled(true);bun2.setEnabled(true);bun3.setEnabled(true);}else if(jt5.getText().equals(" ")){jt1.setText(jt2.getText());jt2.setText(jt3.getText());jt3.setText(jt4.getText());jt4.setText(" ");if(jt3.getText().equals("生产者1")){bun1.setEnabled(false);bun2.setEnabled(true);bun3.setEnabled(true);}else if(jt3.getText().equals("生产者2")){bun1.setEnabled(true);bun2.setEnabled(false);bun3.setEnabled(true);}else{bun1.setEnabled(true);bun2.setEnabled(true);bun3.setEnabled(false);}}else{jt1.setText(jt2.getText());jt2.setText(jt3.getText());jt3.setText(jt4.getText());jt4.setText(jt5.getText());jt5.setText(" ");if(jt2.getText().equals("生产者1")){bun1.setEnabled(true);bun2.setEnabled(false);bun3.setEnabled(false);}else if(jt2.getText().equals("生产者2")){bun1.setEnabled(false);bun2.setEnabled(true);bun3.setEnabled(false);}else{bun1.setEnabled(false);bun2.setEnabled(false);bun3.setEnabled(true);}}}else if(bun==bun6){ if(jt1.getText().equals(" ")){if(jt6.getText().equals(" ")){jt6.setText(bun6.getText());bun6.setEnabled(false);}else if(jt7.getText().equals(" ")){jt7.setText(bun6.getText());bun6.setEnabled(false);}else if(jt8.getText().equals(" ")){jt8.setText(bun6.getText());bun6.setEnabled(false);}}elseif(jt2.getText().equals(" ")){jt1.setText(" ");}else if(jt3.getText().equals(" ")&jt4.getText().equals(" ")&jt5.getText().equals(" ")){ jt1.setText(jt2.getText());jt2.setText(" ");}else if(jt4.getText().equals(" ")&jt5.getText().equals(" ")) {jt1.setText(jt2.getText());jt2.setText(jt3.getText());jt3.setText(" ");bun1.setEnabled(true);bun2.setEnabled(true);bun3.setEnabled(true);}else if(jt5.getText().equals(" ")){jt1.setText(jt2.getText());jt2.setText(jt3.getText());jt3.setText(jt4.getText());jt4.setText(" ");if(jt3.getText().equals("生产者1")){bun1.setEnabled(false);bun2.setEnabled(true);bun3.setEnabled(true);}else if(jt3.getText().equals("生产者2")){bun1.setEnabled(true);bun2.setEnabled(false);bun3.setEnabled(true);}else{bun1.setEnabled(true);bun2.setEnabled(true);bun3.setEnabled(false);}}else{jt1.setText(jt2.getText());jt2.setText(jt3.getText());jt3.setText(jt4.getText());jt4.setText(jt5.getText());jt5.setText(" ");if(jt2.getText().equals("生产者1")){bun1.setEnabled(true);bun2.setEnabled(false);bun3.setEnabled(false);}else if(jt2.getText().equals("生产者2")){bun1.setEnabled(false);bun2.setEnabled(true);bun3.setEnabled(false);}else{bun1.setEnabled(false);bun2.setEnabled(false);bun3.setEnabled(true);}}}}}五、实验结果运行程序,显示如下:。
生产者消费者问题操作系统课程设计
目录1 绪论 (1)1.1 实现的功能 (1)1.2 P V 操作 (1)2 生产者——消费者问题。
(2)2.1 要求 (2)2.2 生产者和消费者两个进程的程序 (2)2.3进程控制块PCB。
(3)2.4处理器的模拟。
(3)2.5程序设计 (3)3设计步骤 (4)3.1课程分析 (5)3.1.2 流程图 (5)3.1.3 测试程序 (7)3.1.4测试结果分析 (12)5 结论 (12)参考文献 (13)1 绪论生产者-消费者问题是一个经典的进程同步问题,该问题最早由Dijkstra提出,用以演示他提出的信号量机制。
模拟实现用同步机构避免发生进程执行时可能出现的与时间有关的错误。
进程是程序在一个数据集合上运行的过程,进程是并发执行的,也即系统中的多个进程轮流地占用处理器运行。
我们把若干个进程都能进行访问和修改的那些变量称为公共变量。
由于进程是并发地执行的,所以,如果对进程访问公共变量不加限制,那么就会产生“与时间有关”的错误,即进程执行后所得到的结果与访问公共变量的时间有关。
为了防止这类错误,系统必须要用同步机构来控制进程对公共变量的访问。
一般说,同步机构是由若干条原语——同步原语——所组成。
本实习要求学生模拟PV操作同步机构的实现,模拟进程的并发执行,了解进程并发执行时同步机构的作用。
1.1 实现的功能生产者-消费者问题是一个经典的进程同步问题,有m个生产者和n个消费者,它们共享可存放k件产品的缓冲区。
生产者进程生产物品,然后将物品放置在一个空缓冲区中,供消费者进程消费。
消费者进程从缓冲区中获得物品,然后释放缓冲区。
当生产者进程生产物品时,如果没有空缓冲区可用,那么生产者进程必须等待消费者线程释放出一个空缓冲区。
当消费者进程消费物品时,如果没有满的缓冲区,那么消费者进程将被阻塞,直到新的物品被生产出来。
1.2 P V 操作(1) PV操作同步机构,由P操作原语和V操作原语组成,它们的定义如下:P操作原语P (s):将信号量s减去1,若结果小于0,则执行原语的进程被置成等待信号量s的状态。
操作系统课程设计“生产者-消费者”问题
《操作系统》课程设计题目:“生产者-消费者”问题学院:信息工程学院专业:计算机科学与技术班级:计科1302*名:***指导老师:***2016年1月 15日目录一、课程设计目标 (2)二、课题内容 (2)1.实验目的 (2)2、实验环境 (2)3、实验要求 (2)三、设计思路 (3)1.信号量的设置 (3)2.系统结构 (4)3.程序流程图 (5)4.P V操作代码 (6)四、源代码 (7)五、运行与测试 (10)六、心得体会 (12)一、课程设计目标学习System V的进程间通信机制,使用信号量和共享内存实现经典进程同步问题“生产者-消费者”问题。
具体要求:1.创建信号量集,实现同步互斥信号量。
2.创建共享内存,模拟存放产品的公共缓冲池。
3.创建并发进程,实现进程对共享缓冲池的并发操作。
二、课题内容1.实验目的(1)掌握基本的同步互斥算法,理解生产者和消费者同步的问题模型。
(2)了解linux中多线程的并发执行机制,线程间的同步和互斥。
2、实验环境:C/C++语言编译器3、实验要求(1)创建生产者和消费者线程在linux环境下,创建一个控制台进程,在此进程中创建n个线程来模拟生产者或者消费者。
这些线程的信息由本程序定义的“测试用例文件”中予以指定。
(2)生产和消费的规则在按照上述要求创建线程进行相应的读写操作时,还需要符合以下要求:①共享缓冲区存在空闲空间时,生产者即可使用共享缓冲区。
②从上边的测试数据文件例子可以看出,某一生产者生产一个产品后,可能不止一个消费者,或者一个消费者多次地请求消费该产品。
此时,只有当所有的消费需求都被满足以后,该产品所在的共享缓冲区才可以被释放,并作为空闲空间允许新的生产者使用。
③每个消费者线程的各个消费需求之间存在先后顺序。
例上述测试用例文件包含一行信息“5 C 3 l 2 4”,可知这代表一个消费者线程,该线程请求消费1,2,4号生产者线程生产的产品。
而这种消费是有严格顺序的,消费1号线程产品的请求得到满足后才能继续往下请求2号生产者线程的产品。
生产者—消费者问题
第一章、概述1.1 课题背景在多道程序环境下,进程同步问题十分重要,也是一个相当有趣的问题,因而吸引了不少学者对它进行研究,并由此而产生了一系列经典的进程同步问题。
其中比较有代表性的有“生产者—消费者问题” 、“读者—写者问题” 、“哲学家进餐问题”等等。
通过对这些问题的研究和学习,可以帮助我们更好地理解进程同步概念及实现方法。
1.2生产者—消费者问题生产者—消费者问题(Producer_consumer)是一个经典的进程同步问题。
它描述的是:有一群生产者进程在生产产品,并将此产品提供给消费者进程去消费。
为使生产者进程和消费者进程能并发执行,在它们之间设置有个缓冲区的缓冲池,生产者进程可将它所生产的产品放入一个缓冲区中,消费者进程可从一个缓冲区取得一个产品消费。
尽管所有的生产者进程和消费者进程都是以异步的方式运行的,但它们之间必须保持同步,即不允许消费者进程到一个空缓冲区去取产品,也不允许生产者进程向一个已装有消息尚未被取走产品的缓冲区投放产品。
如下图所示:1.3进程同步机制在中引入进程后,虽然提高了资源的利用率和系统的吞吐量,但由于进程的异步性,也会给系统造成混乱,尤其是在它们争用临界资源的时候。
例如,当多个进程去争用一台打印机时,有可能使多个进程的输出结果交织在一起,难于区分;而当多个进程去争用共享变量,表格,链表时,有可能使数据处理出错。
进程同步的主要任务就是使并发执行的诸进程之间能有效地共享资源和相互合作,从而使程序的执行具有可再现性。
1.4进程同步优点进程同步其优点在于能够让操作系统更加有效地对资源进行管理和调度,最大潜力地发挥处理机的性能。
让系统的执行更加畅通无阻,尽可能地让系统少出现一些由于系统资源分配不合理所带来的死锁、死机之类的事情的发生。
保持了处理机的高速运行之后从用户角度来说程序运行所花费的时间就会更短。
从而保证了处理机在相同的时间内有更大的吞吐量。
而把并发进程的同步和互斥问题一般化,就可以得到一个抽象的一般模型,即本次课程设计的任务:生产者—消费者问题。
生产者消费者问题实验报告
生产者消费者问题实验报告生产者消费者问题实验报告一、引言生产者消费者问题是计算机科学中一个经典的并发问题,主要涉及到多个线程之间的协作和资源的共享。
在本实验中,我们通过编写一个简单的程序来模拟生产者和消费者之间的交互过程,以深入理解该问题的本质和解决方案。
二、问题描述在生产者消费者问题中,有两类线程:生产者和消费者。
生产者线程负责生产一定数量的产品,而消费者线程则负责消费这些产品。
两类线程需要共享一个有限的缓冲区,生产者将产品放入缓冲区,而消费者从缓冲区中取出产品。
然而,缓冲区的容量是有限的,当缓冲区已满时,生产者需要等待,直到有空间可用。
同样地,当缓冲区为空时,消费者需要等待,直到有产品可用。
三、实验设计为了解决生产者消费者问题,我们采用了经典的解决方案——使用互斥锁和条件变量。
互斥锁用于保护共享资源的访问,保证同一时间只有一个线程可以访问共享资源。
而条件变量用于线程之间的通信,当某个条件不满足时,线程可以通过条件变量进入等待状态,直到条件满足时再被唤醒。
在我们的程序中,我们使用了一个有界缓冲区来模拟生产者消费者之间的交互。
缓冲区的大小可以通过参数进行设置。
我们创建了两个线程分别代表生产者和消费者,它们通过互斥锁和条件变量来实现同步。
生产者线程在缓冲区未满时将产品放入缓冲区,并通知消费者线程有产品可用;消费者线程在缓冲区非空时从缓冲区取出产品,并通知生产者线程有空间可用。
通过这种方式,我们保证了生产者和消费者之间的协作和资源的共享。
四、实验结果经过多次运行实验,我们观察到了以下现象:当生产者线程的生产速度大于消费者线程的消费速度时,缓冲区会被生产者填满,消费者需要等待;当消费者线程的消费速度大于生产者线程的生产速度时,缓冲区会被消费者清空,生产者需要等待。
只有当生产者和消费者的速度相等时,才能实现平衡的生产和消费。
此外,我们还发现在某些情况下,生产者和消费者线程可能出现死锁或饥饿现象。
死锁是指两个或多个线程相互等待对方释放资源,导致程序无法继续执行的情况。
生产者消费者问题
⽣产者消费者问题⽣产者消费者问题背景在并发编程中,⽣产者消费者问题(producer/consumer)是⼀个经典的⽼⽣常谈的问题,有时也称为有界缓冲区问题。
问题的基本背景假设是:我们有⼀个固定⼤⼩的缓冲区,这个缓冲区分别有两种⼯作性质不同的线程去操作。
其中⼀种线程负责向缓冲区中写⼊数据,我们称之为⽣产者线程。
另⼀种线程则负责从缓冲区中拿取数据,并称之为消费者线程。
同时两种线程的写⼊和拿取⼯作要遵循⼀定的规则:1. 缓冲区未写满时,⽣产者线程可以向缓冲区中写⼊数据。
但是消费者线程不能从缓冲区中读取数据。
2. 缓冲区写满时,⽣产者线程不能向缓冲区中写⼊数据,消费者线程可以冲缓冲区中读取数据。
3. 不管是那种性质的线程,在操作缓冲区时,均不可出现并发安全问题。
分析可以得知,解决⽣产者消费者问题,其实就是要解决线程同步问题与共享资源互斥访问问题。
互斥问题的解决可以借助锁来实现,⽽线程同步则需借助信号量或其他⼯具来实现。
Java实现class FixedSizeBuffer{private static final int DEFAULT_BUFFER_SIZE = 1024;private final ReentrantLock lock = new ReentrantLock(); // 共享资源访问锁private final Condition isFull = lock.newCondition(); // buffer是否已满private final Condition isEmpty = lock.newCondition(); // buffer是否还空着private final int size; // buffer的⼤⼩private final byte[] buffer; // bufferprivate int cursor; // 写⼊游标public FixedSizeBuffer(){this(DEFAULT_BUFFER_SIZE);}public FixedSizeBuffer(int size){if (size <= 0) throw new IllegalArgumentException();this.size = size;this.buffer = new byte[size];cursor = -1;}/*** 向buffer中写⼊⼀个字节的数据* @param content 数据内容* @throws InterruptedException 中断异常*/public void putByte(byte content) throws InterruptedException{/*由于要对共享资源buffer进⾏访问,所以要加锁。
详细描述什么是生产者和消费者问题
详细描述什么是生产者和消费者问题.
生产者和消费者问题是经济学中的一个基本理论,它研究如何调节生产规模与利润最大化。
当某些人的效用水平不断提高时,他就会增加对这类物品的需求;而当他们的收入水平相应地达到了一定程度以后,则会减少或停止对这类物品的需求。
从表面上看来,在消费者效用最大化行为和企业利润最大化目标之间存在着冲突,实际情况并非如此。
假设有甲乙两种商品: A 商品每单位价格为2元 B 商品每单位价格为1元消费者只能购买其中之一。
但可以购买更多,且认为所有商品的总价值等于各自价格乘积之和。
显然,如果把 A 商品卖出去,那么甲商品便属于消费者,同样的道理,消费者也可以将 A 商品出售给生产者,换回 B 商品。
由于市场交易成本很低, A 商品和 B 商品都可以得到补偿。
因此,在经济资源配置中,最重要的是使有限的生产资源通过贸易得到合理、充分的利用,尽量避免资源浪费和环境污染。
显然,根据这一原理,我国现阶段实施市场机制运作的“两头在外”的市场体系与美国等发达国家是无法相比的。
从长远考虑,我国必须建立统一开放竞争的市场体系,实现资源的优化配置。
- 1 -。
生产者消费者问题
insert_item(item); // 将新数据放入缓冲区
up(&mutex); // 离开临界区
if (count == N -1) // 缓冲区有空槽
{ // 唤醒生产者
consumer_item(item); // 处理数据项
}
}
该解决方案使用了三个信号量:一个为 full,用来记录充满的缓冲槽的数目,一个为 empty,记录空的缓冲槽总数,一个为 mutex,用来确保生产者和消费者不会同时访问缓冲区。mutex 的初始值为 1,供两个或者多个进程使用的信号量,保证同一个时刻只有一个进程可以进入临界区,称为二元信号量(binary semaphore)。如果每一个进程在进入临界区前都执行一个 down(...),在刚刚退出临界区时执行一个 up(...),就能够实现互斥。
生产者-消费者(producer-consumer)问题,也称作有界缓冲区(bounded-buffer)问题,两个进程共享一个公共的固定大小的缓冲区。其中一个是生产者,用于将消息放入缓冲区;另外一个是消费者,用于从缓冲区中取出消息。问题出现在当缓冲区已经满了,而此时生产者还想向其中放入一个新的数据项的情形,其解决方法是让生产者此时进行休眠,等待消费者从缓冲区中取走了一个或者多个数据后再去唤醒它。同样地,当缓冲区已经空了,而消费者还想去取消息,此时也可以让消费者进行休眠,等待生产者放入一个或者多个数据时再唤醒它。
// 缓冲区大小
#define N 100
int count = 0; // 跟踪缓冲区的记录数
/* 生产者进程 */
void procedure(void)
操作系统生产者消费者问题实验报告
实验报告二实验名称:一、生产者-消费者问题的多线程解决方案二、设计一个执行矩阵乘法的多线程程序日期:2015-10-22 班级:13级计科学号:姓名:一、实验目的1.掌握线程的同步与互斥2.掌握生产者消费者的实现问题3.掌握多线程的编程方法4.掌握矩阵乘法的基本计算原理以及实现二、实验内容1.生产者-消费者问题的多线程解决方案2.设计一个执行矩阵乘法的多线程程序三、项目要求与分析1.请查阅资料,掌握线程创建的相关知识以及矩阵乘法的相关知识,了解java语言程序编写的相关知识2.理解线程的实验步骤在本次试验中,以“生产者-消费者”模型为依据,提供了一个多线程的“生产者-消费者”实例,编写java代码调试运行结果,得出相应的结论。
理解矩阵乘法的实验步骤四、具体实现1.生产者-消费者实例(1)创建一个缓冲信息发送接收通道接口,并创建邮箱盒子类实现,主要代码如下://通道接口public interface Channelpublic abstract void send(Object item);public abstract Object receive();}//实现接口public class MessageQueue implements Channel{private Vector queue;public MessageQueue(){queue=new Vector();}public void send(Object item){queue.addElement(ite m);}public Object receive(){if(queue.size()==0)return null;elsereturn queue.remove(0);}}(2)创建一个工厂多线程类(启动生产者和消费者),并且添加main函数进行测试,主要代码如下://工厂类与主方法public class Factory{public Factory(){Channel mailBox=new MessageQueue();Thread producerThread=new Thread(newProducer(mailBox));Thread consumerThread=new Thread(newConsumer(mailBox));producerThread.start();consumerThread.start();}public static void main(String[] args)Factory server=new Factory();}(3)创建一个线程睡眠类,用于测试,主要代码如下:public class SleepUtilities{public static void nap(){nap(NAP_TIME);}public static void nap(int duration){int sleeptime= (int)(NAP_TIME* Math.random());try{ Thread.sleep(sleeptime*1000); }catch (InterruptedException e) {}}private static final int NAP_TIME = 5;(4)创建生产者类实现Runnable,主要代码如下:public class Producer implements Runnable{private Channel mbox;public Producer(Channel mbox){this.mbox=mbox;}public void run(){Date message;while(true){SleepUtilities.nap();message=new Date();System.out.println("Producer produced "+message);mbox.send(message);}}}(5)创建消费者类实现Runnable,主要代码如下:public class Consumer implements Runnableprivate Channel mbox;public Consumer(Channel mbox){this.mbox=mbox;}public void run(){Date message;while(true){SleepUtilities.nap();message=(Date)mbox.receive();if(message!=null)System.out.println("Consumer consumed "+message);}}}(6)调试程序,运行结果:2.矩阵乘法实例(1)初始化矩阵(便于观察,这里使用随机数生成矩阵),主要初始化代码如下matrix1 = new int[m][k];matrix2 = new int[k][n];matrix3 = new int[m][n];//随机初始化矩阵a,bfillRandom(matrix1);fillRandom(matrix2);static void fillRandom(int[][] x){for (int i=0; i<x.length; i++){for(int j=0; j<x[i].length; j++){//每个元素设置为0到99的随机自然数x[i][j] = (int) (Math.random() * 100);}}}(2)打印输出矩阵函数,主要代码如下:static void printMatrix(int[][] x){for (int i=0; i<x.length; i++){for(int j=0; j<x[i].length; j++) {System.out.print(x[i][j]+" ");}System.out.println("");}System.out.println("");}(3)创建多线程类,并实现Runnable接口同步对矩阵进行分行计算,主要代码如下://创建线程,数量 <= 4for(int i=0; i<4; i++){if(index < m){Thread t = new Thread(new MyThread());t.start();}else{break;}synchronized static int getTask(){if(index < m){return index++;}return -1;}}class MyThread implements Runnable{int task;//@Overridepublic void run(){MultiThreadMatrix.threadCount++;while( (task = MultiThreadMatrix.getTask()) != -1 ){System.out.println("进程:"+Thread.currentThread().getName()+"\t开始计算第"+(task+1)+"行");for(int i=0; i<MultiThreadMatrix.n; i++) {for(int j=0; j<MultiThreadMatrix.k; j++) {MultiThreadMatrix.matrix3[task][i] += MultiThreadMatrix.matrix1[task][j] *MultiThreadMatrix.matrix2[j][i];}}}MultiThreadMatrix.threadCount--;}(4)通过不断改变矩阵大小,线程数目,,调试程序,运行结果:五、所遇问题与解决方法1.在生产者-消费者多线程试验中,刚开始没有考虑到使用线程睡眠,运行结果速度之快,没法观看数据变化,后面定义了睡眠控制,使得问题得以解决2.在多线程矩阵开发实验中,刚开始定义矩阵太小,测试结果不太明显,后面通过把矩阵改大,并且线程数目不断变化使得结果明显。
生产者消费者问题
喇叭TRUE) {
WaitForSingleObjec t(hE mpty,INFINITE); W ai tF orSingleObj ect(hMutex,lÌ'印刷ITE);
Produω0;
a[i]=i; i=(i+ l)%100; Sleep(5000);
ReleaseMutex(hMut巳:x); ReleaseSemaphore(田ull, l ,N1几L);
2.
#inclu dewindows.h
#includeiostrea皿h
#includestdio.h HANDLE hMutex;
HANDLE hF叫1,
bE mpty; HANDLE p,c;
DWORD DWORD void main()
WINAPI Producer(LPVOID); WINAPI Consumer(LPVOID);
}
return 0; void ConsumeO
cout 消费者消费产品... endl; cout 消费成功 endl; cout 请等待 ...endl;
DWORD WINAPI Consumer(LPVOID lpPara) while(TRUE) {
WaitForSingleObje叫hFull,INFINITE); WaitForSingleObject(hMutex,INFll、rrTE);
பைடு நூலகம்
unsigned
ProductID ConsumeID in out
AUJUAU mmm short
m 俨mrmr
int bool
g_buffer[SIZE_OF_BUFFER]; g_ continue = true;
操作系统之进程(生产者---消费者)实验报告
操作系统实验报告——生产者和消费者问题姓名:学号:班级:一、实验内容1、模拟操作系统中进程同步和互斥;2、实现生产者和消费者问题的算法实现;二、实验目的1、熟悉临界资源、信号量及PV操作的定义与物理意义;2、了解进程通信的方法;3、掌握进程互斥与进程同步的相关知识;4、掌握用信号量机制解决进程之间的同步与互斥问题;5、实现生产者-消费者问题,深刻理解进程同步问题;三、实验题目在Windows操作系统下用C语言实现经典同步问题:生产者—消费者,具体要求如下:(1)一个大小为10的缓冲区,初始状态为空。
(2)2个生产者,随机等待一段时间,往缓冲区中添加数据,若缓冲区已满,等待消费者取走数据之后再添加,重复10次。
页脚内容1(3)2个消费者,随机等待一段时间,从缓冲区中读取数据,若缓冲区为空,等待生产者添加数据之后再读取,重复10次。
四、思想本实验的主要目的是模拟操作系统中进程同步和互斥。
在系统进程并发执行异步推进的过程中,由于资源共享和进程间合作而造成进程间相互制约。
进程间的相互制约有两种不同的方式。
(1)间接制约。
这是由于多个进程共享同一资源(如CPU、共享输入/输出设备)而引起的,即共享资源的多个进程因系统协调使用资源而相互制约。
(2)直接制约。
只是由于进程合作中各个进程为完成同一任务而造成的,即并发进程各自的执行结果互为对方的执行条件,从而限制各个进程的执行速度。
生产者和消费者是经典的进程同步问题,在这个问题中,生产者不断的向缓冲区中写入数据,而消费者则从缓冲区中读取数据。
生产者进程和消费者对缓冲区的操作是互斥,即当前只能有一个进程对这个缓冲区进行操作,生产者进入操作缓冲区之前,先要看缓冲区是否已满,如果缓冲区已满,则它必须等待消费者进程将数据取出才能写入数据,同样的,消费者进程从缓冲区读取数据之前,也要判断缓冲区是否为空,如果为空,则必须等待生产者进程写入数据才能读取数据。
在本实验中,进程之间要进行通信来操作同一缓冲区。
操作系统实验报告经典生产者—消费者问题范文大全[修改版]
第一篇:操作系统实验报告经典生产者—消费者问题实验二经典的生产者—消费者问题一、目的实现对经典的生产者—消费者问题的模拟,以便更好的理解经典进程同步问题。
二、实验内容及要求编制生产者—消费者算法,模拟一个生产者、一个消费者,共享一个缓冲池的情形。
1、实现对经典的生产者—消费者问题的模拟,以便更好的理解此经典进程同步问题。
生产者-消费者问题是典型的PV 操作问题,假设系统中有一个比较大的缓冲池,生产者的任务是只要缓冲池未满就可以将生产出的产品放入其中,而消费者的任务是只要缓冲池未空就可以从缓冲池中拿走产品。
缓冲池被占用时,任何进程都不能访问。
2、每一个生产者都要把自己生产的产品放入缓冲池,每个消费者从缓冲池中取走产品消费。
在这种情况下,生产者消费者进程同步,因为只有通过互通消息才知道是否能存入产品或者取走产品。
他们之间也存在互斥,即生产者消费者必须互斥访问缓冲池,即不能有两个以上的进程同时进行。
三、生产者和消费者原理分析在同一个进程地址空间内执行两个线程。
生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。
消费者线程从缓冲区中获得物品,然后释放缓冲区。
当生产者线程生产物品时,如果没有空缓冲区可用,那么生产者线程必须等待消费者线程释放一个空缓冲区。
当消费者线程消费物品时,如果没有满的缓冲区,那么消费者线程将被阻挡,直到新的物品被生产出来。
四、生产者与消费者功能描述:生产者功能描述:在同一个进程地址空间内执行两个线程。
生产者线程生产物品,然后将物品放置在一个空缓冲区中供消费者线程消费。
当生产者线程生产物品时,如果没有空缓冲区可用,那么生产者线程必须等待消费者线程释放出一个空缓冲区。
消费者功能描述:消费者线程从缓冲区获得物品,然后释放缓冲区,当消费者线程消费物品时,如果没有满的缓冲区,那么消费者线程将被阻塞,直到新的物品被生产出来。
五、实验环境操作系统环境:Windows 系统。
编程语言:C#。
试修改下面生产者—消费者问题解法中的错误(信号量mutex的初值为1,信号量empty的
试修改下面生产者—消费者问题解法中的错误(信号量mutex的初值为1,信号量empty的生产者-消费者问题:1. 介绍生产者—消费者问题(Producer-Consumer Problem)是多线程编程中,一种常见的线程同步问题,也是一种临界资源共享问题,因此也被称作生产者-消费者问题,它可以用来描述并发线程的安全访问和同步的问题。
2. 背景生产者—消费者问题一般描述如下:存在一个有容量的buffer,多个producer通过放置产品到buffer中,把buffer填满,每个producer都有自己的能力,可以生产出一条货物,而多个consumer也可以从buffer中提取货物,以消耗buffer中的货物。
3. 传统解法传统解法基于信号量进行控制,通常情况下,需要两个信号量mutex和empty , mutex 保证buffer中只有一个生产者或者一个消费者,empty 的初值位buffer的容量,当一个生产者有了新的产物,会将empty 的值-1,而当一个消费者提取了一个产物,会将empty 的值+1 。
4. 错误现象在实际的生产者—消费者问题中,经常出现信号量mutex的初始值为1,信号量empty的初始值为0,这时候就可能出现阻塞情况,因为生产者可能会在某一时刻被锁住导致无法继续工作,进而导致消费者一直消耗不及生产,无法使得系统运行成功。
5. 优化策略一种常用的解决方案是在准备阶段,保证信号量mutex和empty的初始值满足:mutex=1, empty>0的条件。
此外,在生产者与消费者的执行阶段,通过一定的算法控制其访问buffer的次数,以保证能够容纳所有的生产者和消费者,以达到完美的运行效果。
6. 总结综上所述,生产者—消费者问题是一种多线程编程中,常见的线程同步与资源共享问题,若不完整理解其原理和该问题本身,在实践时很容易出现同步错误,形成死锁。
一种优化的解决方法是在准备阶段,保证信号量mutex和empty的初始值满足:mutex=1,empty>0的条件,并在生产者与消费者的执行阶段,通过一定的算法进行配合,才能让系统安全运行。
4.8 经典互斥与同步问题 生产者-消费者问题
4.8 经典互斥与同步问题:生产者-消费者问题(the producer/consumer problem)
问题描述:若干进程通过有限的共享缓冲区交换数据。
其中,"生产者"进程不断写入,而"消费者"进程不断读出;共享缓冲区共有N个;任何时刻只能有一个进程可对共享缓冲区进行操作。
任何时刻只能有一个进程可对共享缓冲区进行操作,可知使用共享缓冲区的生产者与生产者之间、生产者与消费者之间以及消费者与消费者之间存在互斥关系。
缓冲区不满,生产者才能写入;缓冲区不空,消费者才能读出,可知生产者与消费者之间存在同步关系。
设置如下信号量:
full是“满”缓冲区数目,初值为0;
empty是“空”缓冲区数目,初值为N;
mutex用于访问缓冲区时的互斥,初值是1 。
实际上,full和empty是同一个含义:full + empty == N。
用信号量和P、V原语解决生产者-消费者问题如下:
需要注意的是操作的顺序很重要,不当会产生死锁。
如假定Producer和Consumer如下:
当full=0, mutex = 1时,如果执行顺序为:
Consumer.P(mutex) ; Consumer.P(full); // C阻塞,等待Producer 发出的full信号
Producer.P(empty) ; Producer.P(mutex) ; // P 阻塞,等待Consumer发出的mutex信号此时将出现死锁。
操作系统-生产者消费者问题
生产者消费者问题当缓冲区为空时,in与out在数值上相等;当缓冲区满时,in与out在数值上也相等。
那么,这就产生了不能判断的情况,不能通过in与out在数值上是否相等来判断缓冲区是否为空或者是否为满,本质上是循环队列产生的问题。
这种问题有很多解决方案,除了牺牲一个位置以外,增加一个标识、增加计数器或者用特殊值来表示等等都是可以的。
○ 方案一:增加计数器count1、操作count初始值为0;当生产者向缓冲区增加一项时,count自增1;当消费者从缓冲区移走一项时,count自减12、代码1)生产者while (true){while (count == BUFFER_SIZE); /* do nothing -- no free buffers */buffer[in] = nextProduced;in = (in + 1) % BUFFER_SIZE;count ++;}2)消费者while (true){while(count == 0); /*do nothing -- nothing to consume */nextConsumed = buffer[out];out = (out + 1) % BUFFER_SIZE;count --;}3、问题当生产者和消费者的代码并发执行时可能不能正确运行。
○ 方案二:利用flag作为标识1、操作使用布尔类型的变量full来表示缓冲区是否已满,当值为true表示缓冲区已满,当值为false表示缓冲区未满;初始值为false,在生产者向缓冲区中增加项时进行检查2、代码初始化:bool full = false;1)生产者while (true){while (full); /* do nothing -- no free buffers */buffer[in] = nextProduced;in = (in + 1) % BUFFER_SIZE;if (in == out){full = true;}}2)消费者while (true){while(in == out && !full); /*do nothing -- nothing to consume */nextConsumed = buffer[out];out = (out + 1) % BUFFER_SIZE;if (full){full = false;}}。
操作系统课程设计-管程的实现(生产者消费者问题)
操作系统课程设计2、管程的实现(生产者消费者问题)1.设计背景:管程是一种高级抽象数据类型,它支持在它的函数中隐含互斥操作。
结合条件变量和其他一些低级通信原语,管程可以解决许多仅用低级原语不能解决的同步问题。
例如,本实验中利用管程提供一个不会发生死锁的生产者消费者问题就是利用管程的很好的例子。
管程封装了并发进程或线程要互斥执行的函数。
为了让这些并发进程或线程在管程内互斥的执行,管程的实现必须隐含的具有锁或二值信号量。
如果没有条件变量,管程就不会有很有用,条件变量提供了一种对管程内并发协作进程的同步机制。
条件变量代表了管程中一些并发进程或线程可能要等待的条件。
一个条件变量管理着管程内的一个等待队列。
如果管程内某个进程或线程发现其执行条件为假,则该进程或线程就会被条件变量挂入管程内等待该条件的队列。
如果管程内另外的进程或线程满足了这个条件,则它会通过条件变量再次唤醒等待该条件的进程或线程,从而避免了死锁的产生。
所以,一个条件变量C应具有两种操作 C.wait()和C.signal()。
当管程内同时出现唤醒者和被唤醒者时,由于要求管程内的进程或线程必须互斥执行,因此就出现了两种样式的条件变量:Mesa Style(signal-and-continue): 唤醒者进程或线程继续执行,被唤醒者进程或线程等到唤醒者进程或线程阻塞或离开管程后再执行。
Hoare Style(signal-and-wait): 被唤醒者进程或线程立即执行,唤醒者进程或线程阻塞,直道被唤醒者阻塞或离开管程后再执行。
我们实验所做的就是在原来mesa样式的基础上进行Hoare样式的改进;这种样式也是我们实验中需要实现的样式。
2.设计目标验证并分析Nachos中Bridge管程是否能够正确的解决单行桥双向过桥问题。
定义和实现Hoare样式的条件变量Condition_H类利用Hoare样式的条件变量Condition_H,实现Ring类中定义的各个方法,使用Ring管程解决生产者/消费者问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并且设立了两种操作:down 和 up(分别为一般化后的 sleep 和 wakeup,其实也是一般教科书上说的 P/V 向量)。对一个信号量执行 down 操作,表示检查其值是否大于 0,如果该值大于 0,则将其值减 1(即用掉一个保存的唤醒信号)并继续;如果为 0,则进程休眠,而且此时 down 操作并未结束。另外,就是检查数值,修改变量值以及可能发生的休眠操作都作为单一的,不可分割的 原子操作 来完成。
听起来好像蛮对的,无懈可击似的,但其实在实现时会有一个竞争条件存在的。为了跟踪缓冲区中的消息数目,需要一个变量 count。如果缓冲区最多存放 N 个消息,则生产者的代码会首先检查 count 是否达到 N,如果是,则生产者休眠;否则,生产者向缓冲区中放入一个消息,并增加 count 的值。
消费者的代码也与此类似,首先检测 count 是否为 0,如果是,则休眠;否则,从缓冲区中取出消息并递减 count 的值。同时,每个进程也需要检查是否需要唤醒另一个进程。代码可能如下:
/* 生产者进程 */
void proceducer(void)
{
int item;
while(1)
{
item = procedure_item(); // 生成数据
down(&empty); // 将空槽数目减 1
// 缓冲区大小
#define N 100
int count = 0; // 跟踪缓冲区的记录数
/* 生产者进程 */
void procedure(void)
{
int item; // 缓冲区中的数据项
{
sleep();
}
insert_item(item); // 将新数据项放入缓冲区
count = count + 1; // 计数器加 1
if (count == 1) // 表明插入之前为空,
count = count - 1; // 计数器减 1
if (count == N -1) // 缓冲区有空
槽
{ // 唤醒生产者
wakeup(producer);
}
consume_item(item); // 打印出数据项
}
}
看上去很美,哪里出了问题,这里对 count 的访问是有可能出现竞争条件的:缓冲区为空,消费者刚刚读取 count 的值为 0,而此时调度程序决定暂停消费者并启动执行生产者。生产者向缓冲区中加入一个数据项,count 加 1。现在 count 的值变成了 1.它推断刚才 count 为 0,所以此时消费者一定在休眠,于是生产者开始调用 wakeup(consumer) 来唤醒消费者。但是,此时消费者在逻辑上并没有休眠,所以 wakeup 信号就丢失了。当消费者下次运行时,它将测试先前读到的 count 值,发现为 0(注意,其实这个时刻 count 已经为 1 了),于是开始休眠(逻辑上)。而生产者下次运行的时候,count 会继续递增,并且不会唤醒 consumer 了,所以迟早会填满缓冲区的,然后生产者也休眠,这样两个进程就都永远的休眠下去了。
ห้องสมุดไป่ตู้
while(1)
{
item = procedure_item(); // 生成数据
receive(consumer, &msg); // 等待消费者发送空的缓冲区
build_msg(&msg, item); // 创建待发送消息
2,使用消息传递解决生产者-消费者问题
这种 IPC 方式使用两条原语 send 和 receive,也是系统调用。如:
send(dest, &msg) // 将消息 msg 发送到目标(进程)dest 中
receive(src, &msg) // 接收由 src 过来的 msg,如果没有消息可用,则可能阻塞接收者
#define N 100 // 缓冲区中的槽数目
/* 生产者进程 */
void proceducer(void)
{
int item;
message msg; // 消息缓冲区
down(&mutex); // 进入临界区
insert_item(item); // 将新数据放入缓冲区
up(&mutex); // 离开临界区
while(true) // 无限循环
{
item = produce_item(); // 产生下一个数据项
if (count == N) // 如果缓冲区满了,进行休眠
semaphore empty = N; // 计数缓冲区中的空槽数目
semaphore full = 0; //
计数缓冲区中的满槽数目
下面开始考虑用信号量来解决生产者-消费者问题了,不过在此之前,再次分析一下这个问题的本质会更清晰点:问题的实质在于发给一个(尚)未休眠进程(如上的消费者进程在只判断了 count == 0 后即被调度出来,还未休眠)的 wakeup 信号丢失(如上的生产者进程在判断了 count == 1 后以为消费者进程休眠,而唤醒它)了。如果它没有丢失,则一切都会很好。
另外,通常是将 down 和 up 操作作为系统调用来实现,而且 OS 只需要在执行以下操作时暂时禁止全部中断:测试信号量,更新信号量以及在需要时使某个进程休眠。
这里使用了三个信号量,但是它们的目的却不相同,其中 full 和 empty 用来同步(synchronization),而 mutex 用来实现互斥。
#define N 100 // 缓冲区中的槽数目
typedef int semaphore; // 信号量一般被定义为特殊的整型数据
semaphore mutex = 1; // 控制对临界区的访问
down(&mutex); // 进入临界区
item = remove_item(); // 从缓冲区中取出数据项
up(&mutex); // 离开临界区
条原始消息的头部嵌入一个连续的序号来解决这个问题。
另外,消息传递系统还需要解决进程命名的问题,在 send 和 receive 系统调用中指定的进程必须没有二义性的。还有其他的一些问题,如性能问题,身份认证等等,不过那个就会扯多了,还是看看如果解决这个生产者-消费者的问题吧:
up(&full); // 将满槽的数目加 1
}
}
/* 消费者进程 */
void consumer(voi)
{
int item;
while(1)
{
down(&full); // 将满槽数目减 1
消息传递系统会面临位于网络中不同机器上的通信进程的情形,所以会更加的复杂。如:消息可能被网络丢失,一般使用确认(ACK)消息。如果发送方在一定的时间段内没有收到确认消息,则重发消息。
如果消息本身被正确接收,但是返回的 ACK 消息丢失,发送方则重发消息,这样接收方就会收到两份同样的消息。一般使用在每
生产者-消费者(producer-consumer)问题,也称作有界缓冲区(bounded-buffer)问题,两个进程共享一个公共的固定大小的缓冲区。其中一个是生产者,用于将消息放入缓冲区;另外一个是消费者,用于从缓冲区中取出消息。问题出现在当缓冲区已经满了,而此时生产者还想向其中放入一个新的数据项的情形,其解决方法是让生产者此时进行休眠,等待消费者从缓冲区中取走了一个或者多个数据后再去唤醒它。同样地,当缓冲区已经空了,而消费者还想去取消息,此时也可以让消费者进行休眠,等待生产者放入一个或者多个数据时再唤醒它。
while(true) // 无限循环
{
if (count == 0) // 如果缓冲区为空,进入休眠
{
sleep();
}
item = remove_item(); // 从缓冲区中取出一个数据项
1,使用信号量解决生产者-消费者问题
首先了解一下信号量吧,信号量是 E.W.Dijkstra 在 1965 年提出的一种方法,它是使用一个整型变量来累计唤醒的次数,供以后使用。在他的建议中,引入了一个新的变量类型,称为信号量(semaphore),一个信号量的取值可以为 0(表示没有保存下来的唤醒操作)或者为正值(表示有一个或多个唤醒操作)。
up(&empty); // 将空槽数目加 1
consumer_item(item); // 处理数据项
}
}
该解决方案使用了三个信号量:一个为 full,用来记录充满的缓冲槽的数目,一个为 empty,记录空的缓冲槽总数,一个为 mutex,用来确保生产者和消费者不会同时访问缓冲区。mutex 的初始值为 1,供两个或者多个进程使用的信号量,保证同一个时刻只有一个进程可以进入临界区,称为二元信号量(binary semaphore)。如果每一个进程在进入临界区前都执行一个 down(...),在刚刚退出临界区时执行一个 up(...),就能够实现互斥。
{ // 消费者等待
wakeup(consumer); // 唤醒消费者
}
}
}
/* 消费者进程 */
void consumer(void)
{
int item; // 缓冲区中的数据项