第二章轴对称图形知识点归纳+典型例题+提优
初中数学轴对称图形知识点加习题总结
知识点1 轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;这时,我们也说这个图形关于这条直线的轴对称。
知识点2 对称轴的性质1.对称轴是一条直线。
2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
4.图形对称例1下面哪些图形是轴对称图形?画出轴对称图形的对称轴。
例2.推理游戏:下面应该是什么图形?知识点3线段垂直平分线定义及其性质定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
性质1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
例3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=6,则线段PB的长度为〔〕A.3 B.5 C.6 D.8解析:∵直线CD是线段AB的垂直平分线,∴PB=PA,∵PA=6,∴PB=6.答案C.例4如以下图,DE是线段AB的垂直平分线,以下结论一定成立的是〔〕A.ED=CDB.∠DAC=∠BC.∠C>2∠BD.∠B+∠ADE=90°分析:∵DE是线段AB的垂直平分线,∴AD=BD.∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°答案D课堂练习11.点A,B关于直线a对称,P是直线a上的任意一点,以下说法不正确的选项是〔〕A.直线AB与直线a垂直B.直线a是点A和点B的对称轴C.线段PA与线段PB相等D.假设PA=PB,则点P是线段AB的中点2.三角形中到三边的距离相等的点是〔〕A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知A和B两点在线段EF的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB等于( )A、95°B、15°C、95°或15°D、170°或30°4.已知:如图,线段AB垂直平分线段CD则AC=。
八年级数学上册 第二章 轴对称的概念知识点与同步训练(含解析)苏科版
轴对称的概念一.轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.二.轴对称图形如果一个图形沿一条直线折叠,直线两旁的局部能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线〔成轴〕对称.三.垂直平分线:经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线.四.轴对称图形、图形成轴对称的性质1.成轴对称的两个图形全等.轴对称图形沿对称轴分成的两个图形全等.2.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.一.考点:1.轴对称根本概念和性质;2.轴对称图形.二.重难点:轴对称的两个图形是全等的,对应点的连线被对称轴垂直平分.三.易错点:1.对称轴是一条直线,而不是线段或者射线.2.把成轴对称的两个图形看成一个整体,它就是一个轴对称图形. 把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条对称轴对称.题模一:轴对称根本概念和性质例以下说法中错误的选项是〔〕A.两个三角形关于某条直线对称,那么这两个三角形全等B.两个图形关于某直线对称,对应点的连线段被对称轴垂直平分C.假设直线l同时垂直平分'AB A BAA、'BB,那么线段''D . 两个图形关于某直线对称,那么对应线段相等且平行【答案】D【解析】 假设两个图形按照某条直线折叠后重合,那么称这两个图形关于这条直线对称,这两个图形全等,对应点的连线段被对称轴垂直平分,对应线段相等,因此A 、B 、C 选项正确,D 选项两个图形关于某直线对称,对应线段相等,不一定平行,应选D .考点:图形轴对称的性质.例 如下列图,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,那么△PMN 的周长为___________.【答案】 15【解析】 该题考察的是轴对称.由题意,有1PM PM =,2PN P N =, ∴△PMN 的周长为.例 如图,在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合,假设∠A=75°,那么∠1+∠2=〔 〕 A . 150°B . 210°C . 105°D . 75°【答案】A 【解析】 此题考察的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE 及∠A′ED+∠A′DE 的度数,然后根据平角的性质即可求出答案.∵△A′DE 是△ABC 翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.应选A.例如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.假设PM=2.5cm,PN=3cm,MN=4cm,那么线段QR的长为____A.B.C.D.7【答案】A【解析】此题主要考察了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=,PN=3cm,MN=4cm,∴RN=3cm,MQ=,即NQ=MN-MQ=4-2.5=1.5〔cm〕,那么线段QR的长为:RN+NQ=3+1.5=4.5〔cm〕.应选:A.题模二:轴对称图形例以下四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是〔〕A.1B.2C.3D.4【答案】C【解析】第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;∴对称轴的条数为2的图形的个数是3;例 如图是三个5×5的正方形网格,请你用三种不同的方法分别把每幅图中的一个白色小正方形涂上阴影,使每幅图中的阴影局部成为一个轴对称图形.【答案】 如下列图,正确添加一种图形给1分,两个给3分,三个给5分【解析】 如下列图例 如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.假设在此平面直角坐标系内移动点A ,使得这四个点构成的四边形是轴对称图形,并且点A 的横坐标仍是整数,那么移动后点A 的坐标为____.【答案】 〔-1,1〕,〔-2,-2〕,〔0,2〕,〔-2,-3〕【解析】 如下列图:图1图2图3图1图2图3图3图2图1A1〔-1,1〕,A2〔-2,-2〕,A3〔0,2〕,A4〔-2,-3〕,〔-3,2〕〔此时不是四边形,舍去〕,故答案为:〔-1,1〕,〔-2,-2〕,〔0,2〕,〔-2,-3〕.如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,以下判断错误的选项是〔〕A.AM=BM B.AP=BNC.∠MAP=∠MBP D.∠ANM=∠BNM【答案】B【解析】直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,如图,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,那么∠B的度数为〔〕A.48°B.54°C.74°D.78°【答案】B【解析】∵在△ABC中,∠A=78°,∠C=∠C′=48°,∴∠B=180°-78°-48°=54°∵△ABC与△A′B′C′关于直线l对称,∴∠B=∠B′=54°.应选B.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,那么原点是〔〕A.A点B.B点C.C点D.D点【答案】B【解析】当以点B为原点时,A〔﹣1,﹣1〕,C〔1,﹣1〕,那么点A和点C关于y轴对称,符合条件.一矩形纸片按图中〔1〕、〔2〕所示的方式对折两次后,再按〔3〕中的虚线裁剪,那么〔4〕中的纸片展开铺平后的图形是〔〕A.A选项B.B选项C.C选项D.D选项【答案】D【解析】此题是常见的剪纸问题,主要考察学生动手操作的能力.此题需动手操作,仔细观察可知,剪去的局部应该是两个独立的M形,据此作答.仔细观察可知,剪去的局部应该是两个独立的M形,故翻开以后的形状是D.应选D.将一张矩形纸片叠成如下列图的图形,假设AB=6cm,那么AC=_____cm.【答案】6【解析】如图,延长原矩形的边,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质得,∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=6cm,∴AC=6cm.如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD 翻折后,假设点C恰好落在AB边上的点E处,那么△ADE的周长为__________.【答案】7【解析】∵由翻折的性质可知:DC=DE,BC=EB=6.∴AD+DE=AD+DC=AC=5,AE=AB﹣BE=AB﹣CB=8﹣6=2.∴△ADE的周长=5+2=7.如图是4×4的正方形网格,再把其中一个白色小正方形涂上阴影,使整个阴影局部成为轴对称图形,这样的白色小正方形有_____个.【答案】4【解析】如下列图:可得这样的白色的小正方形有4个.图1、图2是两张形状、大小完全一样的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C在小正方形的顶点上,请图1、图2中各画一个四边形,满足以下要求:〔1〕在图1中,以AB、BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形有两组角互补且是非对称图形;〔2〕在图2中以以AB、BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形有两组角互补且是轴对称图形.【解析】〔1〕如图1所示:〔2〕如图2所示:如有侵权请联系告知删除,感谢你们的配合!。
轴对称图形知识清单与考点分析
ADEF BC轴对称图形一:简单的轴对称作图(要注意关于对称轴对称的两个图形的对应点要用虚线链接,并在虚线与对称轴的交点处标上垂直符号)二:与轴对称相关的几何证明问题例1:已知:△ABC 中,BC <AC ,AB 边上的垂直平分线DE 交AB 于D ,交AC 于E ,AC =9 cm,△BCE 的周长为15 cm,求BC 的长.(对于这种题型,已知△BCE 的周长,求BC 的长度;而我们的固有思维是要分别求出CE 和EB 的长度;但是这样一来就陷入了思维陷阱了,而此题的突破口是一种整体思维,无法求出CE 和EB 各个的长,但是可以求出两边长的和不也是异曲同工么?)练习1、如左图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米.练习2、如右图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB于N ,P 1P 2=15,则△PMN 的周长为 .练习3、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .例2:在ABC 中,∠C =90°,DE 垂直平分斜边AB ,分别交AB ,BC 于D ,E.若∠CAE =∠B +30°,求:∠AEB.练习1、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数。
EDC B AP 2P 1N MO PBAA练习2、如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,足为M,求证:M是BE的中点。
练习3、已知:如图,D是△ABC中的BC边上一点,EB=EC,∠ABE=∠ACE.求证:∠BAE=∠CAE.三:折叠问题例3(此题其实可以类比我们在七年级上册所学的线段与角中的一道经典题,如下图,OB是∠ABC的角平分线,OD是∠COE的角平分线,求∠DOB的度数)练习1、如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是图aCFB C练习2、如图,已知∠A=15°,AB BC CD ED EF====,那么∠FEM= 。
第2章+轴对称图形+综合提优练习2024-2025学年苏科版八年级数学上册+
第2章《轴对称图形》综合提优练习一、选择题1.△ABC中,BC=10,AB的垂直平分线与AC的垂直平分线分别交BC于点D,E,且DE =4,则AD+AE的值为()A.6B.14C.6或14D.8或122.如图,在△ABC中,∠BAC>90°,D为BC的中点,点E在AC上,将△CDE沿DE 折叠,使得点C恰好落在BA的延长线上的点F处,连接AD、CF,则图中所有的等腰三角形的个数为()A.1B.2C.3D.43.如图,AD∥BC,点E是线段AB的中点,DE平分∠ADC,BC=AD+2,CD=7,则BC2﹣AD2的值等于()A.14B.9C.8D.54.如图,四边形ABCD中,AB=AD,BC=BD,若∠ABD=∠BAC=α,则∠BDC的度数为()A.2αB.45°+αC.90°﹣αD.180°﹣3α5.如图,∠BAC=30°,AP平分∠BAC,GF垂直平分AP,交AC于F,Q为射线AB上一动点,若PQ的最小值为3,则AF的长为()A.3B.6C.3D.96.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.以下四个结论:①△ADC≌△AEB;②∠AEG=∠CDB;③△EGM是等腰三角形;④BG=AF+FG;恒成立的结论有()A.①②③④B.①③C.②③④D.①②④二、填空题7.如图,AE是∠CAM的角平分线,点B在射线AM上,DE是线段BC的中垂线交AE于E,过点E作AM的垂线交AM于点F.若∠ACB=28°,∠EBD=25°,则∠AED =°.8.如图,在△ABC中,∠C=60°,AC=5,BC=4,点D为CB延长线上一点.当点D 在CB延长线上运动时,AD﹣BD的最小值为.9.如图,线段OM⊥ON,O为垂足,一把角尺的直角顶点A在线段OM上,端点B在线段ON上,已知ON=AB=4,AC=2,当点B在从点O运动到点N的过程中,点C也随着运动,当线段OC最长时,∠BAO的度数为.10.如图,在Rt△ABC中,∠ACB=90°,点D为斜边AB上的一点,连接CD,将△BCD 沿CD翻折,使点B落在点E处,点F为直角边AC上一点,连接DF,将△ADF沿DF 翻折,点A恰好与点E重合,则∠CEF的度数为.11.如图,∠ABC=60°,AB=4,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒(t>0),当△ABP为锐角三角形时,t的取值范围是.12.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ADC沿直线AD折叠后,点C落在点E的位置上,连接BE,则BE的长是.13.如图,△ABC的边AB、AC的垂直平分线m、n相交于点D,连接CD,若∠1=39°,则∠BCD的大小是度.14.如图,在△ABC中,∠ACB=90°,S△ABC=14,BC=4,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.三、解答题15.如图,已知线段a、b,请用无刻度的直尺和圆规作出特定的三角形:(1)求作一个等腰三角形,使得它的腰长为b,底边上的高为a.(2)求作一个三角形,使得它的两边长分别为a、b,第三边上的中线为c.16.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连接CD、DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,EC=8时,求△EDC的面积.17.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(不用写作法)(1)如图①,在l上求作一点M,使得AM+BM最小;(2)如图②,在l上求作一点M,使得|AM﹣BM|最小;(3)如图②,在l上求作一点M,使得|AM﹣BM|最大.18.如图钢架中,∠A=20°,焊上等长的钢条来加固钢架,若AP1=P1P2,问这样的钢条至多需要多少根?(1)请补充完整如下解答:解:由题意可知,P1P2=P2P3=P3P4=P4P5=…∵∠A=20°,AP1=P1P2,∴∠AP2P1=.∴∠P2P1P3=∠P1P3P2=40°,同理可得,∠P3P2P4=∠P2P4P3=60°,∠P4P3P5=∠P4P5P3=.∴∠P5P4B=100°>90°,∴对于直线P4B上任意一点P6(点P4除外),P4P5<P5P6,∴这样的钢条至多需要根.(2)继续探究:当∠A=15°时,这样的钢条至多需要多少根?19.在探索三角形全等的条件时,老师给出了定长线段a,b,且长度为b的边所对的角为n°(0<n<90°)小明和小亮按照所给条件分别画出了图1中的三角形,他们把两个三角形重合在一起(如图2),其中AB=a,BD=BC=b,发现它们不全等,但他们对该图形产生了浓厚兴趣,并进行了进一步的探究:(1)当n=45时(如图2),小明测得∠ABC=65°,请根据小明的测量结果,求∠ABD 的大小;(2)当n≠45时,将△ABD沿AB翻折,得到△ABD′(如图3),小明和小亮发现∠D′BC的大小与角度n有关,请找出它们的关系,并说明理由;(3)如图4,在(2)问的基础上,过点B作AD′的垂线,垂足为点E,延长AE到点F,使得EF=(AD+AC),连接BF,请判断△ABF的形状,并说明理由.20.定义:如果1条线段将一个三角形分割成2个等腰三角形,我们把这条线段叫做这个三角形的“双等腰线”.如果2条线段将一个三角形分成3个等腰三角形,我们把这2条线段叫做这个三角形的“三等腰线”.如图1,BE是△ABD的“双等腰线”,AD、BE是△ABC的“三等腰线”.(1)请在图2三个图中,分别画出△ABC的“双等腰线”,并做必要的标注或说明.(2)如果一个等腰三角形有“双等腰线”,那么它的底角度数是.(3)如图3,△ABC中,∠C=∠B,∠B<45°.画出△ABC所有可能的“三等腰线”,使得对∠B取值范围内的任意值都成立,并做必要的标注或说明.(每种可能用一个图单独表示,如果图不够用可以自己补充)。
五年级数学上册第二单元 轴对称和平移 知识点+练习
第二单元轴对称和平移轴对称:1.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,那条直线就叫做对称轴。
两图形重合时互相重合的点叫做对应点,也叫对称点。
2.轴对称图形的性质:对应点到对称轴的距离相等,对应点连线垂直于对称轴。
3.轴对称图形具有对称性。
4轴对称图形的法:(1)找出所给图形的关键点,如图形的顶点、相交点、端点等;(2)数出或量出图形关键点到对称轴的距离;(3)在对称轴的另一侧找出关键点的对称点;(4)按照所给图形的顺序连接各点,就画出所给图形的轴对称图形。
平移:1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
2.平移的基本性质:(1)平移不改变图形的形状和大小,只改变图形的位置。
(2)经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等。
3.平移图形的画法:(1)确定平移的方向与距离。
(2)将关键点按所需方向平移所需距离。
(3)按原来图形的连接方式依次连接各对应点。
4、平移几格并不是指原图形和平移后的新图形之间的空格数,而是指原图形的关键点平移的格数。
设计图案的基本方法:平移、对称1.运用平移设计图案的方法:(1)选好基本图案;(2)根据所选的基本图案确定平移的格数和方向;(3)平移,描出对应点;(4)按顺序连接对应点。
2.运用对称设计图案的方法:(1)先选好基本图案;(2)依据基本图案的特点定好对称轴;(3)选好关键点,并描出关键点的对应点;(4)按顺序连接对应点,画出基本图形的对称图形。
北师大版小学五年级上册数学第2单元《轴对称和平移》1、把图形向右平移7格后得到的图形涂上颜色。
(1)向左平移2格2、把图形向左平移5格后得到的图形涂上颜色。
(2)向右平移5格3、把图形向右平移4格后得到的图形涂上颜色。
4、画出小船向右平移6格后的图形。
5、画出向右平移6格后的图形6、(1)小汽车向()平移了()格。
浙教版八年级数学上册第二章知识点+注意点+经典例题
八年级上册第二章《特殊三角形》2.1图形的轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.2.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合的点是对应点,叫做对称点.[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.ﻭ[图形轴对称的性质]①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称.[轴对称与轴对称图形的区别][线段的垂直平分线](1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.2。
2等腰三角形+2。
3等腰三角形性质定理+2。
4等腰三角形判定定理[等腰三角形]★1. 有两条边相等的三角形是等腰三角形。
★2。
在等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.[等腰三角形的性质]★性质1:等腰三角形的两个底角相等(简写成“等边对等角”)★性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一).特别的:(1)等腰三角形是轴对称图形。
(2)等腰三角形两腰上的中线、角平分线、高线对应相等.[等腰三角形的判定定理]★如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边").特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形. (2)有两边上的角平分线对应相等的三角形是等腰三角形.(3)有两边上的中线对应相等的三角形是等腰三角形.(4)有两边上的高线对应相等的三角形是等腰三角形.[等边三角形]三条边都相等的三角形叫做等边三角形,也叫做正三角形.[等边三角形的性质]★等边三角形的三个内角都相等,•并且每一个内角都等于60°[等边三角形的判定方法]★(1)三条边都相等的三角形是等边三角形;★(2)三个角都相等的三角形是等边三角形;★(3)有一个角是60°的等腰三角形是等边三角形.2。
轴对称知识点总结与常考题型
轴对称是几何学中的一个重要概念,它描述了一个图形相对于某条轴线具有对称性。
以下是轴对称的知识点总结以及常考题型:1. 轴对称的定义:一个图形相对于某条直线对称,如果将该图形沿着这条直线折叠,两边完全重合。
2. 轴对称的特点:-对称轴上的任意一点与它关于对称轴上的对应点距离相等。
-对称轴将图形分为两个对称的部分,其中一个部分可以通过另一个部分旋转180度得到。
3. 常见的轴对称图形:-矩形、正方形和长方形都是轴对称图形,其对称轴分别为中心线和对边的中垂线。
-圆是轴对称图形,其对称轴为任意直径。
-有些字母和数字如"A"、"H"、"8"等也是轴对称图形。
4. 轴对称的判断方法:-观察图形是否能够通过折叠使两边完全重合。
-寻找图形的对称轴,判断图形上的点是否关于对称轴对称。
5. 轴对称的常考题型:-判断图形是否具有轴对称性质。
-找出图形的对称轴。
-完成轴对称图形的绘制,只给出一部分图形或对称轴。
-求解与轴对称图形相关的问题,如周长、面积等。
举例:1. 判断图形是否具有轴对称性质:给定一个图形,观察其能否通过折叠使两边完全重合。
2. 找出图形的对称轴:观察图形,找到一个直线,使得图形上的点关于这条直线对称。
3. 完成轴对称图形的绘制:给出部分图形或对称轴,根据已知信息完成图形的绘制。
4. 求解与轴对称图形相关的问题:如给定一个轴对称图形的一条边的长度,求解它的周长或面积等。
掌握轴对称的知识和解题技巧,可以帮助你在几何学中更好地理解和应用轴对称概念。
多做相关的练习题,加深对轴对称的理解和应用。
第二章 轴对称图形(知识归纳+题型突破)(解析版)
第二章 轴对称图形(知识归纳+题型突破)1、从生活中提炼轴对称模型,归纳轴对称的概念。
2、通过图形变换理解轴对称图形的性质,在生活中运用轴对称解决问题。
【知识点1】轴对称的概念把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形___关于这条直线对称___,也称这两个图形___成轴对称___,这条直线叫做___对称轴___,两个图形中的对应点叫做___对称点___.【知识点2】轴对称图形的概念把一个图形沿着某一条直线折叠,如果直线两旁的部分能够___互相重合___,那么称这个图形是___轴对称图形___,这条直线就是___对称轴___.【知识点3】轴对称与轴对称图形的区别与联系名称两个图形成轴对称轴对称图形图形图形个数针对两个图形而言,是两个图形的一种特殊位置关系针对一个图形而言,是某个图形的一种特殊几何性质对称轴只有一条对称轴可以有一条或多条、甚至无数条对称轴对称点在两个图形上在同一个图形上区别验证沿某条直线折叠后,两个图形能够沿某条直线折叠后,直线两旁的部重合分能够互相重合联系(1)沿对称轴折叠后能够重合;(2)如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形(1)沿对称轴折叠后,对称轴两旁的部分能够互相重合;(2)如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称【知识点4】线段的轴对称性线段___是___轴对称图形,线段的___垂直平分线___是它的对称轴.【知识点5】垂直平分线的性质线段垂直平分线上的点___到线段两端的距离相等___.几何语言:∵MN 是线段AB 的垂直平分线(或MN ⊥AB 于点D ,且AD = BD ),∴CA = CB.【知识点6】垂直平分线的判定定理到线段两端距离相等的点在线段的___垂直平分线___上.几何语言:∵CA = CB ,∴点C 在线段AB 的垂直平分线上.【知识点7】角的轴对称性角___是___轴对称图形,___角平分线所在的直线___是它的对称轴.【知识点8】角平分线的性质角平分线上的点___到角两边的距离相等___.几何语言:∵PF平分∠APB(或∠APF=∠BPF),EC⊥PA于C,ED⊥PB于D,∴EC=ED.【知识点9】角平分线的判定定理角的内部到___角两边距离___相等的点在角的平分线上.几何语言:∵EC⊥PA于C,ED⊥PB于D,EC=ED,∴点E在∠APB的平分线上.【知识点10】等腰三角形的轴对称性等腰三角形___是___轴对称图形,对称轴是___顶角平分线所在直线___.【知识点11】等边对等角等边对等角:等腰三角形的两底角相等.几何语言:在△ABC中∵AB=AC∴∠B=∠C(等边对等角)【知识点12】三线合一三线合一:等腰三角形___底边上的高线___、___底边上的中线___、___顶角平分线___重合.几何语言:在△ABC中∵AB=AC,∠BAD=∠CAD∴AD⊥BC,BD=CD【知识点13】等腰三角形的判定等角对等边:有两个角___相等___的三角形是等腰三角形.几何语言:在△ABC中∵∠B=∠C∴AB=AC(等角对等边)题型一轴对称图形的识别【例1】作出下列各图形的一条对称轴【答案】见解析【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.【详解】解:根据分析画各图的对称轴如下:【例2】如果正三角形有n条对称轴,那么n=.【答案】3【分析】根据轴对称的定义进行判断即可.巩固训练:1.图中的图形为轴对称图形,该图形的对称轴的条数为()A.2B.4C.6D.8【答案】C【分析】根据轴对称图形的概念求解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.【详解】解:由图可知,该图形有6条对称轴;故选:C2.对称轴最多的图形是()A.圆B.长方形C.正方形D.等边三角形【答案】A【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此解答即可.【详解】解:圆有无数条对称轴,长方形有2条对称轴,正方形有4条对称轴,等边三角形有3条对称轴;故选:A.3.某校学生为校运动会设计会标,在以下四个标志中,不是轴对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形的概念逐项判断即可解答.【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选:C.题型二镜面对称问题【例3】如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是()A.4:00B.8:00C.12:20D.12:40【答案】B【分析】镜子中的时间和实际时间关于钟表上过6和12的直线对称,作出相应图形,即可得到准确时间.【答案】3265巩固训练:4.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的()A.B..D .【答案】C “”题型三 轴对称的性质【例6】如图,ABC V 与A B C ¢¢¢V 关于直线MN 对称,BB ¢交MN 于点O ,下列结论①AB A B ¢¢=;②OB OB ¢=;③AA BB ¢¢∥中,正确的有( )A .3个B .2个C .1个D .0个【答案】A 【分析】根据轴对称的性质解答.【详解】解:∵ABC V 与A B C ¢¢¢V 关于直线MN 对称,BB ¢交MN 于点O ,∴AB A B ¢¢=,OB OB ¢=,AA BB ¢¢∥,综上,三个选项都正确,故选:A .【例7】如图,已知点A 、B 是直线MN 同侧两点,点A ¢、A 关于直线MN 对称.连接A B ¢交直线MN 于点P ,连接AP .若5cm A B ¢=,则AP BP +的长为( )A .10cmB .8cmC .5cmD .无法确定【答案】C 【分析】根据轴对称的性质得到A P AP ¢=,由AP BP A P BP A B ¢¢+=+=即可得到答案.【详解】解:∵点A ¢、A 关于直线MN 对称,连接A B ¢交直线MN 于点P ,连接AP .∴A P AP ¢=,∴5cm AP BP A P BP A B ¢¢+=+==,即AP BP +的长为5cm .故选:C【例8】如图,P 在AOB Ð内,点C 、D 分别是点P 关于AO 、BO 的对称点.如果PMN V 的周长为12,则CD 的长为( )A .6B .12C .15D .18【答案】B 【分析】先根据轴对称的性质得到CM PM DN PN ==,,再根据三角形周长公式得到12PM MN PN ++=,则12CD CM MN DN PM MN PN =++=++=.【详解】解:∵点C 、D 分别是点P 关于AO 、BO 的对称点,∴CM PM DN PN ==,,∵PMN V 的周长为12,∴12PM MN PN ++=,∴12CD CM MN DN PM MN PN =++=++=,故选B .巩固训练:∴PMN V 的周长为121215PM PN MN MN PM P N PP ++++===.故答案为:15.8.如图,ABC V 和ADE V 关于直线l 对称,已知15AB =,10DE =,70D Ð=°.求B Ð的度数及BC 、AD 的长度.【答案】70B Ð=°,10BC =、15AD =【分析】根据轴对称的性质,对应边相等,对应角相等即可得出答案.【详解】解:ABC QV 和ADE V 关于直线l 对称,AB AD \=,BC DE =,B D Ð=Ð,又15AB =Q ,10DE =,70D Ð=°.70B \Ð=°,10BC =,15AD =,题型四 折叠问题【答案】90°【分析】根据折叠的性质得到Ð求解即可.【详解】∵将长方形纸片按如图方式折叠,A.17B.10【答案】A【分析】由折叠的性质可得AD=V沿直线DE 【详解】解:∵将ABC巩固训练:A .角平分线B .高线【答案】C 【分析】根据折叠的性质可得:【详解】解:∵将ABC V 折叠,使点∴D 为BC 中点,∴AD 是ABC V 的中线;【答案】24°/24度【详解】解:∵将长方形纸片∴90,E B EAC Ð=Ð=°Ð∴180EAB EFC Ð=Ð=°-【答案】55°/55度【详解】解:如图,由翻折不变性可知:2ÐÐ=∵宽度相等的纸条边缘平行,∴13Ð=Ð,12\Ð=Ð,题型五 垂直平分线的性质【例12】甲、乙、丙三家分别位于ABC V 的三个顶点处,现要建造一个核酸检测点,使得三家到核酸检测点的距离相等,则核酸检测点应建造在 ( )A .三边垂直平分线的交点B .三条角平分线的交点C .三条高的交点D .三条中线的交点【答案】A【分析】根据线段垂直平分线的性质即可解答.【详解】解:∵线段的垂直平分线的点到线段的两个端点的距离相等,∴这三家到核酸检测点距离相等,核酸检测点的建造位置是在ABC V 三边的垂直平分线上,故选A .【例13】如图,在ABC V 中,AB AC ^,3AB =,5BC =,4AC =,EF 垂直平分BC ,点P 为直线EF 上的任意一点,则ABP V 周长的最小值是( )A.7B.6C.12D.8【答案】A【详解】解:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,即A、P、C三点共线时,AP+BP的值最小,∵EF垂直平分BC,∴AD=CD,∴AD+BD=AD+CD=AC=4,∴△ABP周长的最小值是AB+AC=3+4=7,故A正确.故选:A.【例14】如图,在△ABC中,AB=7,BC=5,AC的垂直平分线分别交AB,AC于点D,E,点F是DE上任意一点,△BCF的周长的最小值是( )A.2B.12C.5D.7【答案】B【分析】由于A,C关于直线DE为对称,所以F和D重合时,FC FB最小,最小值等于AB,即可求得BCF D 的周长的最小值.【详解】解:DE Q 是线段AC 的垂直平分线,A \,C 关于直线DE 为对称,F \和D 重合时,FC FB +最小,即BCF D 的周长的最小值,DE Q 是线段AC 的垂直平分线,DC DA \=,FC FB \+的最小值7DC DB AB =+==,BCF \D 的最小周长7512FC FB BC =++=+=,故选:B .【例15】已知ABC V 中120BAC Ð=°,26BC =,AB 、AC 的垂直平分线分别交BC 于E 、F ,与AB AC ,分别交于点D 、G .求:(1)EAF Ð的度数.(2)求AEF △的周长.【答案】(1)60°(2)26【分析】(1)根据线段的垂直平分线的性质得到AE BE =,CF AF =,得出等腰三角形即可;(2)根据线段的垂直平分线的性质得到AE BE =,CF AF =,这样就将AEF △的周长转化为线段BC 的长.【详解】(1)AB Q 、AC 的垂直平分线分别交BC 于E 、FAE BE \=、CF AF =,B EAB \Ð=Ð,C FACÐ=Ð()180B C BAC\Ð+Ð=°-Ð180120=°-°60=°EAF BAC EAB FAC\Ð=Ð-Ð-Ð120()B C =°-Ð+Ð12060=°-°60=°60EAF \Ð=°(2)AE BE =Q 、CF AF=AEF \V 的周长EA EF AF=++BE EF FC=++BC=26=AEF \V 的周长26=巩固训练:12.如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在( )A .AC ,BC 两边高线的交点处B .AC ,BC 两边中线的交点处C .AC ,BC 两边垂直平分线的交点处D .A Ð,B Ð两内角平分线的交点处【答案】C【分析】根据垂直平分线的性质可知,到A ,B ,C 表示三个居民小区距离相等的点,是AC ,BC 两边垂直平分线的交点,由此即可求解.【详解】解:如图所示,分别作AC ,BC 两边垂直平分线MN ,PQ 交于点O ,连接OA ,OB ,OC ,∵MN ,PQ 是AC ,BC 两边垂直平分线,∴OA OB OC ==,∴点O 是到三个小区的距离相等的点,即点O 是AC ,BC 两边垂直平分线的交点,故选:C .13.如图,在ABC V 中,DM ,EN 分别垂直平分边AC 和边BC ,交边AB 于M ,N 两点,DM 与EN 相交于点F .(1)若5AB =,则CMN V 的周长为 ______;(2)若70MFN Ð=°,求MCN Ð的度数.【答案】(1)5;(2)40°.【分析】(1)根据线段垂直平分线的性质得到MA MC =,NB NC =,再根据三角形的周长公式计算即可;(2)根据三角形内角和定理求出FMN FNM Ð+Ð,根据对顶角相等求出AMD BNE Ð+Ð,根据等腰三角形的性质即可得到答案.【详解】(1)∵DM ,EN 分别垂直平分边AC 和边BC ,∴MA MC =,NB NC =,∴CMN V 的周长5MC MN NC MA MN NB AB =++=++==,∴CMN V 的周长5=,故答案为:5;(2)∵70MFN Ð=°,∴180110FMN FNM MFN Ð+Ð=°-Ð=°,∴110AMD BNE FMN FNM Ð+Ð=Ð+Ð=°,∴()18070A B AMD BNE Ð+Ð=°-Ð+Ð=°,∵MA MC =,NB NC =,∴A MCA Ð=Ð,B NCB Ð=Ð,∴()18040MCN A B MCA NCB Ð=°-Ð+Ð+Ð+Ð=°.14.如图,在ABC V 中DE ,是AC 的垂直平分线,4cm AE =,ABC V 的周长为23cm ,求ABD △的周长.【答案】ABD △的周长为15cm .【分析】根据垂直平分线的性质可得AD CD =,28cm AC AE ==,即可得出15cm AB AC +=,则ABD △的周长AB BD AD AB BD CD AB BC =++=++=+,即可求解.【详解】解:∵DE 是AC 的垂直平分线,∴AD CD =,()28cm AC AE ==.∵ABC V 的周长()23cm AB BC AC AB BD DC AC =++=+++=,∴()23815cm AB AC +=-=,∴ABD △的周长()23815cm AB BD AD AB BD CD AB BC =++=++=+=-=.即ABD △的周长为15cm .【答案】13【分析】根据垂直平分线的性质,可得【详解】解:∵AB 的垂直平分线∴BE AE =,∵BCE V 的周长为BE BC EC ++题型六 角平分线的性质【答案】6【分析】过O 点作OH BA ^于H 点,如图,先根据角平分线的性质得到解决问题.【详解】解:过O 点作OH BA ^于H 点,如图,BO Q 平分ABC OD BC OH BA Ð^^,,6OH OD \==,∵点E 为射线BA 上一动点,∴OE 的最小值为OH 的长,即OE 的最小值为6.故答案为:6.【例17】如图,DE AB ^于E ,DF AC ^于F ,AD 平分BAC Ð,若BE CF =,探索+AB AC 与AE 的数量关系,并证明之.【答案】2AB AC AE +=,见解析【分析】先根据角平分线的性质得出DE DF =,再证明Rt Rt (HL)ADE ADF ≌△△,得出AE AF =,根据线段的和差即可得出答案.【详解】证明:∵DE AB ^于E ,DF AC ^于F ,AD 平分BAC Ð,∴DE DF =,在Rt ADE △和Rt ADF V 中,AD AD DE DF =ìí=î,∴Rt Rt (HL)ADE ADF ≌△△,∴AE AF =,∵BE AE AB =-,CF AC AF =-,∴AE AB AC AF -=-,∴2AB AC AE +=.Ð的度数;(1)求BOCÐ的周长.(2)求AMN【答案】(1)130°(2)12巩固训练:16.如图,四边形ABCD 中,90B C Ð=Ð=°,点E 为BC 的中点,且AE 平分BAD Ð.(1)求证:DE 平分ADC Ð;(2)求证:AB CD AD +=.【答案】(1)见解析(2)见解析【分析】(1)过点E 作EF AD ^于F ,根据角平分线的性质得出BE EF =,再根据BE CE =,得出CE EF =,进而根据角平分线的判定定理可得出结论;(2)根据角平分线的性质得出BE EF =,CE EF =,再证明V V ≌ABE AFE ,CED FED V V ≌,根据全等三角形的性质得出AB AF =,DC DF =,进而得出结论.【详解】(1)证明:如图,过点E 作EF AD ^于F ,∵90B Ð=°,AE 平分BAD Ð,∴BE EF =,∵E 是BC 的中点,∴BE CE =,∴CE EF =,又∵90C Ð=°,EF AD ^,∴DE 是ADC Ð的平分线.(1)求证:DE 平分ADC Ð;(2)若3AD =,7CD =,278ABE S =V ,求ADC S △【答案】(1)见解析∵BE 平分ABC Ð,EF AB ^,∴EF EN =,∵AE 平分DAF Ð,A.110°B.120°【答案】C【分析】根据题意可得,点O数,再根据三角形的内角和等于V三边【详解】解:∵O到ABC....【答案】D【分析】根据到角两边的距离相等的点在角平分线上进行判断即可.【详解】解:∵到角两边的距离相等的点在角平分线上,题型七作图【例21】如图,已知甲工厂靠近公路a,乙工厂靠近公路b,为了发展经济,甲、乙两工厂准备合建一个仓库,经协商,仓库必须满足以下两个要求:①到两工厂的距离相等;Ð内,且到两条公路的距离相等.②在MON你能帮忙确定仓库的位置吗?(保留作图痕迹,不写作法)【答案】见解析Ð的平分线OC,则FG与OC的交点F就是仓【分析】连接DE,作线段DE的垂直平分线FG,作角MON库的位置.【详解】解:如图,点F为仓库的位置.【例22】如图,两公路AO与BO相交于点O,两公路内侧有两工厂C和D,现要修建一货站使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹)【答案】见解析Ð的角平分线和线段CD的垂直平分线,两线的交点即为所求.【分析】只要作出AOB【详解】解:如图所示:点P 即为所求.【例23】用直尺、圆规作图,不写作法,但要保留作图痕迹.如图,某小区绿化带ABC V 内部有两个喷水臂P 、Q ,现欲在ABC V 内部建一个水泵O ,使得水泵O 到BA ,BC 的距离相等,且到两个喷水管P 、Q 的距离也相等,请你在图中标出水泵O 的位置.【答案】作图见解析【分析】作BM 平分ABC Ð,作EF 垂直平分线段PQ 交BM 于点O 即可.【详解】解:如图,作BM 平分ABC Ð,作EF 垂直平分线段PQ 交BM 于点O ,∵BM 平分ABC Ð,点O 在射线BM 上,∴点O 到BA ,BC 的距离相等,∵EF 垂直平分线段PQ ,点O 在直线EF 上,∴点O 到P 、Q 的距离相等,∴O 到BA ,BC 的距离相等,且到点P 、Q 的距离也相等,则点O 即为所作.巩固训练:21.如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)【答案】见解析【分析】根据题意,P点既在线段AB的垂直平分线上,又在两条公路所夹角的平分线上.故两线交点即为发射塔P的位置.【详解】解:作出线段AB的垂直平分线,与CODÐ的平分线交于P点,则如图,P点为所求..22.如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用尺规作出灯柱的位置点P.(请保留作图痕迹)【答案】见解析Ð的角平分线,它们的交点即为点P.【分析】分别作线段CD的垂直平分线和AOB【详解】解;如图,点P为所作.23.如图,某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路),现计划在∠AOB 内部修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等,你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.【答案】能,作图见解析Ð的角平分线OK,连接MN,作MN的垂直平分线RQ,OK和RQ相交于点【分析】根据题意,作AOBS,根据角平分线和垂直平分线的性质分析,即可得到答案.Ð的角平分线OK,连接MN,作MN的垂直平分线RQ,OK和RQ相交于点【详解】根据题意,作AOBS,如下图:∵OK 是AOB Ð的角平分线∴OK 上的点,到两条公路的距离也相等;∵RQ 是MN 的垂直平分线∴RQ 上的点,到两所大学的距离相等∵OK 和RQ 相交于点S ,∴仓库P 应该建在点S 的位置.题型八 等腰三角形三线合一【例24】如图,AD 、CE 分别是ABC V 的中线和角平分线,若AB AC =,26CAD Ð=°,则ACE Ð的度数为( )A .26°B .32°C .38°D .48°【答案】B 【分析】先利用等腰三角形三线合一性质,得到90ADC Ð=°,再利用直角三角形的性质,得到64ACD Ð=°,结合CE 是ABC V 的角平分线,计算即可.【详解】∵AD 是ABC V 的中线,AB AC =,∴90ADC Ð=°,A.2.5【答案】B【分析】根据已知可得答.巩固训练:24.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.腰上的中线所在的直线(1)求证:OBC △为等腰三角形;(2)若25ACF Ð=°,求ÐBOE 【答案】(1)见解析.(2)15°题型九等腰三角形度数巩固训练:∵AB AC =,∴(11802ABC C Ð=Ð=°-②如图,当顶角为钝角三角形时:∵50ABD Ð=°,90D Ð=∴9050140BAC Ð=°+°=∵AB AC =,∴()1180140202C ABC Ð=Ð=°-°=°.故答案为:70°或20°.题型十 等腰三角形外角问题【例27】如图,在第1个1A BC V 中,130B A B CB а=,=;在边1A B 上任取一点D ,延长1CA 到A 2,使121A A A D =,得到第2个12A A D V ;在边2A D 上任取一点E ,延长12A A 到A 3,使232A A A E =,得到第3个23A A E △;……按此做法继续下去,则第n 个三角形中以n A 为顶点的内角度数是( )巩固训练:27.如图,30MON Ð=°,点123,,,A A A L 在射线ON 上,点123,,,B B B L 在射线OM 上,112A B A △,223334,A B A A B A L △△均为等边三角形.若11OA =,则1n n n A B A +△的边长为( )A .2nB .12n -C .12n +D .22n +【答案】B 【分析】根据等边三角形的性质得出,111130A OB A B O Ð=Ð=° ,01112112OA A B A B ====,利用同样的方法,122222A O A B ===,23332242A B A O A O ====,由此规律可得12n n n A B -=.【详解】112A B A QV 为等边三角形,30MON Ð=°111130A OB A B O \Ð=Ð=°1112112OA A B A B ====同理:122222A O AB ===23332242A B A O A O ====L由此类推可得1n n n A B A +△的边长12n n n A B -=.故选B .28.如图,已知ABC V 是等边三角形,点B ,C ,D ,F 在同一条直线上,CD CE =,DF DG =,求F Ð的度数.【答案】15°【分析】根据等边三角形的性质,等边对等角性质,三角形外角性质计算即可.【详解】解:∵ABC V 是等边三角形,∴60ACB Ð=°,∵CD CE =,∴CDE CED Ð=Ð,∵260ACB CDE CED CDE Ð=Ð+Ð=Ð=°,∴30Ð=°CDE ,∵DF DG =,∴DFG DGF Ð=Ð,∵230CDE DFG DGF F Ð=Ð+Ð=Ð=°,∴15F Ð=°.题型十一 等腰三角形个数和格点问题【例28】在如图所示的网格中,在格点上找一点P ,使ABP V 为等腰三角形,则点P 有( )A .6个B .7个C .8个D .9个【答案】C 【分析】分三种情况讨论:以AB 为腰,点A 为顶角顶点;以AB 为腰,点B 为顶角顶点;以AB 为底.【详解】解:如图:如图,以AB 为腰,点A 为顶角顶点的等腰三角形有5个;以AB 为腰,点B 为顶角顶点的等腰三角形有3个;不存在以AB 为底的等腰ABP V ,所以合计8个.故选:C .【例29】如图中的大长方形都是由边长为1的小正方形组成,其中每个正方形的顶点称之为格点,若A 、B 、C 三点均在格点上,且ABC V 为等腰三角形,则满足条件的点C 的个数有( )A .4个B .5个C .6个D .7个【答案】C 【分析】分A Ð为顶角和B Ð为顶角判定即可.【详解】当A Ð为顶角时,符合的点有一个6C ;当B Ð为顶角时,符合的点有五个12345,,,,,C C C C C ;一共有6个.故选C .【例30】如图,在ABC V 中,AB AC =,36A Ð=°,BD 是ABC V 的角平分线,则图中的等腰三角形共有( )A .1个B .2个C .3个D .4个【答案】C 【分析】由BD 是ABC V 的角平分线,可得272ABC ABD Ð=Ð=°,又可求72ABC C Ð=Ð=°,所以ABC V 是等腰三角形;又180218027236A ABC Ð=°-Ð=°-´°=°,故A ABD Ð=Ð,所以ABD V 是等腰三角形;由36DBC ABD Ð=Ð=°,得72C Ð=°,可求72BDC Ð=°,故BDC C Ð=Ð,所以BDC V 是等腰三角形.【详解】解:BD Q 是ABC V 的角平分线,272ABC ABD \Ð=Ð=°,72ABC C \Ð=Ð=°,ABC V \是等腰三角形①.180218027236A ABC Ð=°-Ð=°-´°=°,A ABD \Ð=Ð,ABD \V 是等腰三角形②.36DBC ABD Ð=Ð=°Q ,72C Ð=°,72BDC \Ð=°,BDC C \Ð=Ð,BDC \V 是等腰三角形③.故图中的等腰三角形有3个.故选:C .巩固训练:29.如图,线段AC 、BD 互相垂直平分,则图中共有等腰三角形( )A .2个B .3个C .4个D .5个【答案】C 【分析】根据垂直平分线的性质得出AB AD DC BC ===,继而根据等腰三角形判定定理即可求解.【详解】解:∵线段AC 、BD 互相垂直平分,∴,AB AD CB CD ==,,DA DC BA BC ==,∴有等腰三角形,,,ABD CBD DAC BAC △△△△共4个,故选:C .30.如图,BD 是ABC V 的平分线,3672A ABC Ð=Ð=°°,, DE BC ∥交AB 于E ,则图中等腰三角形的个数是( )A .5个B .4个C .3个D .2个【答案】A 【分析】根据三角形内角和定理判定ABC V 为等腰三角形,然后由角平分线、平行线的性质、等角对等边来找图中的等腰三角形.【详解】解:∵在ABC V 中,=36°=72°A ABC ÐÐ,,∴°=C=72ABC ÐÐ,【答案】D【分析】逐个画出图形,即可得到答案.【详解】解:图①中,∠A=36°,AB=AC,则∠ABC=∠ACB=72°,以B为顶点,在△ABC内作∠ABC的平分线,则∠ABD=∠DBC=36°,∴∠A=∠ABD=36°,∴△ABD是等腰三角形,而∠DBC=∠ABC-∠ABD=36°,∠ACB=72°,∴∠ACB=∠BDC=72°,∴△BDC是等腰三角形,故直线BD将△ABC分成了两个小等腰三角形,故①符合题意;图③中,∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∠B=∠C=45°,过A作AE⊥BC于E,如图:则△ABE和△ACE是等腰直角三角形,故直线AE将△ABC分成了两个小等腰三角形,故③符合题意;图④中,∠BAC=108°,AB=AC,则∠B=∠C=36°,以A为顶点,在△ABC内作∠BAF=72°,如图:则△ABF和△ACF都是等腰三角形,故④符合题意;图②是等边三角形,没有直线能将它分成两个小的等腰三角形,故②不符合题意;故选:D.题型十十二直角三角形性质问题A.6B.【答案】C【分析】根据直角三角形斜边上的中线等于斜边的一半可得【答案】6△是直角三角形,可求【分析】可证ADCV中,【详解】解:Q在ABC\V是直角三角形,ADCQ是AC的中点,E巩固训练:33.在Rt ABC △中,Ð【答案】16【分析】根据直角三角形斜边中线的性质,即可求解.【详解】解:∵90C Ð=。
[全]八年级数学上第二单元轴对称图形重要知识点梳理及单元测试含答案
数学八年级上第二单元轴对称图形重要知识点梳理及单元测试含答案
轴对称
一、知识框架
二、知识概念
1.基本概念
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相
重合,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一
个图形重合,那么就说这两个图形关于这条直线对称.
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这
条线段的垂直平分线.
2.基本性质
⑴对称的性质
①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.
②对称的图形都全等.
⑵线段垂直平分线的性质
①线段垂直平分线上的点与这条线段两个端点的距离相等.
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.
⑶关于坐标轴对称的点的坐标性质
3.基本方法:
⑴做已知直线的垂线:
⑵做已知线段的垂直平分线:
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.
⑷作已知图形关于某直线的对称图形:
⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.
参考答案:。
苏教版八年级第2章轴对称图形知识点及习题
第2章轴对称图形一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系区别:(1)轴对称是指两个图形间的位置关系,轴对称图形是指一个具有特殊形状的图形;(2)轴对称涉及两个图形,轴对称图形是对一个图形而言的.联系:(1)定义中都有一条直线,都要沿着这条直线折叠重合;(2)如果把轴对称图形沿对称轴分成两部分(即看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.4.轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上4.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等1、点出关键点。
找出所有的关键点,即图形中所有线段的端点。
远。
3、点出对称点。
4、连线。
按照给出的一半图形将所有对称点连接成线段。
部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合。
四、等腰三角形的性质1、有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等。
推论1:等腰三角形顶角的平分线平分底边且垂直于底边,也就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)。
苏科版八年级上第二章《轴对称图形》全章提优练习(含答案)【14份】
苏科版八年级上第二章《轴对称图形》全章提优练习(含答案)第1课时轴对称与轴对称图形1.下列图形中,对称轴的数量小于3的是( )n 且n为整数).如图,请你2.已知各边相等,各角也相等的多边形叫做正多边形,也称为正n边形(这里3(1)边形有条对称轴(2)当n越来越大时,正多边形接近于,该图形有条对称轴.3.小明学习了轴对称知识后,忽然想起了参加数学兴趣小组时老师布置的一道题,当时小明没做出来,题目是这样的:有一组数据排列成方阵,如图.试用简便方法计算这组数据的和.小明想:不考虑每个数据的大小,只考虑每个数据的位置,这个图形是个轴对称图形,能不能用轴对称思想来解决这个问题呢?小明顺着这个思路很快解决了这个题目,请你写出他的解题过程.第2课时 轴对称的性质(1)1.如图,把一张长方形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B 落在点B '处,若240∠=︒,则1∠的度数为( )A. 115°B. 120°C. 130°D. 140°2.如图,点P 关于,OA OB 的对称点分别是12,P P ,12PP 分别交,OA OB 于点,D C ,12P P =16 cm ,则PCD ∆的周长为 cm.3.如图,O 为ABC ∆内部一点, 132OB =.(1)分别画出点O 关于直线,AB BC 的对称点,P Q ;(2)请指出当ABC ∠的度数为多少时,PQ =7,并说明理由;(3)请判断当ABC ∠的度数不是(2)中的度数时,PQ 的长度是小于7还是大于7,并说明你的判断的理由.第3课时 轴对称的性质(2)1.如图,点,A B 在方格纸的格点位置上,若要再找一个格点C ,使它们所构成的三角形为轴对称图形,则这样的格点C 在图中共有( )A. 4个B. 6个C. 8个D. 10个2.如图,在2×2的正方形网格纸中,有一个以格点为顶点的ABC ∆.请你找出网格纸中所有与ABC ∆成轴对称且也以格点为顶点的三角形,这样的不角形共有 个.3.如图,在由边长为1的正方形组成的6×5方格中,点,A B 都在格点上.(1)在给定的方格中将线段AB 平移到CD ,使得四边形ABDC 是长方形,且点,C D 都落在格点上.画出四边形ABDC ,并叙述线段AB 的平移过程.(2)在方格中画出ACD ∆关于直线AD 对称的AED ∆.(3)求五边形AEBDC 的面积.第4课时 轴对称的性质—习题课7.如图,线段AB 在直线l 的一侧,请在直线l 上找一点P ,使PAB ∆的周长最短.画出图形,保留画图痕迹,不写画法.2.如图,在直线l 上找一点Q ,使得,QA QB 与直线l 的夹角相等.画出图形,保留画图痕迹,不写画法.3. (1)如图①, P 是AOB ∠内一点,在,OA OB 上分别找点,C D ,使得PCD ∆的周长最短.画出图形,保留画图痕迹,不写画法.(2)如图②, ,P Q 是AOB ∠内的两点,在,OA OB 上分别找点,C D ,使得以,,,P Q C D 为顶点的四边形的周长最短.画出图形,保留画图痕迹,不写画法.第5课时 设计轴对称图案1.在一次数学活动课上,小颖将一个四边形纸片依次按如图①②所示的方式对折,然后按图③中的虚线裁剪成图④样式,将纸片展开铺平,所得到的图形是( )2.在4×4的方格中,有五个同样大小的正方形按如图所示的方式摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.3.在3×3的正方形网格图中,有格点三角形ABC 和格点三角形DEF ,且ABC ∆和DEF ∆ 关于某条直线成轴对称,请在如图①~⑥所示的网格中画出六个这样的DEF ∆.(每种方案均不相同)第6课时 线段、角的轴对称性(1)1.如图,在ABC ∆中,AC 的垂直平分线分别交,AC BC 于点,,E D EC = 4 , ABC ∆的周长为23,则ABD ∆的周长为( )A. 13B. 15C. 17D. 192.如图,在ABC ∆中,AB 的垂直平分线分别交,AB BC 于点,,D E AC 的垂直平分线分别交,AC BC 于点,F G .若AEG ∆的周长为2018,则线段BC 的长为 .3.如图,在ABC ∆中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点,F D 为线段CE 的中点,且18,72CAD ACB ∠=︒∠=︒.求证: BE AC =.第7课时 线段、角的轴对称性(2)1.设P 是ABC ∆内一点,满足PA PB PC ==,则P 是ABC ∆ ( )A.三条内角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点2.如图,在ABC ∆中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若EDC ∆的周长为24, ABC ∆与四边形AEDC 的周长之差为12,则线段DE 的长为 .3.在ABC ∆中,,AB AC O =为平面上一点,且OB OC =.点A 到BC 的距离为8,点O 到BC 的距离为3.求AO 的长.第8课时 线段、角的轴对称性(3)1.如图,ABC ∆的面积为6,AC =3,现将ABC ∆沿AB 所在直线翻折,使点C 落在直线AD 上的点C '处,P 为直线AD 上的一点,则线段BP 的长不可能是( )A. 3B. 4C. 5. 5D. 102.如图,//,,AB CD BP CP 分别平分,,ABC DCB AD ∠∠过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离为 .3.如图,MN 为ABC ∆的边AC 的垂直平分线,过点M 作ABC ∆另外两边,AB BC 所在直线的垂线,垂足分别为,D E ,且AD CE =,作射线BM .求证: BM 平分ABC ∠.第9课时 线段、角的轴对称性(4)1.如图,,ABC EAC ∠∠的平分线,BP AP 交于点P ,过点P 作,PM BE PN BF ⊥⊥,垂足分别为,M N .下列结论:①CP 平分ACF ∠;②180ABC APC ∠+∠=︒;③AM CN AC +=;④2BAC BPC ∠=∠.其中正确的是( )A. ①②③B. ①③④C. ②③④D.①③2.如图,AD 是ABC ∆的角平分线,,DE DF 分别是ABD ∆和ACD ∆的高,连接EF ,交AD 于点O .下列结论:①DE DF =;②OA OD =;③AD EF ⊥;④AE DF AF DE +=+; ⑤AD 垂直平分EF .其中一定正确的是 .(填序号)3.如图.在ABC ∆中,AB AC >,边BC 的垂直平分线DE 交ABC ∆的外角BAM ∠的平分线于点D ,垂足为,E DF AB ⊥,垂足为F .求证: BF AC AF =+.第10课时 等腰三角形的轴对称性(1)1.如图,在ABC ∆中,55,30B C ∠=︒∠=︒,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD ,则BAD ∠的度数为( )A. 65°B. 60°C. 55°D. 45°2.如图,在ABC ∆中,D 为AB 上一点,E 为BC 上一点,且,50AC CD BD BE A ===∠=︒,则CDE ∠的度数为 .3.如图,在ACB ∆中,90ACB ∠=︒, ,D E 为斜边AB 上的两点,且,BD BC AE AC ==,求DCE ∠的度数.第11课时 等腰三角形的轴对称性(1)—习题课1.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的底角的度数为( )A. 30°B. 75°C. 15°或30°D. 75°或15°2.如图,在ABC ∆中,90ACB ∠=︒,60ABC ∠=︒,在边AC 所在的直线上找一点P ,使ABP ∆是等腰三角形,此时APB ∠的度数为 .3.在ABC ∆中,,AB AC AB =的垂直平分线DE 与AC 所在的直线相交所成的锐角为40°,求B ∠的度数.第12课时 等腰三角形的轴对称性(2)1.如图,在ABC ∆中,,36,,AB AC A BD CE =∠=︒分别是,ABC ACB ∠∠的平分线,且相交于点F ,则图中的等腰三角形有( )A. 5个B. 6个C. 7个D. 8个2.在ABC ∆中,50A ∠=︒,当B ∠的度数为 时,ABC ∆为等腰三角形.3.如图①,在ABC ∆中,,,AB AC ABC ACB =∠∠的平分线交于点O ,过点O 作//EF BC 交,AB AC 于点,E F .(1)图中有几个等腰三角形?猜想EF 与,BE CF 之间有怎样的数量关系,并说明理由.(2)如图②,若AB AC ≠,其他条件不变,则图中还有等腰三角形吗?如果有,分别写出来;另外在(1)中EF 与,BE CF 之间的数量关系还存在吗?(3)如图③,若在ABC ∆中, ABC ∠的平分线BO 与ABC ∆的外角平分线交于点O ,过点O 作//OE BC 交AB 于点E 、交AC 于点F .这时图中还有等腰三角形吗?EF 与,BE CF 之间的数量关系又如何?并说明你的理由.第13课时 等腰三角形的轴对称性(2)—习题课1.如图,120AOB ∠=︒,OP 平分AOB ∠,且OP =2.若点,M N 分别在,OA OB 上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A. 1个B. 2个C. 3个D. 3个以上2.如图,在等边三角形ABC 中,,,AE CD AD BE =相交于点,P BQ AD ⊥于点Q ,则线段,BP PQ 的数量关系为 .3.如图,C 为线段AB 上一点,ACM ∆,CBN ∆是等边三角形.,AN BM 相交于点,,O AN CM 交于点P , ,BM CN 交于点Q ,连接PQ .(1)求证: AN MB =;(2)求AOB ∠的度数;(3)求证: //PQ AB .第14课时 等腰三角形的轴对称性(3)1.如图,在ABC ∆中,,BE AC CF AB ⊥⊥ ,垂足分别为,E F .若M 是BC 的中点,则图中等腰三角形有( )A. 1个B. 3个C. 4个D. 5个2.如图,在四边形ABCD 中,90BCD BAD ∠=∠=︒ , ,AC BD 相交于点,,E G H 分别是,AC BD 的中点.如果80BEC ∠=︒,那么GHE ∠的度数为 .3.如图,在Rt ABC ∆中,90ACB ∠=︒,点D 在边AC 上(不与点,A C 重合), DE AB ⊥于点E ,连接,BD F 为BD 的中点.试猜想A ∠与CEF ∠的关系并证明.第2章 轴对称图形第1课时 轴对称与轴对称图形1.D2. 3 4 5 6 7 8(1) n(2)圆 无数3. 从方阵的数据看出,正方形的一条对角线上的数据都是10.若把这条对角线所在的直线作为对称轴,把这个方阵对折,对称轴两侧重合的小正方形内的数据之和都是10,相加后如图所示,这样方阵中的所有数据之和为1010100⨯=第2课时 轴对称的性质(1)1.A2. 163. (1)如图,过点O 画OH AB ⊥,垂足为H ,在垂线段OH 的延长线上取一点P ,使得PH OH =P ,此时点P 就是点O 关于直线AB 的对称点,同理画出点Q .(2)当90ABC ∠=︒时,7PQ =理由:如图,连接BP 、BQ∵点O 、P 关于直线AB 对称∴直线AB 垂直平分OP∴90BHO BHP ∠=∠=︒,PH OH =∵BH BH =∴BHO BHP ∆≅∆ ∴132OB PB ==,OBH PBH ∠=∠ 同理132OB QB ==,OBC QBC ∠=∠∴1133722PB QB +=+= 若7PQ =,则PB QB PQ +=,此时P 、B 、Q 三点共线∴180PBQ ∠=︒ ∴1902ABC OBH OBC PBQ ∠=∠+∠=∠=︒ (3)当90ABC ∠≠︒时,7PQ <理由:∵90ABC ∠≠︒∴P 、B 、Q 三点不在同一直线上,此时构成PBQ ∆∴PB BQ PQ +>.由(2),得7PB BQ +=∴7PQ <第3课时 轴对称的性质(2)1.D2. 53.(1)如图,将线段AB 先向右平移1个单位长,再向上平移2个单位长度,得线段CD (平移过程不唯一).(2)如图,画点C 关于直线AD 的对称点E ,连接AE 、DE ,则AED ∆即为所求. ( 3)1152(35)21322ACD AEBDC AEBD S S S ∆=+=⨯⨯+⨯+⨯=五边形梯形第4课时 轴对称的性质—习题课1. 由干线段AB 的长度是固定的,要使PAB ∆的周长最短,只要PA PB +最短即可.如图,过点A 作它关于直线l 的对称点'A ,连接'A B 交直线l 于点P ,连接PA 、PB ,此时PAB ∆就是周长最短的三角形,∴点P 即为所求.2.如图,过点A 作它关干直线l 的对称点'A ,连接'A B 交直线l 于点Q .连接QA 、QB ,此时AQH BQD ∠=∠,∴点Q 即为所求.3. (1)如图①,过点P 分别作关于射线OA 、OB 的对称点1P 、2P ,连接12P P ,分别交OA 、OB 于点C 、D ,连接PC 、PD 、CD ,此时PCD ∆的周长最短,∴点C 、D 和PCD ∆即为所求.(2)如图②.过点P 、Q 分别作射线OA 、OB 的对称点1P 、1Q ,连接11PQ ,分别交OA 、OB 于点C 、D ,连接PC 、PQ 、QD 、CD ,此时四边形PCDQ 的周长最短,∴点C 、D 和四边形PCDQ 即为所求.第5课时 设计轴对称图案1.A2. 133.要使DEF ∆和ABC ∆于某条直线成轴对称,关键是确定适当的对称轴.再根据轴对称的性质画出符合条件的图案,可以以33⨯的正方形网格图的对称轴为对称轴画出所求的DEF ∆,有四个不同位置的三角形;也可以以ABC ∆的边AC 、BC 的中点连线所在的直线为对称轴画出所求的DEF ∆,有一个三角形;还可以把过ABC ∆的顶点C 与边AB 平行的直线作为对称轴画出所求的DEF ∆,也有一个三角形.如图①~⑥中的DEF ∆即为所求第6课时 线段、角的轴对称性(1)1.B2. 20183. 连接AE ,∵EF 是AB 的垂直平分线∴AE BE =∵在ADC ∆中.,18CAD ∠=︒,72ACB ∠=︒∴18090ADC CAD ACB ∠=︒-∠-∠=︒即AD EC ⊥∵D 为线段CE 的中点∴ED CD =∴AD 垂直平分EC∴AE AC =∴BE AC =第7课时 线段、角的轴对称性(2)1.D2. 63.∵AB AC =∴点A 在线段BC 的垂直平分线上∵OB OC =∴点O 也在线段BC 的垂直平分线上∴AO 所在的直线即为线段BC 的垂直平分线.设直线AO 与BC 交于点M .由题意,得8,3AM OM ==如图①.当点A 、O 在BC 的同侧时,835AO AM OM =-=-=;如图②,当点A 、O 在BC 的异侧时,8311AO AM OM =+=+=第8课时 线段、角的轴对称性(3)1.A2. 43.连接MA 、MC∵点M 在AC 的垂直平分线上∴MA MC =∵,MD AB ME BC ⊥⊥∴90ADM CEM ∠=∠=︒在Rt MAD ∆和Rt MCE ∆中MA MC AD CE=⎧⎨=⎩ ∴Rt MAD Rt MCE ∆≅∆∴点M 在ABC ∠的平分线上,即BM 平分ABC ∠.第9课时 线段、角的轴对称性(4)1.B2. ①③④⑤3.如图.在ABC ∆中,AB AC >,边的垂直平分线DE 交ABC ∆的外角BAM ∠的平分线于点D ,垂足为,E DF AB ⊥,垂足为F .求证: BF AC AF =+.3.过点D 作DN MC ⊥,垂足为N ,连接DB 、DC .∵DN MC ⊥,DF AB ⊥∴90AND AFD ∠=∠=︒∵AD 平分BAM ∠∴NAD FAD ∠=∠在DNA ∆和DNA ∆中,AND AFD NAD FAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DNA DFA ∆≅∆∴,AN AF DN DF ==∵DE 是边BC 的垂直平分线 ∴DB DC =∵DN MC ⊥,DF AB ⊥ ∴90DNC DFB ∠=∠=︒在Rt DFB ∆和Rt DNC ∆中DB DC DF DN =⎧⎨=⎩∴Rt DFB Rt DNC ∆≅∆∴BF CN =∵CN AC AN AC AF =+=+∴BF AC AF =+第10课时 等腰三角形的轴对称性(1)1.A2. 52.5°3.设,BDC x AEC y ∠=∠=∵BD BC =∴BDC BCD x ∠=∠=∵BDC ∆的内角和为180°∴1802B x ∠=︒-同理可求1802A y ∠=︒-∵在ACB ∆中,90ACB ∠=︒∴90A B ∠+∠=︒即1802180290x y ︒-+︒-=︒整理,得135x y +=︒∵DEC ∆的内角和为180°第11课时 等腰三角形的轴对称性(1)—习题课1.D2. 15°或30°或75°或120°3.分三种情况讨论:①当顶角BAC ∠为锐角时,如图①.∵DE 垂直平分AB∴90ADE ∠=︒∵40AED ∠=︒∴在Rt ADE ∆中,904050A ∠=︒-︒=︒∵AB AC = ∴1(18050)652B C ∠=∠=︒-︒=︒ ②当顶角BAC ∠为直角时,BA AC ⊥,此时//DE AC ,不合题意,舍去.③当顶角BAC ∠为钝角时,如图②.∵DE 垂直平分AB∴90ADE ∠=︒∵40AED ∠=︒∴在Rt ADE ∆中,50BAE ∠=︒∵BAE B C ∠=∠+∠∴50B C ∠+∠==︒∵AB AC = ∴150252B C ∠=∠=⨯︒=︒ 综上所述,B ∠的度数为65︒或25︒第12课时 等腰三角形的轴对称性(2)1.D2. 50°或80°或65°2.在ABC ∆中,50A ∠=︒,当B ∠的度数为 时,ABC ∆为等腰三角形.3. (1)图中有5个等腰三角形:ABC ∆、AEF ∆、OBC ∆、EBO ∆、FOC ∆EF 与BE 、CF 之间的数量关系是EF BE CF =+理由:∵BO 平分ABC ∠∴EBO OBC ∠=∠∵//EF BC∴EOB OBC ∠=∠∴EBO EOB ∠=∠∴BE OE =同理可证CF OF =∴EF OE OF BE CF =+=+(2)若AB AC ≠,则图中仍旧存在2个等腰三角形:EBO ∆和FOC ∆,EF 与BE 、CF 之间的数量关系是EF BE CF =+仍旧存在.(3)图中存在等腰三角形EBO ∆和FOC ∆,EF 与BE 、CF 之间的数量关系是EF BE CF =- 理由:∵BO 平分ABC ∠∴EBO OBC ∠=∠∵//EF BC∴EOB OBC ∠=∠∴EBO EOB ∠=∠∴BE OE =同理可证CF OF =∴EF OE OF BE CF =-=-第13课时 等腰三角形的轴对称性(2)—习题课1.D2.2BP PQ =3. (1)如图,∵ACM ∆,CBN ∆都是等边三角形∴6160∠=∠=︒,,AC CM CN BC ==∵180ACB ∠=︒∴360∠=︒,120ACN MCB ∠=∠=︒在ACN ∆和MCB ∆中AC MC ACN MCB CN CB =⎧⎪∠=∠⎨⎪=⎩∴ACN MCB ∆≅∆∴AN MB =(2)如图,由(1),知ACN MCB ∆≅∆∴54∠=∠∵OQN ∆与CQB ∆的内角和均为180°,且OQN CQB ∠=∠∴160NOQ ∠=∠=︒∵180AOB NOQ ∠+∠=︒∴120AOB ∠=︒(3)如图,∵160∠=︒,360∠=︒∴31∠=∠在PCN ∆和QCB ∆中3154CN CB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴PCN QCB ∆≅∆∴PC QC =又360∠=︒∴PCQ ∆为等边三角形∴260∠=︒∴21∠=∠∴//PQ AB第14课时 等腰三角形的轴对称性(3)1.D2. 10°3. A CEF ∠=∠ 证明:,EBF x CBF y ∠=∠=∵在Rt ABC ∆中,90ACB ∠=︒∴1809090A x y x y ∠=︒-︒--=︒--∵90ACB ∠=︒,F 为BD 的中点 ∴12CF BD BF == ∴FCB FBC y ∠=∠=∴2DFC FCB FBC y ∠=∠+∠=∵DE AB ⊥,F 为BD 的中点 ∴12EF BD BF == ∴FEB FBE x ∠=∠=∴2DFE FEB FBE x ∠=∠+∠=∴22EFC DFE DFC x y ∠=∠+∠=+ 又∵12CF BD =,12EF BD = ∴CF EF =∴CEF ECF ∠=∠∵CEF ∆的内角和为180° ∴11(180)(18022)9022CEF EFC x y x y ∠=︒-∠=︒--=︒-- ∴A CEF ∠=∠。
轴对称图形典型习题解析
ABCDP轴对称图形考点1:轴对称及轴对称图形的意义一、考点讲解:1.轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.2.如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.3.轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分,对应点的连线互相平行或在同一条直线上,对应的线段(或其延长线)相交,交点在对称轴上。
4.简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线. 角:有一条对称轴:该角的平分线所在的直线. 等腰(非等边)三角形:有一条对称轴,底边中垂线. 等边三角形:有三条对称轴:每条边的中垂线. 等腰梯形:过两底中点的直线 正n 边形有n 条对称轴 圆有无数条对称轴。
二、基本图形:1.已知:点A 、B 分别在直线l 的同侧,在直线l 上找一点P ,使PA+PB 最短。
变形1:正方形ABCD 中,点E 是AB 边上的一点,在对角线AC 上找一点P ,使PA+PB 最短。
变形2:已知点A (1,6)、点B (6,4),在x 轴和y 轴上各找一点C 、D ,使四边形ACDB 的周长最短。
三、经典考题剖析:1.在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )2 ABBlCD3.下列图形中,是轴对称图形的有()A.4个B.3个C.2个D.1个4.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)5.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=1300,∠B=1100.那么∠BCD的度数等于()A. 400B.500 C.600 D.7006.小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的()7.如图5,请你画出方格纸中的图形关于点O的中心对称图形,并写出整个图形的对称轴的条数.四、针对性训练:1.从汽车的后视镜中看见某车车牌的后5位号码是,该车的后5位号码实际是。
轴对称知识点总结及经典练习
轴对称知识点总结及练习1、轴对称图形:一个图形沿一条直线对折,直线两旁的局部能够 ;这条直线叫做 。
互相重合的点叫 。
2、成轴对称:两个图形沿一条直线对折,其中一个图形能够与 完全重合;这条直线叫做对称轴。
3、轴对称图形与轴对称的区别与联系:〔1〕区别:轴对称图形讨论的是“一个图形与一条直线的对称关系〞 ;轴对称讨论的是“两个图形与一条直线的对称关系〞。
〔2〕联系:把轴对称图形中“对称轴两旁的局部看作两个图形〞便是两图成轴对称;把成轴对称的“两个图形看作一个整体〞便是轴对称图形。
4、轴对称的性质:如图(1)成轴对称的两个图形 。
(2)连结“对应点的线段〞 被对称轴 。
(3)对应点到对称轴的距离 。
(4)〔4〕对应点的连线互相 或在同一直线。
5、线段的垂直平分线:〔1〕定义:经过线段的中点且 的直线,叫做线段的垂直平分线。
符号语言:如图∵CA=CB ,直线m ⊥AB 于C , ∴直线m 是线段AB 〔2〕性质: 。
m C A B D'D C'A'K J I H m P∵直线m 垂直平分AB ,点P 是直线m 上的点。
符号语言:如图∴PA=PB 。
〔3〕判定:与线段两端点距离相等的点在线段的 上。
如图,∵PA=PB ,∴点P 在 上 。
6、等腰三角形:〔1〕定义:有两边 的三角形,叫做等腰三角形。
相等的两条边叫做 。
第三条边叫做 。
两腰的夹角叫做 。
腰与底的夹角叫做 。
说明:底角顶角⨯-=2180 顶角顶角底角21-902180︒=-︒= 〔2〕性质: 等腰三角形是轴对称图形,其对称轴是 ,一般有 条。
等腰三角形的两个底角 ;简称 。
符号语言:如图,在△ABC 中 ∵AB=AC∴∠B=∠C 〔等边对等角〕。
三线合一:顶角平分线、 与 相互重合。
符号语言:如图,在△ABC 中 ∵AB=AC AD ⊥BC〔3〕判定方法:定义法:有两条边相等的三角形是等腰三角形。
如图5,在△ABC 中, ∵AB=AC ∴△ABC 是等腰三角形 。
苏科版八年级数学上册第二章 轴对称 总复习
轴对称总复习【知识梳理】1、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
2、轴对称的性质:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;3、线段的垂直平分线:①性质定理:②判定定理:拓展:三角形三条边的垂直平分线的交点到三个顶点....的距离相等4、角的角平分线:①性质定理:②判定定理:拓展:三角形三个角的角平分线的交点到三条边...的距离相等。
5、等腰三角形:①性质定理:等边对等角;三线合一。
②判断定理:等角对等边。
6、等边三角形:①性质定理:拓展:等边三角形每条边都能运用三线合一....这性质。
②判断定理:⑴三条边都相等的三角形是等边三角形;⑵三个角都相等的三角形是等边三角形;有两个角是60°的三角形是等边三角形;⑶有一个角是60°的等腰三角形是等边三角形。
7、直角三角形推论:⑴直角三角形中,如果有一个锐角是30°,那么它所对的直角边等于斜边的一半。
⑵直角三角形中,斜边上的中线等于斜边的一半。
拓展:直角三角形常用面积法...求斜边上的高。
【例题精讲】题型一:线段的轴对称例1:如图,在△ABC中,DE是AC的垂直平分线.(1)若AC=6,△ABD的周长是13,则△ABC的周长是_______;(2)若△ABC的周长是30,△ABD的周长是25,则AC=_______.变式:如图,在△ABC中,边AB、AC的垂直平分线分别交BC于点E、点D.(1)若BC=8,则△ADE的周长是_______;(2) 若∠BAC=110°,那么∠EAD=______(3) 若∠EAD=100°,那么∠BAC=______题型二:角的轴对称例2:如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)若CD=5,则点D到AB的距离为.(2) 若BD:DC=3:2,点D到AB的距离为6,则BC的长是.变式:如图,OP平分∠AOB,PA OA,PB OB,垂足分别为A、B.下列结论中,不一定成立的是( )A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP题型三:作图题例3:请你先在图的BC上找一点P,使点P到AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.例4:如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.题型四:等腰三角形例5:(1)等腰三角形的一边长为5,另一边长为11,则该等腰三角形的周长为(2)等腰三角形的两边长分别为4、5.则该等腰三角形的周长为(3)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为__________.(4)等腰△ABC中,若∠A=30°,则∠B=变式:(1)如图①,在Rt△ABC中,若AB=AC,AD=AE,∠BAD=40°,则∠EDC=_______.(2)如图②,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=___ __.(3)如图③,AB=AC=DC,且BD=AD,则∠B=___ __.例6:如图,∠ABC、∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.试说明BD+EC=DE.例7:如图,已知AB=AC,AD=AE.求证:BD=CE.题型五:等边三角形例8:(1)如图①,在等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE=____.(2)如图②,正方形ABCD,△EAD为等边三角形,则∠EBC=_______.(3)如图③,已知等边△ABC,AC=AD,且AC⊥AD,垂足为A,则∠BEC=_______.例9:如图,C为线段AE上一动点(点C不与点A、E重合),在AE的同侧分别作等边△ABC和等边△CDE,AD与BE相交于点O,AD与BC相交于点P,BE与CD相交于点Q,连接PQ.下列五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°,其中恒成立的有__________(填序号).例10:如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.题型六:等边三角形例11:(1)在Rt△ABC中,∠C=90°,CD是斜边AB的中线,且CD=4 cm,则AB=_______.(2)在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则AC=_______.(3)在Rt△ABC中,∠C=90°,AC=8,BC=6,则AB边上的高CD= .例12:如图,在△ABC中,BD、CE是高,G、F分别是BC、DE的中点,连接GF,求证:GF⊥DE.【课堂练习】1.画图、证明:如图,∠AOB=90°,点C、D分别在OA、OB上.(1)尺规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作线段CD的垂直平分线EF,分别与CD、OP相交于E、F;连接OE、CF、DF.(2)在所画图中,①线段OE与CD之间有怎样的数量关系,并说明理由.②求证:△CDF为等腰直角三角形2.如图,设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1 .(1)小棒能无限摆下去吗?答: .(填“能”或“不能”)(2)若已经摆放了3根小棒,则θ1 =___________,θ2 =__________,θ3=__________;(用含θ的式子表示)(3)若只能摆放4根小棒,求θ的范围.3.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_______.4.若直角三角形斜边上的高和中线分别为10 cm、12 cm,则它的面积为__________cm2.5.如图,某市把一块形状为直角三角形的废地开辟为生物园,∠ACB=90o.AC=80 m.BC=60m.(1)若入口E在边AB上,且与A、B距离相等,求从人口E到出口C的最短路线的长;(2)若线段CD是一条水渠,且点D在AB边上,已知水渠造价约为10元/m,则点D在距点A多远处,此水渠的造价最低?最低造价是多少?1、Be honest rather clever 20.7.157.15.202017:4817:48:50Jul-2017:482、By reading we enrich the mind; by conversation we polish it.二〇二〇年七月十五日2020年7月15日星期三3、All things are difficult before they areeasy.17:487.15.202017:487.15.202017:4817:48:507.15.202017:487.15.20204、By other's faults, wise men correct theirown.7.15.20207.15.202017:4817:4817:48:5017:48:505、Our destiny offers not the cup of despair, but the chalice of opportunity. So let us seize it, not in fear, but in gladness. Wednesday, July 15, 2020July 20Wednesday, July 15, 20207/15/20206、I have no trouble being taken seriously as a woman and a diplomat [in Ghana].。
中考轴对称知识点总结
中考轴对称知识点总结一、轴对称的概念轴对称是指当平面图形的每一点关于一条直线对称时,这条直线叫做这个平面图形的轴对称轴。
在轴对称变换中,轴对称轴不动,图形上的每一个点关于这条直线对称后,它们的位置互换。
这种对称的变换叫做轴对称变换。
轴对称变换是平行移动和旋转变换的特殊情况。
二、轴对称的基本性质1. 任何点的轴对称图形也是原图形。
2. 轴对称图形和原图形相互关于轴对称。
3. 如果两个图形是轴对称的,那么,这两个图形一定在同一条轴对称轴两侧且关于这条轴对称轴对称。
三、轴对称的判断方法1. 如果一个图形的每一点关于一条直线对称,那么这个图形是关于这条直线轴对称的。
2. 通过图形的结构特点判断轴对称。
如正方形、矩形、正五边形、等腰三角形等图形均是轴对称的。
四、轴对称与轴对称图形的应用1. 轴对称常用来制作寓意深刻、图案美观的卡片、图片、图案等。
2. 在制作圆形物体或者对称形状的设计中,轴对称往往被广泛应用。
五、常见图形关于坐标轴的轴对称性质1. 镜景对称关于x轴、y轴、原点对称的图形。
2. 镜景对称关于直线y=x和y=-x的图形。
六、轴对称图形与轴对称图形的比较轴对称图形和轴对称图形都是对称图形,但两者在某些方面有一些不同。
1. 轴对称图形是相对于一个轴对称的直线对称的,而轴对称图形是相对于一个点对称的。
2. 轴对称图形是指形象把自己经过某一轴线翻折的图形,而轴对称图形是指形象把自己关于某一点翻折的图形。
七、轴对称的相关定理1. 定理1:如果一个图形是轴对称的,那么这个图形关于轴对称轴的任意两个对称点的中点是与直线相交的直线上的点。
2. 定理2:如果平行四边形的对角线互相垂直,那么这个平行四边形是轴对称的。
3. 定理3:如果多边形的每一条对角线相互垂直,那么这个多边形是轴对称的。
八、轴对称的相关定理证明1. 定理1的证明:以折叠模拟(将一张纸对折,使得一侧成为另一侧的镜像)可以证明。
将纸对折以后,对称图形的两个对称点的对称点是折痕上的对称点,而这两个对称点的中点就是这个折痕上的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1轴对称与轴对称图形姓名_______学号_______班级_______ 学习目标:1.欣赏生活中的轴对称现象和轴对称图案,探索它们的共同特征,发展空间观念.2.通过具体实例了解轴对称概念,了解轴对称图形的概念,知道轴对称与轴对称图形的区别和联系.学习重点:了解轴对称图形和轴对称的概念,并能简单识别、体会轴对称在现实生活中的广泛应用和它的丰富文化价值.学习难点:能正确地区分轴对称图形和轴对称,进一步发展空间观念.学习过程:一、创设情境观察如下的图案, 它们有什么共同的特征?二、探索活动活动一折纸印墨迹问题1.你发现折痕两边的墨迹形状一样吗?问题2.两边墨迹的位置与折痕有什么关系?概念:把一个图形沿着___________________翻折,如果它能够与另一个图形__________,那么称这两个图形____________________对称,也称这两个图形成______________. 这条直线叫做________________,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.如图,△ABC和△DEF关于直线MN对称,直线MN是对称轴,点A与点D、点B与点E、点C与点F都是关于直线MN的对称点.活动二切藕制作成轴对称的两个截面联系实际,你能举出一些生活中图形成轴对称的实例吗?活动三把_________图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是_______________,这条直线就是_____________.请你找出图1-5中的各图的对称轴.联系实际,你能举出一个轴对称图形的实例吗?活动五轴对称与轴对称图形的区别和联系三、课堂练习1. 分别画出下列轴对称型字母的对称轴以及两对对称点.2.画出下列各轴对称图形的对称轴.四、课堂小结了解轴对称图形和轴对称的概念,并能简单识别. 能正确区分轴对称图形和轴对称..五、课后作业1.下列奥运会会徽是轴对称图形吗?如果是,画出对称轴.2.(1)正五边形(各边相等且各角也相等的五边形,如图①)有几条对称轴?(2)在图①中画一条对角线得到图②,图②有几条对称轴?(3)如果再图②中再画一条对角线,那么所得图形有几条对称轴?3.请你为学校设计一幅轴对称图形的校运动会会徽。
评价手册2.12.2轴对称的性质(1)姓名________学号_______班级_______ 学习目标:1.知道线段垂直平分线的概念,知道成轴对称的两个图形全等,且成轴对称的两个图形中,对应点的连线被对称轴垂直平分;2.经历探索轴对称性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理的思考和表达能力.学习重点:理解“成轴对称的两个图形中,对应点的连线被对称轴垂直平分,对应线段相等、对应角相等”.学习难点:轴对称性质的运用.学习过程:一、创设情境根据“轴对称”的定义,如果两个图形成轴对称,那么这两个图形能够完全重合,即成轴对称的两个全等.我们来看,轴对称还有什么性质?活动一操作“画点、折纸、扎孔”.把一张纸折叠后,用针扎一个孔(如图(1));再把纸展开,两针孔分别记为点A、点A',折痕记为l;连接AA',AA'与l相交于点O(如图(2)).思考:在图(2)中,线段AA'与l有什么关系?线段垂直平分线的概念:______________________________________________,叫做这条线段的垂直平分线.如右图,直线l交线段AB于点O,∠1=90°,AO=BO,直线l是线段AB的垂直平分线.活动二继续进行“画点、折纸、扎孔”的操作活动,自主探索成轴对称的线段、三角形的性质仿照上面的操作,在对折后的纸上再扎一个孔,把纸展开后记这两个针孔为点B、点B′,连接AB、A′B′、BB′.你有什么新的发现?再仿照上面的操作,扎孔、展开、标记、连线,CC 与折痕l有什么关系?轴对称的性质:_________________________________________________;__________________________________________________________.三、例题教学例1.如图, 线段AB与A’B’关于直线l对称. 连接AA’,BB’, 设它们分别与l相交于点P,Q.(1)在所画的图形中,相等的线段有哪些?(2)AA’与BB’平行吗? 为什么?例2. 小明取一张纸,用小针在纸上扎出“4”,然后将纸放在镜子前. (1)你能画出镜子所在直线l 的位置吗?(2)图中点A 、B 、C 、D 的在镜中的对应点分别是 _____________,线段AC 、AB 的在镜中的对应线段分别是 _____________,CD = _________,∠CAB = ________,∠ACD = __________. (3)连接AE 、BG , AE 与BG 平行吗?为什么?(4)AE 与BG 平行,能说明轴对称图形对称点的连线一定互相平行吗?(5)延长线段CA 、FE ,连接CB 、FG 并延长,作直线AB 、EG ,你有什么发现吗?四、 课堂练习1.分别画出下列各图中成轴对称的两个图形的对称轴。
2. 如图, 纸上所画的线段AB 与A ’B ’关于直线l 对称, 连接AA ’, 设AA ’交直线l 于点O, 再连接OB, OB ’. (1) 把纸沿着直线l 对折, 重合的线段有哪些?●●●●AD CB ●●●●FEHG(2) 为△OAB 与△OA ’B ’关于直线l _______________, 所以△OAB ≌ △OA ’B ’, 直线l垂直平分线段________________________;∠ABO =∠______________, ∠AOB ’= ∠_______________ 五、课堂小结准确理解成轴对称的两个图形的基本性质,会简单应用这个基本性质解决一些实际问题. 六、课后作业1、用三角尺分别画出下列图形的对称轴。
2. 如图, 由小正方形组成的L 形图中, 请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形.3. 如图, Rt △AFC 和Rt △AEB 关于虚线成轴对称, 现给出下列结论:① ∠1 = ∠2 ② △ANC ≌ △AMB ③ CD = DN 其中正确的结论是__________________(填序号) 选择一个加以说明.评价手册2.2(1)12D M NCFA B2.2轴对称的性质(2)姓名________学号________班级________ 学习目标:1.会画已知点关于已知直线l的对称点,会画已知线段的对称线段,会画已知三角形的对称三角形;2.学生先从“做数学”中体会“获取知识”的快乐;3.学生们感受分类讨论的思想,体会方法的多样性和知识的丰富性.学习重点:作已知图形的轴对称图形的一般步骤.学习难点:怎样确定已知图形的关键点并根据这些点作出对称图形.学习过程:一、创设情境如图,点A、B、C都在方格纸的格点上.请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.问题1:去掉网格线,你能找出点C关于直线AB的对应点么?问题2:点A关于直线AB的对应点有吗?问题3:AC关于直线AB的对称图形呢?二、探索活动活动一 如果直线l 外有一点A ,那么怎样画出点A 关于直线l 的对称点‘A ?问题:请你说出上述画点关于直线的对称点的理由.活动二 画已知图形关于某直线的对称图形1. 分别画出下图中线段AB 关于直线l 对称的线段A ’B ’.2. 画出△ABC 关于直线MN 的对称图形.3.如果是四边形呢?多边形呢?结论:画一个图形关于一条直线对称的图形,关键是___________________________________.llBlAAMBCN活动三在右图中,四边形ABCD与四边形EFGH关于直线l对称。
连接AC、BD,设它们相交于点P.怎样找出点P关于直线l对称的点Q?成轴对称的两个图形的任何对应部分也成轴对称。
三、课堂练习1.画出图中编号为1~9的9个点关于直线l对称的点,并相应地编号为1'~9',然后把两组点按各自的序号分别依次连接起来。
你得到了一幅什么图案?2.如图,线段AB与AB关于直线l对称,AA交直线l于点O.(1)把线段AB沿直线l翻折,重合的线段有:________________________;(2)因为△OAB与关于直线l ________________,所以,直线l垂直平分线段_______________,∠ABO=∠___________,∠AOB=∠___________.四、课堂小结请同学们用自己的语言再来复述一下画轴对称图形的方法.五、课后作业1. 用三角尺画△ABC关于直线l对称的三角形.(第1题)(第2题)2.把方格纸上的图补成以直线l为对称轴的轴对称图形.3.在如图的方格纸上画有2条线段,再画1条线段,使图中的3条线段组成一个轴对称图形.4.如图,三角形Ⅰ的2个顶点分别在直线l1和l2上,且l1⊥l2画三角形Ⅱ,使它与三角形Ⅰ关于直线l2对称;画三角形Ⅲ,使它与三角形Ⅱ关于直线l1对称;画三角形Ⅳ,使它与三角形Ⅲ关于直线l2对称;所画的三角形Ⅳ与三角形Ⅰ成轴对称吗?评价手册2.2(2)2.3设计轴对称图案姓名_______学号_______班级_______ 学习目标::1.欣赏生活中的轴对称图案,感受数学丰富的文化价值;2.经历“操作——猜想——验证”的实践过程,积累数学活动的经验;3.能利用轴对称的性质设计简单的轴对称图案.学习重点:会画轴对称图形的对称轴,会设计轴对称图案.学习难点:利用对称性质设计轴对称图形.学习过程:一、创设情境欣赏下列图案:问题:你知道这些标志的含义吗?.它们是轴对称图形吗?轴对称图形均衡、和谐,给人以美的享受,人们常常利用轴对称设计图案.正方形、菱形、三角形等网格纸为轴对称图案的设计提供了方便。
例如,在图中,利用菱形网格纸,画出了“盆花”的图案.二、探索活动活动一:对称的美术图案,除图形对称外,有时颜色也“对称”.有些彩色图案,不仅是轴对称图形,而且颜色也“对称”。
如果考虑颜色的“对称”,那么图(1)只有2条对称轴,只要将图(1)中左上方和右下方的小方格也涂成红色,它就有4条对称轴;类似地,图(2)只有1条对称轴。
改变图(2)中哪些小方格的颜色,就能使它也有4条对称轴?活动二:“数学实验室”制作图案1.(1)制作4张如图的正方形纸片.(2)将制作好的4张纸片拼合,能得到不同的图案。
图中的3个图案各有几条对称轴?(1)(2)(3)(3)你还能拼出其他图案吗?并指出所得图案有几条对称轴.2.人们在剪纸时,常常利用轴对称设计图案。