最新九年级上册数学圆章节知识点总结学习资料

合集下载

九年级数学上册复习资料《圆》

九年级数学上册复习资料《圆》

《圆》复习知识回顾: 1、圆的定义:(1)在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点叫圆心,线段OA 叫做半径; (2)圆是到定点的距离等于定长的点的集合。

2、点和圆的位置关系:如果圆的半径是r ,点到圆心的距离为d ,那么: (1)点在圆外d r ⇔>;(2)点在圆上d r ⇔=;(3)点在圆内d r ⇔<。

3、与圆有关的概念:(1)弦:连接圆上任意两点的线段叫做弦。

(2)直径:经过圆心的弦叫做直径。

(3)弧:圆上任意两点间的部分叫弧。

优弧:大于半圆的弧叫做优弧。

劣弧:小于半圆的弧叫做劣弧。

半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧.都叫做半圆。

(4)同心圆:圆心相同,半径不相等.....的两个圆叫做同心圆。

(5)等圆:能够重合的两个圆叫做等圆。

(圆心不同) (6)等弧..:在同圆或等圆中,能够互相重合的弧叫做等弧。

(在大小不等的两个圆中,不存在等弧。

4、同圆或等圆的半径相等。

基础练习:1、填空题(1)到定点O 的距离为2cm 的点的集合是以 为圆心, 为半径的圆。

(2)正方形的四个顶点在以 为圆心,以 为半径的圆上。

2、选择题(1)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A 、2a b +B 、 2a b -C 、 2a b +或2a b - D 、 a +b 或a -b(2)下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧中,正确的命题有( )A 、1个 B 、2个 C 、3个 D 、4个 3、解答题:判断矩形的四个顶点是否在同一个圆上?2 圆的对称性(1)知识回顾:1、圆是以圆心对称中心的中心对称图形。

2、圆心角:顶点在圆心的角叫圆心角。

3、圆心角、弧、弦、弦心距之间的相等关系:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

初三上册数学圆的知识点归纳总结

初三上册数学圆的知识点归纳总结

初三上册数学圆的知识点归纳总结数学中的圆是一种重要的几何图形,在初中数学的学习中也占据着重要的地位。

下面对初三上册数学中关于圆的知识点进行归纳总结,以帮助同学们更好地理解和掌握相关内容。

一、圆的定义和性质1. 定义:圆是一个平面上与一个固定点距离相等的点的集合。

2. 元素:圆心、半径、弦、弧、切线等。

3. 性质:(1) 圆上所有点到圆心的距离相等。

(2) 圆上的弦的垂直平分线通过圆心。

(3) 圆上的任意一条弧都小于或等于圆周长的一半。

二、圆的线段关系1. 半径与弦:如果一个线段的两个端点都在圆上,且其中一个是圆心,那么这个线段就是半径;如果这个线段的两个端点都在圆上但不是圆心,那么这个线段就是弦。

2. 弦的性质:(1) 通过圆心的弦是直径,直径是圆上最长的弦。

(2) 在同一个圆或等圆中,等长的弦所对的圆心角相等。

(3) 如果一个弦与另一个弦交于圆内的一点,那么两个弦所对的弧相等。

三、圆的圆周角和弧度制1. 圆周角的定义:以圆心为顶点的角,角的两边是圆上的两条弧。

圆周角的度数等于所对的圆弧的度数。

2. 弧度制:将圆的一周等分为360份,每份称为一度,每度又等分为60分,每分又等分为60秒。

弧度是用弧长等于半径的圆周长所对应的角中的弧所对应的角。

3. 弧度制与角度的换算:(1) 1度= π/180弧度(2) 1弧度≈ 57.3度四、切线与切线定理1. 切线定义:如果一条直线与圆相交于圆上的一点,且在该点处的切线与这条直线垂直,那么这条直线就是圆的切线。

2. 切线定理:切线与半径垂直。

(1) 如果一条直线与圆相交于圆上的一点,并且通过圆心,那么这条直线就是切线。

(2) 反之,如果一条直线与圆相交于圆上的一点,并且与通过圆心的切线垂直,那么这条直线就通过圆心,也是切线。

五、圆的面积和周长1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径。

2. 圆的面积公式:A = πr²,其中A表示圆的面积,r表示半径。

九年级圆的知识点总结

九年级圆的知识点总结

九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。

2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。

3. 半径(r):圆心到圆上任意一点的距离。

4. 直径(d):通过圆心的最长弦,是半径的两倍长度。

5. 弦(c):连接圆上任意两点的线段。

6. 弧(a):圆上两点之间的圆周部分。

7. 优弧:大于半圆的弧。

8. 劣弧:小于半圆的弧。

9. 半圆:圆的一半,由直径所界定的弧。

10. 切线(t):与圆只有一个公共点的直线。

二、圆的性质1. 所有半径的长度相等。

2. 直径是圆内最长的弦。

3. 圆的任意两点之间的弧,优弧总是大于劣弧。

4. 切线与半径相交于圆外的一点,形成直角。

5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。

6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。

4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。

四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。

2. 圆与圆的关系:内含、外离、相交、内切、外切。

3. 圆的切线问题:求切线长度、切点坐标等。

4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。

5. 圆的面积问题:根据圆的半径、直径、周长等求面积。

五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。

2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。

3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。

九上圆知识点总结

九上圆知识点总结

九上圆知识点总结一、圆的概念圆是平面上的一组点,到某一点的距离等于常数,这个常数就是圆的半径。

圆由圆心和圆周上的所有点构成,圆的概念是平面几何学中最基本的概念之一。

二、圆的性质1. 圆的圆心:圆心是圆的中心点,任意一条通过圆心的线段都等于圆的直径。

2. 圆的直径:圆的直径是通过圆心,且两端点在圆周上的线段,它的长度等于圆周的两倍。

3. 圆周:圆周是由无数个点构成的曲线,这些点到圆心的距离都等于圆的半径。

4. 圆的半径:半径是圆心到圆周上任意一点的距离,它的长度是一个固定值。

5. 弧长和弧度:圆周上任意两点之间的曲线段称为弧,弧对应的圆心角称为弧度。

弧长等于半径乘以弧度。

6. 圆的面积:圆形的面积是圆的面积,它等于π乘以半径的平方。

三、圆的相关定理和公式1. 直角三角形中圆的应用:在直角三角形中,圆的直径是斜边,这可用来求解直角三角形的边长和面积。

2. 确定圆的位置:通过圆心和半径可以唯一确定一个圆。

3. 弧长和扇形面积:弧长和扇形面积的计算公式均基于圆的半径和圆心角。

4. 圆外切四边形:圆外切四边形的性质和面积计算公式。

5. 正多边形内接圆:正多边形的内接圆心角和边数的关系。

四、圆的主要解题方法1. 几何画图法:在解题过程中,仔细画出几何图形,有助于理清问题的思路。

2. 数学归纳法:利用数学归纳法总结出一般规律,有助于解决一般情况的问题。

3. 利用已知性质和定理:通过已知定理和性质来解决问题,例如圆心角的性质等。

五、圆的延伸应用1. 圆的信息化应用:在计算机图形学、地图绘制等领域,圆的概念和运算被广泛应用。

2. 圆的工程应用:在建筑设计、地理测量、轮胎制造等领域,圆的性质和计算方法也发挥了重要作用。

六、习题训练1. 针对圆的相关定理和公式,通过大量的练习来掌握圆的性质和计算方法。

2. 利用解题方法和技巧,解决实际问题和复杂题目,提高解题能力和应用能力。

通过九上学期的学习,我们对圆的概念、性质、定理和应用有了更深入的了解,掌握了圆周、直径、半径、弧长、扇形面积等相关知识,为将来的学业打下了坚实的基础。

九年级上册数学第24章《圆》知识点梳理完整版

九年级上册数学第24章《圆》知识点梳理完整版

【学习目标】九年级数学上册第24 章《圆》知识点梳理1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段 OA 绕着它的一个端点 O 旋转一周,另一个端点 A 所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心1 2n是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2) 轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. ②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3. 两圆的性质(1) 两个圆是一个轴对称图形,对称轴是两圆连心线.(2) 相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4. 与圆有关的角(1) 圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1. 判定一个点 P 是否在⊙O 上设⊙O 的半径为 ,OP= ,则有点 P 在⊙O 外;点 P 在⊙O 上; 点 P 在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2. 判定几个点A 、A 、 A 在同一个圆上的方法 当时, 在⊙O 上.3. 直线和圆的位置关系设⊙O 半径为 R ,点 O 到直线 的距离为 .(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1) 和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2) 和没有公共点,且的每一个点都在内部内含(3) 和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4) 和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的 2倍,通常用G 表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径). (3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外三角形三边中垂线的(1)OA=OB=OC ;(2)外心不一接圆的圆心) 交点定在三角形内部内心(三角形内三角形三条角平分线(1)到三角形三边距离相等;切圆的圆心) 的交点(2)OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为 R 的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为 R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积 S、扇形半径 R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】13 (1 + 1)2 + (0 - 3)2 OE 2 - EF 2 3 3 类型一、圆的基础知识1.如图所示,△ABC 的三个顶点的坐标分别为 A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .【答案】 ;【解析】由已知得 BC∥x 轴,则 BC 中垂线为 x =-2 + 4 = 12那么,△ABC 外接圆圆心在直线 x=1 上,设外接圆圆心 P(1,a),则由 PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为 P(1,0) 则 r = PA = = 【总结升华】 三角形的外心是三边中垂线的交点,由 B 、C 的坐标知:圆心 P (设△ABC 的外心为 P )必在直线x=1 上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到 P (1,0);连接 PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径 AB 和弦 CD 相交于点 E ,已知 AE =1cm ,EB =5cm ,∠DEB=60°, 求 CD 的长.【答案与解析】作 OF⊥CD 于 F ,连接 OD .∵ AE =1,EB =5,∴ AB =6. ∵ OA =AB = 3 ,∴ OE =OA-AE =3-1=2.2在 Rt△OEF 中,∵ ∠DEB=60°,∴ ∠EOF=30°, ∴ EF = 1OE = 1 ,∴ OF = = .2在 Rt△DFO 中,OF = ,OD =OA =3,13OD 2 - OF 2∵ OF⊥CD,∴ DF =CF ,∴ CD =2DF = 2 cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作 OF⊥CD 于 F ,构造 Rt△OEF,求半径和 OF 的长;连接 OD ,构造 Rt△OFD,求 CD 的长.举一反三:【变式】如图,AB 、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,垂足分别为 M 、N ,如果 MN =3,那么 BC = .C【答案】由 OM⊥AB,ON⊥AC,得 M 、N 分别为 AB 、AC 的中点(垂径定理),则 MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点 O 为圆心的圆交 x 轴于点 A 、B 两点,交 y 轴的正半轴于点 C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .yCDAOBx(第 3 题)【答案】65°.【解析】连结 OD ,则∠DOB = 40°,设圆交 y 轴负半轴于 E ,得∠DOE= 130°,∠OCD =65°. 【总结升华】根据同弧所对圆周角与圆心角的关系可求. 举一反三:【变式】(2015•黑龙江)如图,⊙O 的半径是 2,AB 是⊙O 的弦,点 P 是弦 AB 上的动点,且 1≤OP ≤2,则弦 AB 所对的圆周角的度数是()A .60°B .120°C .60°或 120°D .30°或 150°【答案】C.【解析】作 OD ⊥AB ,如图,N O AMB∴ DF = = 32 - ( 3)2 = 6 (cm).6∵点P 是弦AB 上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB= ∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB 所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系4.如图,在矩形 ABCD 中,点O 在对角线 AC 上,以OA 的长为半径的圆 O 与AD、AC 分别交于点 E、F,且∠ACB= ∠DCE.请判断直线 CE 与⊙O 的位置关系,并证明你的结论.【答案与解析】直线 CE 与⊙O相切理由:连接 OE∵OE=OA∴∠OEA=∠OAE∵四边形 ABCD 是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线 CE 与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P 为正比例函数图象上的一个动点,的半径为3,设点P 的坐标为(x、y).(1)求与直线相切时点P 的坐标.(2)请直接写出与直线相交、相离时 x 的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,( ,).当与直线相切时,点的坐标为(5,7.5)或( ,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2015•丽水)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 分别与BC,AC 交于点D,E,过点D 作⊙O 的切线DF,交AC 于点F.(1)求证:DF⊥AC;(2)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF 是⊙O 的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O 的半径为4,∴S 扇形AOE=4π,S△AOE=8 ,∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图, AB 所在圆的圆心为 O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留 π).【答案与解析】连接 OB ,过点 O 作 OE⊥AB,垂足为 E ,交 AB 于点 F ,如图(2). 由垂径定理,可知 E 是 AB 中点,F 是 AB 的中点,∴ AE= 1AB = 2 2,EF =2.设半径为 R 米,则 OE =(R-2)m .在 Rt△AOE 中,由勾股定理,得 R 2 = (R - 2)2 + (2 3)2 . 解得 R =4.∴ OE =2,OE = 1AO ,∴ ∠AOE=60°,∴ ∠AOB=120°.2∴ AB 的长为120 ⨯ 4π = 8π(m). 180 3 ∴ 帆布的面积为 8π⨯ 60 = 160π(m 2).3【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以 AB 为底面的圆柱的侧面积.根据题意,应先求出 AB 所对的圆心角度数以及所在圆的半径,才能求 AB 的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所 示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽 AB=16cm ,水最深的地方的高度为 4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.3②如图所示,过 O 作OC⊥AB于D,交于 C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为 10cm.圆的基本概念和性质【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径. 以点 O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为 O,半径为 r 的圆是平面内到定点 O 的距离等于定长 r 的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD2.弧∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1 个B.2 个C.3 个D.4 个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选 C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√ ②× ③× ④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】(2014•长宁区一模)下列说法中,结论错误的是()A .直径相等的两个圆是等圆B .长度相等的两条弧是等弧C .圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B.提示:A 、直径相等的两个圆是等圆,正确,不符合题意;B 、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C 、圆中最长的弦是直径,正确,不符合题意;D 、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B .3.直角三角形的三个顶点在⊙O 上,则圆心 O 在 .......................【答案】斜边的中点.【解析】根据圆的定义知圆心 O 到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等. 4.判断正误:有 AB 、C D , AB 的长度为 3cm, C D 的长度为 3cm ,则 AB 与C D 是等弧.【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此, 只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣 弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O 中的优弧 AmB ,中的劣弧C D ,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以 O 为圆心的同心圆中,大圆的弦 AB 交小圆于 C,D.求证:AC=BD.【答案与解析】证明:过 O 点作OM⊥AB于M,交大圆与 E、F 两点.如图,则EF 所在的直线是两圆的对称轴,所以 AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.垂径定理【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(2)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;OD 2 + AD 2 42 + 32 (4) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D ,且 AB =6 cm ,OD =4 cm ,则 DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm【思路点拨】欲求 CD 的长,只要求出⊙O 的半径 r 即可,可以连结 OA ,在 Rt△AOD 中,由勾股定理求出 OA.【答案】D ;【解析】连 OA ,由垂径定理知 AD = 1AB = 3cm , 2所以在 Rt△AOD 中, AO = = = 5 (cm ).所以 DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

第二十四章圆(完整知识点)人教版九年级数学上册

第二十四章圆(完整知识点)人教版九年级数学上册

第二十四章 圆一、圆的有关概念及表示方法 (一)圆的定义1、描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

其固定的端点O 叫做圆心,线段OA 叫做半径。

2、集合性定义:圆可以看成是所有到定点(圆心)的距离等于定长(半径)的点的集合。

(二)圆的表示方法:以点O 为圆心的圆,记作⨀O ,读作“圆O ”。

(三)圆具有的特性1、圆上各点到定点(圆心O )的距离都等于定长(半径r )。

2、到定点的距离等于定长的点都在同一个圆上。

注:(1)确定一个圆需要两个因素:圆心确定圆的位置,半径确定圆的大小。

(2)同一个圆中的所有半径都相等,所以圆上任意两点和圆心[三点不共线(直径)]构成的三角形都是等腰三角形。

(四)圆的有关概念1、弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

以AC 为端点的弦,记作:弦AC 。

注:圆中有无数条弦,其中直径是最长的弦,但弦不一定是直径。

2、弧2.1圆上任意两点间的部分叫做圆弧、简称弧。

以A 、B 为端点的弧记作⨀AB ,读作“圆弧AB ”或“弧AB ”。

2.2圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,如图中的⨀ABC 。

小于半圆的弧叫做劣弧,如图中的⨀AC。

注:(1)在一个圆中,任意一条弦都对着两条弧,任意一条弧只对着一条弦。

(2)弧包括优弧、劣弧、半圆;半圆既不是劣弧,也不是优弧。

3、同圆或等圆:能够重合的两个圆叫做等圆。

同圆或等圆的半径相等。

4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

等弧是全等的,不仅仅是弧的长度相等。

5、同心圆:圆心相同,半径不相等的圆叫做同心圆。

二、圆的有关性质 (一)垂直于弦的直径1、圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。

名称 文字语言 符号语言 图示垂径 定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。

二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。

2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。

3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。

4.圆周角的度量:可以用角的度数来衡量。

三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。

2.切线与半径的关系:切线与半径的关系是切线⊥半径。

3.弦的定义:两点之间的线段叫做弦。

4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。

四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。

2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。

五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。

2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。

六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。

九年级上数学圆知识点总结

九年级上数学圆知识点总结

九年级上数学圆知识点总结数学是一门抽象而又实用的学科,在九年级上学期,学生们学习了很多与圆相关的知识。

本文将从圆的定义、性质、公式等方面总结九年级上数学圆的知识点。

一、圆的定义与性质1. 圆的基本定义:圆是由平面内距离一定的一个点到这个平面内任意点的距离都相等的点的集合。

2. 圆的要素:圆心、半径。

圆心是圆的中心点,而半径则是从圆心到圆上任意一点的距离。

3. 圆的直径:通过圆心的一条线段,且两个端点都在圆上。

直径是半径的两倍。

4. 圆的弧:圆上的一段曲线被称为圆弧。

圆弧可以用角度或弧长来表示。

5. 圆的弦:圆上的一条线段,并且两个端点都在圆上,这条线段被叫做圆的弦。

6. 圆的切线:与圆仅有一个交点的直线,这条直线与圆相切。

7. 圆与角度的关系:圆的弧对应的圆心角是圆弧所对应的圆心角的一半。

二、圆的公式1. 圆的周长:圆的周长可以通过直径或半径来计算。

如果已知圆的直径D,那么圆的周长C等于π乘以直径值,即C = πD。

如果已知圆的半径r,则圆的周长C等于2π乘以半径值,即C = 2πr。

2. 圆的面积:圆的面积可以通过半径来计算。

已知圆的半径r,则圆的面积A等于π乘以半径的平方,即A = πr²。

三、圆与其他几何图形的关系1. 圆与线段的关系:如果线段的两个端点都在圆上,那么这个线段是圆的弦。

2. 圆与直线的关系:如果直线与圆仅有一个交点,那么这条直线是圆的切线。

3. 圆与三角形的关系:圆内接于三角形是指三角形的三个顶点都在圆上,并且三边均是切线。

圆外接于三角形是指三角形的三个顶点都在圆上,并且圆的直径是三角形的一条边。

四、常见解题方法与技巧1. 圆的位置关系:通过观察圆与直线、线段、三角形之间的位置关系,可以运用相关的定理和性质进行解题。

2. 利用圆的对称性:圆具有轴对称性和中心对称性,可以利用这些对称性质进行解题。

3. 利用圆的比例关系:圆的周长和面积都与半径相关,可以通过比例关系进行运算和求解。

(完整版)九年级数学圆的知识点总结大全

(完整版)九年级数学圆的知识点总结大全

第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²—r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心.连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径.圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系A1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

图4图5推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的基本概念和性质1.圆的定义:平面上的点到圆心的距离等于半径的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:a.对于圆上任意一点P和圆心O,OP是半径;b.圆上任意两点P和Q的半径相等;c.圆上两个不同的弧所对的圆心角相等;d.圆心角的度数等于它所对的弧的度数;e.圆的内切四边形的对角线互相垂直;f.圆的内切四边形的对边互相平行且相等;g.圆内接正方形的边长等于半径的2倍。

4.圆心角与弧的关系:a.弧所对的圆心角是其两倍;b.圆心角相等的弧相等;c.同弧度数的圆心角相等;d.弧需要圆的整个周长的弧数表示。

二、圆的运算1.圆周长:圆周长是圆周上的弧长,可以通过半径和直径推导得到。

2.圆的面积:圆的面积是圆心角度和圆的半径之间的数学关系,可以通过面积公式πr²计算得到。

三、圆的位置关系1.圆的判定:a.两个圆相交,如果两个圆的圆心距离小于半径之和但大于半径之差;b.两个圆相切,如果两个圆的圆心距离等于半径之和或半径之差;c.两个圆外离,如果两个圆的圆心距离大于半径之和;d.两个圆内含,如果一个圆完全位于另一个圆内部。

2.相切圆的性质:a.相切圆的切点在半径的连线上;b.相切圆的切线相互垂直;c.相切圆的切线公共切点的连线通过两个圆的圆心。

四、圆与线的位置关系1.弦的性质:a.弦和圆心连线垂直,那么弦是直径;b.弦的中点位于圆心。

2.弧与弦:a.弧上的两个弦相等,则它们所对的圆心角相等;b.两个等圆弧所对的圆心角相等;c.弦所夹的圆弧是圆心角的一半。

3.弦的长度:等于两个切线段的和。

4.直线和圆的位置关系:a.直线与圆相交于两点;b.直线与圆相切于一点;c.直线与圆不相交。

五、切线和切线长1.切线的定义:从圆外的一点引一条直线,直线与圆相交于该点,这条直线叫做切线。

2.切线的性质:a.切线与半径垂直;b.切线与切线垂直;c.相切圆的切线相互垂直。

3.切线长的计算:可以通过勾股定理得到切线长的计算公式。

新人教版九年级上册数学[《圆》全章复习与巩固—知识点整理及重点题型梳理](基础)

新人教版九年级上册数学[《圆》全章复习与巩固—知识点整理及重点题型梳理](基础)

新人教版九年级上册数学[《圆》全章复习与巩固—知识点整理及重点题型梳理](基础)1)相交圆的位置关系:两圆相交于两点,相切于一点,相离于两点.2)内切圆和外切圆的位置关系:内切圆和外切圆的切点在圆心连线上,内切圆和外切圆的圆心连线垂直于切点所在的直线.要点诠释:在解决两圆位置关系问题时,需要注意圆心的位置关系,切点的位置关系以及圆心连线与切点所在直线的垂直关系.要点二、切线及其性质1.切线的定义:过圆上一点,且与圆相交于该点的直线叫做圆的切线.2.切线的性质:1)切线与半径的关系:切线与过切点的圆的半径垂直.2)切线定理:切线与半径的关系可以推出切线定理:过圆外一点作圆的切线,切点与此点的连线垂直于切线.3)切线的判定方法:切线与圆的位置关系可以通过勾股定理、切线定理和判别式来进行判定.要点诠释:切线是圆的一个重要性质,切线定理是判定切线的重要工具,切线的判定方法可以根据具体情况选择不同的方法.要点三、圆的面积和弧长1.圆的面积公式:S=πr².2.弧长公式:L=αr(α为圆心角的度数).3.扇形的面积公式:S=(α/360°)πr².要点诠释:圆的面积公式和弧长公式是圆的基本公式,扇形的面积公式可以通过弧长公式和圆的面积公式来推导得出.要点四、圆锥的侧面积和全面积1.圆锥的侧面积公式:S=πrl.2.圆锥的全面积公式:S=πr(l+r).要点诠释:圆锥的侧面积公式和全面积公式是圆锥的基本公式,其中l为斜高,r为底面半径.1) 两个圆是轴对称图形,其对称轴是连接两圆心的直线。

2) 相交的两个圆的连心线垂直平分它们的公共弦,相切的两个圆的连心线经过切点。

4.与圆有关的角度1) 圆心角是以圆心为顶点的角度。

圆心角的度数等于它所对应的弧的度数。

2) 圆周角是顶点在圆上,两边都与圆相交的角度。

圆周角的性质包括:①圆周角等于它所对应的弧所对应的圆心角的一半;②同弧或等弧所对应的圆周角相等;在同圆或等圆中,相等的圆周角所对应的弧相等;③90度的圆周角所对应的弦为直径;半圆或直径所对应的圆周角为直角;④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;⑤圆内接四边形的对角互补;外角等于它的内对角。

九年级数学上册知识点圆

九年级数学上册知识点圆

九年级数学上册知识点圆圆是我们常见的几何图形之一,它是由平面上到一定距离的点构成的。

在九年级数学上册中,我们要学习关于圆的基本概念、性质以及相关定理。

本文将围绕这些内容展开。

1. 圆的基本概念圆是由平面上到一定距离的点构成的,这个距离叫做圆的半径。

圆心是圆的中心点,它到圆上任意一点的距离都相等。

外接圆是与一个三角形的三边相切的圆,而内切圆是与一个三角形的三条边都相切的圆。

2. 圆的性质圆有许多重要的性质,其中一些如下:- 圆上任意两点可以确定一条弦,而弦上任意一点在圆的内部或边界- 圆的周长是圆的边界的长度,计算公式是C = 2πr,其中C是周长,r是半径- 圆的面积是圆内部的面积,计算公式是A = πr²,其中A是面积,r是半径- 圆的直径是通过圆心的两个点所确定的线段,直径是半径的两倍3. 圆的相关定理在九年级数学上册中,我们将学习一些与圆相关的重要定理,如下所示:- 针对正弦定理,三角形内一边的对边与正弦比例相等,例如SOHCAHTOA中的S代表sin,由此得出:sinA/a=sinB/b=sinC/c (A、B、C分别为三角形两个角和一个边,a、b、c分别为与角A、B、C无关的另外两个边)- 在一个圆中,直径是最长的弦,且它的中点是圆的圆心- 如果一个四边形的对角线是互相垂直的,那么这个四边形是圆的内切四边形- 在一个圆中,切线与半径垂直相交这些定理与九年级的数学学习息息相关,能够帮助我们更好地理解和应用数学知识。

4. 圆的应用圆不仅仅是一个几何图形,它在实际生活中有许多应用。

例如,我们常使用圆的面积和周长公式来计算物体的面积和长度,如圆形的花坛、游泳池等。

此外,圆的概念也被广泛应用于工程、建筑、物理学等学科中。

总结:圆是九年级数学上册的一个重要知识点,它的基本概念、性质以及相关定理对我们理解和应用数学都具有重要意义。

通过学习圆的面积、周长、相关定理等知识,我们可以更好地应用数学解决日常生活中的问题,并在将来的学习和工作中受益。

九年级上圆的知识点总结

九年级上圆的知识点总结

九年级上圆的知识点总结圆是初中数学中的重要内容之一,在九年级上册的数学学习中,圆的相关知识占据了重要的地位。

以下是对九年级上圆的知识点的详细总结。

一、圆的基本概念1、圆的定义圆是平面内到定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为半径。

2、圆的表示方法通常用符号“⊙”表示圆,后面加上圆心的字母,如⊙O 表示以 O 为圆心的圆。

3、弦连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,直径是圆中最长的弦。

4、弧圆上任意两点间的部分叫做圆弧,简称弧。

弧分为优弧和劣弧,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。

5、等圆与等弧能够重合的两个圆叫做等圆。

在同圆或等圆中,能够互相重合的弧叫做等弧。

二、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线;圆也是中心对称图形,其对称中心是圆心。

2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。

推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

3、圆心角、弧、弦的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

三、圆的位置关系1、点与圆的位置关系设圆的半径为 r,点到圆心的距离为 d,则有:(1)点在圆外⇔ d > r ;(2)点在圆上⇔ d = r ;(3)点在圆内⇔ d < r 。

2、直线与圆的位置关系设圆的半径为 r,圆心到直线的距离为 d,则有:(1)直线与圆相离⇔ d > r ;(2)直线与圆相切⇔ d = r ;(3)直线与圆相交⇔ d < r 。

切线的性质:圆的切线垂直于经过切点的半径。

九年级数学上册第二十四章圆基础知识点归纳总结(带答案)

九年级数学上册第二十四章圆基础知识点归纳总结(带答案)

九年级数学上册第二十四章圆基础知识点归纳总结单选题1、如图,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,∠ABC =25°,OC 的延长线交PA 于点P ,则∠P 的度数是( )A .25°B .35°C .40°D .50°答案:C分析:根据圆周角定理可得∠AOC =50°,根据切线的性质可得∠PAO =90°,根据直角三角形两个锐角互余即可求解.∵AC⌢=AC ⌢,∠ABC =25°, ∴∠AOC =2∠ABC =50°,∵ AB 是⊙O 的直径,∴ ∠PAO =90°,∴∠P =90°−∠AOC =40°.故选C .小提示:本题考查了圆周角定理,切线的性质,掌握圆周角定理与切线的性质是解题的关键.2、已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积为( )A .36πcm 2B .24πcm 2C .16πcm 2D .12πcm 2答案:B分析:利用圆锥侧面积计算公式计算即可:S 侧=πrl ;S 侧=πrl =π×4×6=24π cm 2 ,故选B .小提示:本题考查了圆锥侧面积的计算公式,比较简单,直接代入公式计算即可.3、圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是()A.90°B.100°C.120°D.150°答案:C分析:圆锥的侧面展开图是一个扇形,利用弧长公式进行计算即可得.解:设这个圆锥的侧面展开图的圆心角是n°,=2π×1,由题意得:n⋅3π180解得n=120,则这个圆锥的侧面展开图的圆心角是120°,故选:C.小提示:本题考查了圆锥的侧面展开图、弧长公式,熟记弧长公式是解题关键.4、如图,△ABC内接于⊙O,CD是⊙O的直径,∠ACD=40°,则∠B=()A.70°B.60°C.50°D.40°答案:C分析:由CD是⊙O的直径,根据直径所对的圆周角是直角,得出∠CAD=90°,根据直角三角形两锐角互余得到∠ACD与∠D互余,即可求得∠D的度数,继而求得∠B的度数.解:∵CD是⊙O的直径,∴∠CAD=90°,∴∠ACD+∠D=90°,∵∠ACD=40°,∴∠ADC=∠B=50°.故选:C.小提示:本题考查了圆周角定理,直角三角形的性质,注意掌握数形结合思想是解题的关键.5、如图,在平面直角坐标系中,以1.5为半径的圆的圆心P的坐标为(0,2),将⊙P沿y轴负方向平移1.5个单位长度,则x轴与⊙P的位置关系是()A.相交B.相切C.相离D.无法确定答案:A分析:根据题意,将圆心点向下平移1.5个单位,即可判断圆与x轴的位置关系.解:如图,∵圆心P的坐标为(0,2),将⊙P沿y轴负方向平移1.5个单位长度,∴平移后的点P的坐标为(0,0.5),∴OP=0.5,∵半径为1.5,∴PO<r,∴圆P与x轴相交,故选A.小提示:本题主要考查圆与直线的位置关系,结合题意判断圆与x轴的位置关系是解题的关键.6、如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC上有一点D,且BC=10cm,DC=2cm.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是()cm.A.14B.12C.10D.8答案:C分析:首先画出圆柱的侧面展开图,根据底面周长12cm,求出AB的值,由BC=10cm,DC=2cm,求出DB的值,再在Rt△ABD中,根据勾股定理求出AD的长,即可得答案.解:圆柱侧面展开图如下图所示,∵圆柱的底面周长为12cm,∴AB =6cm,∵BC=10cm,DC=2cm,∴DB=8,在Rt△ABD中,AD=√AB2+DB2=√62+82=10( cm ),即蚂蚁从A点出发沿着圆柱体的表面爬行到点D的最短距离是10cm,故选: C .小提示:此题主要考查了圆柱的平面展开图,以及勾股定理的应用,解题的关键是画出圆柱的侧面展开图.⌢上,则∠BAC的度数为()7、如图,在⊙O中,∠BOC=130°,点A在BACA.55°B.65°C.75°D.130°答案:B分析:利用圆周角直接可得答案.⌢上,解:∵∠BOC=130°,点A在BAC∴∠BAC=1∠BOC=65°,2故选B小提示:本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.8、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°答案:B分析:连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD =CD,根据等腰三角形的性质即可得到结论.解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E 是边BC 的中点,∴OD ⊥BC ,∴BD =CD ,∴∠ODB =∠ODC =12∠BDC =65°,故选:B .小提示:本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识.正确理解题意是解题的关键.9、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.10、如图,点A,B,C,D,E 在⊙O 上,AB =CD,∠AOB =42°,则∠CED =( )A .48°B .24°C .22°D .21°答案:D分析:先证明AB⌢=CD ⌢,再利用等弧的性质及圆周角定理可得答案. 解:∵ 点A,B,C,D,E 在⊙O 上,AB =CD,∠AOB =42°,∴AB⌢=CD ⌢, ∴∠CED =12∠AOB =12×42°=21°,故选:D.小提示:本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.填空题11、如图,在正六边形ABCDEF 中,连接AC,CF ,则∠ACF =____________度.答案:30分析:连接BE ,交CF 与点O ,连接OA ,先求出∠AOF =360°6=60°,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.连接BE ,交CF 与点O ,连接OA ,∵在正六边形ABCDEF 中,∴∠AOF =360°6=60°,∵OA =OC∴∠OAC =∠OCA∵∠AOF =∠OAC +∠ACF =2∠ACF∴∠ACF =30°,所以答案是:30.小提示:本题考查了正多边形与圆,等腰三角形的性质,三角形外角的性质,熟练掌握知识点是解题的关键.12、如图,在⊙O 中,半径OC 与弦AB 垂直于点D ,M 为AD 的中点,N 为AC⌢上的点,且MN ∥CD .若CD =5,MN =4,则⊙O 的半径为_______.答案:212##10.5分析:连接AO ,ON ,延长NM 交⊙O 于F ,过O 作OE ⊥NF 于E ,如图,设⊙O 的半径为r ,AD =t ,先证明四边形MEOD 是矩形得到OE =DM =12t ,OD =ME =r -5,再利用勾股定理得(r −5)2+t 2=r 2①,(r −5+4)2+(12t)2=r 2②,然后解方程组即可.解:连接AO ,ON ,延长NM 交⊙O 于F ,过O 作OE ⊥NF 于E ,如图,设⊙O的半径为r,AD=t,∵CD⊥AB,MN∥CD,∴∠ODM=∠DME=∠MEO=90°,∴四边形MEOD是矩形,∴OE=DM=1t,OD=ME=r-5,2在Rt△AOD中,(r−5)2+t2=r2,①t)2=r2,②在Rt△NOE中,(r−5+4)2+(12②×4-①得2r-21=0,,解得r=212即⊙O的半径为21.2所以答案是:212小提示:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理,理解题意,熟练掌握运用这些知识点是解题关键.13、如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是AD⌢所对的圆周角,则∠APD的度数是______.答案:30°##30度分析:根据垂径定理得出∠AOB =∠BOD ,进而求出∠AOD =60°,再根据圆周角定理可得∠APD =12∠AOD =30°. ∵OC ⊥AB ,OD 为直径,∴BD⌢=AD ⌢, ∴∠AOB =∠BOD ,∵∠AOB =120°,∴∠AOD =60°,∴∠APD =12∠AOD =30°,所以答案是:30°.小提示:本题考查了圆周角定理、垂径定理等知识,掌握垂径定理是解答本题的关键.14、如图,在△ABC 中,AC =2,BC =4,点O 在BC 上,以OB 为半径的圆与AC 相切于点A ,D 是BC 边上的动点,当△ACD 为直角三角形时,AD 的长为___________.答案:32或65 分析:根据切线的性质定理,勾股定理,直角三角形的等面积法解答即可.解:连接OA ,①当D 点与O 点重合时,∠CAD 为90°,设圆的半径=r ,∴OA =r ,OC =4-r ,∵AC =2,在Rt △AOC 中,根据勾股定理可得:r 2+4=(4-r )2,解得:r =32, 即AD =AO =32;②当∠ADC =90°时,过点A 作AD ⊥BC 于点D ,∵12AO •AC =12OC •AD , ∴AD =AO⋅AC OC ,∵AO =32,AC =2,OC =4-r =52, ∴AD =65,综上所述,AD 的长为32或65, 所以答案是:32或65.小提示:本题主要考查了切线的性质和勾股定理,熟练掌握这些性质定理是解决本题的关键.15、如图,已知A 为半径为3的⊙O 上的一个定点,B 为⊙O 上的一个动点(点B 与A 不重合),连接AB ,以AB 为边作正三角形ABC .当点B 运动时,点C 也随之变化,则O 、C 两点之间的距离的最大值是______.答案:6分析:连接OB ,OC ,OA ,在优弧AB 上取点N ,使得AN =AO .证明△BAO ≌△CAN (SAS ),推出OB =CN =3,推出OC ≤ON +CN =6,可得结论.解:如图,连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.∵OA=ON,OA=AN,∴AO=ON=AN,∴△OAN是等边三角形,∴∠OAN=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠OAN=60°,∴∠BAO=∠CAN,∴△BAO≌△CAN(SAS),∴OB=CN=3,∵OC≤ON+CN=6,∴OC的最大值为6,所以答案是:6.小提示:本题考查了等边三角形的性质,圆的相关性质,垂径定理,利用两地之间线段最短是本题的解题关键.解答题16、(1)如图①,在△ABC中,∠BAC=90°,AB=4,AC=3,若AD平分∠BAC交CB于点D,那么点D到AC的距离为.(2)如图②,四边形ABCD内接于⊙O,AC为直径,点B是半圆AC的三等分点(弧AB<弧BC),连接BD,若BD平分∠ABC,且BD=8,求四边形ABCD的面积.(3)如图③,为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮,其中一块圆形场地圆O,设计人员准备在内接四边形ABCD区域内进行花卉图案设计,其余部分方便游客参观,按照设计要求,四边形ABCD满足∠ABC=60°,AB=AD,且AD+DC=10(其中2≤DC≤4),为让游客有更好的观体验,四边形ABCD花卉的区域面积越大越好,那么是否存在面积最大的四边形ABCD?若存在,求出这个最大值,不存在请说明理由.答案:(1)127;(2)四边形ABCD的面积为32;(3)存在24√3.分析:(1)如图,作辅助线,证明AE=DE;证明△BDE∽△BCA,得到BEAB =DEAC,列出比例式即可解决问题.(2)(2)连接OB,根据题意得∠AOB=60°,作AE⊥BD,利用解直角三角形可求AB的长,通过解直角三角形分别求出BC,AD,CD的长,再根据面积公式求解即可;过点A作AN⊥BC于点N,AM⊥DC,交DC的延长线于点M,连接AC,可得S四边形ABCD =S四边形ANCM,根据面积法求出关于面积的二次函数关系式,根据二次函数的性质求出最值即可.解:如图,过点D作DE⊥AB于点E.则DE//AC;∵AD平分∠BAC,∠BAC=90°,∴∠DAE=45°,∠ADE=90°−45°=45°,∴AE=DE(设为λ),则BE=4−λ;∴△BDE∽△BCA,∴BEAB =DEAC,即:4−λ4=λ3解得:λ=127,∴点D到AC的距离127.(2)连接OB,∵点B是半圆AC的三等分点(弧AB<弧BC),∴∠AOB=60°∴∠ADB=ACB=30°∵AC是⊙O的直径,∴∠ABC=90°∵BD平分∠ABC∴∠ABD=∠CBD=45°过点A作AE⊥BD于点E,则∠BAE=∠ABE=45°∴AE=BE设AE=BE=x,则DE=AEtan30°=√3x∵BD=BE+DE=x+√3x=8∴AB=√2AE=4√6−4√2∵∠ADB=ACB=30°∴ABBC =tan30°=√33∴BC=√3AB=12√2−4√6∵BD平分∠ABC∴∠ABD=∠CBD∴AD⌢=CD⌢∴AD=CD∵AE⊥DE∴AD2=DE2+AE2∵AE=4√3−4,DE=√3x=12−4√3∴AD2=(12−4√3)2+(4√3−4)2=256−128√3∴S四边形ABCD =SΔABC+SΔADC=12AB·BC+12AD·CD=12AB·BC+12AD2=1 2(4√6−4√2)(12√2−4√6)+12(256−128√3)=64√3−96+128−64√3=32;(3)过点A作AN⊥BC于点N,AM⊥DC,交DC的延长线于点M,连接AC,∵AB=AD∴∠ACB=∠ACD∴AM=AN∵∠ADC+∠ABC=180°,∠ADC+∠ADM=180°, ∴∠ABC=∠ADM又∠ANB=∠AMD=90°,∴△ABN≌△ADM∴S四边形ABCD =S四边形ANCM∵AN=AM,∠BCA=∠DCA,AC=AC∴△ACN≌△ACM∴S四边形ANCM=2SΔACM∵∠ABC=60°∴∠ADC=120°∴∠ADM=60°,∠MAD=30°设DM=x,则AD=2x,AM=DM·tan60°=√3x,CD=10−2x,CM=10−x∴S四边形ANCM =2SΔACM=2×12×√3x(10−x)=−√3(x2−10x)∵2≤DC≤4∴2≤10−2x≤4,即3≤x≤4∵抛物线对称轴为x=5∴当x=4时,有最大值,为−√3×(16−40)=24√3小提示:本题属于圆综合题,考查了三角形的面积,解直角三角形,角平分线的性质定理,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.17、如图,已知圆锥的底面半径r为10cm,母线长为40cm.求它的侧面展开扇形的圆心角的度数和它的全面积.答案:90°,500π分析:根据由圆锥的底面圆的周长等于侧面展开扇形的弧长可求.解:由圆锥的底面圆的周长等于侧面展开扇形的弧长可知:,n=90°,2π×10=n×π×40180∴侧面展开扇形的圆心角的度数是90°.全面积=底面积+展开侧面积,=500π.全面积为:π×102+90×π×402360小提示:本题考查了圆锥全面积和展开图圆心角的度数,解题关键是明确圆锥的底面圆的周长等于侧面展开扇形的弧长,根据题意列方程求解.18、如图所示,扇形OAB的面积为4π cm2,∠AOB=90°,用这个扇形围成一个圆锥的侧面.求这个圆锥的底面圆的半径.答案:1cm分析:设这个圆锥的底面半径为r cm,先利用扇形面积公式得到90π·OA2=4π,则可得到OA=4,再利用圆锥360的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和扇形面积公式得到1·2π·r·4=4π,然后解2方程求出r即可.解:设这个圆锥的底面半径为r cm,=4π,解得OA=4,由题意得90π·OA2360·2π·r·4=4π,解得r=1.所以12所以这个圆锥的底面半径为1cm.小提示:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.。

九年级数学上册 《 圆的知识点归纳总结大全》

九年级数学上册 《 圆的知识点归纳总结大全》
圆的知识点归纳总结大全
一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的元素。
1、半径:圆上一点与圆心的连线。
2、直径:连接圆上两点且经过圆心的线段。
3、弦:连接圆上两点的线段(注:直径也是弦)。
4、弧:圆上两点之间的曲线部分。(注:半圆周也是弧。)
(2)△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。
求:AD、BE、CF的长。
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。求内切圆的半径r。
(4)S△ABC=
14、(补充)
(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。
(1)劣弧:小于半圆周的弧。(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,两边与圆相交的角(注:圆周角的两边是弦。)
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(2)直径所对的圆周角是直角。
(3)若圆周角为直角,那么它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
2)、
9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。 则AB=

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点圆是初中数学九年级上的一个重要知识点,下面将从圆的定义、圆的性质、圆的相关定理以及圆的应用等方面进行论述。

一、圆的定义圆是平面上的重要几何图形之一,是由与一个定点距离相等的所有点构成的集合。

这个定点称为圆心,距离称为半径,用字母r表示。

圆通常用圆的轮廓线表示,在数学表达中用字母O表示。

二、圆的性质1. 圆的任意两点到圆心的距离相等。

这意味着圆上的每一个点到圆心的距离都相等,即圆的半径。

2. 圆的直径是圆上任意两点之间的最长距离。

直径的长度是半径的两倍。

3. 圆的弦是圆上任意两点之间的线段。

弦不一定通过圆心,可以在圆内或圆外。

4. 圆上的切线垂直于半径。

切线是与圆相切的线,与圆的切点处的半径垂直。

三、圆的相关定理1. 弧与角的关系圆上的弧对应的圆心角是两个端点在圆心所对应的角,它们的度数相等。

2. 弧长与圆周角的关系圆的弧长是圆心角所对应的弧所在圆的一部分的长度,弧长等于这个圆心角所对应的圆周角度数的比值。

3. 弦长与弦心角的关系弦上的弦长是弦心角所对应的弦所在圆的一部分的长度,弦长等于这个弦心角所对应的圆周角度数的比值的2倍。

4. 割线定理割线是两个切点之间的线段,割线上的两个切线段长度乘积等于这条割线与这两个切点之间的弦段长度乘积。

四、圆的应用1. 圆的测量圆的周长等于圆周上的任意一段弧长,即C=πd或C=2πr,其中d为直径,r为半径。

圆的面积等于圆内所包围的面积,即S=πr²。

2. 圆的位置关系两个圆之间的位置关系可以分为外切、内切、相交、相离四种情况,通过判断两个圆心的距离与两个圆的半径之间的关系可以确定两个圆的位置关系。

3. 圆的轴对称与旋转对称圆具有轴对称性和旋转对称性,利用这个特性可以解决一些与圆相关的问题。

综上所述,圆是初中数学九年级上的重要知识点,通过对圆的定义、性质、相关定理和应用进行论述,可以帮助同学们更好地理解和掌握圆的知识,提高数学学科的学习成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与圆相关的基本知识和计算
一、知识梳理:
(一):圆及圆的有关概念
1.圆:到顶点的距离等于定长的点的集合叫做圆;
2.弧:圆上任意两点间的部分叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧;
3.弦:连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,它是圆的最长的弦;
4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;
5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角;
(二)圆的有关性质:
1.对称性:①圆是中心对称图形,其对称中心是圆心;②圆是轴对称图形,其对称轴是直径所在的直线;
2.垂径定理及其推论:
(1)、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧;
(2)、推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧;
3.圆心角、弧、弦之间的关系
(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;
(2)推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等。

在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等。

4.圆周角与圆心角的关系
(1)在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
90的圆周角所对的弦是直径;
(2)推论:半圆(或直径)所对的圆周角是直角,0
5.圆内接四边形对角互补。

(三)点与圆的位置关系
1、点和圆的位置关系
如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.
(1)d>r点在圆外;(2)d=r点在圆上;(3)d<r点在圆内.
2、确定圆的条件:不在同一直线上的三个点确定一个圆.
(四)直线与圆的位置关系
1、(1)直线与圆的位置关系有关概念
①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.
②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.
③相离,当直线和圆没有公共点时,叫做直线和圆相离.
(2)用数量关系判断直线与圆的位置关系
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
(1)直线l和⊙O相交d<r(如图(1)所示);
(2)直线l和⊙O相切d=r(如图(2)所示);
(3)直线l和⊙O相离d>r(如图(3)所示).
2、切线
(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.
(2)切线的性质:圆的切线垂直于过切点的半径.
(3)切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.
(4)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.
(五)三角形的外接圆和内切圆
1、三角形的外接圆
(1)定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.
(2)三角形外心的性质:
①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.
②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.
2、三角形的内切圆与三角形的内心
①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.
②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.
(六):圆的有关计算
(一)正多边形与圆
1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。

2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心;如果一个正n 边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心;
3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方;
4、正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;正n 边形的中心角等于外角等于n
3600
; (二) 弧长与扇形面积
1、在半径为R 的圆中,0n 圆心角所对的弧长l=
180n ℜπ; 2、在半径为R 的圆中,圆心角为0n 的扇形面积扇形S =360
n 2
R π;半径为R ,弧长为l 的扇形面积为扇形S =R l 2
1; 3、侧面积:设圆锥的母线长为l ,底面积的半径为r ,那么圆的侧面积展开得到的扇形的半径为l ,扇形的弧长为2πr ,因此圆锥的侧面积为πrl ,圆锥的全面积为πrl+πr 2。

农用地转用审批流程
农用地转用是指将农用地转为建设用地。

建设占用土地涉及农用地的,应当办理农用地转用审批手续。

一、用于非农建设有以下情形之一者,应当办理农用地转用审批手续:
(一)征用农村集体经济组织农用地的;
(二)农村集体经济组织使用本集体农用地的;
(三)使用国有农用地;
(四)需要办理农用地转用的其他土地。

二、农用地转用审批程序如何
农用地转用一般经过拟订申报、审批批准和组织实施三个环节:
1.拟订申报。

市、县人民政府土地行政主管部门按照土地利用年度计划拟订农用地转用方案、补充耕地方案、征用土地方案,编制建设项目用地呈报说明书,经同级人民政府审核同意后,分批次报上一级土地行政主管部门审查。

由于这种类型用地并不涉及具体建设项目,无需拟订供地方案。

建设项目用地呈报说明书应当包括项目用地安排情况,拟使用土地情况等,并且附具以下材料:①经批准的市、县土地利用总体规划图和分幅土地利用现状图,占用基本农田的,还应当提供乡级土地利用总体规划图; ②由建设单位提交的、有资格的单位出具的勘测定界图及勘测定界技术报告书; ③地籍资料或者其他土地权属证明材料; ④以有偿方式供地的,还应当提供草签的土地有偿使用合同及说明和有关文件;⑤为实施城市规划和村庄、集镇规划占用土地的,还应当提供城市规划图和村庄、集镇规划图。

2.审查批准。

有关土地行政主管部门收到上报的建设项目呈报说明书和有关方案后,对材料齐全、符合条件的,应当在5日内报经同级人民政府审查。

同级人民政府审核同意后,逐级上报有批准权的人民政府批准,并将审查所需的材料及时送该级土地行政主管部门审查。

有批准权的人民政府土地行政主管部门应当自收到上报的农用地转用方案、补充耕地方案、征用土地方案并按规定征求有关方面意见后30日内审查完毕,报有批准权的人民政府批准。

其中,补充耕地方案由批准农用地转用方案的人民政府在批准农用地转用方案时一并批准。

3.组织实施。

农用地转用方案、补充耕地方案、征用土地方案经批准后,由土地所在地的市、县人民政府组织实施,按具体建设项目分别供地。

在土地利用总体规划确定的村庄和集镇建设用地范围内,为实施村庄、集镇规划占用土地的,由市、县人民政府土地行政主管部门拟订农用地转用方案、补充耕地方案,编制建设项目呈报说明书,按照上述程序办理。

注意,由于不涉及征用土地,因此不用拟订征用土地方案.。

相关文档
最新文档