最新-初中数学合并同类项、去括号基础题(含答案) 精品

合集下载

(完整版)100道合并同类项数学题

(完整版)100道合并同类项数学题

(完整版)100道合并同类项数学题1、3ab-4ab+8ab-7ab+ ab2、7x-(5x-5y)-y3、23a3bc2-15ab2c+8 abc-24a3bc2-8abc4、-7x2+6x+13x2-4x-5 x25、2y+(-2y+5)-(3y+2)6、(2x2-3xy+4y2)+(x2 +2xy-3y2) 7、a-(3a-2b+2)+(3a-4b -1)8、-6x2-7x2+15x2-2x29、2x-(x+3y)-(-x-y)-(x-y)10、2x+2y-[3x-2(x-y)]11、5-(1-x)-1-(x-1)12、(4xy2-2x2y)-( 2x2y+ 4xy2)13、已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=14、已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=15、若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为16、一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于17、-(2x2-y2)-[2y2-(x2+2 xy)] 18、若-3a3b2与5a x-1b y+2是同类项,则x=______,y=______.19、(-y+6+3y4-y3)-(2y2-3y3+y4-7)20、化简代数式4x2-[7x2-5x-3(1-2x+ x2)]的结果是___21、3a-(2a-3b)+3(a-2b)-b22、化简代数式x-[y-2x-(x+y)]等于23、[5a2+( )a-7]+[( )a2-4 a+( )]=a2+2a+1.24、3x-[y-(2x+y)]=____ __.25、化简|1-x+y|-|x-y|(其中x <0,y>0)等于26、已知x≤y,x+y-|x-y|=27、已知x<0,y<0,化简|x+y|-|5-x-y|=_____ _.28、4a2n-an -(3an -2a2n)=______.29、若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.30、-5xm-xm-(-7xm)+(-3xm)31、当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]32、当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)33、-2(3x+z)-(-6x)+(-5y +3z)34、-5an-an+1-(-7an+1) +(-3an)35、3a-(2a-4b-6c)+3(-2 c+2b)36、9a2+[7a2-2a-(-a2+3a )]37、当2y-x=5时,5(x-2y)2-3(-x+2y)-1 0038、把(-x-y)+3(x+y)-5(x+y)合并同类项得39、2a-[3b-5a-(2a-7b)]等于40、2ab-9a2-5ab-4a241、当a=2,b=1时,-a2b+3ba2-(-2a2b) 等于42、-{[-(x+y)]}+{-[(x+y)]}等于43、当m=-1时,-2m2-[-4m2+(-m2)]等于44、当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于45、-5an-an-(-7an)+(-3 an)等于46、(5a-3b)-3(a2-2b)等于化简47、(4x2-8x+5)-(x3+3x2-6x+2).48、(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2).49、-{2a2b-[3abc-(4ab2-a2b)]}.50、(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b)51、(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).52、(3a6-a4+2a5-4a3-1)-( 2-a+a3-a5-a4).53、(4a-2b-c)-5a-[8b-2c -(a+b)].54、(2m-3n)-(3m-2n)+( 5n+m).55、(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).56、xy-(2xy-3z)+(3xy-4 z).57、(-3x3+2x2-5x+1)-(5-6x-x2+x3).58、3x-(2x-4y-6x)+3(-2 z+2y).59、(-x2+4+3x4-x3)-(x2+ 2x-x4-5).60、若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.61、若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A-B.62、2m-{-3n+[-4m-(3m-n)]}.63、5mn2+(-2m2n)+2m n2-m2n64、4(x-y+z)-2(x+y-z)-3 (-x-y-z).65、2(x2-2xy+y2-3)+(-x2 +y2)-(x2+2xy+y2).66、2(a2-ab-b2)-3(4a-2b )+2(7a2-4ab+b2).67、4x-2(x-3)-3[x-3(4-2 x)+8].将下列各式先化简,再求值68、已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b )2×(a-b)2的值.69、已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.70、求(3x2y-2xy2)-(xy2-2x 2y),其中x=-1,y=2.71、当P=a2+2ab+b2,Q=a2-2ab-b2时,求P-[Q-2P-(P-Q)].72、求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3.73、当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.74、已知A=x3-5x2,B=x2-6x+3,求A-3(-2B).综合练习75、去括号:{-[-(a+b)]}-{-[-(a-b)]}.76、去括号:-[-(-x)-y]-[+(-y)-(+x) ].77、已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内.78、计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+ 5y)+(-8y2)+(+3y).79、不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy) +(2y3-3y2).80、求2x-2[3x-(5x2-2x+1)] -4x2的值,其中x=-1.81、合并同类项:7x-1.3z-4.7-3.2x-y+ 2.1z+5-0.1y.82、合并同类项:5m2n+5mn2-mn+3 m2n-6mn2-8mn.83、去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].84、化简:2x2-{-3x-[4x2-(3x2-x)+ (x-x2)]}.85、化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.86、计算:(+3a)+(-5a)+(-7a)+( -31a)-(+4a)-(-8a) 87、化简:a3-(a2-a)+(a2-a+1)-( 1-a2+a3).88、将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4.89、在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.90、在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-( )][y+( )].91、在括号内填上适当的项:(3x2+xy-7y2)-( )=y2-2xy-x2.92、在括号内填上适当的项:(1)x2-xy+y-1=x2-( );(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.93、计算4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.94、用竖式计算(-x+5+2x4-6x3)-(3x4 +2x2-3x3-7).95、已知A=11x3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B).96、已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C).97、已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A.98、已知x<-4,化简|-x|+|x+4|-|x-4|.99、.求两代数式-1.56a+3.2a3-0.47,2.27a3-0.02a2+4.03 a+0.53的差与6-0.15a+3.24a2+5.0 7a3的和.100、已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3x y-z2-8xz-2x2的值.。

2023-2024学年七年级上学期数学:解一元一次方程(一)—合并同类项与移项(附答案解析)

2023-2024学年七年级上学期数学:解一元一次方程(一)—合并同类项与移项(附答案解析)

A. x 3
B. x 3
C. x 1
3
D. x 1
3
4.(2022 春•北碚区校级期末)将方程 x 1 x 1 去分母,结果正确的是 (
)
32
A. 2x 3(1 x) 1 B. 2x 3(x 1) 6 C. 2x 3(1 x) 6 D. 2x 3(1 x) 6
5.(2022 春•沙坪坝区校级期中)一元一次方程 2x 1的解是 ( )
Hale Waihona Puke A. x 2B. x 0C. x 1
2
6.(2022 春•新野县期中)下列变形中:
①由方程 x 12 2 去分母,得 x 12 10 ;
5
②由方程 6x 4 x 4 移项、合并得 5x 0 ;
③由方程 2 x 5 x 3 两边同乘以 6,得12 x 5 3x 3 ;
5.(2022 春•长泰县期中)将方程 x x 1 1 去分母,正确的是 (
)
24
A. 2x x 1 1 B. 2x x 1 4
C. 2x x 1 4 D. 2x x 1 1
6.(2022•苍南县二模)解方程 2x 1 1 x ,去分母后正确的是 (
)
3
2
A. 2(2x 1) 6 3x B. 2(2x 1) 1 3x C. 4x 1 1 2x D. 4x 1 6 2x
)
2
A. x 2
B. x 3
C. x 5
D. x 6
3.(2020•重庆)解一元一次方程 1 (x 1) 1 1 x 时,去分母正确的是 (
)
2
3
A. 3(x 1) 1 2x B. 2(x 1) 1 3x C. 2(x 1) 6 3x D. 3(x 1) 6 2x

七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

3.3 解一元一次方程(二)-去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x﹣2(x﹣3)=5去括号变形正确的是()A.3x﹣2x﹣3=5 B.3x﹣2x﹣6=5 C.3x﹣2x+3=5 D.3x﹣2x+6=52.把方程去分母,下列变形正确的是()A.2x﹣x+1=1 B.2x﹣(x+1)=1 C.2x﹣x+1=6 D.2x﹣(x+1)=63.下列方程变形中,正确的是()A.方程去分母,得5(x﹣1)=2xB.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.方程3x﹣2=2x+1移项,得3x﹣2x=﹣1+2D.方程系数化为1,得t=14.一元一次方程的解为()A.x=1 B.x=﹣1 C.x=﹣12 D.x=125.解方程时,把分母化为整数,得()A.B.C.D.6.解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④7.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有()个.A.1个B.2个C.3个D.4个8.某同学在解关于x的方程3a﹣x=13时,误将“﹣x”看成“x”,从而得到方程的解为x=﹣2,则原方程正确的解为()A.x=﹣2 B.x=﹣C.x=D.x=29.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8 B.﹣8 C.6 D.﹣610.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=0的解是()x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0 B.﹣1 C.﹣3 D.﹣4二、填空题11.当x=时,代数式2x﹣与代数式x﹣3的值相等.12.方程1﹣=去分母后为.13.小明解方程=﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为.14.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x=.三、解答题15.解方程:(1)2(x+8)=3x﹣1(2)16.已知y=3是方程6+(m﹣y)=2y的解,那么关于x的方程2m(x﹣1)=(m+1)(3x﹣4)的解是多少?17.定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.18.(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a 的值.(2)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?3.3 解一元一次方程(二)--去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.3.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

初一数学去括号合并同类项基础题专题训练含答案

初一数学去括号合并同类项基础题专题训练含答案

初一数学去括号合并同类型1.不是同类项的一对式子是()A. 与B. 与C. 与D. 与2.下列各式计算正确的是()A. 2a+3b=5abB. 3a2+2a3=5a5C. 6ab-ab=5abD. 5+a=5a3.下列运算正确的是()A. 3a-a=2B. -a2-a2=0C. 3a+a=4a2D. 2ab-ab=ab4.下列各组中的两个单项式,是同类项的是().A. B. C. D.5.计算2a-3a,结果正确的是()A. -1B. 1C. -aD. a6.下列运算正确的是()A. 3x+2x=5x2B. 3x-2x=xC. 3x·2.x=6.xD. 3.x÷2x=7.如果3ab2m-1与9ab m+1是同类项,那么m等于( )A. 2B. 1C. ﹣1D. 08.下列各式中,是同类项的是()A. B. C. D.9.下列计算正确的是()A. 6a-5a=1B. a+2a2=3aC. -(a-b)=-a+bD. 2(a+b)=2a+b10.下面各组数中,不相等的是()A. ﹣8 和﹣(﹣8)B. ﹣5 和﹣(+5)C. ﹣2 和+(﹣2)D. 0和11.下列各式中结果为负数的是( )A. B. C. D.12.去括号得()A. B. C. D.13.下列各式去括号正确的是()A. a-(b-c)=a-b-cB. a +(b-c)=a+b-cC. D.14.下列去括号正确的是().A. x2−(x−3y)=x2−x−3yB. x2−3(y2−2xy)=x2−3y2+2xyC. m2−4(m−1)=m2−4m+4D. a2−2(a−3)=a2+2a−615.下列变形中,不正确的是()A. a﹣(b﹣c+d)=a﹣b+c﹣dB. a﹣b﹣(c﹣d)=a﹣b﹣c﹣dC. a+b﹣(﹣c﹣d)=a+b+c+dD. a+(b+c﹣d)=a+b+c﹣d16.-(-a+b-1)去括号正确的结果是( )A. -a+b-1B. a+b+1C. a-b+1D. -a+b+1二、填空题(共5题;共5分)17.若与是同类项,则m= ________18.计算:7x-4x=________.19.合并同类项:________.20.若5a m b2n与-9a5b6是同类项,则m+n的值是________ 。

人教版七年级数学上册合并同类项与移项同步测试(含答案)

人教版七年级数学上册合并同类项与移项同步测试(含答案)

人教版七年级数学上册合并同类项与移项同步测试(含答案)一、单选题1.若x=3是关于x的方程2x+a=4的解,则a的值为()A.-10B.-2C.−12D.1 22.下列方程移项、系数化为1正确的是()A.由3+x=5,得x=5+3B.由2x+3=x+7,得2x+x=7+3C.由7x=﹣4,得x=﹣74D.由12y=2,得y=43.若规定□a□表示小于a的最大整数,例如□5□=4,□(-6.7)□=-7(则方程3□(-π)□-2x=5的解是()A.7B.-7C.D.4.如图,数轴的单位长度为1,若点B表示的数是3,则点A表示的数是()A.7B.-5C.-2D.-15.下列方程中,解为x=4的是()A.3x+2=4x+5B.x+3=2x+9C.3+x=3x+2D.4x-2=3x+26.方程2x+1=7与a-x−43=0的解相同,则a的值是()A.1B.13C.-13D.07.已知关于x的方程2x+a−9=0的解是x=3,则a的值为()A.2B.3C.4D.58.若关于x的方程x﹣2+3k= x+k3的解是正数,则k的取值范围是()A.k>34B.k≥ 34C.k<34D.k≤ 349.若x=2是关于x的一元二次方程ax2−bx−2018=0的一个解,则2035−2a+b的值是()A.17B.1026C.2018D.405310.关于x的方程2(x-1)-a=0的根是3,则a的值是()A.4B.-4C.5D.-5二、填空题11.方程2x+3=7的解是 .12.若方程 6x +2=0 的解与关于 y 的方程 3y +m =15 的解互为相反数,则 m = . 13.一个正数的两个平方根分别是2a-2和a-7,则这个正数是 。

14.单项式15a 2x+1b 3与−8a x+3b y 的差仍是单项式,则x −y = . 15.如果x +1是4的平方根,那么x = .三、解答题16.用等式性质解方程 43x −12=12x +1217.如果a 的相反数是-2,且2x+3a=4.求x 的值.18.解下列方程:(1)7x +5=7.5+4.5x(2)6(12x −4)+2x =7−(13x −1) 19.如果关于x 的方程 4x −(3a +1)=6x +2a −1 的解与方程 x−43−8=−x+22的解相同,求字母a 的值。

初中数学北师大版七年级上第三章第4-6节合并同类项;去括号;探索规律知识精讲试题

初中数学北师大版七年级上第三章第4-6节合并同类项;去括号;探索规律知识精讲试题

七年级数学第三章第4-6节合并同类项;去括号;探索规律北师大版【本讲教育信息】一、教学内容同类项及去括号1、学习同类项的概念及合并同类项的法则.2、学习去括号的法则.3、探索一般的数学规律,并用字母表示出这个规律.二、教学目标1、在具体情境中了解合并同类项法则,并能进行同类项的合并.2、初步掌握去括号法则;会根据法则进行去括号的运算;3、经历探索数量关系,运用符号表示规律,通过运算验证规律的方法;会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律.三、知识要点分析1、同类项(这是重点)定义:所含字母相同..的项叫做同类项...,且相同字母的指数也相同注意:同类项定义中有两个“相同”,必须这两个条件都满足,才是真正的同类项. 同类项与系数无关.如:a2与-3a2是同类项. 因为它们字母相同——都只有字母a,而a的指数都是2,符合同类项定义. 虽然a2系数为1,-3a2系数为-3,但不影响a2与-3a2是同类项.又如:a与b不是同类项——字母不同,一个是a,另一个是b.又如:a2b与ab2不是同类项——a2b中a的指数是2,而ab2中a的指数是1,不符合“相同字母的指数也相同”,所以它们不是同类项.2、合并同类项(这是重点)①定义:把同类项合并成一项就叫做合并同类项. 换句话说:只有同类项才可以合并.②法则:合并同类项时,把同类项的系数相加,字母和字母的指数不变.如:2a-b+3b-a中,2a与-a是同类项,而-b与3b是同类项,可以合并同类项.③合并同类项的步骤:ⅰ)找出同类项,把同类项放在一起,中间用“+”连接.ⅱ)利用合并同类项的法则,把同类项的系数相加,字母和字母的指数不变.ⅲ)系数为1时,可省略;系数若不是整数,可写成假分数或小数的形式,不能用带分数. 易错!小心!3、去括号(这是难点)括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.对于去括号法则的理解,一是要注意括号前是“+”号还是“-”号,法则中对应地有“不变”和“改变”符号这样的区别;二是法则中的“都”字,指括号中的所有项,符号变则全变,不变则全不变.例如-(3x2-2x-1)去掉括号后得-3x2-2x-1是错误的.对于多重括号去括号时,一般情况要由里及外,由小括号到大括号按顺序进行.4、探索规律在解答这类题目时,先根据特例进行归纳、建立猜想,从而列出代数式.【典型例题】考点一:同类项例1:若2x3y n与-x m y2是同类项,则m=______,n=______,m+n=______. .【思路分析】(因为2x3y n与-x m y2是同类项,而且根据同类项的定义“相同字母的指数也要相同”,所以两个代数式中x与y的指数要分别相同,即3与m相等,n与2相等.解:m=3,n=2,m+n=5.方法与规律总结:正确运用同类项概念中的两个相同来解决问题.例2:若25a4b与5m a m b是同类项,则m=______.【思路分析】此题中的两个代数式是同类项,要求m,而m是a的指数,那么让两个代数式中a的指数相同即可.解:m=4友情提示:此题中5m a m b中5的指数、a的指数都是m,而5又在前,很容易让人认为5m=25,从而m=2. 实际上,在5m a m b中,5m只是这个代数式的系数,不管m等于几,都和5m a m b与25a4b是同类项无关.考点二:合并同类项例3:一个四边形的四条边分别为3m、4n、5n、6m,求这个四边形的周长. 若m=2,n =3,求出此时的周长.【思路分析】求周长即把这四条边长加起来,合并同类项,最后把m、n的值代入,求出最后结果.解:3m+4n+5n+6m=(3m+6m)+(4n+5n)=9m+9n当m=2,n=3时,原式=9m+9n——把数值代入化简后的式子=9×2+9×3=18+27=45.答:四边形周长是9m+9n. m=2,n=3时,周长是45.友情提示:化简求值先将代数式中的同类项进行合并,再将相应的数值代入最简的式子中,得到的结果即为原代数式的值.考点三:去括号例4:去括号:(1)4a-(2b-3c);(2)m+2(3n-2);(3)-(x-3)-3(y-3z).【思路分析】①第(1)小题中,-(2b-3c)在去掉括号时,也要同时去掉括号前面的“-”号,而去括号的结果中的-2b项的“-”号,并不是原括号前的“-”号,而是由原来省略的“+”号变号得到的.②对于括号前有数字因数的情形,如第(2)(3)两小题,在运用括号法则的同时,还要应用分配律,用数字因数分别去乘以括号里的每一项.在具体运算中要注意防止漏乘,如-3(y-3z)=-3y+3z就是错误的.解:(1)4a-(2b-3c)=4a-2b+3c.(2)m+2(3n-2)=m+6n-4.(3)-(x-3)-3(y-3z)=-x+3-3y+9z.友情提示:去括号时,首先要弄清楚括号前究竟是“+”号,还是“-”号,其次要注意法则中的“都”字,都改变符号或都不改变符号,一定要一视同仁,尤其是括号前面是“-”号时,容易出现只改变括号内首项符号,而其余各项均不变号的错误.例5:化简下列各式:(1)-2(x2-2y2-xy)+(2x2-y2-3xy);(2)10x-[3x-(18x-2)-4].【思路分析】(1)去括号后,有同类项时,一定要合并同类项.(2)对于双重括号,比较两种解法,第二种解法易于掌握.在熟练后,可以去括号与合并同类项交替配合进行,使运算简化.解:(1)原式=-2x2+4y2+2xy+2x2-y2-3xy=(-2+2)x2+(4-1)y2+(2-3)xy=3y2-xy.(2)解法一(先去中括号,再去小括号)10x-[3x-(18x-2)-4]=10x-3x+(18x-2)+4=10x-3x+18x-2+4=25x+2解法二(先去小括号,再去中括号)原式=10x-[3x-18x+2-4]=10x-3x+18x-2+4=25x+2友情提示:对于多重括号去括号时,一般情况要由里及外,由小括号到大括号按顺序进行.考点四:探索规律例6:找出下列数列的规律,并填空.(1)2,7,12,17,______……______(第n个数). (2)1,8,27,64,______……______(第n个数).【思路分析】(1)中相邻两数都差5,则第n个数必会是[5n+()],找出()中需填的数即可.(2)中相邻两数的差值不同,所以可从另一方面——乘方去找规律. 对于乘方a n,可找的规律无非是两种:(一)是底数不变,指数变化与序号有关;(二)是指数不变,底数的变化与序号有关. 通过观察,每一个数都是指数不变(为3),序号进行3次方得到的.解:(1)225n-3(2)下一个数为53,即125,而第n个数为n3.【本讲涉及的数学思想和方法】本讲主要讲述同类项的概念、合并同类项的法则、去括号的法则及探索规律,本节课主要用到的数学思想是转化的数学思想和类比的数学思想,目的通过转化和类比,为了简化式子的运算,做到会去括号和会合并同类项.预习导学案(基本图形的认识、线段的比较)(一)预习前知1. 会区分直线、射线和线段?2. 熟悉直线,射线和线段的区别与联系?3. 会比较两条线段的长短?(二)预习导学探究与反思探究任务1:直线、射线和线段的概念.【反思】怎样来区别直线、射线和线段?探究任务2:比较两线段的长短?【反思】(1)有几种方法来比较线段的长短?(2)线段中点的概念是什么?(三)牛刀小试1. 线段有______个端点,射线有_____个端点,直线有_____个端点.2. 平面上有A、B、C三点,过其中的每两点画直线,最多可以画_____条线段,最少可以画_______条直线.3. 在直线L上取三点A、B、C,共可得_______条射线,______条线段.4. 要把木条固定在墙上至少需要钉_______颗钉子,根据是________________________.5. 按下列长度,A、B、C三点不在同一条直线上的为()A. AB=10,AC=2,BC=8B. AB=10,AC=15,BC=5C. AB=6,AC=10,BC=16D. AB=5,AC=20,BC=16【模拟试题】(答题时间:60分钟,满分100分)一、选择题(每小题4分,共40分)1. 若ab x 与a y b 2是同类项,下列结论正确的是( )A. x =2,y=1B. x=0,y=0C. x =2,y=0D. x=1,y=12. 2x+x 等于( )A. xB. -xC. 3xD. -3x.3. a +b +2(b +a )-4(a +b )合并同类项等于( )A. a +bB. -a -bC. b -aD. a -b﹡4. 下列整式加减运算结果正确的是( ).A. 7a – 8b =-1B. -3a +8a =11aC. -6ab –(-7ab )=abD. 3a 2b -(-8ab 2)=11a 2b﹡5. 下列去括号中正确的是( )A. x +(3y +2)=x +3y -2B. a 2-(3a 2-2a +1)=a 2-3a 2-2a +1C. y 2+(-2y -1)=y 2-2y -1D. m 3-(2m 2-4m -1)=m 3-2m 2+4m -1 ﹡6. 化简-4x +3(31x -2)等于( ) A. -5x +6 B. -5x -6 C. -3x +6 D. -3x -6﹡7. 9a -{3a -[4a -(7a -3)]}等于( )A. 7a +3B. 9a -3C. 3a -3D. 3a +3﹡8. 观察一串数:3,5,7,9……第n 个数可表示为( )A. 2(n -1)B. 2n -1C. 2(n+1)D. 2n+1﹡9. 日常生活中我们使用的数是十进制数. 而计算机使用的数是二进制数,即数的进位方法是“逢二进一”. 二进制数只使用数字0、1,如二进制数1101记为1101)2(,1101)2(通过式子120212123+⨯+⨯+⨯可以转换为十进制数13,仿照上面的转换方法,将二进制数11101)2(转换为十进制数是( ).A. 29B. 25C. 4D. 33那么,当输入数据是8时,输出的数据是( ) A. 618 B. 638 C. 658 D. 678二、填空题(每题4分,共24分)11. 观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆). ●□☆●●□☆●□☆●●□☆● 若第一个图形是圆,则第2008个图形是(填名称)﹡12. 小红到厨房帮助妈妈切葱条,她把4根长短相等的葱条放整齐后,从正中一刀切断,使4根葱条变成了8节,再把这8节葱条放整齐后从正中一刀切断……如此进行下去,当小红第五刀切下去后,原来的4根葱条就变成了节细葱.﹡13. 已知2a x b n-1与3a2b2m(m为正整数)是同类项,那么(2m-n)x=________.14. 当k=______时,3x2y与25x k y是同类项,它们合并的结果为_________.﹡15. 你喜欢吃拉面吗?拉面馆的师父用一根很粗的面,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条。

初中数学浙教版七年级上册第4章 代数式4.5 合并同类项-章节测试习题(7)

初中数学浙教版七年级上册第4章 代数式4.5 合并同类项-章节测试习题(7)

章节测试题1.【答题】若单项式﹣2x3y n与4x m y5合并后的结果还是单项式,则m﹣n=______.【答案】﹣2【分析】本题考查了同类项,关键是掌握同类项定义.根据同类项定义可得m=3,n=5,然后可得答案.【解答】由题意得m=3,n=5,则m-n=3-5=-2,故答案为-2.2.【答题】代数式4x3–3x3y+8x2y+3x3+3x3y–8x2y–7x3的值()A. 与x,y有关B. 与x有关C. 与y有关D. 与x,y无关【答案】D【分析】本题考查合并同类项.【解答】根据整式的加减—合并同类项,可知=,因此多项式与x、y均无关.选D.3.【答题】当k=______时,代数式x2﹣3kxy﹣3y2+xy﹣8中不含xy项.【答案】【分析】本题考查了多项式以及合并同类项,正确表示出xy项的系数是解题关键.直接得出xy的系数,利用其系数为零进而得出答案.【解答】∵代数式x2-3kxy-3y2+xy-8中不含xy项,∴-3k+1=0,解得:k=.故答案为.4.【答题】若代数式mx2+y2﹣5x2+5的值与字母x的取值无关,则m的值为______.【答案】5【分析】本题考查了合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.把代数式合并同类项得(m-5)x2+y2+5,∵与取值无关,故m-5=0,求解.【解答】由题意得mx2+y2﹣5x2+5=(m-5)x2+y2+5,,∵与取值无关,故m-5=0,∴m=5.5.【题文】已知多项式2x2+4xy﹣3y2+x2+kxy+5y2,当k为何值时,它与多项式3x2+6xy+2y2是相等的多项式.【答案】k=2.【分析】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.根据两个多项式是相同多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【解答】2x2+4xy﹣3y2+x2+kxy+5y2=3x2+(4+k)xy+2y2.∵它与多项式3x2+6xy+2y2是相等的多项式,∴4+k=6,解得k=2.6.【答题】多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A. 2B. -2C. 4D. -4【答案】C【分析】本题考查整式的加法以及合并同类项.【解答】2x3-8x2+x-1+3x3+2mx2-5x+3=5x3+(2m-8)x2-4x+2,∵不含二次项,∴2m-8=0,∴m=4.选C.7.【题文】关于x,y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,求6m﹣2n+2的值.【答案】4.【分析】本题考查了多项式相关定义,掌握多项式的相关概念和性质是解决此题的关键.【解答】∵多项式6mx2+4nxy+2x+2xy﹣x2+y+4=(6m﹣1)x2+(4n+2)xy+2x+y+4不含二次项,即二次项系数为0,即6m﹣1=0,∴m=;∴4n+2=0,∴n=﹣,把m、n的值代入6m﹣2n+2中,∴原式=6×﹣2×(﹣)+2=4.8.【答题】下列运算中结果正确的是()A. 4a+3b=7abB. 4xy–3xy=xyC. –2x+5x=7xD. 2y–y=1【答案】B【分析】本题考查合并同类项.【解答】A.4a与3b不是同类项,不能直接合并,故本选项错误;B.4xy–3xy=xy,计算正确,故本选项正确;C.–2x+5x=3x,计算错误,故本选项错误;D.2y–y=y,计算错误,故本选项错误.选B.9.【答题】计算–2(x–y)–2y的结果是()A. –2x–4yB. –2xC. 2x–4yD. –4x+2y 【答案】B【分析】本题考查去括号法则以及合并同类项.【解答】原式=–2x+2y–2y=–2x,选B.10.【答题】计算4a2–5a2的结果是()A. –a2B. –1C. a2D. 9a2【答案】A【分析】本题考查合并同类项.【解答】原式=(4–5)a2=–a2,选A.11.【答题】若m、n互为相反数,则(3m–2n)–(2m–3n)的值为______.【答案】0【分析】本题考查去括号法则以及合并同类项.【解答】由题意m+n=0,∴(3m–2n)–(2m–3n)=3m–2n–2m+3n=m+n=0.12.【答题】计算2a–3a,结果正确的是()A. –1B. 1C. –aD. a【答案】C【分析】本题考查合并同类项.【解答】2a–3a=–a,选C.13.【答题】合并同类项:4a2+6a2–a2=______.【答案】9a2【分析】本题考查合并同类项.【解答】原式=(4+6–1)a2=9a2,故答案为9a2.14.【答题】计算:7x–4x=______.【答案】3x【分析】本题考查合并同类项.【解答】7x–4x=(7–4)x=3x,故答案为3x.15.【答题】两个单项式满足下列条件:①互为同类项;②次数都是3.任意写出两个满足上述条件的单项式______,将这两个单项式合并同类项得______.【答案】2x3,3x3;5x3(答案不唯一)【分析】本题考查单项式、同类项以及合并同类项.【解答】①互为同类项;②次数都是3,任意写出两个满足上述条件的单项式2x3,3x3,将这两个单项式合并同类项得5x3,故答案为:2x3,3x3;5x3.16.【题文】去括号,合并同类项:(1)–3(2s–5)+6s;(2)3x–[5x–(x–4)];(3)6a2–4ab–4(2a2+ab);(4)–3(2x2–xy)+4(x2+xy–6)【答案】(1)15;(2)–x–4;(3)–2a2–6ab;(4)–2x2+7xy–24.【分析】本题考查去括号法则以及合并同类项.【解答】(1)–3(2s–5)+6s=–6s+15+6s=15;(2)3x–[5x–(x–4)]=3x–[5x–x+4]=3x–5x+x–4=–x–4;(3)6a2–4ab–4(2a2+ab)=6a2–4ab–8a2–2ab=–2a2–6ab;(4)–3(2x2–xy)+4(x2+xy–6)=–6x2+3xy+4x2+4xy–24=–2x2+7xy–24.17.【答题】下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. 3a2b﹣3ba2=0D. 5a2﹣4a2=1 【答案】C【分析】本题考查合并同类项. 先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.【解答】A.3a和2b不是同类项,不能合并,A错误;B.2a3+和3a2不是同类项,不能合并,B错误;C.3a2b﹣3ba2=0,C正确;D.5a2﹣4a2=a2,D错误.18.【答题】计算3a2﹣a2的结果是()A. 4a2B. 3a2C. 2a2D. 3【答案】C【分析】本题考查合并同类项.合并同类项的法则:系数相加减,字母及其字母的指数不变.【解答】3a2﹣a2=2a2.19.【答题】计算:5x﹣3x=()A. 2xB. 2x2C. ﹣2xD. ﹣2【答案】A【分析】本题考查合并同类项.合并同类项的法则:系数相加减,字母及其字母的指数不变.【解答】5x﹣3x=2x.20.【答题】计算2a2+a2,结果正确的是()A. 2a4B. 2a2C. 3a4D. 3a2【答案】D【分析】本题考查合并同类项.合并同类项的法则:系数相加减,字母及其字母的指数不变.【解答】2a2+a2=3a2.。

初中数学同步 7年级上册 第7讲 同类项、合并同类项以及去括号法则(教师版含解析)

初中数学同步 7年级上册 第7讲 同类项、合并同类项以及去括号法则(教师版含解析)

第7讲小节同类项、合并同类项以及去括号法则1.掌握同类项概念;2.能够根据合并同类项法则进行整式的加减;3.掌握去括号法则。

知识点01 同类项定义:两个单项式中所含字母相同,且相同字母的次数相同;任何常数项都是同类项;1.下列各单项式中,与﹣2mn2是同类项的是()A.5mn B.2n2C.3m2n D.mn2【解答】解:A、5mn与﹣2mn2所含字母相同,相同字母的指数不相同,不是同类项,故此选项不符合题意;B、2n2与﹣2mn2所含字母不相同,不是同类项,故此选项不符合题意;C、3m2n与﹣2mn2所含字母相同,相同字母的指数不相同,不是同类项,故此选项不符合题意;D、mn2与﹣2mn2所含字母相同,相同字母的指数也相同,是同类项,故此选项符合题意.故选:D.2.若单项式﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=3,n=0D.m=1,n=3【解答】解:因为﹣2x6y与5x2m y n是同类项,所以2m=6,n=1,解得m=3,n=1,故选:B.3.若与是同类项,则a+b=()A.5B.1C.﹣5D.4【解答】解:∵x a y3与x2y b是同类项,∴a=2,b=3,∴a+b=2+3=5.故选:A.4.若2x4y n与﹣5x m y2是同类项,则m n=16.【解答】解:∵2x4y n与﹣5x m y2是同类项,∴m=4,n=2,∴m n=42=16,故答案为:16.5.若3x m y与﹣5x2y n是同类项,则m+n=3.【解答】解:∵3x m y与﹣5x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故答案为:3.6.已知多项式的次数是a,单项式﹣2x3y b与单项式是同类项.(1)将多项式按y的降幂排列.(2)求代数式c2﹣4ab的值.【解答】解:(1)将多项式按y的降幂排列为:;(2)∵多项式是六次四项式,∴a=6,∵单项式﹣2x3y b与单项式是同类项,∴b=1,c=3,∴c2﹣4ab=32﹣4×6×1=9﹣24=﹣15.知识点02 合并同类项法则:同类项的系数相加减,字母和字母的指数不变7.下列单项式中,可以与x2y3合并同类项的是()A.x3y2B.C.3x2y D.2x2y3z【解答】解:A、x3y2与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;B、与x2y3,所含字母相同,相同字母的指数相同,是同类项,能合并,故本选项符合题意;C、x2y与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;D、2x2y3z与x2y3,所含字母不尽相同,不是同类项,所以不能合并,故本选项不合题意;故选:B.8.计算a+2a结果正确的是()A.﹣a B.3a C.2a2D.3a2【解答】解:a+2a=3a,故选:B.9.下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x6【解答】解:A.5xy2﹣3y2x=2xy2,此选项正确;B.4a2b2与﹣5ab不是同类项,无法计算,此选项错误;C.7m2n与﹣7mn2不是同类项,无法计算,此选项错误;D.2x2与3x4不是同类项,无法计算,此选项错误;故选:A.10.计算:﹣2x+3x=x.【解答】解:﹣2x+3x=(﹣2+3)x=x.故答案为:x.11.若单项式与3x5y n+1的和仍是单项式,则mn=12.【解答】解:∵单项式与3x5y n+1的和仍是单项式,∴单项式与3x5y n+1是同类项,∴2m﹣3=5,n+1=4,解得:m=4,n=3,∴mn=3×4=12,故答案为:12.12.已知多项式6x2﹣2mxy﹣2y2+4xy﹣5x+2化简后的结果中不含xy项.(1)求m的值;(2)求代数式﹣m3﹣2m2﹣m+1﹣m3﹣m+2m2+5的值.【解答】解:(1)由题意得﹣2m+4=0,解得m=2.(2)﹣m3﹣2m2﹣m+1﹣m3﹣m+2m2+5=﹣2m3﹣2m+6,将m=2代入,则原式=﹣2×8﹣2×2+6=﹣14.知识点03 去括号及整式的加减1.去括号法则:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。

七年级数学上册《去括号》同步练习题(附答案)

七年级数学上册《去括号》同步练习题(附答案)

七年级数学上册《去括号》同步练习题(附答案)课前练习一、知识回顾1、所含字母相同,并且相同字母的指数也相同的项叫做__________.把多项式中的同类项合并成一项,叫做____________.合并同类项后,所得项的系数是合并前各同类项的系数的______,且字母连同它的指数_________.二、学习新知识例12. 学校图书馆内起初有a位同学,后来某年级组织阅读,第一批来了b位同学,第二批来了c位同学,则图书馆内共有______________位同学.我们还可以这样理解:后来两批一共来了________位同学,因而,图书馆内共有_____________位同学.由于________和________均表示同一个量,于是得到:a+(b+c)=a+b+c例23. 若学校图书馆内原有a位同学,后来有些同学因上课要离开,第一批走了b位同学,第二批又走了c位同学,那么可以得到:____________.4. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.三、课前小练习5. 下列去括号中,正确的是()A. a2-(2a-1)=a2-2a-1B. a2+(-2a-3)=a2-2a+3C. 3a-[5b-(2c-1)]=3a-5b+2c-1D. -(a+b)+(c-d)=-a-b-c+d6. 下列各式中,与a-b-c的值不相等的是()A. a-(b+c)B. a-(b-c)C. (a-b)+(-c)D. (-c)+(-b+a)7. 已知a−b=−3,c+d=2,那么(b+c)−(a−d)的值为()B. 5C. -1D. 1A. 58. 去括号:(1)-(2m-3);(2)n-3(4-2m);(3)16a-8(3b+4c);(4)(2x2+x)−[4x2−(3x2−x)]课前练习参考答案1. ①. 同类项②. 合并同类项③. 和④. 不变2. ①. a+b+c②. b+c③. a+(b+c)④. a+(b+c)⑤. a+b+c3.a-(b+c)=a-b-c4. ①. 相同②. 相反【解析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,故答案为相同,相反.5.C【解析】根据添括号的法则,即可作出判断.【详解】A. a2-(2a-1)=a2-2a+1,故错误;B. a2+(-2a-3)=a2-2a-3,故错误;C. 3a-[5b-(2c-1)]= 3a-[5b-2c+1]=3a-5b+2c-1 ,正确;D. -(a+b)+(c-d)=-a-b+c-d,故错误;故选:C.6.B7.B【解析】先将代数式(b+c)−(a−d)化成只含有(a-b)和(c+d)的形式,最后代入求值即可.【详解】解:∵a−b=−3,c+d=2∴(b+c)−(a−d)=b+c−a+d=−(a−b)+(c+d)=−(−3)+2=3+2=5.故答案为B.8.(1)-2m+3;(2)n-12+6m;(3)16a-24b-32c;(4)2x【详解】(1)原式=-2m+3;(2)原式=n-12+6m;(3)原式=16a-24b-32c;(4)原式=(2x2+x)−(4x2−3x2+x)=2x2+x−(x2+x)=2x2+x−x2−x=2x课堂练习知识点1 去括号1.下列去括号正确的是( )A .﹣(a +b ﹣c )=a +b ﹣cB .﹣2(a +b ﹣3c )=﹣2a ﹣2b +6cC .﹣(﹣a ﹣b ﹣c )=﹣a +b +cD .﹣(a ﹣b ﹣c )=﹣a +b ﹣c2.式子a −(b −c +d )去括号后得___________.3.计算(1﹣2a )﹣(2﹣2a )=___.知识点2 添括号4.不改变多项式3223324b ab a b a -+-的值,把后三项放在前面是“—”号的括号中,正确的是()A .3b 3−(2ab 2−4a 2b +a 3)B .3b 3−(2ab 2+4a 2b +a 3)C .3b 3−(−2ab 2+4a 2b −a 3)D .3b 3−(2ab 2+4a 2b −a 3)5.添括号:(1)−9a 2+16b 2=−(________);(2)b −a +3(a −b)2=−(________)+3(a −b)2.6.下列各式中,去括号或添括号正确的是( )A .a 2−(−b +c)=a 2−b +cB .−2x −t −a +1=−(2x −t)+(a −1)C .3[5(21)]3521x x x x x x ---=--+D .321(321)a x y a x y -+-=+-+-课堂练习7.下列去括号正确的是( )A .(2)2a b c a b c --=--B .(2m +n)−3(p −1)=2m +n +3p −1C .−(m +n)+(x −y)=−m −n +x −yD .a −(3x −y +z)=a −3x −y −z8.下列选项中,等式成立的是( )A .a −b −c −d =a −(b +c −d)B .2x +3y −4z =2x −(−3y +4z)C .3x −2y +4z =3x −2(y −4z)D .3m −n +2t =−(3m +n −2t)9.已知a 2+3a =1,则代数式2a 2+6a −3的值为( )A .−1B .0C .1D .210.化简:(1)3a 2+2a −4a 2−7a ;(2)13(9x −3)+2(x +1).11.已知|a +4|+(b ﹣2)2=0,数轴上A ,B 两点所对应的数分别是a 和b ,(1)填空:a = ,b = ;(2)化简求值2a 2b +3ab 2−2(−a 2b +3ab 2−2)+7ab 2.课堂练习参考答案1.B【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.2.a−b+c−d【分析】先去括号,再合并同类项即可得出答.【详解】解:a−(b−c+d)=a-b+c-d,故答案为:a-b+c-d.3.﹣1.【解析】原式去括号合并即可得到结果.【详解】原式=1﹣2a﹣2+2a=﹣1,故答案为﹣1.4.A【分析】根据添括号法则来具体分析.【详解】解:3b3-2ab2+4a2b-a3=3b3-(2ab2-4a2b+a3);故选:A.5.9a2−16b2a−b【分析】(1)(2)利用添括号法则计算得出答案.【详解】解:(1)−9a2+16b2=−(9a2−16b2),(2)b−a+3(a−b)2=−(a−b)+3(a−b)2,故答案为:(1)9a2−16b2;(2)a−b.6.D【分析】利用去括号法则和添括号法则即可作出判断.【详解】解:A、a2−(−b+c)=a2+b−c,故错误;B、−2x−t−a+1=−(2x+t)−(a−1),故错误;C、3x−[5x−(2x−1)]=3x−5x+2x−1,故错误;D 、321(321)a x y a x y -+-=+-+-,故正确;故选:D .7.C【分析】利用去括号添括号法则计算.根据去括号时,前面是负号的括号里的每项符号都改变,前面是正号的符号不变.【详解】解:A 、a -(2b -c )=a -2b +c ,故选项错误;B 、(2m +n )-3(p -1)=2m +n -3p +3,故选项错误;C 、正确;D 、a -(3x -y +z )=a -3x +y -z ,故选项错误.故选:C .8.B【分析】利用添括号的法则求解即可.【详解】解:A 、a −b −c −d =a −(b +c +d),故错误;B 、2x +3y −4z =2x −(−3y +4z),故正确;C 、3x −2y +4z =3x −2(y −2z),故错误;D 、3m −n +2t =−(−3m +n −2t),故错误;故选:B .9.A【分析】先化简原式,再整体代入求值即可.【详解】原式=2(a 2+3a )−3,将 a 2+3a =1代入,得原式=2×1−3=−1,故选:A .10.(1)−a 2−5a ;(2)51x +【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解.【详解】解:(1)3a 2+2a −4a 2−7a=−a 2−5a ;(2)13(9x −3)+2(x +1)=3x −1+2x +2=51x +.11.(1)-4,2;(2)4a 2b +4ab 2+4,68.【分析】(1)直接利用绝对值及完全平方式的非负性求解即可;(2)先化简整式,再代入(1)的结论即可.【详解】(1)根据绝对值及完全平方式的非负性得:a +4=0,b −2=0,∴a =−4,b =2;(2)原式=2a 2b +3ab 2+2a 2b −6ab 2+4+7ab 2=4a 2b +4ab 2+4,将a =−4,b =2代入得:原式=4×(−4)2×2+4×(−4)×22+4=128−64+4=68.课后练习1.下列等式恒成立的是( )A .7x −2 =5B .m +n −2=m −(−n −2)C .x −2(y −1)=x −2y +1D .2x −3(13x −1)=x +3 2.要使等式4a −2b −c +3d =4a −( )成立,括号内应填上的项为A .2a −c +3dB .2b −c −3dC .2b +c −3dD .2b +c +3d3.下列变形正确的是( )A .−(a +2)=a −2B .−12(2a −1)=−2a +1C .−a +1=−(a −1)D .1−a =−(a +1)4.三个连续的奇数,中间的一个是2n +1,则三个数的和为( )A .6n −6B .3n +6C .66n +D .63n + 5.已知实数a ,b ,c 在数箱正的位置如图所示,则代数式a a b c a b c -++-++=( )A .2c −aB .2a −2bC .a -D .a6.去括号:a -(-2b +c )=____.添括号:-x -1=-____.7.计算:2a 2−(a 2+2)=__________.8.小明在计算一个整式加上(xy ﹣2yz )时所得答案是2yz+2xy ,那么这个整式是______.9.已知下面5个式子:① x 2-x +1,② m 2n +mn -1,③x 4+1x +2, ④ 5-x 2, ⑤ -x 2. 回答下列问题:(1)上面5个式子中有 个多项式,次数最高的多项式为 (填序号);(2)选择2个二次多项式..运算......,并进行加法10.化简:(1)(4x2y﹣6xy2)﹣(3xy2﹣5x2y);(2)2(2x﹣7y)﹣3(3x﹣10y).11.(1)化简:−(x2−2xy−y2)−2(5x2−2xy−3y2).(2)若关于x的多项式(a−b)x4+(a−2)x3+(b−1)x2−3ax+3中不含x3和2x项,试求当x=−1时,这个多项式的值.12.已知A=2x2+xy+3y−1,B=x2−xy.(1)若A−2B的值与y的值无关,求x的值.(2)若A−mB−3x的值与x的值无关,求y的值.13.某水果批发市场苹果的价格如下表:千克(x超过20千克但不超过40千克)需要付费_______元(用含x的式子表示)(2)小强分两次共买100千克,第二次购买的数量多于第一次购买数量,且第一次购买的数量为a千克,请问两次购买水果共需要付费多少元?(用含a的式子表示)课后练习参考答案1.D【分析】根据合并同类项,添括号法则,去括号合并同类项的运算法则逐一进行计算,再判断.【详解】A:7x−2 =5x,原计算错误,故本选项不符合题意;B:m+n−2=m−(−n+2),原计算错误,故本选项不符合题意;C:x−2(y−1)=x−2y+2,原计算错误,故本选项不符合题意;x−1)=x+3,原计算正确,故本选项符合题意.D:2x−3(132.C【分析】根据添括号法则解答即可.【详解】解:根据添括号的法则可知,原式=4a-(2b+c-3d),故选:C.3.C【分析】根据去括号和添括号法则解答.【详解】A、原式=−a−2,故本选项变形错误.,故本选项变形错误.B、原式=−a+12C、原式=−(a−1),故本选项变形正确.D、原式=−(a−1),故本选项变形错误.故选:C.4.D【分析】三个连续的奇数,它们之间相隔的数为2,分别表示这三个奇数,列式化简即可.【详解】解:∵中间的一个是2n+1,∴第一个为2n-1,最后一个为2n+3,则三个数的和为(2n-1)+(2n+1)+(2n+3)=6n+3.故选:D.5.C【分析】首先利用数轴得出a+b<0,c-a>0,b+c<0,进而利用绝对值的性质化简求出即可.【详解】解:由数轴可得:b<a<0<c,∴a+b<0,c-a>0,b+c<0,∴|a|−|a+b|+|c−a|+|b+c|=−a+(a+b)+(c−a)−(b+c)=−a+a+b+c−a−b−c=a故选C.6.a+2b-c(x+1)【分析】根据去添括号法则:如果括号前为减号,去掉括号后,括号里面的所有项的符号改变;反之如果括号前为加号,去掉括号后,括号里面的所有项的符号不变;如果添括号,括号前为减号,添括号后里面的所有项的符号改变,反之括号前为加号,添括号里面的所有项的符号不变判断即可.【详解】a-(-2b+c)=a+2b-c-x-1=-(1+x)故答案为:a+2b-c;(x+1)7.a2−2【分析】先去括号,再合并同类项,即可求解.【详解】解:原式=2a2−a2−2=a2−2,故答案是:a2−2.8.4yz+xy【分析】利用和减去(xy﹣2yz),运用去括号,合并同类项即可得到正确的结果.【详解】解:由题意得:2yz+2xy-(xy﹣2yz)=2yz+2xy-xy+2yz=4yz+xy故答案为:4yz+xy9.(1)3,②;(2)−x+6【分析】(1)根据多项式的概念和次数定义进行解答即可;(2)根据整式的加减法运算法则进行计算即可.【详解】解:(1)①是二次多项式,②是三次多项式,④二次多项式,③是分式,⑤是单项式,故答案为:3,②;(2)选择多项式①和④相加,得(x2−x+1)+(5−x2)=x2−x+1+5−x2=−x+6.10.(1)9x2y﹣9xy2;(2)﹣5x+16y【分析】(1)直接去括号,再合并同类项得出答案;(2)按照去括号,合并同类项的法则计算即可.【详解】解:(1)(4x2y﹣6xy2)﹣(3xy2﹣5x2y)=4x2y﹣6xy2﹣3xy2+5x2y=9x2y﹣9xy2;(2)2(2x﹣7y)﹣3(3x﹣10y)=4x﹣14y﹣9x+30y=﹣5x+16y.11.(1)−11x2+6xy+7y2;(2)10【分析】(1)先去括号,再合并同类项,即可化简;(2)由题意可得a-2=0,b-1=0,求得a,b的值,进而确定多项式,再代入求值,即可求解.【详解】解:(1)原式=−x2+2xy+y2−10x2+4xy+6y2=−11x2+6xy+7y2;(2)∵关于x的多项式(a−b)x4+(a−2)x3+(b−1)x2−3ax+3中不含x3和2x项,∴a-2=0,b-1=0,即:a=2,b=1,∴原式=x4−6x+3,当x=−1时,原式=(−1)4−6×(−1)+3=10.12.(1)x的值为−1;(2)y的值为1.【分析】(1)将A,B代入A-2B,再去括号,再由题意可得x+1=0,求解即可;(2)将A,B代入A−mB−3x,再去括号,再由题意可得2−m=0,y+my−3=0,求解即可;【详解】解:(1)∵A=2x2+xy+3y−1,B=x2−xy,∴A-2B=(2x2+xy+3y−1)−2(x2−xy)=2x2+xy+3y−1−2x2+2xy=3xy+3y−1=3(x+1)y−1,∵A-2B的值与y的值无关,∴x+1=0,∴x=−1;∴x的值为−1;(2)∵A=2x2+xy+3y−1,B=x2−xy,∴A−mB−3x=(2x2+xy+3y−1)−m(x2−xy)−3x=2x2+xy+3y−1−mx2+mxy−3x=(2−m)x2+(y+my−3)x+3y−1∵A−mB−3x的值与x的值无关,∴2−m=0,y+my−3=0,∴m=2,y=1;∴y的值为1.13.(1)70,6x+20;(2)当a≤20时,2a+560(元);当20<a≤40时,a+580(元);当40<a<50时,620(元)【分析】(1)图中可以知道:10千克在“不超过20千克的总分”按7元/千克收费;x超过20千克但不超过40千克,前面的20千克按7元/千克来收费,后面多余的(x-20)千克按6元/千克来收费,最后再把2个费用相加.(2)“小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量”可以知道第一次购买的数量要小于50千克;由于a的取值范围不确定,需要用分类讨论的思想进行解答,当a≤20时,分别算第一次和第二次的总费用;当20<a≤40时,注意第一次购买有2段费用,第二次购买有3段费用,然后再相加;当40<a<50时,注意第一次购买有3段费用,第二次购买也有3段费用,然后再相加;记得最后结果要化为最简的形式.【详解】解:(1)∵10千克在“不超过20千克的总分”按7元/千克收费,∴10×7=70元;∵过20千克但不超过40千克,前面的20千克按7元/千克来收费,后面多余的(x-20)千克按6元/千克来收费,∴20×7+6(x-20)=(6x+20)元故答案为:70,6x+20;(2)∵再次共购买100千克,第二次购买的数量多于第一次购买的数量,∴a<50,当a≤20时,需要付费为:7a+20×7+20×6+5×(100-a-40)=2a+560(元);当20<a≤40时,需要付费为:7×20+6×(a-20)+20×7+20×6+5×(100-a-40)=a+580(元);当40<a<50时,需要付费为:7×20+6×20+5×(a-40)+20×7+20×6+5×(100-a-40)=620(元).第11页共11页。

最新七年级上册数学合并同类项

最新七年级上册数学合并同类项

合并同类项一、典型例题与练习: 例1、已知:23x 3my 3 与 -1 x 6y n+1 是同类项,求 m 、n 的值 .练习:填空:1.如果2a 2b n+1与-4a m b 3是同类项,求 m 、n 的值 .2.若单项式22m x y 与313n x y -是同类项,求m n +的值。

3.已知x m y 2与-3x 3y n 是同类项,则m= ,n= .二、合并同类项:1、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的_____,且字母部分________。

2、注意问题:(1)若两个同类项的系数互为相反数,则两项的和等于_______ ;(2)多项式中只有_______项才能合并,不是________不能合并。

(3)通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列, 如:-4x2+5x+5或写5+5x-4x2。

例2:合并同类项 4x 2+2x+7+3x-8x 2-2练习、1.若5xy 2+axy 2=-2xy 2,则a=___;2.在6xy-3x 2-4 x 2y-5y x 2+ x 2中没有同类项的项是____;3、合并下列各式的同类项:(1)3x 3+ x 3; (2)xy 2 -xy 2。

(3) 6xy-10x 2-5yx+7x 2 +5x(4) 3x-8x-9x (5) 5a 2+2ab-4a 2-4ab (6) 2x-7y-5x+11y-1例3:(1)求多项式2x 2-5x+ x 2+4x-3 x 2-2的值,其中x= 5.(2)求多项式3a+abc- c 2-3a+ c 2的值,其中a=-1 ,b=2,c=-3.练习:2、求多项式2x 2-5x +x 2+4x -3x 2-2的值,其中x=21;三、巩固练习, 一、填空题1.“x 的平方与2的差”用代数式表示为 .2.单项式853ab -的系数是 ___,次数是 ___;当5,2a b ==-时,这个代数式的是 . 3.多项式34232-+x x 是 次 项式,常数项是 .4.单项式25x y 、223x y 、24xy -的和为 . 5.若32115k x y +与3873x y -是同类项,则k = . 6.已知单项式32b a m 与-3214-n b a 的和是单项式,那么m = ,n = . 8.已知轮船在逆水中前进的速度是m 千米/时,水流的速度是2千米/时,则这轮船在静水中航行的速度是 千米/时.9.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是 .10.若53<<a ,则_________35=-+-a a .四、选择 1、下列说法正确的是 ( )A . x 的指数是0 B. x 的系数是0 C . -3 是一次单项式 D. -23ab 的系数是- 232、代数式a 2、-xyz 、24ab 、-x 、b a 、0、a 2+b 2、-0.2中单项式的个数是( ) A. 4 B.5 C.6 D. 73、下列结论正确的是( )A.整式是多项式B. 不是多项式就不是整式 C .多项式是整式 D. 整式是等式4、如果一个多项式的次数是4次,那么这个多项式的任何一项的次数( )A .都小于4B .都等于4 C. 都不大于4 D. 都不小于45、下列各组式子是同类项的是( )A. 3x 2y 与-3xy 2B. 3xy 与-2yxC. 2x 与2x 2D. 5xy 与5yz6、与代数式1-y +y 2-y 3相等的式子是( )A . 1-(y +y 2-y 3)B . 1-(y -y 2-y 3)C . 1-(y -y 2+y 3) D. 1-(-y +y 2-y 3)7、下列各对不是同类项的是( )A -3x2y 与2x2yB -2xy2与 3x2yC -5x2y 与3yx2D 3mn2与2mn28、合并同类项正确的是( )A 4a+b=5abB 6xy2-6y2x=0C 6x2-4x2=2D 3x2+2x3=5x5五、学习去括号法则1、判断下列算式是否成立:(1)10+(5-3)=10+5-3 ( ) (2)10-(5-3)=10-5+3( )(3)6+(t-x )=6+t-x ( ) (4) 6-(t-x )=6-t+x ( )2、总结去括号时符号变化的规律:(1) 如果括号外的因数是正数,去括号后原来括号内各项的符号______,(2)如果括号外的因数是负数,去括号后原来括号内各项的符号____________,六、例题与练习例1:化简下列各式(1)8a+2b+(5a -b ); (2)(5a -3b )-3(a 2-2b ).练习 化简 : (1) 2(x+y) (2) -3(2x -3y) (3) -0.5(3x -2y +1)(4) (2x ―3y)+(5x+4y); (5) (8a ―7b)―(4a ―5b)(6) 3(5x+4)―(3x ―5) (7) (8x ―3y)―(4x+3y ―z)+2z例2、求整式x 2―7x ―2与―2x 2+4x ―1的差与和。

合并同类项- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

合并同类项- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

专题4.5 合并同类项模块一:知识清单同类项:所含字母相同,并且相同字母的指数也相同的项(即仅系数不同或系数也相同的项)。

例:5abc 2:与3abc 2 3abc 与3abc 。

判断同类项需要同时满足2个条件:①所含字母相同;②相同字母的指数相同 合并同类项:将多项式中的同类项合并成一项叫做合并同类项; 同类项合并的计算方法:系数对应向加减,字母及指数不变。

去(添)括号法则1)括号前是“+”,去括号后,括号内的符号不变 2)括号前是“-”,去括号后,括号内的符号全部要变号。

3)括号前有系数的,去括号后,括号内所有因素都要乘此系数。

注意:去多重括号,可以先去大括号,在去中括号,后去小括号;也可以先从最内层开始,先去小括号,在去中括号,最后去大括号。

可依据简易程度,选择合适顺序。

模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·河北·平泉市教育局教研室七年级期末)与14ab -是同类项的为( )A .2abcB .22abC .abD .12【答案】C【分析】根据同类项的定义进行判断即可.【详解】A.14ab -与2abc 不是同类项,故A 错误,不符合题意;B.14ab -与22ab 不是同类项,故B 错误,不符合题意;C.14ab -与ab 是同类项,故C 正确,符合题意;D.14ab -与12不是同类项,故D 错误,不符合题意.故选:C .【点睛】本题主要考查了同类项的定义,熟记同类项的定义,含有的字母相同,相同字母的指数也相同的单项式叫做同类项.2.(2022·内蒙古赤峰·一模)下列代数式中,互为同类项的是( )A .22a b -与23abB .2218x y 与2292x y +C .()n a b +与()3a b +D .2xy -与2y x【答案】D【分析】根据同类项的定义逐项进行判断即可.【详解】A.22a b -与23ab 相同字母的指数不同,因此不是同类项,故A 错误; B.2292x y +是多项式,所以2218x y 与2292x y +不是同类项,故B 错误;C.()n a b +与3()a b +是多项式,且含有的字母也不同,因此它们不是同类项,故C 错误;D.−xy 2与y 2x 含有的字母相同,相同字母的指数也相同,因此它们是同类项,故D 正确.故选:D . 【点睛】本题主要考查了同类项的定义,熟练掌握同类项的定义,含有字母相同,相同字母的指数也相同的单项式为同类项,是解题的关键.3.(2022·河南洛阳市·七年级期末)在下列单项式中:①26x ;②23xy ; ③20.37y x -; ④214y -;⑤213x y ;⑥332⨯,说法正确的是( ) A .②③⑤是同类项 B .②与③是同类项 C .②与⑤是同类项 D .①④⑥是同类项 【答案】B【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可判断. 【详解】解:A 、②③是同类项,⑤与②③不是同类项,故不符合题意; B 、②与③是同类项,故符合题意;C 、②和⑤所含字母相同,但相同字母的指数不相同,不是同类项,故不符合题意;D 、①④⑥所含字母不同,不是同类项.故不符合题意;故选:B .【点睛】本题考查了同类项的判定,掌握同类项的定义,所含字母相同,且相同字母的指数相等,是判断同类项的关键.4.(2022·湖南长沙·七年级期末)下列各题中去括号正确的是( ) A .()531531x x -+=-- B .1242414x x ⎛⎫-+=-+ ⎪⎝⎭C .1241244x x ⎛⎫-+=-- ⎪⎝⎭D .()()22312433x y x y ---=---【答案】C【分析】根据去括号法则即可求出答案.【详解】解:A .()531533x x -+=--,故A 不符合题意. B .1242414x x ⎛⎫-+=-- ⎪⎝⎭,故B 不符合题意.C .1241244x x ⎛⎫-+=-- ⎪⎝⎭,故C 符合题意.D .()()22312433x y x y ---=--+,故D 不符合题意.故选∶C .【点睛】本题考查去括号,解题的关键是正确运用去括号法则,本题属于基础题型.5.(2022·山西临汾·七年级期末)不改变代数式22a a b c +-+的值,下列添括号错误的是( ) A .2(2)a a b c +-+ B .2(2)a a b c --+- C .2(2)a a b c --+D .22()a a b c ++-+【答案】C【分析】将各选项代数式去括号,再与已知代数式比较即可.【详解】解:A 、a 2+(2a -b +c )=a 2+2a -b +c ,正确,此选项不符合题意; B 、a 2-(-2a +b -c )=a 2+2a -b +c ,正确,此选项不符合题意; C 、a 2-(2a -b +c )=a 2-2a +b -c ,错误,此选项符合题意;D 、 a 2+2a +(-b +c )=a 2+2a -b +c ,正确,此选项不符合题意;故选:C .【点睛】本题主要考查整式的加减,将各选项去括号,与题干整式比较是否一致是解题的关键. 6.(2022·湖北武汉·七年级期末)计算:68ab ab ab -++=( ) A .ab B .3abC .4abD .6ab【答案】B【分析】利用合并同类项即可得解. 【详解】原式=(-6+1+8)ab =3ab ,故选:B .【点睛】本题考查了使用合并同类项对代数式进行化简计算的知识,掌握同类项的概念是解答本题的关键.7.(2022·甘肃武威·模拟预测)下列运算正确的是( ) A .2ab +3ba =5ab B .2a a a +=C .5ab -2a =3bD .22770a b ab -=【答案】A【分析】利用合并同类项的方法进行判定即可.【详解】解:A 、2ab +3ba =5ab ,正确;B 、a +a =2a ,错误; C 、5ab 与-2a 不是同类项,不能合并,错误;D 、7a 2b 与−7ab 2不是同类项,不能合并,错误;故选择A .【点睛】本题考查合并同类项,掌握同类项的定义和合并同类项法则是解决问题的关键.8.(2022·浙江·七年级期末)把多项式2237256x x x x x -+--+-合并同类项后所得的结果是( ). A .二次三项式 B .二次二项式C .一次二项式D .单项式【答案】B【分析】先进行合并同类项,再判断多项式的次数与项数即可. 【解析】2237256x x x x x -+--+-221x =--.221x --最高次为2,项数为2,即为二次二项式.故选B .【点睛】本题考查了多项式的次数与项数,合并同类项,掌握多项式的系数与次数是解题的关键. 9.(2022·云南·七年级期末)若23x a b -与y a b -是同类项,则x y 的值是( ) A .1 B .2C .3D .4【答案】B【分析】利用同类项的特点得出2y =,1x =,代入x y 即可示解. 【详解】解:∵23x a b -与y a b -是同类项, ∴2y =,1x =,∴122x y ==.故选:B .【点睛】本题考查同类项,掌握同类项的定义是解题的关键.10.(2021·江苏南通·七年级期中)多项式x 2-3kxy -3y 2+6xy 不含xy 项,则k 的值为( ) A .0 B .-2C .2D .任意有理数【答案】C【分析】首先根据题意合并同类项为x 2+(6-3k )xy -3y 2,由题意可得出6-3k =0,解方程即可求出k 的值. 【详解】解:x 2-3kxy -3y 2+6xy = x 2+(6-3k )xy -3y 2, ∵多项式不含xy 项,∴6-3k =0,解得:k =2.故选:C .【点睛】此题考查了合并同类项,以及对多项式中项的概念的理解,解题的关键是根据题意得出xy 项的系数为0.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·天津·二模)计算222324a a a -+的结果等于______. 【答案】25a【分析】直接根据合并同类项法则进行计算即可.【详解】解:222324a a a -+=2(324)a -+=25a .故答案为:25a .【点睛】本题主要考查了合并同类项,熟练掌握运算法则是解答本题的关键.12.(2022·河北邢台·八年级阶段练习)在等号右边的横线上填空:2m ﹣n +1=2m ﹣( );3x +2y +1=3x ﹣( ).【答案】 ()1n - ()21y -- 【分析】根据加括号法则求解即可.【详解】解:2m ﹣n +1=2m ﹣()1n -,3x +2y +1=3x ﹣()21y --, 故答案为:()1n -;()21y --.【点睛】此题考查了有理数加减运算的加括号,解题的关键是熟练掌握加括号法则.13. (2022·绵阳市七年级期末)a ﹣b ﹣c +d =a ﹣b ﹣( )=a +( )=a ﹣( ). 【分析】根据添括号法则即可求解.【解答】解:a ﹣b ﹣c +d =a ﹣b ﹣(c ﹣d )=a +(﹣b ﹣c +d )=a ﹣(b +c ﹣d ). 故答案是:c ﹣d ,﹣b ﹣c +d ,b +c ﹣d .14.(2022·江苏七年级期中)关于x 的多项式222514x mx nx x x -++--+,它的值与x 的取值无关,则m n +=________. 【答案】3【分析】先合并同类项,再根据关于x 的多项式222514x mx nx x x -++--+的值与x 的取值无关,得出n -2=0,m -1=0,再求出m 和n 的值,代入计算即可.【详解】解:222514x mx nx x x -++--+=()()2211n x m x -+--∵多项式222514x mx nx x x -++--+的值与x 的取值无关, ∴n -2=0,m -1=0,∴m =1,n =2,∴m +n =3,故答案为:3【点睛】此题考查了整式的加减,关键是根据多项式的值与x 的取值无关,得出关于m ,n 的方程.15.(2022·辽宁锦州市·七年级期中)写出32xyz 的一个同类项:_____________.【答案】35xyz -(答案不唯一)【分析】根据同类项的定义分析,即可得到答案.【详解】32xyz 的一个同类项为:35xyz -故答案为:35xyz -(答案不唯一).【点睛】本题考查了同类项的知识,解题的关键是熟练掌握同类项的定义,从而完成求解. 16.(2022·湖南七年级期末)若多项式322321x x x -++与多项式3236x mx x +-相加后不含二次项,则m 的值为_______. 【答案】3.【分析】先进行整式相加,结果不含二次项说明二次项系数为0,据此列方程即可.【详解】解:3232322321(36)5(3)41x x x x mx x x m x x -++++-=+--+,结果不含二次项,则30m -=,解得,3m =,故答案为:3.【点睛】本题考查了多项式不含某项和整式加减以及一元一次方程的解法,解题关键是熟练运用整式加减进行计算,根据系数为0列方程. 17.(2022·浙江·七年级期中)已知abc >0,||b b=﹣1,|c |=c ,化简|a +b |﹣|a ﹣c |﹣|b ﹣c |=__. 【答案】﹣2c【分析】先根据已知条件确定a ,b ,c 的符号,再化简绝对值即可. 【解析】∵abc >0,1bb=-,c =c ,∴a <0,b <0,c >0, ∴a +b <0,a ﹣c <0,b ﹣c <0,∴a b +﹣a c -﹣b c -=﹣a ﹣b +a ﹣c +b ﹣c =﹣2c .故答案为:﹣2c .【点睛】本题考查绝对值化简,合并同类项法则,解题关键是根据已知条件判断绝对值内的式子的正负性.18.(2022·湖南永州·二模)如果233x y 与12m n x y +-的和仍是单项式,则()2n m -的值为______. 【答案】16【分析】根据题意可知233x y 与12m n x y +-是同类项,从而求出m 和n ,然后代入计算即可. 【详解】解:∵233x y 与12m n x y +-的和仍是单项式, ∴233x y 与12m n x y +-是同类项.∴m +1=2,n -2=3,∴m =1,n =5, ∴()22416n m -==,故答案为:16.【点睛】此题考查了合并同类项及单项式,掌握含有相同字母,相同字母的指数相同的单项式叫同类项是解决此题关键.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2022·全国·七年级)先去括号,再合并同类项:(1)6a 2﹣2ab ﹣2(3a 2-12ab ); (2)2(2a ﹣b )﹣[4b ﹣(﹣2a +b )]; (3)9a 3﹣[﹣6a 2+2(a 3-23a 2)]; (4)﹣[t ﹣(t 2﹣t ﹣3)﹣2]+(2t 2﹣3t +1). 【答案】(1)﹣ab (2)2a ﹣5b (3)7a 3+223a 2(4)3t 2﹣3t 【分析】(1)先去括号,再合并同类项即可; (2)先去小括号,再去中括号,然后合并同类项即可; (3)先去小括号,再去中括号,然后合并同类项即可; (4)先去小括号,再去中括号,然后合并同类项即可.(1)解:6a 2﹣2ab ﹣2(3a 2-12ab )=6a 2﹣2ab ﹣6a 2+ab =﹣ab ;(2)解:2(2a ﹣b )﹣[4b ﹣(﹣2a +b )] =4a ﹣2b ﹣4b ﹣2a +b =2a ﹣5b ;(3)解:9a 3﹣[﹣6a 2+2(a 3-23a 2)]=9a 3+6a 2﹣2a 3+43a 2=7a 3+223a 2; (4)解:2t ﹣[t ﹣(t 2﹣t ﹣3)﹣2]+(2t 2﹣3t +1) =2t ﹣t +t 2﹣t ﹣3+2+2t 2﹣3t +1 =3t 2﹣3t .【点睛】本题考查整式的加法,熟练掌握合并同类项法则与去括号法则是解题的关键. 20.(2022·新疆·乌鲁木齐八一中学七年级期中)计算(1)()()33223410310a b b a b b -+-+;(2)22135322x x x x ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦.【答案】(1)32243a b a b -;(2)2932x x --【分析】直接去括号,合并同类项即可,注意去括号的法则:括号前是“+”号,去括号和它前面的“+”号后,原括号里的各项符号都不改变;括号前是“-”号,去括号和它前面的“-”号后,原括号里的各项符号都要改变.【详解】(1)()()33223410310a b b a b b -+-+33223410310a b b a b b =--+32243a b a b =-(2)22135322x x x x ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦22135322x x x x =--++() 2293322x x x =-++()2293322x x x =---2932x x =--【点睛】本题考查代数式的化简,关键在熟练掌握去括号的法则,去括号是易错点. 21.(2022·山东泰安·期末)化简下列各式(1)22235a ab a ab ++-- (2)()22221232x y x x y x ⎛⎫ -⎪⎭-⎝+(3)2(27)3(25)a b b a --- (4)()2323123313313322m n m m n m -++---⎛⎫ ⎪⎝⎭【答案】(1)243a ab -++(2)222x y x -+(3)1920a b -(4)-1 【分析】(1)直接进行同类项的合并即可. (2)先去括号,然后进行同类项的合并. (3)先去括号,然后进行同类项的合并. (4)先去括号,然后进行同类项的合并. (1)原式=22252343a a ab ab a ab -+-+=-++ (2)原式=222222232x y x x y x x y x +-+-+= (3)原式=4146151920a b b a a b --+=-(4)原式=232312313m n m m n m ---++=--【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则. 22.(2022·广东江门·七年级期末)已知213a b x y -与23x y -是同类项. (1)请直接写出:a =______,b =______;(2)在(1)的条件下,求()()2222523425a b ab b a +--+的值.【答案】(1)1,−2(2)32【分析】(1)两个单项式为同类项,则字母相同,对应字母的指数也相同,据此可求得a 、b 的值; (2)先去括号再合并同类项,最后代入求值. (1)解:∵213a b x y -与23x y -是同类项, ∴2a =2,1−b =3, ∴a =1,b =−2; 故答案为:1,−2;(2)解:()()2222523425a b ab b a +--+=5a 2+6b 2-8ab -2b 2-5a 2 =4b 2-8ab ,当a =1,b =−2时,原式=4×(−2) 2-8×1×(−2)=16-(-16)=32.【点睛】本题考查整式的化简求值,同类项,解题的关键是掌握同类项的定义,整式的加减运算法则. 23.(2021·陕西咸阳·七年级期中)已知多项式22622452x mxy y xy x化简后的结果中不含xy项.(1)求m 的值;(2)求代数式32322125m m mm mm 的值.【答案】(1)2m =;(2)14-.【分析】(1)先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值; (2)由(1)得m =2,先化简合并同类项,然后代入m 的值计算即可. 【详解】解:(1)22622452x mxyy xyx, 22=6+42252x m xy y x由题意中不含xy 项,可得4-2m =0, ∴m =2; (2)32322125m m mm mm=3226m m .当m =2时,原式=322226 =14-.【点睛】本题考查了整式的加减,正确理解题意、熟练掌握合并同类项的法则是解题的关键. 24.(2021·吉林吉林市·九年级一模)某同学化简()()32a b a b +--时出现了错误,解答过程如下: 原式3322a b a b =+--(第一步) a b =+(第二步)(1)该同学解答过程从第______步开始出错,错误原因是__________________; (2)写出此题正确的解答过程.【答案】(1)一,去括号法则用错;(2)5a b +,解答过程见解析. 【分析】(1)根据去括号法则观察系数与符号本题变化即可确定答案; (2)正确去括号,在合并同类项即可.【详解】(1)由于第一步中2b 没变号,∴错误出现在第一步,去括号时没有准确变号, 故答案为:一,去括号法则用错;(2)原式3322a b a b =+-+,5a b =+.【点睛】本题考查利用乘法对加法分配律去括号问题,掌握去括号的方法与注意事项是解题关键.。

七年级数学上册合并同类项和去、添括号基础50题(原卷+解析)

七年级数学上册合并同类项和去、添括号基础50题(原卷+解析)

C. 8y − 6y = 2
D. 3a + 2b = 5ab
17.(2019 秋•和县期末)下列计算正确的是 ( )
A. 3a + b = 3ab
B. 3a − a = 2
C. 2a2 + 3a3 = 5a5
D. −a2b + 2a2b = a2b
18.(2019 秋•焦作期末)下列计算正确的是 ( )

2
12.(2019 秋•东湖区期末)已知 5xa+2c y4 与 −3x3 yb 是同类项,则 2a + 3b + 4c 的值是 .
13.(2018 秋•芙蓉区校级期中)当 n =
时,单项式 7x2 y2n+1 与 − 1 x2 y5 是同类项. 3
14.(2014 秋•嘉禾县校级期末)若单项式 1 a3bn+1 和 2a b 2m−1 3 是同类项,求 3m + n 的值. 3
3
A.2
B.3
C.4
D.5
3.(2020 春•张家港市期末)如果 1 a2b2 与 − 1 a b x+1 4x− y 是同类项,则 x 、y 的值分别是 (
)
5
4
A.
x
y
= =
1 2
B.
x
y
= =
2 2
C.
x
y
=1 =1
D.
x y
= =
2 3
4.(2019 秋•邗江区校级期末)下列各组代数式中,是同类项的是 ( )
15.(2017 秋•芷江县校级期中)如果单项式 2mxa y 与 −5nx2a−3 y(7a − 22)2015 的值.

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) (98)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案) (98)

人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案)解方程:2(x +1)12-(x -1)=2(x -1)12+(x +1) 【答案】x =4.【解析】【分析】先把(x+1)和(x-1)当做一个整体进行移项、合并同类项,然后再去括号解方程即可.【详解】移项,得2(x+1)12-(x+1)=2(x-1)12+(x-1), 合并同类项,得32(x+1)=52(x-1), 去括号,得32x+32=52x-52, 移项,得32x-52x=5322--, 合并同类项,得-x=-4,系数化为1,得x=4.【点睛】本题考查了解一元一次方程,根据方程的特点灵活选取解题的方法是关键.72.解下列方程:(1)212132x x +++= (2)0.430.20.5x x ---=1.6 【答案】(1) x=﹣2;(2) x=5.2.【解析】【分析】(1)根据解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1依次计算可得;(2)根据解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1依次计算可得.【详解】(1)去分母,得:2(2x+1)+6=3(x+2),去括号,得:4x+2+6=3x+6,移项,得:4x ﹣3x=6﹣2﹣6,合并同类项,得:x=﹣2;(2)去分母,得:5(x ﹣4)﹣2(x ﹣3)=1.6,去括号,得:5x ﹣20﹣2x+6=1.6,移项,得:5x ﹣2x=1.6+20﹣6,合并同类项,得:3x=15.6,系数化为1,得:x=5.2.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.73.解方程131148x x ---=. 【答案】x=-9【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】原方程可变为()()21318x x ---=,去括号,得:2x-2-3x+1=8,移项得,2x-3x=8+2-1,合并同类项,得,-x=9,解得9x =-.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.74.解方程(组): ①352x +=213x -. ①415323x y x y +=⎧⎨-=⎩【答案】①x =-175;①33x y =⎧⎨=⎩. 【解析】【分析】(1)根据去分母、去括号、移项、合并同类项、系数化为1解方程;(2)应用加减法×2+,可进一步求解.【详解】解:(1)去分母,得()3352(21)x x +=-,去括号,得91542x x +=-,移项,得94215x x -=--,合并同类项,得517x =-,系数化为1,得175x =-.(2)415323x y x y +=⎧⎨-=⎩①②, 由×2+,得11x=33解得x=3.把x=3代入①,得4×3+y=15,解得,y=3.所以方程组的解是:33x y =⎧⎨=⎩【点睛】本题考核知识点:(1)解一元一次方程;(2)解二元一次方程组.解题关键点:要牢记解方程和方程组的一般方法,按步骤求解.75.某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.【答案】152张【解析】【分析】设该人共有x 张邮票,则2000年以前的国内外发行的邮票数是14x ,2001年国内发行的是18x ,2002年国内发行的是119x ,根据题意列不等式求得x 的范围,然后根据x 一定是4,8,19的倍数即可确定x 的值.【详解】该人共有x 张邮票, 根据题意列方程得:14x+18x+119x >x-100, 解得:x <167391. ∵其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,∴x 一定是4,8,19的倍数,这三个数的最小公倍数是:152.故该人共有邮票约152张.【点睛】列方程解应用题的关键是正确找出题目中的不等关系,用代数式表示出不等关系中的各个部分,把列不等式的问题转化为列代数式的问题.76.老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的:4(21)13(2)x x -=-+……………… …① 84136x x -=--…………………… …①83164x x +=-+…………………… …①111x =-………………………………… ①111x =-………………………………… ① 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1)211163x x +-+= (2)2157146y y ---= 【答案】①(1)x=-3.4;(2)y=-0.25【分析】小明第①步去分母时出错;(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【详解】小明错在①;故答案为:①;(1)去括号得:9x+15=4x-2,移项合并得:5x=-17,解得:x=-3.4;(2)去分母得:3(2y-1)-2(5y-7)=12,去括号得:6y-3-10y+14=12,移项合并得:-4y=1,解得:y=-0.25.【点睛】此题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.77.已知等式2-++=是关于x的一元一次方程(即x未知),求a x ax(2)10这个方程的解.【答案】1x=-2【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a ,b 是常数且a ≠0).高于一次的项系数是0.据此可得出关于a 的方程,继而可得出a 的值.【详解】由一元一次方程的特点得a-2=0,解得:a=2;故原方程可化为2x+1=0,解得:x=−12. 【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不是0,特别容易忽视的一点就是系数不是0的条件,高于一次的项系数是0.78.解下列方程(1)76163x x +=-;(2)2(3)4(5)x x -=-+(3)758143x x -+-= (4)1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦ 【答案】(1)1x =;(2)13x =-;(3)6517-;(4)-513【解析】【分析】(1)移项合并后化系数为1即可.(2)先去括号,然后再进行移项合并.(3)按解一元一次方程的一般步骤进行解答即可.(4)此题比较麻烦,要根据步骤一步一步的进行.【详解】(1)解:移项合并同类项得,10x=10,系数化为得,x=1;(2)解:去括号得,6-2x=-4x-20,移项合并同类项得,2x=-26,系数化为1得,x=-13;(3)解:去分母得,3(x-7)-4(5x+8)=12,去括号得,3x-21-20x-32=12,移项合并同类项得,-17x=65,系数化为1得,x=−6517;(4)解:去括号得,2x-12x+14x-14=23x-23,去分母得,24x-6x+3x-3=8x-8,移项合并同类项得,13x=-5,系数化为1得,x=-513.【点睛】本题考查解一元一次方程的知识,题目难度不大,但是出错率很高,是失分率很高的一类题目,同学们要在按步骤解答的基础上更加细心的解答.79.解下列方程:(1)3x(7-x)=18-x(3x-15);(2)0.170.210.70.03x x --=. 【答案】(1)x=3(2)x=1417 【解析】【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤求解;(2)先根据分数的基本性质把分子、分母化整,再按照去分母,去括号,移项,合并同类项,系数化为1的步骤求解.【详解】(1)去括号,得21x-3x 2=18-3x 2+15x.移项、合并同类项,得6x=18,解得x=3.(2)将分母转化为整数,得101720=173x x -- 方程两边同乘21,得30x-7(17-20x)=21.去括号,得30x-119+140x=21.移项、合并同类项,得170x=140.系数化为1,得x=1417. 【点睛】本题考查了一元一次方程的解法,解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1. 去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号;去分母时,一是注意不要漏乘没有分母的项,二是去掉分母后把分子加括号.80.已知()2310a b -++=,代数式22b a m -+的值比12b a m -+多1,求m .【答案】0m =.【解析】【分析】先根据|a-3|+(b+1)2=0求出a ,b 的值,再根据代数式22b a m -+的值比12b −a +m 的值多1列出方程22b a m -+=12b −a +m +1,把a ,b 的值代入解出x 的值.【详解】∵|a-3|≥0,(b+1)2≥0,且|a-3|+(b+1)2=0,∴a-3=0且b+1=0,解得:a=3,b=-1. 由题意得:22b a m -+=12b −a +m +1, 即:513122m m -+--++=, 5522m m --=, 解得:m=0,∴m 的值为0.【点睛】考查了非负数的和为0,则非负数都为0.要掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为.注意移项要变号.。

沪教版(上海)七年级上册数学 9.5 合并同类项 同步练习(含答案)

沪教版(上海)七年级上册数学 9.5  合并同类项 同步练习(含答案)

9.5 合并同类项 同步练习一、单选题1.下列去括号中,正确的是 ( )A .-(1-3m)=-1-3mB .3x-(2y-1)=3x-2y+1C .-(a+b)-2c=-a-b+2cD .m 2+(-1-2m)=m 2-1+2m 2.下列各式计算正确的是( )A .3a-a=3B .2a+b=2abC .2a+a=22aD .–ab+2ab=ab 3.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8 4.下列计算正确的是( )A 3=±B 1-C .||0a a -=D .43a a -= 5.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5 B .6 C .7 D .8 6.下列计算正确的是( )A .224x x x +=B .2352x x x +=C .3x ﹣2x=1D .2222x y x y x y -=- 7.若-2x 2m+1y 6与3x 3m-1y 10+4n 是同类项,则m 、n 的值分别为( ) A .2,-1 B .-2,1 C .-1,2 D .-2,-1 8.下列计算中,结果是a 7的是( )A .a 3﹣a 4B .a 3•a 4C .a 3+a 4D .a 3÷a 4 9.下列各式正确的是( )A .()223232a a b c a a b c --+=--+B .()222121x x x x --=-+C .()232232m n a m n a -++-=-++-D .()22624624a k m a k m +-++=-++ 10.合并同类项m-3m 5m-7m -2019m ++⋅⋅⋅的结果为( )A .0B .-1009mC .-1010mD .以上答案都不对二、填空题11.若312a x y 与22b x y -的和仍为单项式,则-a b 的值为__________. 12.若25m n a b 与569a b -是同类项,则m n +的值是____.13.若33a x y 和2b x y -是同类项,则这两个同类项之和为_________ 14.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________. 15.如果ax m -1y 3+bx 2n y n =0,那么mn =__.三、解答题16.已知单项式2a b a b x y +-与43x y 是同类项,求2a b +的值.17.先合并同类项,再求值.(1)222243245x y xy x y ++--,其中2x =,1y =-.(2)22289726x x x x -+-+-,其中1x =-.18.张老师给学生出了一道题:当20192020a b ==-,时,求: 3323323(763)(363103)a a b a b a a b a b a -+---++-的值.题目出完后,小明说:“老师给的条件20192020a b ==-,是多余的.” 小红说:“不给这两个条件,就不能求出结果,所以不是多余的.” 你认为他们谁说的有道理?为什么?参考答案1.B2.D3.D4.B5.B6.D7.A8.B9.D10.C11.-112.813.232x y14.315.2116.517.(1)222y xy -+,-6;(2 ) 21x x -+,318.因为代数式与a 、b 的取值无关,故小明说得对。

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (115)

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (115)

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) 阅读下面的解题过程:解方程:52x =.解:(1)当50x ≥时,原方程可化为一元一次方程52x =,解得25x =; (2)当50x <时,原方程可化为一元一次方程52x -=,解得25x =-. 请同学们仿照上面例题的解法,解方程:(1)21x -=(2)31210x --=.【答案】(1)x=1和x=3;(2)x=5和x=-3.【解析】试题分析:(1)分别根据x -2≥0和x -2<0两种情况将绝对值去掉,转化成一元一次方程,从而分别求出方程的解;(2)分别根据x -1≥0和x -1<0两种情况将绝对值去掉,转化成一元一次方程,从而分别求出方程的解.试题解析:(1)①当x -2≥0时,原方程可化为一元一次方程x -2=1 解得:x=3②当x -2<0时,原方程可化为一元一次方2-x=1解得:x=1综上所述,原方程的解为:x=1和x=3(2)①当x -1≥0时,原方程可化为3(x -1)-2=10解得:x=5②当x -1<0时,原方程可化为3(1-x )-2=10解得:x=-3综上所述,原方程的解为:x=5和x=-3考点:(1)解一元一次方程;(2)分类讨论思想42.解方程:(本题每小题5分,共20分)(1)15435+=-x x(2)()432x x -=-(3)32213+-=-x x (4)3714153x x --=- 【答案】(1)x=18;(2)x=1;(3)x=1;(4)x=19【解析】试题分析:(1)首先进行移项合并同类项,从而得出方程的解;(2)首先根据去括号的法则进行去括号,然后进行移项合并同类项,从而得出方程的解;(3)首先进行移项合并同类项,从而得出方程的解;(4)首先根据等式的性质进行去分母,然后根据去括号的法则进行去括号,进行移项合并同类项,从而得出方程的解.试题解析:(1)移项得:5x -4x=15+3 解得:x=18、去括号得:4-x=6-3x 移项得:-x+3x=6-4 合并同类项得:2x=2 解得:x=1、移项得:3x+2x =3+12 合并同类项得:72x=72解得:x=1 、去分母得:3(3-7x )=5(1-4x )-15 去括号得:9-21x=5-20x -15移项得:-21x+20x=5-15-9 合并同类项得:-x=-19 解得:x=19考点:解一元一次方程.43.解方程(1)285--=-x x(2))2(39)3(2+-=--x x(3)312121+=--x x (4)4.0123.01.02.0-=--x x 【答案】(1)1;(2)59;(3)11-;(4)111【解析】 试题分析:(1)移项合并同类项,然后系数化为1即可;(2)先去括号,然后移项合并同类项,然后系数化为1即可;(3)先去分母,再去括号,然后移项合并同类项,然后系数化为1即可;(4)先去分母,再去括号,然后移项合并同类项,然后系数化为1即可.试题解析:(1)285--=-x x ,5x+x=8-2,6x=6,x=1;(2))2(39)3(2+-=--x x ,2x-6-9=-3x-6,2x+3x=9+6-6,5x=9,x=59;(3)312121+=--x x ,3(x-1)-6=2(2x+1),3x-3-6=4x+2,3x-4x=2+3+6,-x=11,x=-11;(4)4.0123.01.02.0-=--x x ,0.4(0.2x-0.1)-2×0.12=0.3(x-1),0.08x-0.04-0.24=0.3x-0.3,0.08x-0.3x=0.04+0.24-0.3,-0.22x=-0.2,x=111.考点:解一元一次方程.44.解方程【答案】x=5试题分析:首先进行移项,然进行合并同类项计算,最后将x的系数化为1得出方程的解.试题解析:移项,得:3x+2x=31-6合并同类项,得:5x=25将系数化为1得:x=5考点:解一元一次方程45.(2015秋•高密市校级月考)当x取什么值时,代数式与的差等于5.【答案】x=﹣8.【解析】试题分析:根据题意列出关于x的方程,求出x的值即可.解:由题意得,﹣=5,去分母得,5(x+3)﹣2(x﹣7)=50,去括号得,5x+15﹣2x+14=5,移项得,5x﹣2x=5﹣15﹣14,合并同类项得,3x=﹣24,系数化为1得,x=﹣8.46.(2015秋•兴化市校级月考)解方程(1)6x﹣4=3x+2(2)=1+.【答案】(1)x=2;(2)x=1.试题分析:(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)方程移项合并得:3x=6,解得:x=2;(2)去分母得:2x+4=6+3x﹣3,移项合并得:x=1.47.(2015秋•兴化市校级月考)当m为何值时,关于x的方程4x+2m=3x ﹣5的解和方程6x﹣8=10的解相同?【答案】m=﹣4【解析】试题分析:根据方程的解相同,可得关于m的方程,根据解方程,可得答案.解:解4x+2m=3x﹣5,得x=﹣5﹣2m.解6x﹣8=10,得x=3.关于x的方程4x+2m=3x﹣5的解和方程6x﹣8=10的解相同,得﹣5﹣2m=3.解得m=﹣4,当m=﹣4时,关于x的方程4x+2m=3x﹣5的解和方程6x﹣8=10的解相同.48.(2015秋•海安县期中)解方程:(1)4x ﹣3(20﹣x )+4=0(2)1﹣.【答案】(1)x=8;(2)x=13.【解析】试题分析:(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 解:(1)去括号得:4x ﹣60+3x+4=0,移项合并得:7x=56,解得:x=8;(2)去分母得:12﹣4x+10=9﹣3x ,移项合并得:x=13.49.x ﹣4=2﹣5x【答案】x=1【解析】试题分析:首先进行移项合并同类项,然后将系数化为1,解出方程. 试题解析:移项合并得:6x=6, 解得:x=1;考点:解一元一次方程50.解方程:x ﹣12x =2233x 解:去分母,得6x ﹣3x+1=4﹣2x+4…①即﹣3x+1=﹣2x+8…②移项,得﹣3x+2x=8﹣1…③合并同类项,得﹣x=7…④∴x=﹣7…⑤上述解方程的过程中,是否有错误?答:;如果有错误,则错在步.如果上述解方程有错误,请你给出正确的解题过程.【答案】有;①;x=-35【解析】试题分析:首先在方程的左右两边同时乘以分母的最小公倍数,然后再进行去括号,去括号时括号里面的每一项都要乘,千万不能漏乘.试题解析:有,①;正确的解题过程如下:6x﹣3(x﹣1)=4﹣2(x+2)6x﹣3x+3=4﹣2x﹣45x=﹣3x=﹣35考点:解一元一次方程。

初中数学苏科版七年级上册第三章 代数式3.4 合并同类项-章节测试习题(9)

初中数学苏科版七年级上册第三章 代数式3.4 合并同类项-章节测试习题(9)

章节测试题1.【答题】下列单项式中,能够与a2b合并成一项的是()A. –2a2bB. a2b2C. ab2D. 3ab【答案】A【分析】本题考查了同类项的概念,只有同类项能够合并,不是同类项不能合并.能够与a2b合并成一项的单项式,必须是a2b的同类项,找出a2b的同类项即可.【解答】﹣2a2b与a2b是同类项,能够合并成一项.选A.2.【答题】已知mx2y n﹣1+4x2y9=0,(其中x≠0,y≠0)则m+n=()A. ﹣6B. 6C. 5D. 14【答案】B【分析】本题考查合并同类项法则,掌握合并同类项的法则是解题的关键.直接利用合并同类项法则得出m,n的值进而得出答案.【解答】∵mx2y n﹣1+4x2y9=0,∴m=−4,n−1=9,解得m=−4,n=10,则m+n=6.选B.3.【答题】若单项式与﹣2x b y3的和仍为单项式,则其和为______.【答案】【分析】本题考查合并同类项.【解答】若单项式x2y a与-2x b y3的和仍为单项式,则它们是同类项.由同类项的定义得a=3,b=2,则其和为-x2y3.4.【答题】若单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,则m﹣n=______.【答案】【分析】本题考查同类项的定义.【解答】∵单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,∴m﹣2=n,2m﹣3n=3,解得m=3,n=1,∴m﹣n=3﹣1=;故答案为.5.【答题】合并同类项:8m2﹣5m2﹣6m2=______.【答案】﹣3m2【分析】本题考查了合并同类项,正确掌握合并同类项法则是解题关键.根据合并同类项法则合并求出答案.【解答】8m2﹣5m2﹣6m2=(8-5-6)m2=-3m2.6.【答题】若-4x a y+x2y b=﹣3x2y,则b﹣a=______.【答案】﹣1【分析】本题考查合并同类项的法则,两个单项式合并成一个单项式,说明这两个单项式为同类项.两个单项式合并成一个单项式,说明这两个单项式为同类项.【解答】由同类项的的定义可知,故答案为7.【答题】若﹣4x a+5y3+x3y b=-3x3y3,则ab的值是______.【答案】﹣6【分析】本题考查合并同类项法则,熟练掌握合并同类项的法则是解题的关键.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.【解答】﹣4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为−6.8.【题文】如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.【答案】(1)3;(2)-1.【分析】(1)根据同类项的概念可得关于a的方程,解方程即可得;(2)由已知可得2m-4n=0,从而得m-2n=0,代入进行计算即可得.【解答】(1)∵关于x、y的两个单项式2mx a y3和﹣4nx3a﹣6y3是同类项,∴a=3a﹣6,解得a=3;(2)∵2mx a y3+(﹣4nx3a﹣6y3)=0,则2m﹣4n=0,即m﹣2n=0,∴(m﹣2n﹣1)2017=(﹣1)2017=﹣1.9.【题文】合并同类项:(1)2xy2﹣3xy2﹣6xy2;(2)2a2﹣3a﹣3a2+5a.【答案】(1)原式=﹣7xy2;(2)原式=﹣a2+2a.【分析】本题考查合并同类项,合并同类项时,字母和字母的指数保持不变,只要系数相加减即可.(1)根据合并同类项的法则把系数相加即可.(2)根据合并同类项的法则把系数相加即可.【解答】(1)原式=(2﹣3﹣6)xy2=﹣7xy2;(2)原式=(2﹣3)a2+(﹣3+5)a=﹣a2+2a.10.【题文】如果代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.【答案】m k=25.【分析】本题考查合并同类项,掌握多项式不含有的项的系数为零是解题的关键.根据合并后不含三次项,二次项,可得含三次项,二次项的系数为零,可得m,k的值,根据乘方的意义,可得答案.【解答】3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x=3x4+(k﹣2)x3+(m+5)x2﹣3x+5,由合并同类项后不含x3和x2项,得k﹣2=0,m+5=0,解得k=2,m=﹣5.m k=(﹣5)2=25.11.【题文】去括号,并合并同类项:(1)(3a+1.5b)﹣(7a﹣2b);(2)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3).【答案】(1)﹣4a+3.5b;(2)﹣5x2+5y2+12.【分析】本题考查了去括号与添括号、合并同类项,解题的关键是掌握去括号与添括号,合并同类项.(1)先去掉括号,再找出同类项进行合并即可;(2)先把4与括号中的每一项分别进行相乘,再去掉括号,然后合并同类项即可.【解答】(1)(3a+1.5b)﹣(7a﹣2b)=3a+1.5b﹣7a+2b=﹣4a+3.5b;(2)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3)=8xy﹣x2+y2﹣4x2+4y2﹣8xy+12=﹣5x2+5y2+12;12.【答题】下列各式中运算正确的是()A. B.C. D.【答案】C【分析】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.根据合并同类项的法则逐一进行计算即可.【解答】A.,故A选项错误;B.,故B选项错误;C.,正确;D.与不是同类项,不能合并,故D选项错误,选C.13.【答题】计算3x2﹣2x2的结果是()A. 1B. xC. x2D. ﹣x2【答案】C【分析】本题考查了合并同类项的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行计算即可.【解答】3x2﹣2x2=x2.选C.14.【答题】合并同类项:______.【答案】【分析】本题考查合并同类项,合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.【解答】原式,故答案为.15.【答题】下列计算正确的是()A. 3x2﹣x2=3B. ﹣3a2﹣2a2=﹣a2C. 3(a﹣1)=3a﹣1D. ﹣2(x+1)=﹣2x﹣2【答案】D【分析】本题考查合并同类项以及去括号法则.【解答】A.原式=2x2,不符合题意;B.原式=-5a2,不符合题意;C.原式=3a-3,不符合题意;D.原式=-2x-2,符合题意,选D.16.【答题】若a2m−5b2与-3ab3-n的和为单项式,则m+n=______.【答案】4【分析】本题考查合并同类项.【解答】∵a2m−5b2与-3ab3-n的和为单项式,∴2m-5=1,2=3-n,解得m=3,n=1.故m+n=4.故答案为4.17.【题文】去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-a+1.【分析】本题考查去括号法则以及合并同类项.【解答】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=3a2−(5a−a+3+2a2)+4=3a2−5a+a-3-2a2+4=a2-a+1.18.【答题】多项式8x2﹣3x+5与多项式3x3+2mx2﹣5x+7相加后,不含二次项,则常数m的值是______.【答案】-4【分析】根据题意,二次项合并的结果为0.由合并同类项法则得方程求解.【解答】根据题意得8x2+2mx2=0,∴8+2m=0.解得m=﹣4.19.【答题】下列合并同类项中,正确的是()A. B.C. D.【答案】C【分析】本题考查合并同类项.【解答】∵3x与3y不是同类项,不能合并,∴A错误;∵不是同类项,不能合并,∴B错误;∵,∴C正确;∵7x–5x=2x,∴D错误;选C.20.【答题】下列合并同类项,正确的是()A. B.C. D.【答案】D【分析】本题考查合并同类项.【解答】A.不是同类项不能合并.故错误.B.故错误.C.D.正确.选D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学合并同类项、去括号基础题北师

一、单选题(共11道,每道9分)
1.在下列各式x2-3x,2πx2y,-5,a,0,,中,单项式和多项式的的个数分别是()
A.3,4
B.4,3
C.5,2
D.6,1
答案:C
试题难度:三颗星知识点:单项式的概念;多项式的概念
2.-π3a2b2的系数和次数分别为()
A.-1,4
B.-1,5
C.-π3,4
D.-π,7
答案:C
试题难度:三颗星知识点:单项式的系数与次数
3.多项式-3x2y2+6xyz+3xy2-35是()
A.三次三项式
B.三次四项式
C.四次四项式
D.五次四项式
答案:C
试题难度:三颗星知识点:多项式的项与次数
4.如果一个多项式的次数是6,则这个多项式的任何一项的次数都()
A.小于6
B.等于6
C.不大于6
D.不小于6
答案:C
试题难度:三颗星知识点:多项式的次数
5.下列两项中,属于同类项的是()
A.与
B.4ab与4abc
C.与
D.nm和-mn
答案:D
试题难度:三颗星知识点:同类项
6.如果与是同类项,那么等于()
A.1
B.0
C.2
D.4
答案:A
试题难度:三颗星知识点:同类项(已知同类项求参数的值)
7.下列运算中结果正确的是()
A.3a+2b=5ab
B.5y-3y=2
C.-3x+5x=-8x
D.
答案:D
试题难度:三颗星知识点:合并同类项
8.把3(a+b)+2(a+b)-4(a+b)中的(a+b)看成一个因式合并同类项,结果应是()
A.a+b
B.- (a+b)
C.-a+b
D.a-b
答案:A
试题难度:三颗星知识点:合并同类项(整体合并)
9.下列运算正确的是()
A.-4(x-y)=-4x-y
B.-4(x-y)=-4x+y
C.-4(x-y)=-4x-4y
D.-4(x-y)=-4x+4y
答案:D
试题难度:三颗星知识点:去括号
10.下列各式中与a-b-c的值不相等的是()
A.a-(b+c)
B.a-(b-c)
C.(a-b)+(-c)
D.(-c)-(b-a)
答案:B
试题难度:三颗星知识点:添括号
11.当x=2,y=-1时,5x2-(3y2+5x2)+(3y2+xy)的值为()
A.2
B.1
C.-1
D.-2
答案:D
试题难度:三颗星知识点:化简求值。

相关文档
最新文档