人教版七年级上册方案设计型应用题配答案
最新2022人教版七年级上册数学应用题类型大全及答案
应用题类型大全及答案知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?10.小刚为书房买灯。
人教版七年级上册 第3章:一元一次方程的应用-方案选择问题(含答案)
人教版七年级上册 一元一次方程的应用-方案选择问题(含答案)一、单选题1.某汽车队运送一批货物,每辆汽车装4 t ,还剩下8 t 未装,每辆汽车装4.5 t 就恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,可列方程为( ) A .4x +8=4.5x B .4x -8=4.5x C .4x =4.5x +8D .4(x +8)=4.5x2.某服装店出售一种优惠卡,花200元买这种卡后,凭卡可以在这家商店按8折购物,下列情况买购物卡合算的是( ) A .购物高于800元 B .购物低于800元 C .购物高于1 000元 D .购物低于1 000元3.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ) A .3x -20=4x -25 B .3x +20=4x +25 C .3x -20=4x +25 D .3x +20=4x -254.41人参加运土劳动,有30根扁担,要安排多少人抬,多少人挑,可以使扁担和人数相配不多不少?若设有x 人挑土,则可列出的方程是( ) A.2(30)41x x --= B.(41)302x x +-= C.41302xx -+= D.3041x x -=-5.小华带x 元去买甜点,若全买红豆汤圆刚好可买30杯,若全买豆花刚好可买40杯.已知豆花每杯比红豆汤圆便宜10元,依题意可列出下列哪一个方程式( )A.103040x x=+ B.104030x x =+ C.104030x x += D.104030x x+= 6.某土建工程共需动用15台挖运机械,每台机械每分钟能挖土3 m 3或者运土2 m 3.为了使挖土和运土工作同时结束,安排了x 台机械运土,这里x 应满足的方程是( )A.2x=3(15-x) B.3x-2x=15C.15-2x=3x D.3x=2(15-x)7.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元) 每次游泳收费(元) A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二、填空题8.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.9.学校买来大、小椅子共20张,共花去275元.已知大椅子每张15元,小椅子每张10元,问买了大椅子共多少张?若设买了大椅子x张,填写下表:大椅子小椅子张数(张)x钱数(元)小椅子____张,大椅子的钱数为____,小椅子的钱数为________,本题中的等量关系为________________,列出方程为____________,解得x=_______.因此,买了大椅子_________张.10.将一批490吨的货物分给甲、乙两船运输,现甲、乙两船分别运走了其任务的57、37,在已运走的货物中,甲船比乙船多运30吨,则分配给甲、乙两船的任务数分别是_______吨、_______吨.三、解答题11.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元. (1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?12.现有若干本书分给班上的同学,若每人分5本,则还缺20本;若每人分4本,则剩余25本.班上共有多少名同学?多少本书?(1)设班上共有x名同学,根据题意列方程;(2)设共有y本书,根据题意列方程;(3)选择上面的一种设未知数的方法,解决问题.13.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x>300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)当该顾客累计购物500元时,在哪个超市购物合算.14.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?15.淘淘到书店帮同学买书,售货员告诉他,如果用20元钱办会员卡,将享受八折优惠,请问在这次买书中,淘淘在什么情况下,办会员卡与不办会员卡费用一样?当淘淘买标价共计200元的书时,怎么做合算?能省多少钱?16.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?17.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?18.某地电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制,0.05元∕分;(B)包月制,50元∕分(限一部个人住宅电话上网);此外,每种上网方式都附加通信费0.02元∕分。
部编数学七年级上册专题一元一次方程的应用(5)方案设计问题(重难点培优)同步培优(人教版】含答案
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题3.10一元一次方程的应用(5)方案设计问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,其中选择10道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2022·全国·七年级专题练习)今年开学,由于疫情防控的需要,某学校统一购置口罩,其中给七年级(1)班全体学生配备了一定数量的口罩,若给每个学生发3个口罩,则多30个口罩,若给每个学生发5个口罩,则少50个口罩,请问该班有多少名学生?设该班有为x 名学生,可列方程( )A .3x +30=5x +50B .3x +30=5x ―50C .3x ―50=5x +30D .3x ―30=5x ―50【答案】B【分析】由题意可知无论怎样发口罩,口罩的总数量是不变的,由此即可列出方程.【详解】设该班有x 名学生,根据题意可列方程:3x +30=5x ―50,故选B .【点睛】本题考查一元一次方程的实际应用.根据题意找出等量关系,列出等式是解答本题的关键.2.(2022·江苏宿迁·七年级期末)某小组有m 人,计划做n 个“中国结”,若每人做5个,则可比计划多做9个;若每人做4个,则将比计划少做15个.①5m +9=4m ﹣15;②n 95=n 154;③n 95=n 154;④5m ﹣9=4m +15.其中正确的是( )A .①②B .②④C .②③D .③④【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.3.(2022·重庆丰都·七年级期末)如图为某快餐店促销活动的内容,某同学到该快餐店购买相差6元的2种快餐各1份,结账时,店员说:“你多买2瓶指定饮料,按促销活动优惠价的金额,和你只买2份快餐的金额一样.”这位同学想了想说:“我还是只多买1瓶指定饮料吧,麻烦您以最便宜的方式给我结账,谢谢!”这位同学要付的金额是()A.55B.54C.58D.61【答案】A【分析】设价格较低的快餐的单价为x元,则价格较高的快餐的单价为(x+6)元,根据“你多买2瓶指定饮料,按促销活动优惠价的金额,和你只买2份快餐的金额一样”即可得出关于x的一元一次方程,解之即可得出x的值,再将其价格较高的快餐搭配1瓶指定饮料,求出该同学应付金额即可得出结论.【详解】解:设价格较低的快餐的单价为x元,则价格较高的快餐的单价为(x+6)元,依题意得:x+(x+6)=29×2,解得:x=26,∴x+6=26+6=32,∴这位同学要付的金额是x+29=26+29=55.故选:A.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.4.(2021·江苏苏州·七年级期末)商店将标价为6元的笔记本,采用如下方式进行促销;若购买不超过3本,则按原价付款;若一次性购买3本以上,则超过的部分打七折.小明有54元钱,他购买笔记本的数量是( )A.11本B.最少11本C.最多11本D.最多12本【答案】C【分析】易得54元可购买的商品一定超过了3本,关系式为:3×原价+超过3本的本数×打折后的价格≤54,把相关数值代入计算求得最大的正整数解即可.【详解】解答:解:设他购买笔记本的数量是x本,依题意有3×6+(x﹣3)×6×0.7≤54,丽平均每小时采摘7kg.采摘结束后,王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人的樱桃一样多.她们采摘用了多长时间?设她们采摘所用时间为t小时,下列方程正确的是()A.8t―0.25=7t B.(8―0.25)t=7tC.(8―0.25)t=(7+0.25)t D.8t―0.25=7t+0.25【答案】D【分析】根据王芳从她采摘的樱桃中取出0.25kg给了李丽,这时两人的樱桃一样多得出方程求出答案.【详解】设她们采摘用了t小时,根据题意可得:8t―0.25=7t+0.25,故选:D.【点睛】本题主要考查了由实际问题抽象出一元一次方程,根据采摘的质量间的数量关系得出等式是解题关键.6.(2021·全国·七年级专题练习)某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款()A.288元B.288元和332元C.332元D.288元和316元【答案】D【分析】要求他一次性购买以上两次相同的商品,应付款多少元,就要先求出两次一共实际买了多少元,第一次购物显然没有超过100,即是80元.第二次就有两种情况,一种是超过100元但不超过300元一律9折;一种是购物超过300元一律8折,依这两种计算出它购买的实际款数,再按第三种方案计算即是他应付款数.【详解】解:(1)第一次购物显然没有超过100,即在第一次消费80元的情况下,他的实质购物价值只能是80元.(2)第二次购物消费252元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):①第一种情况:他消费超过100元但不足300元,这时候他是按照9折付款的.设第二次实质购物价值为x,那么依题意有x×0.9=252,解得:x=280.①第二种情况:他消费超过300元,这时候他是按照8折付款的.设第二次实质购物价值为x,那么依题意有x×0.8=252,解得:x=315.即在第二次消费252元的情况下,他的实际购物价值可能是280元或315元.综上所述,他两次购物的实质价值为80+280=360或80+315=395,均超过了300元.因此均可以按照8折付款:360×0.8=288元395×0.8=316元故选D.【点睛】本题考查了一元一次方程的应用,解题关键是第二次购物的252元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.7.(2021·安徽合肥·七年级期末)某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了85元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.284B.308C.312D.320当y>350时,0.8y=270,∴y=337.5(不符合题意,舍去);∴y=300;∴0.8×(85+300)=308(元).∴小敏至少需付款308元.故选:B.【点睛】此题主要考查了一元一次方程的应用,解题关键是第一次购物的90元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种.8.(2021·江西吉安·七年级期末)甲、乙两店以同样价格出售一种商品,并推出不同的优惠方案在甲店累计购物超过100元后,超出100元的部分打9折;在乙店累计购物超过50元后,超出50元的部分打9.5折,则顾客到两店购物花费一样时为()A.累计购物不超过50元B.累计购物超过50元不超过100元C.累计购物超过100元D.累计购物不超过50元或刚好为150元家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的每3家共取一头,恰好取完.问城中有多少户人家?()A.55户B.65户C.75户D.85户【答案】C【分析】设城中有x户人家,由题意列一元一次方程,解一元一次方程即可解题.【详解】解:设城中有x户人家,根据题意得,的基本框架.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数,羊价各几何?”译文:“假设有若干人共同出钱买羊,如果每人出5钱,那么还差45钱;如果每人出7钱,那么仍旧差3钱,求买羊的人数和羊的价钱.”设羊是x 钱,则可列方程为( )A .x 457=x 35B .x 455=x 37C .x 455=x 37D =x 35二、填空题11.(2022·江苏扬州·七年级期末)把一些图书分给某组学生阅读,如果每人分4本,则剩余1本;如果每人分5本,则还缺4本,这个小组的学生有____人.【答案】5【分析】设这个班有x 名学生,根据“如果每人分4本,则剩余1本;如果每人分5本,则还缺4本”建立方程求解即可.【详解】解:设这个小组的学生有x本4x+1=5x-4x=5故答案为:5.【点睛】本题考查一元一次方程的应用,读懂题意找到等量关系式是解题的关键.12.(2022·山东烟台·七年级期末)22年冬奥会开幕式上,烟台莱州武校的健儿们参演的立春节目让全世界人民惊艳和动容,小明想知道这震撼人心的队伍的总人数.张老师说你可以自己算算:若调配55座大巴若干辆接送他们,则有8人没有座位;若调配44座大巴接送,则用车数量将增加两辆,并空出3个座位,你能帮小明算出一共去了_______名健儿参演节目吗?【答案】393【分析】设有55座大巴x辆,则44座大巴(x+2),根据人数相等列出一元一次方程,解方程,进而即可求解.【详解】解:设有55座大巴x辆,则44座大巴(x+2),根据题意得,55x+8=44(x+2)―3,解得x=7,则总人数为55×7+8=393(人),故答案为:393.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.13.(2022·全国·七年级专题练习)七年级部分学生去某处旅游,如果每辆汽车坐30人,那么有15个学生没有座位;如果每辆汽车坐45人,那么空出1辆汽车.若设有x辆汽车,则可列方程为______.【答案】30x+15=45(x―1)【分析】设有x辆汽车,根据如果每辆汽车坐30人,那么有15个学生没座位,可得学生有30x+15;如果每辆汽车坐45人,那么空出一辆汽车,可得学生有45(x﹣1),由学生人数相等可列出方程.【详解】解:设有x辆汽车,根据题意列方程得,30x+15=45(x―1)故答案为:30x+15=45(x―1).【点睛】本题主要考查了由实际问题抽象出一元一次方程,根据设出汽车数,以人数做为等量关系列方程求解是解题关键.14.(2022·北京·七年级期末)周末,小康一家和姑姑一家(共6人)相约一起去观看电影《长津湖》.小康用手机查到家附近两家影城的票价和优惠活动如下:影城票价(元)优惠活动时光影城48学生票半价遇见影城50网络购票,总价打八折小康利用网络给所有人都购了票,他发现在两家影城购票的总费用相同,则购票的总费用是_____元,两家共有学生______.某复印店的收费标准如下:①印制册数不超过100册时,每册2元;②印制册数超过100册但不超过300册时,每册按原价打八折;③印制册数超过300册时,前300册每册按原价打八折,超过300册的部分每册按原价打六折;学校在复印店印制了两次宣传册,分别花费192元和576元,如果学校把两次复印的宣传册合并为一次复印,则可节省______元.【答案】76.8或48【分析】先求出三类收费标准对应的花费钱数的取值范围,根据题目中所花费的金额,分类讨论,求出两次对应购买的册数,然后对应求出合并后的花费,最后即可求出答案.【详解】解:设:印制册的花费为a元,由题意可知:当印制册数不超过100册时,对应的花费a≤200元,当印制册数超过100册但不超过300册时,对应的花费为160<a≤480元,当印制册数超过300册时,对应的花费为a>480元,对于第一次花费来说,设宣传册数为x,由于花费为192元,故分两种情况讨论,①当x≤100时,2x=192,解得:x=96,②当100<x≤300时,2x⋅0.8=192,解得:x=120,对于第二次花费来说,设宣传册数为y,由于花费为576元,故只能是第③种优惠方案,∴300×2×0.8+2(y―300)⋅0.6=576,解得:y=380∴第一次购买是96册时:优惠为192+576―[300×2×0.8+2(96+380―300)⋅0.6]=76.8元,第一次购买是120册时:优惠为192+576―[300×2×0.8+2(120+380―300)⋅0.6]=48元,故答案为:76.8或48.【点睛】本题主要是考查了一元一次方程的实际应用,熟练根据不同方案,进行分类讨论,列出对应方程,求解未知量,这是解决该题的关键.16.(2022·北京·清华附中七年级期末)甲、乙两商场在做促销,如下所示,已知两家商场相同商品的标价都一样.甲商场:全场均打八五折;乙商场:购物不超过200元,不给予优惠;超过了200元而不超过500元,一律打八八折;超过500元时,其中的500元打八八折,超过500元的部分打八折.(1)某顾客要购买商品的总标价为600元,该顾客选择_____(填“甲”或“乙”)商场更划算;(2)当购物总额是_____元时,甲、乙两商场实付款相同.【答案】甲800【分析】(1)根据两商场的促销方案,即可求出哪家商场更划算;(2)设购物总额是x元时,甲、乙两商场实付款相同,选择适当的等量关系列出一元一次方程解方程求解即可【详解】解:(1)甲商场需要:600×0.85=510(元)乙商场需要:500×0.88+(600―500)×0.8=520(元)∵510<520∴该顾客选择甲商场更划算;故答案为:甲(2)设购物总额是x元时,甲、乙两商场实付款相同,当x<200时,0.85x=x,此方程无解,当200<x<500时,则0.85x=0.88x,此方程无解当x>500时依题意,0.85x=500×0.88+0.8(x―500)解得x=800故答案为:800【点睛】本题考查了一元一次方程的应用,找出题目中的数量关系是解题的关键.17.(2021·北京市第八十中学管庄分校七年级期中)某企业有A,B两条加工相同原材料的生产线.在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.该企业计划将5吨原材料分配到A,B两条生产线,两条生产线都在一天内完成了加工.若分配到A生产线1.8吨,分配到B生产线3.2吨,两条生产线同时开工,则该企业的加工时间为___小时;若要使该企业加工这5吨原材料的时间最短,则分配到A生产线___吨.说明:该企业的加工时间为从由生产线开始加工到两条生产线都停止加工的时间.【答案】 9.4 2【分析】(1)把a=1.8,b=3.2分别代入4a+1和2b+3,比较即可得答案;(2)设分配到A生产线x吨,则分配到B生产线(5-x)吨,要使加工这5吨原材料的时间最短,则两个生产线要同时停止加工,据此列方程求出x的值即可得答案.【详解】(1)∵分配到A生产线1.8吨,分配到B生产线3.2吨,∴A生产线加工时间为4×1.8+1=8.2(小时),B生产线加工时间为2×3.2+3=9.4(小时),∵8.2<9.4,∴该企业的加工时间为9.4小时,故答案为:9.4(2)设分配到A生产线x吨,则分配到B生产线(5-x)吨,∵加工这5吨原材料的时间最短,∴两个生产线要同时停止加工,∴4x+1=2(5-x)+3,去括号得:4x+1=10-2x+3,移项、合并得:6x=12,解得:x=2,∴分配到A生产线2吨,故答案为:2【点睛】本题考查代数式求值及一元一次方程的应用,正确理解题意,找出等量关系列方程是解题关键.18.(2021·江西赣州·七年级期末)元旦期间某商店进行促销活动,活动方式有如下两种:方式一:每满200元减50元;方式二:若标价不超过400元时,打8折;若标价超过400元,则不超过400元的部打8折,超出400元的部分打6折.某一商品的标价为x元,当200<x<600时,x取值为____时,两种方式的售价相同.【答案】250或450.【分析】根据题意,分两种情况讨论,当200<x<400或当400≤x<600时,列出方程进行解得即可.【详解】解:当200<x<400时,0.8x=x―50解得x=250;当400≤x<600时,400×0.8+0.6(x―400)=x―100320+0.6x―240=x―1000.4x=180解得x=450,∴当200<x<600时,x取值为250或450时,两种方式的售价相同,故答案为:250或450.【点睛】本题考查一元一次方程的应用,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题19.(2021·黑龙江哈尔滨·七年级期末)公园门票价格规定如下表:购票张数1-50张51-100张100张以上每张票的价格13元11元9元某校七年级一、二两个班共104人去游公园,其中二班有40多人,不足50人,经计算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级二班单独组织去游公园,班长作为组织者将如何购票才最省钱?【答案】(1)一班有56人,二班有48人(2)304元(3)购51张票【分析】(1)设二班有x人,则一班有(104−x)人,且40<x<50,从而有13x+11(104-x)=1240,再解方程可得答案;(2)由题意可得购买104张票时,每张票的价格为9元一张,列式计算即可得到答案;(3)由于购买51张票时只要11元一张,从而可得购买51张票比购买48张票更省钱,从而可得答案.【详解】(1)解:设二班有x人,则一班有(104―x)人,且40<x<50,因此,一班人数大于50人,且小于100人.依题意,得13x+11×(104―x)=1240解方程,得x=48.104―x=104―48=56答:一班有56人,二班有48人;(2)104×9=936,1240―936=304.答:两班合起来购团体票可省304元;(3)若按二班人数购票,需13×48=624元,若购51张票,需11×51=561元,可见,二班购51张票时,用钱最少,因此,组织者应购51张票最省钱.【点睛】本题考查的是最优化设计问题,一元一次方程的应用,掌握利用一元一次方程解决分段费用问题是解题的关键.20.(2021·河南南阳·七年级期中)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.(1)某客户要到该服装厂购买西装20套,领带30条.通过计算说明此时按哪种方案购买较为合算.(2)若客户要到该服装厂购买西装20套,领带x条(x>20).Ⅰ:若该客户按方案①购买,需付款 元(用含x的代数式表示);Ⅱ:若该客户按方案②购买,需付款 元(用含x的代数式表示);Ⅲ:当x= 时,两种优惠方案所付的钱数相同.(直接填空,不说明理由)【答案】(1)按方案①购买较为合算(2)Ⅰ:(3200+40x);Ⅱ:(3600+36x);Ⅲ:100【分析】(1)分别求出两种优惠方案下,客户所需付款钱数,再比较大小即可得;(2)Ⅰ:所需付款钱数等于20套西装的钱数加上(x―20)条领带的钱数即可得;Ⅱ:所需付款钱数等于20套西装的钱数与x条领带的钱数之和,再乘以90%即可得;Ⅲ:根据两种优惠方案所付的钱数相同建立方程,解方程即可得.(1)解:方案①所需付款钱数为20×200+40×(30―20)=4400(元),方案②所需付款钱数为90%×(20×200+40×30)=4680(元),因为4400<4680,所以按方案①购买较为合算.(2)解:Ⅰ:所需付款钱数为20×200+40(x―20)=3200+40x(元),故答案为:(3200+40x);Ⅱ:所需付款钱数为90%(20×200+40x)=3600+36x(元),故答案为:(3600+36x);Ⅲ:由题意得:3200+40x=3600+36x,解得x=100,即当x=100时,两种优惠方案所付的钱数相同,故答案为:100.【点睛】本题考查了列代数式、一元一次方程的应用,找准等量关系,正确建立方程是解题关键.21.(2022·山东聊城·七年级期中)明明妈妈在超市购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物631030第二次购物981040第三次购物371010(1)求出商品A、B的标价;(2)若商品A、B的折扣相同,问该超市是打几折出售这两种商品的?【答案】(1)商品A的标价为80元,商品B的标价为110元种类配餐价格(元)优惠活动A餐1份盖饭20B餐1份盖饭+1杯饮料28 C餐1份盖饭+1杯饮料+1份小菜32消费满150元,减24元消费满300元,减48元……小韩记录大家的点餐种类,并根据菜单一次点好,已知他们所点的餐共有11份盖饭,x杯饮料和5份小菜.(1)他们共点了______份B餐;(用含x的式子表示)(2)若他们套餐共买6杯饮料,求实际花费多少元;(3)若他们点餐优惠后一共花费了256元,请通过计算分析他们点的套餐是如何搭配的.【答案】(1)(x―5)(2)264元(3)A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份,见解析【分析】(1)由三种套餐中均包含盖饭且只有C套餐中含小菜,即可得出他们点了(x−5)份B 套餐;(2)依题意知:C套餐5份,B套餐1份,A套餐5份,据此即可解答;(3)依题意知:C套餐5份,B套餐(x―5)份,A套餐(11―x)份,再分两种情况,列方程即可分别求得.(1)解:因为三种套餐中均包含盖饭且只有C套餐中含小菜,有5份小菜,所以共点了5份C套餐,因为只有B和C套餐中有饮料,一共点了x杯饮料,C套餐有5份,所以他们点了(x−5)份B套餐.故答案为:(x−5);(2)解:依题意:C套餐5份,B套餐1份,A套餐5份,所以5×20+1×28+5×32=288(元),因为满150元,减24元,所以实际花费为:288―24=264(元);(3)解:因为只有C套餐含小菜,所以依题意C套餐点了5份;因为有x份饮料,所以B套餐共(x―5)份,因为共11份盖饭,所以A套餐(11―x)份.当满150优惠时:32×5+28(x―5)+20(11―x)―24=256,解得:x=5,故A套餐6份,C套餐5份;当满300优惠时:32×5+28(x―5)+20(11―x)―48=256,解得:x=8,故A套餐3份,B套餐3份,C套餐5份.综上,他们点的套餐是A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份.【点睛】本题考查了应用类问题,列代数式,一元一次方程的实际应用,根据各数量之间的关系,正确列出一共的花费及方程是解题的关键.23.(2022·河北承德·七年级期末)小韩和同学们在一家快餐店吃饭,下表为快餐店的菜单:种类配餐价格(元)优惠活动A餐1份盖饭20B餐1份盖饭+1杯饮料28 C餐1份盖饭+1杯饮料+1份小菜32消费满150元,减24元消费满300元,减48元……小韩记录大家的点餐种类,并根据菜单一次点好,已知他们所点的餐共有11份盖饭,x杯饮料和5份小菜.(1)他们共点了______份B餐;(用含x的式子表示)(2)若他们套餐共买6杯饮料,求实际花费多少元;(3)若他们点餐优惠后一共花费了256元,请通过计算分析他们点的套餐是如何搭配的.【答案】(1)(x―5)(2)264元(3)A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份,见解析【分析】(1)由三种套餐中均包含盖饭且只有C套餐中含小菜,即可得出他们点了(x−5)份B 套餐;(2)依题意知:C套餐5份,B套餐1份,A套餐5份,据此即可解答;(3)依题意知:C套餐5份,B套餐(x―5)份,A套餐(11―x)份,再分两种情况,列方程即可分别求得.(1)解:因为三种套餐中均包含盖饭且只有C套餐中含小菜,有5份小菜,所以共点了5份C套餐,因为只有B和C套餐中有饮料,一共点了x杯饮料,C套餐有5份,所以他们点了(x−5)份B套餐.故答案为:(x−5);(2)解:依题意:C套餐5份,B套餐1份,A套餐5份,所以5×20+1×28+5×32=288(元),因为满150元,减24元,所以实际花费为:288―24=264(元);(3)解:因为只有C套餐含小菜,所以依题意C套餐点了5份;因为有x份饮料,所以B套餐共(x―5)份,因为共11份盖饭,所以A套餐(11―x)份.当满150优惠时:32×5+28(x―5)+20(11―x)―24=256,解得:x=5,故A套餐6份,C套餐5份;当满300优惠时:32×5+28(x―5)+20(11―x)―48=256,解得:x=8,故A套餐3份,B套餐3份,C套餐5份.综上,他们点的套餐是A套餐6份,C套餐5份或A套餐3份,B套餐3份,C套餐5份.【点睛】本题考查了应用类问题,列代数式,一元一次方程的实际应用,根据各数量之间的关系,正确列出一共的花费及方程是解题的关键.24.(2022·河北邯郸·七年级期末)学校为举行社团活动,准备向某商家购买A、B两种文化衫.已知购买3件A种文化衫和2件B种文化衫需要180元;购买2件A种文化衫和4件B 种文化衫需要200元.活动一:“疯狂打折”A种文化衫八折B种文化衫四折活动二:“买一送一”购买一件A种文化衫送一件B种文化衫(1)求A、B两种文化衫的单价;(2)学校决定向该商家购买A、B两种文化衫共100件(其中A种文化衫不超过50件),恰逢商家搞促销,现有如图所示两种优惠活动,请说明学校按照哪种活动方案购买更划算.【答案】(1)A种文化衫的单价为40元,B种文化衫的单价为30元;(2)当购买A种文化衫的数量小于45件时,选择活动一购买更划算;当购买A种文化衫的数量等于45件时,选择两种活动购买所需费用相同;当购买A种文化衫的数量大于45件小于50件时,选择活动二购买更划算.【分析】(1)设A种文化衫的单价为x元,B种文化衫的单价为y元,利用总价=单价×数量,结合“购买3件A种文化衫和2件B种文化衫需要180元;购买2件A种文化衫和4件B种文化衫需要200元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用总价=单价×数量,结合两种活动的优惠策略,即可用含m的代数式表示出按照两种活动购买100件文化衫所需费用;分20m+1200<−20m+3000,20m+1200=−20m+3000及20m+1200>−20m+3000三种情况,求出m的取值范围(或m的值),再结合m≤50即可得出结论.(1)解:设A种文化衫的单价为x元,B种文化衫的单价为y元.依题意得:3x+2y=1802x+4y=200.解得:x=40y=30.答:A种文化衫的单价为40元,B种文化衫的单价为30元;(2)解:设购买A种文化衫m件,活动一所需费用:40×0.8m+30×0.4(100−m)=20m+1200.活动二所需费用:40m+30(100−m−m)=(−20m+3000).当20m+1200<−20m+3000时,m<45.当20m+1200=−20m+3000时,m=45.当20m+1200>−20m+3000时,m>45.综上所述,当购买A种文化衫的数量小于45件时,选择活动一购买更划算;当购买A种文化衫的数量等于45件时,选择两种活动购买所需费用相同;当购买A种文化衫的数量大于45件小于50件时,选择活动二购买更划算.【点睛】本题考查了二元一次方程组的应用、列代数式、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,用含m的代数式表示出选择各活动方案所需费用.25.(2022·重庆南开中学七年级期末)今年神舟十四号成功发射,某航天博物馆顺势推出了“我要做太空人”系列航天纪念品,提供“漫步星河”、“梦想远航”两种不同的纪念品套餐供游客选择.已知购买2份“漫步星河”与5份“梦想远航”共需付款160元,购买2份“漫步星河”比购买1份“梦想远航”多付款40元.。
七年级方案设计专题训练
方案型应用题专题1、某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号得电视机,出厂价分别就是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号得电视机共50台,用去9万元,请您研究一下商场得进货方案。
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机得方案中,为使销售进获利最多,您会选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号得电视机50台,请您设计进货方案.甲乙丙与量 X Y 50-X-Y 50价 1500 2100 2500款 1500X 2100Y 2500(50-X-Y) 90000利 150X 200Y 250(50-X-Y)15X+21Y+25*50-25X-25Y=9004Y=-10X+350Y=-5X/2+87、5 X得为奇数X>=50 -5X/2+87、5<=50 5X>=75 X>=25X=25时 Y=25 丙=0X=27时 Y=20 丙=3X=29时 Y=15 =6X=31 =10 =9=33 =5 =12=35 0 15利润=150X+200Y+250(50-X-Y)=150X+200Y+12500-250X-250Y=12500-100X-50Y=12500-100X-50(5X/2+87、5)=12500-100X-125X-4375=8125-225X则X越少利润越大最大利润时 X=25 Y=25 丙=02、“利海”通讯器材市场,计划用60000元从厂家购进若干部新型手机,以满足市场需求.已知该厂家生产三种不一同型号得手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号得手机共40部,并将60000元恰好用完.请您帮助商场计算一下如何购买?(2)若商场同时购进三种不同型号得手机共40部,并将60000元恰好用完,并且要求乙种型号得手机购买数量不少于6部且不多于8部,请您求出每种型号手机得购买数量.1、设其中一部为x 另一部为y可得:x+y=401、 1800x+600y=60000 x=30 y=102、 1800x+1200y=60000 x=20 y=203、 600x+1200y=60000 x=-20 y=60舍去1,2,3分别与x+y=600解所以可得出1与2有答案为,1800元得有30部600元得有10部或1800元为20部与1200元有20部2、设买乙y部,甲x部,丙40-x-y部,则6≤y≤81800x+600y+1200(40-x-y)=60000x=20+y所以y=6时x=26y=7时x=27y=8时x=285、某市水果批发部门欲将A市得一批水果运往本市销售,有火车与汽车两种运输方式,运(1)A市之间得路程就是多少千米吗?请您列方程解答。
人教版七年级上册方案设计型应用题配答案讲解学习
七年级上册方案问题应用题及答案于得英整理方案设计型应用题1、据电力部门统计,每天8︰00至21︰00是用点高峰期,简称“峰时”,21︰00至次日8︰00是用电低谷期,简称“谷时”。
为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:换表后时间换表前峰时(8︰00—21︰谷时(21︰00—8︰00) 00)0.52每度每度0.30元每度0.55元电价元度电进行测算,经测算比换表前小明家对换表后最初使用的95 电和问小明家使用“峰时”“谷时”元,使用95度电节约了5.9 电分别是多少度?xx解:设问小明家使用“峰时”用电为度,“谷时”用电分95-度?xx?? 0.52 )(95-+5.9 = 95 0.55+ 0.30x =6095-60=35(度)答:60度?35电分“谷时”度,用电为小明家使用“峰时”、电信部门推出两种电话计费方式如下表:2BA30月租费(月通话费(0.50.40钟)当通话时间是多少分钟时两种方式收费一样多?(1)解:设当通话时间是x分钟时两种方式收费一样多,根据题意得: 0.4X+30=0.5X 解方程得:x= 300X>300分钟时,A种收费方式省钱(2)当通话时间 ;X<300分钟时,B种收费方式省钱. 当通话时间3、某单位急需要用车,但无力购买,他们决定租车使用,某个体出租车司机的条件是:每月付1210元工资,另外每百千米付10元汽油费;另一国营出租车公司的条件是:每百千米付120元。
(1)这个单位若每月平均跑1000千米,租谁的车划算?(2)求这个单位每月平均跑多少千米时,租哪家公司的车都一样?÷100=0.1元 120÷100=1.2元)10(1 1210+1000×0.1=1310元1.2×1000=1200元1310>1200答:租国营的车划算x)(2千米时,租哪家公司的车都一样解:设这个单位每月平均跑xx =1.2+ 12100.1x=1100答:这个单位每月平均跑1100千米时,租哪家公司的车都一样4、小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内),节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?(3)照明多少时间用两种灯费用相等?解:(1)0.01×0.5×500+50=52.5元0.1×0.5×500+5=30元 52.5>30答:选白炽灯省钱(2)0.01×0.5×1500+50=57.5元57.5<80元 0.1×0.5×1500+5=80x时间用两种灯费用相等照明解:xx+50.5××0.010.5×+50=0.1×x=450.045x=1000小时用两种灯费用相等1000答:照明时间.5、某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(b<a),该农户将水果运到市场出售,平均每天出售1000kg,需8人帮助,每人每天付工资25元,汽车运费及其它各项税费平均每天100元。
人教版七年级上册数学第三章一元一次方程应用题方案选择问题突破训练【含答案】
4.双“十一”期间,天猫商场某书店制定了促销方案:若一次性购书超过 300 元,其中 300 元按九五折优惠,超过 300 元的部分按八折优惠. (1)设一次性购买的书籍原价是 500 元,实际付款为 元; (2)若小明购书时一次性付款 365 元,则所购书籍的原价是多少元? (3)小冬在促销期间先后两次下单购买书籍,两次所购书籍的原价之和为 600 元(第一次所购书籍的原价高于第 二次),两次实际共付款 555 元,则小冬两次购物所购书籍的原价分别是多少元?
3.为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共 102 人,其中甲单位人数超过 50 人又不够 100 人,乙单位人数少于 50 人.经了解,该景区门票价格如下表:
数量(张)
1~50
51~100
101 张以上
单价(元/张)
60
50
40
如果两单位分别单独购买门票,那么一共应付 5500 元. (1)甲、乙两单位各有多少名退休职工准备参加游玩? (2)如果甲单位有 12 名退休职工因身体原因不能外出游玩,那么你有几种购买方案?通过比较,你该如何购买 门票才能省钱?
13.某牛奶加工场现有鲜奶 9 吨,若直接在市场上销售,每吨可获利 500 元;制成酸奶销售,每吨获利 1200 元; 制成奶片销售,每吨获利 2000 元.该加工场生产能力是:若制成酸奶,每天可加工 3 吨;制成奶片,每天可加工 1 吨,受人员限制,两种加工方式不能同时进行,且牛奶必须在 4 天内全部销售或加工完毕.有两种方案: 方案一:尽可能多的制成奶片,其余直接销售鲜奶; 方案二:一部分制成奶片,其余制成酸奶销售无论哪种方案,都要在 4 天内完成,选哪一种方案好?为什么?
答案 1.(1)5 个月;(2)方案一 2.(1)1200 套;(2)元 3.(1)甲单位有 62 名退休职工准备参加游玩,乙单位有 40 名退休职工准备参加游玩;(2)甲、乙两单位联合 购票,购买 101 张门票最省钱. 4.(1)445;(2)400 元;(3)第一次所购书籍的原价是 450 元,第二次所购书籍的原价是 150 元. 5.(1)187 元;(2)140 元;(3)第一次购买 10 张,第二次购买 60 张 6.(1)同学看中的 iPad 和手机的单价各是 2100 和 1200 元.(2)选择 A 超市购买更省钱. 7.(1)篮球的单价是 20 元,排球的单价是 15 元;(2)选择方案一更省钱, 8.(1)可以节省 1420 元钱;(2)甲校有 58 名学生准备参加表演,乙校有 42 名学生准备参加表演;(3)应该 甲乙两校联合起来选择按 40 元每套一次购买 100 套服装最省钱 9.(1)(0.2x+60),0.3x;(2)乙种;(3)600 份 10.(1)按活动规定实际付款 270 元;(2)第 2 次购物节约了 60 元;(3)张老师将这两次购得的商品合为一次 购买更省钱. 11.(1)七年级一班 48 人,二班有 52 人;(2)可省 296 元;(3)七一班单独组织去游园,直接购买 51 张票更 省钱 12.第二种方案可以多得 1500 元的利润. 13.选择方案二好 14.(1)8;(2)甲班第一次、第二次分别购买 4 千克、36 千克,或 8 千克、32 千克 15.(1)25 盒;(2)购买 15 盒去乙店,购买 30 盒去甲店
人教版七年级数学上册期末复习题1方案设计与方案选择练习(初一数学)
人教版七年级数学上册期末复习题1方案设计与方案选择练习(初一数学)专题一、方案设计与方案选择(初一)1、(例1)▲某校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑。
经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需8万元。
(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的资金不超过2700000元,并且购买笔记本电脑的台数不超过电子白板数量的3倍。
该校共有哪几种购买方案?(方案设计)(3)上面的哪种购买方案最省钱?按最省钱的方案购买需要多少钱?(方案选择①▲)2、(练习)某校师生积极为汶川地震灾区捐款捐物,在得知灾区急需帐篷后,立刻到当地的一家帐篷厂采购。
帐篷有两种规格,可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。
学校花去捐款96000元采购这两种帐篷,正好可供2300人居住。
学校准备租用甲、乙两种型号的卡车共20辆将所购帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷;乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。
(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷?(2)学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?3、(例2)▲暑假期间,2名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社。
经协商,甲旅行社的优惠条件是两名家长全额收费,学生都按7折收费;乙旅行社的优惠条件是家长学生都按8折收费,他们应该选择哪家旅行社?(方案选择②▲)4、(练习1)某单位“十一”组织员工到野外旅游,A、B两旅行社的服务质量相同,且组织到该地旅游的价格都是每人300元。
该单位在联系时,A旅行社表示可给予每位旅客七五折的优惠;B旅行社表示可免去一位旅客的费用,其余八折优惠。
实际问题与一元一次方程--方案选择问题训练2022-2023学年人教版七年级上册数学【有答案】
人教版七年级上册数学3.4实际问题与一元一次方程--方案选择问题训练一、单选题1.七年级学生计划乘客车去春游,如果减少一辆客车,每辆车正好坐60人.如果增加一辆客车,每辆正好坐45人,则七年级共有学生( )A .240人B .300人C .360人D .420人2.某单位元旦期间组织员工到正定出游,原计划租用28座客车若干辆,但有4人没有座位,若租用同样数量的33座客车,只有一辆空余了11个座位,其余客车都已坐满,则该单位组织出游的员工有( )A .80人B .84人C .88人D .92人3.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( )A .6名B .7名C .8名D .9名4.某学校实行小班化教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室,那么这所学校共有教室( )A .18间B .22间C .20间D .21间5.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?( )A .39B .40C .41D .426.今年开学,由于疫情防控的需要,某学校统一购置口罩,其中给七年级(1)班全体学生配备了一定数量的口罩,若给每个学生发3个口罩,则多30个口罩,若给每个学生发5个口罩,则少50个口罩,请问该班有多少名学生?设该班有为x 名学生,可列方程( )A .330550x x +=+B .330550x x +=-C .350530x x -=+D .330550x x -=-7.甲、乙两店以同样价格出售一种商品,并推出不同的优惠方案在甲店累计购物超过100元后,超出100元的部分打9折;在乙店累计购物超过50元后,超出50元的部分打9.5折,则顾客到两店购物花费一样时为()A.累计购物不超过50元B.累计购物超过50元不超过100元C.累计购物超过100元D.累计购物不超过50元或刚好为150元8.阳光书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打九折;③一次性购书超过200元,一律打八折.如果小明同学一次性购书付款171元,那么他所购书的原价为()A.190元或213.75元B.213.75元C.200元D.190元或200元二、填空题9.某校初一年级某班40个学生到湖边坐船游览,船家有三人船、二人船和一人船三种船提供出租,三人船每只船租金60元,二人船每只船租金50元,一人船每只船租金30元.40个学生刚好坐满了15只船,求这40个学生坐船的最低费用为_____元.10.东北师大附中校团委组织了职业微体验活动,初一(3)班52名学生分别去科技馆和图书馆参观,去科技馆的人数比去图书馆人数的2倍少5人,设去图书馆的人数为x 人,则可列方程:__________.11.小丽在水果店用18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,设小丽买了苹果x千克,可列方程__________.12.某校七年级学生乘车去郊外秋游,如果每辆汽车坐45人,那么有16人坐不上汽车;如果每辆汽车坐50人,那么有一辆汽车空出9个座位,有x辆汽车,则根据题意可列出方程为______.13.几个人共同种一批核桃树,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗,若设参与种树的有x人,则列方程为______________________.14.学校买了大小椅子20张,共花去275元,已知大椅子每张15元,小椅子每张10元,若设大椅子买了x张,则小椅子买了________张,列出方程_________________.15.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了_____元.16.某校初中一年级组织学生春游活动,如果包车6辆会有10个学生没有座位,如果包车7辆则会多出30个空位,则该年级学生人数为______人.三、解答题17.甲超市在中秋节这天进行苹果优惠促销活动,苹果的标价为10元/kg ,如果一次购买4kg 以上的苹果,超过4kg 的部分按标价6折售卖,x (单位:kg )表示购买苹果的量.(1)中秋节这天,小明购买3kg 苹果需付款_______元;购买5kg 苹果需付款_______元;(2)中秋节这天,小明需购买苹果x kg ,则小明需付款_______元;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg ,且全部按标价的8折售卖,小明如果要购买多少kg 苹果时,随便在哪家购买都一样?18.商场的运动服每套标价a 元,运动鞋每双标价b 元,实际购买时都是按标价九折付款;该商场又制定了更优惠的买二送一方式,即按标价购买两套运动服时可赠一双运动鞋光明中学七年级五班50名同学每人需要一套运动服和一双运动鞋.(1)第一种购买方案:按打九折的方式直接购买50套运动服需费用为______.按打九折的方式直接购买50双运动鞋需费用为__________.(2)第二种购买方案(买二送一方式):可以先购买50套运动服获赠25双运动鞋、再购买25双鞋共需费用为___________.(3)当200,100a b ==时,如何购买更省钱?能省多少钱?19.某体育用品商店销售足球和篮球,其中篮球的单价比足球多30元,已知购买4个足球和3个篮球的费用相等.(1)求购买每个足球、篮球的单价分别是多少元?(2)由于“双十二”的来临,商店决定对所售商品进行促销.现有两种促销方案可供选择: 方案一:买5个篮球赠一个足球.方案二:所购买的商品均打9折.当购买6个篮球和多少个足球时,两种促销方案所花费用一致?(3)在(2)条件下,购买10个篮球和5个足球最少费用为_______元.20.我们用的练习本在甲、乙两个商店的标价都是每本1元,为了促销,在甲商店买10本以上,超出部分按七折出售:在乙商店购买,全部按八折优惠.(1)若小明要买20本,到哪个商店购买商合算?(2)若小亮拿着35.2元钱去买练习本,他怎样购买获得的练习本最多?最多可买多少本练习本?。
人教版七年级上册数学一元一次方程实际问题——方案问题
一元一次方程实际问题——方案问题1、学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。
(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由。
2、某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲组每天修桌凳16套,乙组每天修桌凳比甲组多8套,甲组单独修完这些桌凳比乙组单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费。
(1)问:该中学库存多少套桌凳?(2)再修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助贴,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理,你认为哪种方案省时又省钱,为什么?3、某市按如下规定收取每月煤气费:煤气月用量如果不超过60立方米,每立方米按1元收费,如果月用量超过60立方米,超过部分按每月1.5元收费,已知12月份某用户的煤气费平均每立方米1.2元,那么12月份该用户煤气用量是多少立方米?4、一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h。
卡车的行驶速度是60km/h,客车比卡车早1小时到达B地,则客车经过多少小时到达B地?5、春节快到了,移动公司为了方便学生上网查资料,提供了两种上网优惠方法:A计时制:0.05元/分;B包月制:50元/月(只限一台电脑上网)。
另外,不管哪种收费方法,上网时都得加收通信费0.02元/分。
(1)设小明某月上网时间为x分钟,请写出两种付费方法下小明应该支付的费用;(2)上网时间为多少时,两种方法付费一样多?(3)如果你一个月只上网15小时,你会选择哪种方法付费呢?6、某超市为了回馈广大新老客户,元旦期间决定实行优惠活动。
优惠一:非会员购物,所有商品价格可获九折优惠;优惠二:缴纳200元会费成为该超市一员,所有商品价格可获得八折优惠。
七年级数学一元一次方程应用题(方案设计问题)(人教版)(专题)(含答案)
一元一次方程应用题(方案设计问题)(人教版)(专题)一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米时,按每立方米a元收费;超过15立方米时,不超过的部分每立方米扔按a元收费,超过的部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:根据题意,用水超过15立方米时,居民所交水费应分为两部分:15立方米的水费和超过15立方米部分的水费.因此该居民在一个月内用水35立方米时,应交水费:(元).故选B.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题2.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米时,按每立方米0.8元收费;超过60立方米时,不超过部分仍按每立方米0.8元收费,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.66元B.60元C.78元D.75元答案:A解题思路:4月份的煤气费平均每立方米0.88元,那么所用煤气一定超过60立方米.交煤气费包括60立方米的煤气费和超过60立方米的煤气费,设4月份用了煤气x立方米,根据题意得,解得x=75,4月份应交煤气费:75×0.88=66(元).故选A.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题3.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同.设购买电脑x台(x>10),用含x的代数式分别表示在甲、乙两电脑商购买时付的钱数,下列正确的是( )A.B.C.D.答案:D解题思路:由题意得,在甲处购买需要花钱数:在乙处购买需要花钱数:故选D.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题4.(上接第3题)若要使得在甲、乙两电脑商购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:根据第3题,要使得在甲、乙两电脑商购买电脑花钱一样多,则,解得x=20.故选C.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题5.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.若采用方案三,则需要精加工( )A.3天B.4天C.5天D.6天答案:C解题思路:设精加工的有x天,则粗加工的有(10x)天,根据题意可列方程为,解得x=5,即需要精加工5天,粗加工5天.故选C.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题6.(上接第5题)5题的三种方案中,获利最多的方案和对应的利润分别为( )A.方案三,562 500元B.方案二,435 000元C.方案三,600 000元D.方案一,500 000元答案:A解题思路:根据题意,列表梳理信息如下:由题意和第5题的计算结果得方案一:,所以利润为5000×100=500 000(元);方案二:利润为7 500×5×10+1 200×(100-5×10)=435000(元);方案三:利润为7 500×5×5+5 000×5×15=562 500(元).综上可知,方案三的利润最高,为562 500元.故选A.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题。
人教版七年级上册方案设计型应用题配答案
人教版七年级上册方案设计型应用题配答案嘿,小朋友,今天我要跟你分享一份超实用的方案设计型应用题攻略,让你在数学世界里所向披靡,轻松应对各种难题。
准备好了吗?那我们就开始吧!一、认识图形我们要了解一些基本的图形概念。
比如,点、线、面、体。
这些概念是数学的基础,一定要掌握牢固。
下面是一些典型题目:1.在平面直角坐标系中,点(2,3)表示什么?答案:点(2,3)表示在平面直角坐标系中,横坐标为2,纵坐标为3的位置。
2.画出线段AB和线段CD,并说明它们的特点。
答案:线段AB和线段CD是直线的一部分,两端都有端点,长度是有限的。
二、角的度量我们要学习角的度量。
角是由两条射线共同组成的图形,它的度量单位是度(°)。
下面是一些典型题目:1.一个直角是多少度?答案:一个直角是90°。
2.如果一个角是30°,那么它的补角是多少度?答案:一个角和它的补角的度数和为180°,所以这个角的补角是180°30°=150°。
三、几何图形的性质了解了基本概念后,我们要深入研究几何图形的性质。
比如,三角形、四边形、圆等。
下面是一些典型题目:1.一个等边三角形的内角是多少度?答案:一个等边三角形的内角都是60°。
2.证明:平行四边形的对角线互相平分。
答案:设平行四边形ABCD的对角线交于点E,要证明AE=CE,BE=DE。
因为ABCD是平行四边形,所以AB∥CD,AD∥BC。
在三角形ABE和三角形CDE中,∠BAE=∠DCE,∠ABE=∠CDE,AB=CD。
根据三角形的全等条件,可得三角形ABE≌三角形CDE,从而得出AE=CE,BE=DE。
四、应用题实战1.一个长方形的长是8厘米,宽是5厘米,求它的面积。
答案:长方形的面积=长×宽=8厘米×5厘米=40平方厘米。
2.在一个三角形ABC中,∠A=60°,∠B=70°,求∠C的度数。
人教版七年级上册方案设计型应用题配答案
七年级上册方案问题应用题及答案于得英整理方案设计型应用题1、据电力部门统计,每天8︰00至21︰00是用点高峰期,简称“峰时”,21︰00至次日8︰00是用电低谷期,简称“谷时”。
为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?解:设问小明家使用“峰时”用电为x度,“谷时”用电分95-x度?0.55x+ 0.30 ⨯(95-x)+5.9 = 95 ⨯ 0.52x =6095-60=35(度)答:小明家使用“峰时”用电为60度,“谷时”电分35度?2、电信部门推出两种电话计费方式如下表:(1)当通话时间是多少分钟时两种方式收费一样多?解:设当通话时间是x分钟时两种方式收费一样多,根据题意得:0.4X+30=0.5X 解方程得:x= 300 (2)当通话时间 X>300分钟时,A种收费方式省钱;当通话时间X<300分钟时,B种收费方式省钱.3、某单位急需要用车,但无力购买,他们决定租车使用,某个体出租车司机的条件是:每月付1210元工资,另外每百千米付10元汽油费;另一国营出租车公司的条件是:每百千米付120元。
(1)这个单位若每月平均跑1000千米,租谁的车划算?(2)求这个单位每月平均跑多少千米时,租哪家公司的车都一样?(1)10÷100=0.1元 120÷100=1.2元1210+1000×0.1=1310元1.2×1000=1200元1310>1200答:租国营的车划算(2)解:设这个单位每月平均跑x千米时,租哪家公司的车都一样1210+0.1x=1.2xx=1100答:这个单位每月平均跑1100千米时,租哪家公司的车都一样4、小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内),节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?(3)照明多少时间用两种灯费用相等?解:(1)0.01×0.5×500+50=52.5元0.1×0.5×500+5=30元 52.5>30答:选白炽灯省钱(2)0.01×0.5×1500+50=57.5元0.1×0.5×1500+5=80元57.5<80解:照明x时间用两种灯费用相等0.01×0.5×x+50=0.1×0.5×x+50.045x=45x=1000答:照明时间1000小时用两种灯费用相等5、某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(b<a),该农户将水果运到市场出售,平均每天出售1000kg,需8人帮助,每人每天付工资25元,汽车运费及其它各项税费平均每天100元。
最新人教版七年级数学上册期末复习题1方案设计与方案选择练习(初一数学)
人教版七年级数学上册期末复习题1方案设计与方案选择练习(初一数学)专题一、方案设计与方案选择(初一)1、(例1)▲某校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑.经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需8万元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的资金不超过2700000元,并且购买笔记本电脑的台数不超过电子白板数量的3倍.该校共有哪几种购买方案?(方案设计)(3)上面的哪种购买方案最省钱?按最省钱的方案购买需要多少钱?(方案选择①▲)2、(练习)某校师生积极为汶川地震灾区捐款捐物,在得知灾区急需帐篷后,立刻到当地的一家帐篷厂采购.帐篷有两种规格,可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元.学校花去捐款96000元采购这两种帐篷,正好可供2300人居住.学校准备租用甲、乙两种型号的卡车共20辆将所购帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷;乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷?(2)学校应如何安排甲、乙两种型号的卡车可一次性将这批帐篷运往灾区?有几种方案?3、(例2)▲暑假期间,2名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社.经协商,甲旅行社的优惠条件是两名家长全额收费,学生都按7折收费;乙旅行社的优惠条件是家长学生都按8折收费,他们应该选择哪家旅行社?(方案选择②▲)4、(练习1)某单位“十一”组织员工到野外旅游,A、B两旅行社的服务质量相同,且组织到该地旅游的价格都是每人300元.该单位在联系时,A旅行社表示可给予每位旅客七五折的优惠;B旅行社表示可免去一位旅客的费用,其余八折优惠.(1)当该单位旅游人数为多少时,支付给A、B两家旅行社的总费用相同?(2)该单位共有30人参加此次旅游,应选择哪家旅行社,方可使总费用最少?5、(练习2)我市某中学要印制本校高中招生的录取通知书,两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元的制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元则六折优惠;同时两厂都规定:一次印刷数量至少是500份.(1)设印刷数量为x份,请你分别用含有x的代数式表示两个印刷厂的收费?(2)如何根据印刷的数量x选择比较合算的方案?(3)如果该中学要印刷2000份录取通知书,那么应当选择哪一个厂?需要多少费用?6、(例3)某公司规定利用仅有的349个甲种部件和295个乙种部件组装A、B两种型号的简易板房共50套捐赠给灾区.已知组装一套A型号简易板房需要甲种部件8个和乙种部件4个;组装一套B型号简易板房需要甲种部件5个和乙种部件9个.(1)该公司在组装A、B两种型号的简易板房时,共有多少种组装方案?(2)若组装A、B两种型号的简易板房所需要的费用分别为每套200元和180元,问最少总组装费用是多少?并写出总组装费用最少时的组装方案.(配套问题方案▲)7、(练习1)某厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A产品需甲原料9kg,乙原料3kg,生产一件B产品需要甲原料4kg,乙原料10kg.(1)有几种符号题意的生产方案?(2)若生产一件A产品可获利700元,生产一件B产品可获利1200元,那么采用哪种生产方案可使生产A、B两种产品的总获利最大?最大利润是多少?8、(练习2)为创建美丽腾冲,园林部门决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A、B两种园艺造型共50个摆放在机场大道两侧.已知搭配一个A种造型需甲种花卉70盆,乙种花卉30盆;搭配一个B种造型需甲种花卉40盆,乙种花卉80盆. (1)有几种符合题意的搭配方案?(2)若搭配一个A造型的成本是800元,一个B造型的成本是960元,试说明(1)中哪种成本最低,最低成本是多少?。
七年级上册数学一元一次方程应用题之方案设计问题
一元一次方程应用题之方案设计问题方案设计问题关键是理解题目中所给条件的意思,通过一元一次方程设计出合理的方案,进行比较,从而解决实际问题。
例1、广州市为鼓励市民节约用水,作出如下规定:陈刚家11月份缴水费31元,他家11月实际用水多少m3?例2、某地电话拨号入网有两种收费方式,用户可任选一种:A、计时制:3元/时;B、包月制:50元/月(限一部个人住宅电话入网).此外,每一种上网方式都得加通讯费1.2元/时.(1)某用户某月的上网时间为 x小时,请写出两种收费方式下该用户应该支付的费用:A、计时制: B、包月制:(2)一个月内上网时间为多少小时,两种上网方式的费用相同?2、某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中,平均每生产一件产品有0.5米3污水排出,为了净化环境,工厂设计了两种处理污水的方案。
方案一:工厂污水先净化处理后再排出,每处理1米3污水所用的原料费为2元,并且每月排污设备损耗为30000元;方案二:工厂将污水排到污水厂统一处理,每处理1米3污水需付14元的排污费。
请问:每月生产多少件产品时,工厂选择这两种方案的纯利润相同?3某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人。
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?4、某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买年票”的方法。
年票分为A、B、C三种:A年票每张120元,持票进入不用再买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C类年票每张40元,持票进入园林时,购买每张3元的门票。
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(方案选择问题)训练(含解析)
1.小颖购买练习本可以到甲店购买,也可以到乙店购买,已知两店的标价都是每本 1 元,甲店的优惠条件是:购买 10 本以上,从第 11 本开始按标价的 70%出售;乙商店的 优惠条件是:从第 1 本开始按标价的 80%出售. (1)小颖要买 20 本练习本时,到哪个店购买较省钱? (2)买多少本练习本时,在两店购买练习本付的费用相等? (3)小颖现有 24 元,最多可买多少本练习本?
9.一种蔬菜在某市场上的销售价格如下: 购买数量 不超过 20 千克 20 千克以上但不超过 40 千克 40 千克以上
价格
5 元/千克
4 元/千克
3 元/千克
已知小明两次购买了此种蔬菜共 70 千克(第二次购买数量多于第一次). (1)若第一次购买 15 千克,则两次的总费用为________元; (2)若两次购买蔬菜的总费用为 236 元,求第一次、第二次分别购买此种蔬菜多少千克?
(1)分别用含 x 的式子表示 M,N; (2)交费时间为多少个月时,两种方案费用相同? (3)若交费时间为 12 个月《义务教育课程方案》和课程标准(2022 年版),将劳动从原 来的综合实践活动课程中独立出来.我县某中学初中部为了让学生体验农耕劳动,开辟 了一处种植园,需要采购一批某种菜苗开展种植活动,已知甲、乙两菜苗基地该种菜苗 每捆的标价都是 6 元(菜苗的质量一样好),但甲、乙两菜苗基地的优惠条件却不同. 甲菜苗基地:若购买不超过 15 捆,则按标价付款;若一次购 15 捆以上,则超过 15 捆 的部分按标价的 60%付款; 乙菜苗基地:按标价的 80%付款. (1)若学校决定购买该种菜苗 20 捆,则在甲菜苗基地购买,需付款________元,在乙菜 苗基地购买,需付款________元; (2)若学校决定购买该种菜苗 x 捆( x 15),请用含 x 的式子分别表示在甲、乙两个菜苗 基地购买该种菜苗的费用; (3)学校决定购买该种菜苗多少捆时,到甲、乙两菜苗基地用的钱一样多?说明理由.
初一数学方案设计问题试题及答案
初一数学方案设计问题试题及答案初一数学方案设计问题试题(2012北海,23,8分)23.某班有学生55人,其中男生与女生的人数之比为6:5。
(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上。
请问男、女生人数有几种选择方案?(1)根据题目中的等量关系,设出未知数,列出方程,并求解,得男生和女生的人数分别为30人,25人。
(2)根据题意列出不等式组,并求解。
又因为人数不能为小数,列出不等式组的整数解,可以得出有两种方案。
解:(1)设男生有6x人,则女生有5x人。
1分依题意得:6x+5x=552分∴x=5∴6x=30,5x=253分答:该班男生有30人,女生有25人。
4分(2)设选出男生y人,则选出的女生为(20-y)人。
5分由题意得:6分解之得:7≤y ∴y的整数解为:7、8。
7分当y=7时,20-y=13当y=8时,20-y=12答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人。
8分本题是方程和不等式组的应用,使用性比较强,适合方案设计。
解题时注意题目的隐含条件,就是人数必须是非负整数。
是历年中考考查的知识点,平时教学的时候多加训练。
难度中等。
24.(2012年广西玉林市,24,10分)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.分析:(1)设甲车单独完成任务需要x天,乙单独完成需要y天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.解:(1)设甲车单独完成任务需要x天,乙单独完成需要y 天,由题意可得:,解得:即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车租金为a,乙车租金为b,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:,解得:.①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.点评:此题考查了分式方程的应用,及二元一次方程组的知识,分别得出甲、乙单独需要的天数,及甲、乙车的租金是解答本题的关键.27.(2012黑龙江省绥化市,27,10分)在实施“中小学校舍安全工程”之际,某县计划对A、B两类学校的校舍进行改造.根据预测,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.⑴改造一所A类学校和一所B类学校的校舍所需资金分别是多少万元?⑵该县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B 两类学校各有几所.解:(1)等量关系为:①改造一所A类学校和三所B类学校的校舍共需资金480万元;②改造三所A类学校和一所B类学校的校舍共需资金400万元;设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得答:改造一所A类学校的校舍需资金90万元,改造一所B 类学校的校舍所需资金130万元.(2)不等关系为:①地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;②国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.设A类学校应该有a所,则B类学校有(8-a)所.则,解得∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.⑴改造一所A类学校和一所B类学校的校舍所需资金分别是90万元、130万元;⑵共有三种方案.方案一:A类学校1所,B类学校7所;方案二:A类学校2所,B类学校6所;方案三:A类学校3所,B类学校5所.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键.难度中等.22.(2012山东莱芜,22,10分)(本题满分10分)为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔个多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x个文具盒需要元,买x支钢笔需要元;求、关于x的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.(1)设每个文具盒x元,每支钢笔y元,可列方程组得,解之得答:每个文具盒14元,每支钢笔15元.……………………………………………………..4分(2)由题意知,y1关于x的函数关系式为y1=14×90%x,即y1=12.6x.由题意知,买钢笔10以下(含10支)没有优惠,故此时的函数关系式为y2=15x.当买10支以上时,超出部分有优惠,故此时函数关系式为y2=15×10+15×80%(x-10)即y2=12x+30 (7)(3)当y1 当y1=y2即12.6x=12x+30时,解得x=50;当y1>y2即12.6x>12x+30时,解得x>50.综上所述,当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱..……………………………………………………..10分(1)答:每个文具盒14元,每支钢笔15元.(2)y1=12.6x;y2=12x+30.(3)当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱.本题考察了列二元一次方程组解实际问题,求一次函数的解析式和利用一元一次不等式组选择最优化的方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册方案问题应用题及答案于得英整理方案设计型应用题1、据电力部门统计,每天8︰00至21︰00是用点高峰期,简称“峰时”,21︰00至次日8︰00是用电低谷期,简称“谷时”。
为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?解:设问小明家使用“峰时”用电为x度,“谷时”用电分95-x度?0.55x+ 0.30 ⨯(95-x)+5.9 = 95 ⨯ 0.52x =6095-60=35(度)答:小明家使用“峰时”用电为60度,“谷时”电分35度?2、电信部门推出两种电话计费方式如下表:(1)当通话时间是多少分钟时两种方式收费一样多?解:设当通话时间是x分钟时两种方式收费一样多,根据题意得:0.4X+30=0.5X 解方程得:x= 300 (2)当通话时间 X>300分钟时,A种收费方式省钱;当通话时间X<300分钟时,B种收费方式省钱.3、某单位急需要用车,但无力购买,他们决定租车使用,某个体出租车司机的条件是:每月付1210元工资,另外每百千米付10元汽油费;另一国营出租车公司的条件是:每百千米付120元。
(1)这个单位若每月平均跑1000千米,租谁的车划算?(2)求这个单位每月平均跑多少千米时,租哪家公司的车都一样?(1)10÷100=0.1元 120÷100=1.2元1210+1000×0.1=1310元1.2×1000=1200元1310>1200答:租国营的车划算(2)解:设这个单位每月平均跑x千米时,租哪家公司的车都一样1210+0.1x=1.2xx=1100答:这个单位每月平均跑1100千米时,租哪家公司的车都一样4、小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内),节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?(3)照明多少时间用两种灯费用相等?解:(1)0.01×0.5×500+50=52.5元0.1×0.5×500+5=30元 52.5>30答:选白炽灯省钱(2)0.01×0.5×1500+50=57.5元0.1×0.5×1500+5=80元57.5<80解:照明x时间用两种灯费用相等0.01×0.5×x+50=0.1×0.5×x+50.045x=45x=1000答:照明时间1000小时用两种灯费用相等5、某农户2000年承包荒山若干公顷,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg,此水果在市场上每千克售a元,在果园每千克售b元(b<a),该农户将水果运到市场出售,平均每天出售1000kg,需8人帮助,每人每天付工资25元,汽车运费及其它各项税费平均每天100元。
①分别用a、b表示用两种方式出售水果的收入。
②若a=1.3元,b=1.1元,且两种出售水果方式都在相同时间内售完全部水果,请通过计算说明,选择哪种出售方式较好、(1)运到市场共需要的杂费( 8×25+100)×(18000÷1000)=5400元市场销售收入为18000a-5400果园销售收入为18000b(2)市场销售 18000a-5400=18000×1.3-5400=18000元果园销售18000b=18000×1.1=19800元19800>18000答:市场收入较少,选择在果园销售。
6、某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠;”乙旅行社说:“包括教师在内全部按票价的6折优惠”;若全部票价是240元;(1)如果有10名学生,应参加哪个旅行社,并说出理由;(2)当学生人数是多少时,两家旅行社收费一样多?(3)当学生人数是多少时,选择甲旅行社,当学生人数是多少时选择乙旅行社。
(1)240×0.5=120元 240×0.6=144元 10+1=11人240+120×10=1440元144×11=1584元1440<1580答:应参加甲旅行社解:当学生人数是x人时,两家旅行社收费一样多240+120x=144(x+1)24 x= 96x=4x>4选甲x<4选乙答:当学生人数是4人时,两家旅行社收费一样多当学生人数是x>时,选择甲旅行社,当学生人数是x<4时选择乙旅行社7、育才中学需要添置某种教学仪器, 方案1: 到商家购买, 每件需要8元; 方案2: 学校自己制作, 每件4元, 另外需要制作工具的月租费120元, 设需要仪器x件.(1)试用含x的代数式表示出两种方案所需的费用;(2)当所需仪器为多少件时, 两种方案所需费用一样多?(3)当所需仪器为多少件时, 选择哪种方案所需费用较少? 说明理由.(1)方案一 8X方案二 4X+120(2) 当所需仪器为件时, 两种方案所需费用一样多8X=4X+120X=30(3) 当所需仪器为 X<30件时, 选择方案一所需费用较少例如1件方案一 8×1=8元方案二 4×1+120=124元8<124所以当所需仪器为 X<30件时, 选择方案一所需费用较少。
8、某电信公司开设了甲、乙两种市内移动通信业务。
甲种使用者每月需缴15元月租费,然后每通话1分钟, 再付话费0.3元;乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元。
若一个月内通话时间为x分钟, 甲、乙两种的费用分别为y1和y2元。
(1)、试用含x的代数式分别表示y1和y2。
(2)、试求一个人要打电话30分钟,他应该选择那种通信业务?(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?(1)y1= 15+ 0.3xy2=x6.0(2)15+0.3×30=24元0.6×30=18元18<24 答:选择乙种(3)解:设通话时间为x分钟15+ 0.3x=x6.0x=50答:根据一个月通话时间,当通话时间为50分钟花费一样,x>50选择甲更优惠x<50选用乙种通信业务更优惠?9、某校长暑假带领该校的三好学生去大连旅游,甲旅行社说:“若校长买全票一张,则学生可享受半价优惠”.乙旅行社说:“包括校长在内都6折优惠”.若全票价是每张1200元,则:设学生数为x,甲旅行社收费为y1,乙旅行社收费y2,则两家旅行社的收费与学生人数的关系式分别为y1= 1200+1200×0.5X ;y2= 1200×0.6(X+1).①当学生人数是多少时,两家旅行社的收费是一样的?②就学生人数讨论哪家旅行社更优惠.(1)解:当学生人数是X时,两家旅行社的收费是一样的1200+1200×0.5X=1200×0.6(X+1)120x=480x=4答:当学生人数是4人时,两家旅行社收费一样多(2)当学生人数是x>时,选择甲旅行社,当学生人数是x<4时选择乙旅行社10、我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。
当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式不能同时进行。
受季节条件限制,企业必在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了三种可行方案。
方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,来不及进行加工的蔬菜,在市场上直接销售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天。
你认为哪种方案获利最多?为什么方案一:140×4500=630000元方案二: 15×6=90吨 140-90=50吨7500×90+50×1000=725000方案三:解:设精加工x天,粗加工15-x天6x+16×(15-x)=140x=106×10×7500+16×5×4500=810000元810000>725000>63000答:方案三获利最多11、某地上网有两种收费方式,用户可以任选其一。
A 计时制:2.8元/小时;B 包月制:60元./月。
此外,每种上网方式都加通讯费1.2元/小时。
(1) 某用户每月上网20小时,选用哪种上网方式比较合算?(2) 某用户有120元钱用于上网(1个月),选用哪种上网方式比较合算?(3) 请你为用户设计一个方案,使用户能合理地选择上网方式。
(1)A ( 2.8+1.2)×20=80元B 60+1.2×20=84元 80<84答:选用A 种上网方式比较合算(2) 120 ÷(2.8+1.2)=30小时(120-60)÷1.2=50小时答:选用B 种上网方式比较合算(3)解:设通讯时间为x 小时两种费用一样多( 2.8+1.2)x = 60+1.2x2.8x =60x =7150 答:通讯时间为7150小时收费一样多12、小明家搬了新居要购买新冰箱,小明和妈妈在商场看中了甲、乙两种冰箱.其中,甲冰箱的价格为2100元,日耗电量为1度;乙冰箱是节能型新产品,价格为2220元,日耗电量为0.5度,并且两种冰箱的效果是相同的.老板说甲冰箱可以打折,但是乙冰箱不能打折,请你就价格方面计算说明,甲冰箱至少打几折时购买甲冰箱比较合算?(每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天)10年两种冰箱所需电费:甲种:10×300×1×0.5=1500(元)乙种:10×300×0.5×0.5=750(元)加上购买冰箱的钱,十年共需:第一种:2100+1500=3600(元)第二种:220+750=2970(元)2970<3600解:设甲冰箱至少打X折时购买甲冰箱比较合算2100×x+1500=2970(元)x=0.7所以甲冰箱至少打七折时购买比较合算。