结构力学三铰拱图文

合集下载

结构力学5三铰拱课件

结构力学5三铰拱课件
拱架搭设
根据设计要求,选用合适的材料搭设拱架;
施工流程与工艺要求
02
01
03
拱体安装
按照从两端向跨中的顺序,对称安装拱体构件;
拱顶合拢
在拱顶设置临时支撑,确保拱体稳定;
施工监测
对施工过程进行实时监测,确保施工安全和质量。
施工流程与工艺要求
工艺要求 拱架搭设应符合设计要求,确保稳定性和承载力;
拱体安装应保证构件对接准确,避免出现错位和扭曲;
施工流程与工艺要求
01
临时支撑设置应合理,确保拱体 在合拢过程中保持稳定;
02
施工监测应实时进行,及时发现 和解决施工中的问题。
安装方法与注意事项
安装方法 采用分段吊装法,将拱体分成若干段,分别吊装到位;
对接安装时,应保证对接位置准确,避免出现错位和扭曲;
安装方法与注意事项
• 合拢时,应设置临时支撑,确保拱体稳定。
结构力学5三铰拱课件

CONTENCT

• 三铰拱概述 • 三铰拱的力学分析 • 三铰拱的设计与计算 • 三铰拱的施工与安装 • 三铰拱的维护与加固
01
三铰拱概述
定义与特点
定义
三铰拱是一种静定结构,由两个 固定端和三个铰链支承构成。
特点
拱顶在竖向荷载作用下主要承受 压力,并通过铰链传递水平推力 ,保持拱的平衡。
保持三铰拱的清洁,避免 积尘、腐蚀等影响其使用 寿命的因素。
紧固与润滑
对三铰拱的连接部位进行 紧固,对活动部位进行润 滑,确保其正常运转。
常见问题与处理方法
1 2
结构损伤
如发现三铰拱出现裂纹、变形等损伤,应立即采 取措施进行修复或更换。
连接松动

三铰拱PPT课件

三铰拱PPT课件

F B
FS
FN FQ0sin FS cos
I
l/2
FVB
.
【例2】求图示三铰拱式屋架在竖向荷载作用下的支反力和内力。
解: (1) 计算支座反力
F H 0 , F V A F V 0 A , F V B F V 0 B
(2)计算拉杆内力:F S
M
0 C
f
(3)计算拱身内力
q
y FH
A FVA
受轴向压力FN作用。
仅在左半跨作用均布 荷载时的M图
仅在左半跨作用均布 荷载时的FQ图
仅在右半跨作用均布 荷载时的M图
仅在右半跨作用均布 荷载时的FQ图
(3) 这种在给定荷载作用下,拱处于无弯矩状态的拱轴线,是三
铰拱最合理的拱轴线( reasonable axis of arch) 。
.
• 三铰拱的合理拱轴线计算公式:
.
三铰拱压力线的求解步骤
设三铰拱所承受荷载如图4-8a所 示,现作其压力线。 第一步,作合力多边形
• 第二步,确定各截面合力的作 用线。
• 第三步,确定压力线 多边形AHIJB是由拱各段的 合力作用线构成的,称为三 铰拱在所给荷载作用下的压 力多边形,简称压力线 。 压力线应通过A、B、C三个 铰的铰心。
第五章 三铰拱( three-hinged arch )
.
内容: 三铰拱的支座反力和内力,合理拱轴。
要求: 1、了解静定拱的合理拱轴线的概念; 2、理解静定拱的基本概念及基本特点; 3、掌握静定拱的反力及内力计算。
重点:静定拱反力、内力的计算。 难点:静定拱的内力计算。
.
§5-1 概述 一、实例——拱桥(Arch Bridge)
.

结构力学 三铰拱

结构力学 三铰拱

4 4 yk 2 4(16 4) 3m 求MK 16 MK 0 MK 12.5 4 10 3 20kN.m(下拉)
求MJ
yJ 3m
M
J
0
M J 7.5 4 10 3 30 30 0
3. 求FQ、FN的计算公式
拱轴任意截面D切线与水平线夹角为φ。 相应代梁中, F 设为正方向。
FP1=15kN K FHA A yk 4m
l/2
C f=4m
MC 0
FVA
4m
l l FVA FHA f FP1 0 2 4 0 MC 1 l l FHA ( FVA FP1 ) () f 2 4 f
0 上式中,M C 为代梁C截面弯矩。
M FHB () f
0 ND右 QD右 sin D H cosD 12 0.555 10.5 0.832 15.4kN
重复上述步骤,可求出各等分截面的内力,作出内力图。
三、三较拱的合理轴线
在给定荷载作用下,三铰拱任一截面弯 矩为零的轴线就线为合理拱轴。 三铰拱任一截面弯矩为 M M FH y
超静定拱
拉杆拱 静定拱
拱顶
C
拱轴线 拱高 f
B
拱趾
A
起拱线 跨度 l
f l
f
高跨比
l 通常 f l 在1-1/10之间变化,f 的值对内力有 很大影响。
工程实例
拱桥 (无铰拱)
超静定拱
世界上最古老的铸铁拱桥(英国科尔布鲁克代尔桥)
万县长江大桥:世界上跨度最大的混凝土拱桥
二、三铰拱的计算
A 12.5kN K左 Fº =12.5kN QK左 A 12.5kN

三铰拱

三铰拱

M
O
0 FN ( FN d FN ) 0
可得 d FN 0 合理拱轴线方程为

FN q
FN =常数
d 2 qd 0
沿s-s 写出投影方程为
2 FN sin sin d 2
圆弧线
因 d 极小
d 2
返 章
M
0
FH
合理拱轴线方程
例4-2 试求图a所示对称三铰拱在图示荷载作用下的合理拱轴 线。
解:相应简支梁(图b)的弯矩方程为
M
0

1 2
qx ( l x )
0
三铰拱的推力为
FH
0
MC f
4f l
2

ql
2
8f
合理拱轴线方程为
y
M
FH

x (l x )
北京建筑工程学院
三铰拱合理拱轴线形状的确定
三铰拱
14kN m
A
50kN
B
C
75.5kN 58.5kN
175.5 201
M图(kNm)
与三铰拱相应弯矩相比,要大 很多。
北京建筑工程学院
结构力学教研室
三铰拱
计算图(a)斜拱的支反力 时为避免解联立方程,可将反力
分解如图(b)。
由平衡条件可得 (a
F AV F
0 AV
, F BV F
0
FS F AV F1
0 0
轴力以压力为正
北京建筑工程学院
结构力学教研室
三铰拱
三铰拱的内力不但与荷载及三个铰的位置有关,而 且与拱轴线的形状有关。 由于水平推力的存在,拱的弯矩比相应简支梁的弯矩要 小。 三铰拱在竖向荷载作用下轴向受压。

第3章 三铰拱

第3章  三铰拱

(二) 对称三铰拱的数解法
1. 计算支座反力
图示三铰拱中,共有 四个反力: VA、HA、VB、HB。 根据整体的平衡 条件可建立三个 平衡方程: ∑MA=0 ∑MB=0 ∑X=0 再取中间铰一侧隔离 体, ∑ MC=0, 由这四个方程可 解出四个反力。
由∑MB= 0,得: VAl-P1b1- P2b2-…= 0 VA= (P1b1 + P2b2 + …)/ l V0A 由∑MA= 0,得: VB= (P1a1+ P2a2+…)/ l V0B 把两个竖向反力VA 、VB与相应简支梁支座反力V0A 、 V0B 相比,可知竖向荷载作用下,对称三铰拱的竖向反力与 其相应简支梁的反力完全相同。
两个投影方程可用拱轴在该点的法线n和切线t为 投影轴。
∑n = 0 ,得: QD = VA cosφD -P1 cosφD -P2 cosφD -H sinφD = (V0A-P1-P2) cosφD -H sinφD
= Q0D cosφD -H sinφD
∑t = 0 ,得: ND = VA sinφD - P1 sinφD -P2 sinφD +H cosφD = (V0A-P1-P2) sinφD +H cosφD
由∑X= 0,得: HA= HB = H 中间铰左侧隔离体 ∑MC=0 得:
∑ MC =
VAl1-P1(l1 - a1) - P2(l1 - a2) - P3(l1 - a3)- H f = 0 得: H=[VAl1-P1(l1 - a1)- P2(l1 - a2)- P3(l1 - a3)] / f 因 VA = V0A ,得:H= M0C / f M0C为相应简支梁截面C的弯矩。
最后根据本例的已知条件,进行具体计算。
VA=VB= V0A = q l / 2= 4× 16 / 2 = 32kN H = (q l 2 / 8) / f = (4× 162 / 8) / 4 = 32kN

结构力学§3-8 三铰拱.

结构力学§3-8 三铰拱.

0 C
FH
f
0
FH

M
0 C
f
竖向反力: FVA
FPibi L
FV0A
FVB
FP i ai L
FV0B
水平反力:
FHA

FHB

FH

M
0 C
f
由前面计算可见: ●竖向反力与相应简支梁的相同;
●水平反力FH与拱高f成反比,与拱轴的曲线形式无关;
M
0不变时,
C
f小,则FH大;
QC
1050.832 82.50.555 41.6kN
FN左D FQ0D左SinD FHCosD
MD0 D
FQ0左D
1050.555 82.50.832 127kN
d) 求D右剪力、轴力:
100kN
FQ右D FQ0D右CosD HSinD
(105 100) 0.832 82.5 0.555 41.6kN
核心区
(2)合理拱轴线
d/3 d/3 d/3
M
K
FNK
RK
ek
K0
——在给定荷载下,适当选取拱轴线,使拱仅有轴力,而M=0, 拱轴线与压力线与完全重合,这样的拱轴线称为合理拱轴线。
数解法求合理拱轴பைடு நூலகம்:
已知:
Mk

M
0 k
Hyk
令:
Mk

M
0 k
Hyk
0
则有:
yk

M
0 k
H
[例3] 求图示对三铰拱在均布荷载作用下的合理拱轴线。
MD
F右 ND
D F右

4 第四章 三铰拱

4 第四章 三铰拱

无铰拱
凡在竖向荷载作用下会产生水平反力的 结构都可称为拱式结构或 推力结构。
P
FAH
FBH
推力结构
VA VB
3)拱结构的应用:主要用于拱坝、屋架结构、桥梁结构。 拱结构的优缺点:
a、在拱结构中,由于水平推力的存在,其各截面的弯 矩要比相应简支梁或曲梁小得多,因此它的截面就 可做得小一些,能节省材料、减小自重、加大跨度 b、在拱结构中,主要内力是轴压力,因此可以用抗拉 性能比较差而抗压性能比较好的材料来做。
相应简支 梁的弯矩
(2)弯矩计算 求拱轴线上任意点k的弯矩, 为此取Ak为隔离体:
Mk FAV xk FP1 xk a1 FH yk (3)剪力计算 求拱轴线上任意点k的剪力, 同样以Ak为隔离体: 0 FSk FYACos k HSin k FP1Cosk FYA FP1 Cos k HSin k
三铰刚架 例:
c、由于拱结构会对下部支撑结构产生水平的推力,因 此它需要更坚固的基础或下部结构。同时它的外形 比较复杂,导致施工比较困难,模板费用也比较大
拱各部分的名称:
拱顶
拱顶
拱轴线 拱高 f 起拱线 拱趾 跨度 l
f
L
L—跨度(拱趾之间的水平距离) f—矢高或拱高(两拱趾间的连线到拱顶的竖向距离)
f/L——高跨比(拱的主要性能与它有关,工程中这 个值控制在1—1/10 )
位于河北赵县,又名安济桥,由石工李春主持设计建造,完成 于公元605年左右。 该桥为空腹敞肩式坦拱桥,桥长64.4m,净跨37.02m,桥宽 9m,净矢高7.23m,桥面纵坡6.5%。 拱由28圈拱石平行砌筑,每圈有拱石43块;为加强拱石间的结 合,拱石各面均凿有相当细密的斜纹。另外,还在拱石之间设置X 形锚铁和铁锚杆。 在拱圈两肩各设两个跨度不等的腹拱,既减轻了桥身自重,又 节省了材料,还便于排洪。 该桥构思巧妙,造型美观,施工精度高,工艺精致,历1300多 年而无恙,举世闻名,不愧为桥梁文物宝库中的精品。 赵州桥被列为“全国重点文物保护单位”。在90年代初,赵州 桥被美国土木工程师学会选为“国际历史土木工程里程碑”。

结构力学(李廉锟第五版)_图文

结构力学(李廉锟第五版)_图文

§4-3 三铰拱的合理拱轴线
在均匀静水压力作用下,q=常数,因而
三铰拱在均匀静水压力作用下,其合理轴线的曲 率半径为一常数, 就是一段圆弧。
因此,拱坝的水平截面常是圆弧形,高压隧洞 常采用圆形截面。
拱桥实例介绍
5)刚架拱桥
1989江苏无锡100米下甸桥
变截面,四分点附近截面高度最大,分别向拱脚、跨中减小 。取消斜撑,拱上建筑采用23m预应力混凝土简支梁以过渡 。
§4-3 三铰拱的合理拱轴线
例4-3 设三铰拱上作用有沿拱轴均匀分布的竖向 荷载(如自重),试求其合理拱轴线。
解:当拱轴线改变时,荷载也随之改变。 令p(x)为沿拱轴线每单位长的自重,荷载沿水平
方向的集度为q(x) 由 有
§4-3 三铰拱的合理拱轴线

代入方程(4-5),得
由于规定y 向上为正, x 向右为正,q 向下为 正,故上式右边为正号。
§4-3 三铰拱的合理拱轴线

积分后,得 如p(x)=常数=p ,则
即 式中A为积分常数。
§4-3 三铰拱的合理拱轴线
由于当x =0时,
,故常数A等于零,即
再积分一次,得 由于当x=0时,y=0, 故
最后得 等截面拱在自重荷载作用下,合理轴线为一悬链线。
§4-3 三铰拱的合理拱轴线
在一般荷载作用下,为了寻求相应的合理轴线,可假 定拱处于无弯矩状态并写出相应的平衡微分方程。
§4-1 概 述
拱与其同跨度同荷载的简支梁相比其弯矩要小 得多,所以拱结构适用于大跨度的建筑物。它广泛 地应用房屋桥梁和水工建筑物中。由于推力的存在 它要求拱的支座必须设计得足够的牢固,这是采用 拱的结构形式时必须注意的。
§4-2 三铰拱的数值解 一、三铰拱的反力和内力计算。

结构力学——组合结构-三铰拱ppt课件

结构力学——组合结构-三铰拱ppt课件
(A,B,C三铰在一直线上,成为几何瞬变体。)
.
②拱内力计算:
QM
P1
N
D
HA
VA
弯矩:受拉侧做弯矩图; 剪力:垂直于拱轴线的切线(顺时针为正); 轴力:平行于拱轴线的切线(拉为正)。
.
a1
M
P1 D
y HA x
VA
•弯矩:
由 MD0
M V A x P 1 ( x a 1 ) H y 0 M M oH y
C
Mc0q2l /8
l
Mc0 / 6
Mc0 / 6
B
A
C
B
Mc0 / 6
0.207 l 0.586 l 0.207 l
优点:方便,简单; 缺点:截面仍有弯矩。
.
②三铰曲拱:
f MM0Hy (HM c0/ f)
优点:截面弯矩很小或无弯矩; 缺点:曲线杆件施工复杂。
.
③桁架: 上弦、下弦承受弯矩;腹杆承受剪力。
其中:M o V A x P 1 (x a 1 )— 对应点的简支梁弯矩
.
Qo
Q
M
P1
φ
DH
HA
VA
•剪力:
其中:
QQ oco sH sin
Q VAP 1–– 对应点的简支梁剪力
— 切线与水平线所成锐角
(由水平向逆时针为正)
+φ -φ
左右
.
Qo M N
P1
φ
DH
y
HA x
•轴力:
VA
N Q s i n H c os
q M
qr
C
d θ
A
r
任意截面内力:
M q2r(1co )so qrdrsin () q2r(1co )sq2r(1co )s0

3-3三铰拱(结构力学第3章)

3-3三铰拱(结构力学第3章)
证:可先考虑半圆形三铰拱的情况。作用 于圆弧上的径向均布荷载q 可以用两 个垂直方向上等值的均布荷载等效替 代。
恰好等于沿竖向和水平方向的两种 均布荷载 q 作用于微段时产生的竖 向分力和水平分力。
qRd cos 竖向分力: dFy qRd sin
水平分力: dFx
例3-9 试证圆弧线是三铰拱拱轴线法线 方向均布压力作用下的合理拱轴线。
26.8kN
0 MK MK FH yK
0 MC FH f
例3-6 绘制图示三铰拱的内力图。 4f y 2 x( l x ) 拱轴线方程: l 解:求支座反力。
0 FyA FyA 28kN , 0 FyB FyB 20kN 0 MC 20kN 8m 16kN 4m 96kN m 0 M C 96 FH 24kN f 4
3-3-3 合理拱轴线 在给定的荷载作用下,能使拱体所有截面上弯矩为零的拱轴 线称为合理拱轴线。 0 弯矩: MK MK FH yK 令:
M M 0 FH y 0 M0 y 得: FH
例3-7 求图示三铰拱的合理拱轴线。 解:相应简支梁的弯: FH f 8 f M0 4 f x l x 合理拱轴线: y 2 FH l
0 MC (推力计算公式 ) FH f
相当梁
⑴在给定荷载作用下,三铰拱的支座反力仅与三个铰的位置有 关,而与拱轴的形状无关。 ⑵在竖向荷载作用下,三铰平拱的支座竖向反力与相应简支梁 反力相同,而水平推力与拱高成反比。拱的高跨比(矢跨比) 愈大则推力愈小;反之,则推力愈大。 0 MC FH f
例3-6 绘制图示三铰拱的内力图。 4f y 2 x( l x ) 拱轴线方程: l 解:求支座反力。

2-3 三铰拱图文课件

2-3 三铰拱图文课件

YB
平推力与矢高成反比.
等代梁 A
P1
C
P2
请问:有水平荷载,或铰C不
B
再顶部a1,或
不b1是平拱,
YA右0 边的结论还a2 是正确的吗b?2 YB0
YB=YB0 XA=XB =H
YA=YA0
YA0
H
1 f
[YA
l 2
P1
(
l 2
a1)]
M
0 c
[YA0
l 2
l P1( 2
a1)]
H= MC0 / f
3.拱的分类 静定拱
三铰拱 拉杆
超静定拱
拉杆拱
超静定拱
两铰拱
无铰拱 斜拱
高差h
拱 (arch) 一、概述
4.拱的有关名称
顶铰
拱肋 拱趾铰
拱肋 拱趾铰 跨度
矢高
二、三铰拱的数解法 ----支反力计算
P1
C
P2
A XA
YA
f
l/2
l/2
l
B
XB
三铰拱的竖向反力与其 等代H梁的反力相等;水平
反荷力载Y与A与拱跨轴度线一形定状时无,关M水c0.
二、三铰拱的数解法 ----内力计算
y P1
K
C
P2
QK M K P1
载及A三个铰x的三位铰y 置拱有的关内f ,力而不但与荷 B
且与拱轴线的形状有关。 XA
x
XB X A YA
NK
P1
M
0 K
l/2
l/2
YA
由于推力的l 存在,拱的 YB
YA0
QK0
弯矩比相应简支梁的弯矩要
小。 P1 A

三铰拱

三铰拱

2 1.75 0.75 36º 0.600 0.800 5 12 -10.5 1.5 52´
4 3.00 0.50 26º 0.447 0.894 3 20 -18.0 2 34´ 6 3.75 0.25 14º 0.234 0.970 1 24 -22.5 1.5 2´ 8 4.00 0 0 0 1 -1 24 -24.0 0
a2 P1 C D y f
b2 P2
特点:有四个支座反力VA 、 B HB HA A VB、HA、HB,求解时需要四个方 程。拱的整体有三个方程,此外 VB VA l1 l2 C铰增加一个静力平衡方程,即: l MC=0。四个方程可解四个未知量。 (a) 为比较方便,考虑同跨度、同荷载的简支梁,竖向荷 载下,简支梁没有水平反力,只有竖向反力VA0 和VB0 。而 VA0和VB0的求解是简单的。
yk = y x=4 = 3m,
sink = 0.447 ,
cosk = 0.894 。
M k 在 k点左右两侧不同,分为 M kz 和 M ky。
0 M kz= M kz - Hy k = -20 - 10 3 = -50 kN m(外拉) 0 M ky= M ky - Hy k = 60 - 10 3 = 30 kN m(内拉) 0 Q k = Q k cos k - H sin k = -5 0.894 - 10 0 .447 = -8.94 kN 0 N k = -Q k sin k - H cos k = 5 0.447 - 10 0.894 = -6.705 kN
0 A
q=1kN/m P=4kN y A C D x 8m 4m l=16m 4m B f =4m
H=
M 58 - 4 4 = = 6kN f 4

结构力学-曲杆和三铰拱-PPT

结构力学-曲杆和三铰拱-PPT

(5)构造复杂,施工费用高。
三、拱的种类:
三铰拱
两铰拱
无铰拱
吊杆 拉杆
花篮螺丝
带拉杆的三铰拱
带吊杆的三铰拱
四、拱各部分的名称:
§4-1概述
一.三铰拱的基本形式
(一)无拉杆的三铰拱
1.平拱- 两个拱脚铰在同一水平线 2.斜拱-两个拱脚铰不在同一水平线上
(二)有拉杆的三铰拱(弓弦拱)
二. 三铰拱的组成
(4-17)
D
3、剪力计算 VD VAcosφ D P1cosφ D Hsin φD
(VA P1 )cosφ D Hsin φD
0 0 VD VA P1 VA P1
0 VA VD cosφD Hsin φD
HA A VA P1 A VA0 xD D C P2 B
三铰拱计算简图
P1 A VA0
X 0 :
H A HB H
M
B VB0
C
VAl1 P1 (l1 a1 ) Hf 0
1 [VA l1 P1 (l1 a 1 )] f
0 MC H f
HA0 = 0
D
C
P2
H
xK
0 MC VAl1 P1 (l1 a1 )
P C HA
P HB B VB HA=0
A
VA
A VA
B VA
拱结构
曲梁结构
例题4-1 求图4-5a所示圆弧形曲杆任意截面的内力M、V、N。 解:以极坐标φ表示B截面的位置,取图4-5c所示BC部分隔离体, 设B截面的内力分别为Mφ、Vφ、Nφ, 参照图4-5b并考虑到ds=Rdα, 由平衡条件得 ∑MB=0 Mφ=∫S qdsRsin(φ-α) =qR2∫0φsin(φ-α)dα=qR2(1-cosφ) 式 (4-1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 竖向荷载作用下三铰拱的受力分析
当两支座在同一水平线上时,称为等高拱或平拱,否 则称为斜拱。分析竖向荷载作用下三铰拱的内力和反 力时,与同跨度、同荷载的简支梁相对比,以便于计 算和对比分析拱的受力性质。
FP1
C FP2
f
A
B
l
FP1
FP2
1 竖向荷载作用下拱反力计算 mB 0
y
A FAx
第一节 三铰拱的组成和类型
2. 三铰拱的构成
矢高:起拱线至拱顶的 竖直距离。
拱趾
拱顶
矢高f 起拱线
跨度L
拱轴 拱趾
第一节 三铰拱的组成和类型
2. 三铰拱的构成
带拉杆的拱:在 屋架中,为消除 水平推力对墙或 柱的影响,在两 支座间增加一拉 杆,由拉杆来承 担水平推力,桥 梁中应用也非常 广泛。
第一节 三铰拱的组成和类型
yk
A
B
k
C
Fy' 0
F0 Ay
F0 Sk
F0 Ay
P1
F0 By
FS k FAy cosk P1 cosk FH sin k
M 0 F0 x Px a
k
Ay k
1k
1
FA0y P1 cosk
FS
0 k
c os k
FH
FH sin k
sin k
FN k
Fx' 0
FAy sink P1 sink FH cosk
在工程实践中,由于载荷的多样性,不可能有真正的无弯矩 拱,但是可以想象,接近合理拱轴的设计,应当是可行的方 案。赵州桥是我国隋代工匠李春建造的一个著名的范例。
第一节 三铰拱的组成和类型
1、工程上使用的拱结构实例
三铰拱是一种静定的拱式结构,在大跨度结构上用料 比梁省,因而在桥梁和屋盖中广泛应用。
1 竖向荷载作用下拱反力计算 2 竖向荷载作用下指定截面内力计算 3 拱的内力图
由于拱轴线是弯曲的,所以内力图都是曲 线形的,内力图要通过逐点描图的方法绘制, 总的规律仍符合荷载和内力的微分关系。
第二节 竖向荷载作用下三铰拱的受力分析
例题:三铰拱及其所受荷载如图所示拱的轴线为抛物线方

y
4f l2
Байду номын сангаас
FAx
FAyl1 P1(l1 a1) f
M
0 C
f
FBx
FH
第二节 竖向荷载作用下三铰拱的受力分析
1 竖向荷载作用下拱反力计算
• 拱的竖向反力与其相应简支梁的竖向反力
FAy=FAy0
相等; • 当荷载及跨度给定时,水平反力只与三个
FBy=FBy0
铰的位置有关而与拱轴线形状无关;而内 力则与拱轴形状有关。
FAy A
F0 Ay
a1 P1
a2 C
f
l1 l
P1 C
X 0
b1 P2
x l2
P2
b2 F l Pb Pb 0
Ay
11
22
FAy
Pb 11
l
Pb 22
B FBx
FBy
Pibi F 0
l
Ay
mA 0
FBy
Pa ii
l
F0 By
B
mc 0
F0 By
FAx f P1(l1 a1) FAyl1 0
10
第二节 竖向荷载作用下三铰拱的受力分析
曲拱计算步骤:
• 利用平衡方程求出拱的约束反力; • 绘制代梁的弯矩图和剪力图;
• 利用拱的曲线方程计算拟求截面的位置(x,y,);
• 代入拱内力计算公式计算该截面内力。
几点说明:
• 所求截面转角,实质是求相关函数(sin 和 cos 值),可
利用三角边的关系求出; • 顶铰左右部分截面转角分正负; • 集中力作用点剪力图和轴力图有突变,应给予注意。
FAx=FBx =FH • 荷载与跨度一定时,水平推力与矢高成反
比,且总是正的,故称内推力。扁拱的水
FH= MC0 / f 平推力大于陡拱。
• 该组结论仅适合于平拱,且承受竖向荷载。
2 竖向荷载作用下拱内力计算
截面的外法线(即该处切线)与水平方向的倾角φk规定左 半拱为正,右半拱为负。拱截面弯矩通常以内侧受拉为正,
x计l 算x 反力并绘制内力图
q=2kN·m C
FP=8kN
A FAy
f=4m
B
FAx
l=16m
FBx FBy
[解] 1、支座反力计算
FAy 14 kN
FBy 10 kN FAx FBx FH 12kN
第二节 竖向荷载作用下三铰拱的受力分析
[解] 2、求截面 3 内力
4f y l 2 x(l x)
F0 Ay
P1
sink
FH
cosk
FS
0 k
sink
FH
cosk
第二节 竖向荷载作用下三铰拱的受力分析
• 三铰拱的内力不但与荷载及三个铰的位置有关,而 且与拱轴线的形状有关;
• 由于推力的存在,拱的弯矩比相应简支梁的弯矩要 小;
• 三铰拱在竖向荷载作用下内力受压为主; • 公式是以左半跨推导的,对右半跨取角度为负即可;
轴力以受压为正。
二、内力的计算
P FSkMk FNk
y
a2
b2
a1
b1
P1 kk C
P2
f
yk
FH
FH A
xk
x
B
FAy
l1
l2
FH
FAy
l
FBy
M k 0则M k FAy xk P1 xk a1 FH yk
FA0y xk P1 xk a1 FH yk
P1
P2
M
0 k
FH
2. 三铰拱的构成
铁路拱桥:在桥梁中为了降低桥面高 度,可将桥面吊在拱上。
第一节 三铰拱的组成和类型
3. 三铰拱的分类
三铰拱 拉杆拱1
两铰拱 无铰拱
拉杆拱2
斜拱
第一节 三铰拱的组成和类型
4. 三铰拱的受力特点
FP
曲梁
FP

拱的基本特点是在 竖向荷载作用下会 产生水平推力,从 而大大减小拱内弯 矩。水平推力的存 在与否是区别拱与 梁的主要标志。
第三节 竖向荷载作用下三铰拱的内力特点
绘弯矩图
36
40 48 40
M
0 K
FH y
MK
M
0 K
FH y
综合弯矩图是两种弯矩图叠加的结果(注意是竖标的叠加, 或称代数叠加),即两个曲线所夹部分,可见弯矩很小。三 铰拱弯矩下降的原因完全是由于推力造成的。
第二节 竖向荷载作用下三铰拱的受力分析
• 内力图均不再为直线; • 集中力作用处,剪力图将发生突变;在计算剪力和
轴力时,必须区分左截面和右截面。 • 集中力偶作用处,弯矩图将发生突变; • 上述公式仅适合于平拱,且承受竖向荷载情况; • 拱的内力仍然有FQ=dM/ds
第二节 竖向荷载作用下三铰拱的受力分析
dy 4 f (1 2x )
dx l
l
y3 3
tan 3
1 2
q=2kN·m C
3 A
f=4m
l=16m
4m
q=2kN·m
FP=8kN B
FP2=8kN
M3
M
0 3
FH
y
4
kN m
FS 3
F0 S3
cos
FH
sin
0
kN
14
6
FN3 FS03 sin FH cos 13.416 KN
2
FS(kN)
相关文档
最新文档