相似三角形教学设计

合集下载

三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。

二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。

(2)学生掌握相似三角形判定定理1,并了解它的证明。

(3)使学生初步掌握相似三角形的判定定理1的应用。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。

三、教学重难点:重点:掌握相似三角形判定定理1及其应用。

难点:定理1的证明方法。

四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。

(2)、师生共同总结:两角对应相等的两个三角形相似。

2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。

(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。

浙教版数学九年级上册4.2《相似三角形》教学设计

浙教版数学九年级上册4.2《相似三角形》教学设计

浙教版数学九年级上册4.2《相似三角形》教学设计一. 教材分析《相似三角形》是浙教版数学九年级上册4.2节的内容,主要包括相似三角形的定义、性质和判定。

本节内容是学生学习了平面几何基础知识后,对三角形进行进一步研究的开始,是整个初中几何的重要内容之一。

通过本节的学习,学生将对三角形的相似性质有更深入的了解,为后续学习相似多边形、全等三角形等知识打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识,对平面几何的基本概念和性质有一定的了解。

但是,对于相似三角形的定义和性质,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。

此外,学生的学习习惯和思维方式各有不同,需要在教学过程中关注学生的个体差异,引导他们积极参与课堂活动。

三. 教学目标1.知识与技能:使学生掌握相似三角形的定义、性质和判定,能运用相似三角形的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。

3.情感态度与价值观:激发学生学习几何的兴趣,体会数学在生活中的应用,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:相似三角形的定义、性质和判定。

2.难点:相似三角形的性质和应用。

五. 教学方法1.情境教学法:通过生活实例和几何模型,引导学生观察、操作、思考,激发学生的学习兴趣。

2.启发式教学法:引导学生主动提问、探讨,培养学生的几何思维能力。

3.小组合作学习:学生进行小组讨论和实践,培养学生的团队合作意识和自主学习能力。

六. 教学准备1.教学课件:制作课件,展示相似三角形的定义、性质和判定。

2.几何模型:准备一些几何模型,如相似三角形、全等三角形等,用于课堂演示和学生实践。

3.练习题:准备一些练习题,用于巩固学生对相似三角形的理解和应用。

七. 教学过程1.导入(5分钟)利用生活实例或几何模型,引导学生观察相似三角形的特征,激发学生的学习兴趣。

例如,展示两幅描绘同一景物的画作,让学生观察其中的相似三角形。

九年级数学下册《相似三角形的性质》教案、教学设计

九年级数学下册《相似三角形的性质》教案、教学设计
-提问:“全等三角形有哪些性质?它们在几何证明中有什么作用?”
-学生回顾全等三角形的性质,为新课的学习打下基础。
(二)讲授新知
1.教师引导学生从相似三角形的定义入手,探讨相似三角形的性质。
-解释相似三角形的定义,强调比例关系。
-引导学生观察相似三角形的边长和角度,发现性质。
2.教师运用几何画板动态展示相似三角形的性质,帮助学生形象理解。
-学生能够运用相似三角形的性质,进行严密的几何证明,掌握证明过程中的逻辑关系。
-学生能够灵活运用相似三角形的性质,解决复合几何问题,提高解题技巧。
3.学会运用相似三角形的性质解决实际问题,增强数学应用能力。
-学生能够运用相似三角形的性质,解决生活中的实际问题,如测量高度、距离等。
-学生能够将相似三角形的性质与其他数学知识相结合,解决综合性的数学问题。
3.培养学生的创新精神和实践能力,激发学生探索未知世界的热情。
-教师鼓励学生提出问题、解决问题,培养学生的创新思维。
-学生通过解决实际问题,感受数学与现实生活的联系,激发探索未知世界的热情。
4.培养学生的严谨学生严谨对待数学问题,养成良好的学习习惯。
(二)教学难点
1.相似三角形性质的推理和证明过程。
2.学生在解决实际问题中,对相似三角形性质的应用。
3.帮助学生建立几何直观,理解相似三角形的空间变化。
教学设想:
1.采用情境导入法,引发学生兴趣
-通过展示生活中与相似三角形相关的实例,如建筑物的立面设计、摄影中的构图等,激发学生的学习兴趣,引导学生认识到相似三角形在实际中的应用。
九年级数学下册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及其判定条件,掌握相似三角形的性质和比例关系。

标题:最新人教版八年级数学上册第十二章相似三角形 教案

标题:最新人教版八年级数学上册第十二章相似三角形 教案

标题:最新人教版八年级数学上册第十二章相似三角形教案一、教学目标:1. 理解相似三角形的定义,掌握相似三角形的判定方法。

2. 掌握相似三角形的性质,能够解决与相似三角形相关的问题。

3. 进一步提高学生的几何推理和证明能力。

二、教学内容:1. 相似三角形的定义及判定方法。

2. 相似三角形的性质和应用。

三、教学步骤:1. 导入:通过引入一道生活中的问题,激发学生关于相似三角形的思考和探索。

2. 讲解:给出相似三角形的定义,并介绍判定相似三角形的方法。

3. 实例演练:通过一些具体的实例,让学生掌握判定相似三角形的方法。

4. 性质探究:引导学生发现相似三角形的性质,进行讨论和证明。

5. 应用拓展:提供一些应用题,让学生运用相似三角形的知识解决问题。

6. 练巩固:提供一些练题,巩固学生对相似三角形的理解和应用能力。

7. 总结反思:总结相似三角形的知识点,让学生进行反思和思考。

8. 课堂作业:布置相似三角形相关的作业,检查学生的掌握情况。

四、教学资源:1. 人教版八年级数学上册教材。

2. 相关练题、应用题和思考题。

五、教学评价:1. 课堂表现评价:观察学生在课堂上的参与度、思维活跃度和回答问题的准确性。

2. 作业评价:检查学生作业的完成情况和准确度。

3. 测验评价:通过小测验检查学生对相似三角形知识的掌握程度。

六、教学后记:根据学生的表现和反馈情况,及时调整教学策略,对未掌握的知识点进行复习和强化训练。

同时,鼓励学生在课外自主学习,进一步提升对相似三角形的理解和应用能力。

《相似三角形》教学设计

《相似三角形》教学设计

《相似三角形》教学设计教学目标:(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算. (二)能力训练要求1.能根据定义判断两个三角形是否相似,训练的判断能力.2.能根据相似比求长度和角度,培养的运用能力. (三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点:相似三角形的判定与性质。

教学重点: 相似三角形的定义及运用。

教学过程: 一 知识要点:1、相似形、成比例线段、黄金分割相似形:形状相同、大小不一定相同的图形。

特例:全等形。

相似形的识别:对应边成比例,对应角相等。

成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a (或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。

这种分割称为黄金分割,点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。

例1:(1)放大镜下的图形和原来的图形相似吗? (2)哈哈镜中的形象与你本人相似吗? (3)你能举出生活中的一些相似形的例子吗/例2:判断下列各组长度的线段是否成比例:(1)2厘米,3厘米,4厘米,1厘米(2)1·5厘米,2·5厘米,4·5厘米,6·5厘米(3)1·1厘米,2·2厘米L3·3厘米,4·4厘米(4)1厘米, 2厘米,2厘米,4厘米〢例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黤金分割,需穿多高的高跟鞋?例4:等腰三角形都相似吗?矩形都相似吗?正方形都相似吗゚2、相似形三角形的判断:(1)两角对应相等(2)两边对应抐比例且夹角相等(3)三边对应成比例3、相似形三角形的性质: (1)对应角相等(2)对应边成比例H3)对应线段之比等于相侼比(4)周长之比等于相似比(5)面积之比等于相似比的平方4、相似形三角形的应用:计算那些不能直接测量的物体的高度或宽度以及等份线段。

初中数学相似教案

初中数学相似教案

初中数学相似教案教学目标:1. 理解相似三角形的定义和性质;2. 学会运用相似三角形解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 相似三角形的定义和性质;2. 相似三角形的判定;3. 相似三角形的应用。

教学步骤:一、导入(5分钟)1. 引导学生回顾已学的三角形相关知识,如三角形的分类、三角形的性质等;2. 提问:同学们,你们知道什么是相似三角形吗?有没有谁能举个例子来说明一下?二、新课讲解(15分钟)1. 讲解相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形;2. 讲解相似三角形的性质:相似三角形的对应边成比例,对应角相等;3. 讲解相似三角形的判定:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似;4. 举例说明相似三角形的应用,如解决实际问题中的测量问题、几何图形的构造等。

三、课堂练习(15分钟)1. 请同学们完成教材上的练习题,巩固相似三角形的定义和性质;2. 教师选取部分学生的作业进行讲解和解析,解答学生的疑问。

四、课后作业(5分钟)1. 请同学们完成教材上的课后作业,加深对相似三角形的理解和应用;2. 教师布置一些相关的拓展题目,提高学生的思维能力。

教学评价:1. 课堂讲解:教师对学生的学习情况进行观察和评估,了解学生对相似三角形知识的掌握程度;2. 课堂练习:教师对学生的练习情况进行批改和评价,及时发现和纠正学生的错误;3. 课后作业:教师对学生的作业情况进行批改和评价,了解学生对相似三角形知识的应用能力。

教学反思:本节课通过讲解相似三角形的定义、性质和判定,以及应用,使学生掌握了相似三角形的基本知识。

在教学过程中,要注意引导学生主动参与,积极思考,通过举例和练习题来巩固所学知识。

同时,还要注重培养学生的逻辑思维能力和解决问题的能力,提高他们对数学学科的兴趣和信心。

相似三角形的判定教学设计及反思

相似三角形的判定教学设计及反思
让学生思考讨论,从图形的外观,绝大多数学生会猜这两个三角形相似.结论的证明以教师讲授为主,并引导学生思考:根据题设条件,难于用定义来证明,因为用定义来证明需要的条件较多,所以不妨考虑用定理来证明。为此,需要构造出符合定理条件的图形:在∆ABC中,作BC的平行线,且在∆ABC中截得的三角形与∆A’B’C’又有着非常紧密的联系(全等),这样师生共同分析,完成证明.教师把证明过程投影到屏幕。
4、直角三角形的一个重要结论:
∵∠ACB=90°,CD⊥AB
∴∆ABC∽∆ACD∽∆CBD
五、作业:课本P。238 2、3、4
教学反思
本节课主要是探究相似三角形的判定方法2,由于上节课已经学习了探究两个三角形相似的判定引例﹑判定方法1,而本节课内容在探究方法上又具有一定的相似性,因此本教学设计注意方法上的“新旧联系”,以帮助学生形成认知上的正迁移.此外,由于判定方法2的条件“相应的夹角相等"在应用中容易让学生忽视,所以教学设计采用了“小组讨论+集中展示反例”的学习形式来加深学生的印象.
已知:如图(7), ∆ABC中,CD是斜边上的高.
求证:∆ABC∽∆CBD∽∆ACD.
证明:∵∠B=∠B,
∠CDB=∠ACB=90°,
∴∆ABC∽∆CBD
(两角对应相等,两三角形相似).
同理∆ABC∽∆ACD.
∴∆ABC∽∆CBD∽∆ACD.
(最后告诉学生,以后可以直接用例2的结论来判定直角三角形相似。)
3、除了用定义和上面的定理来判定三角形相似外,还有什么方法可判定两个三角形相似?我们知道判定两个三角形全等的方法有“AAS"、“ASA”、“SAS"、
“SSS”、“HL”等,那么类似地,判定两个三角形相似还有哪些方法?今天我们开始来研究这个问题。

浙教版数学九年级上册《4.3 相似三角形》教学设计1

浙教版数学九年级上册《4.3 相似三角形》教学设计1

浙教版数学九年级上册《4.3 相似三角形》教学设计1一. 教材分析浙教版数学九年级上册《4.3 相似三角形》是学生在学习了三角形的性质、全等三角形的基础上,进一步研究相似三角形的性质和判定。

本节内容通过引导学生探究相似三角形的性质,培养学生的观察能力、推理能力及动手操作能力,为学生进一步学习几何中的其他内容打下基础。

二. 学情分析九年级的学生已具备一定的数学基础,对三角形的性质、全等三角形有了一定的了解。

但学生在学习过程中,可能对相似三角形的概念和性质理解不深,不易区分相似三角形与全等三角形。

因此,在教学过程中,教师需要注重引导学生通过观察、操作、推理等方法,深入理解相似三角形的性质。

三. 教学目标1.理解相似三角形的概念,掌握相似三角形的性质。

2.学会用数学语言描述相似三角形的性质,提高学生的表达能力。

3.培养学生的观察能力、推理能力及动手操作能力。

4.培养学生小组合作、交流分享的学习习惯。

四. 教学重难点1.重点:相似三角形的概念及性质。

2.难点:相似三角形性质的证明和应用。

五. 教学方法1.情境教学法:通过生活实例引入相似三角形,激发学生兴趣。

2.引导发现法:教师引导学生观察、操作、推理,发现相似三角形的性质。

3.合作学习法:学生分组讨论,分享学习心得,培养团队协作能力。

4.实践操作法:教师安排适量练习,巩固所学知识。

六. 教学准备1.教学课件:制作课件,展示相似三角形的图片、例题及练习题。

2.教学素材:准备一些相似三角形的图片、实物模型等。

3.练习题:设计一些有关相似三角形的练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例引入相似三角形,如讨论两个相似的钥匙是否能打开同一把锁。

引导学生思考:什么是相似三角形?激发学生学习兴趣。

2.呈现(10分钟)展示一些相似三角形的图片,让学生观察并描述它们的性质。

教师引导学生用数学语言表述相似三角形的性质,如对应边的比例关系等。

3.操练(10分钟)教师安排学生进行小组合作,利用教具或实物模型,自主探究相似三角形的性质。

九年级数学上册《相似三角形判定定理一》教案、教学设计

九年级数学上册《相似三角形判定定理一》教案、教学设计
2.学生在推理和证明过程中的困难,引导他们运用已学的知识和方法,逐步解决问题。
3.学生的个体差异,针对不同学生的需求,提供适当的学习指导和支持。
4.学生在合作学习中的参与度,鼓励他们积极发言,分享自己的想法和观点。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握相似三角形的判定定理一。
1.判断题:给出几个相似三角形的判定题目,让学生判断其是否符合判定定理一。
2.填空题:给出几个相似三角形的图形,要求学生填写相似比。
3.计算题:运用相似三角形的判定定理一解决实际问题。
学生在完成练习题的过程中,教师巡回指导,针对学生的错误给予及时纠正和解答。
(五)总结归纳
在总结归纳环节,首先让学生回顾本节课所学的相似三角形的判定定理一,然后提问:
-尝试证明相似三角形的另一个判定定理:如果两个三角形的一个角相等,且对应边成比例,那么这两个三角形相似。
3.实践应用题:
-结合所学知识,设计一道与相似三角形判定定理一相关的实际问题,要求至少包含两个已知量和两个未知量。
-将设计的问题及解答过程写下来,与同学们分享,共同讨论。
4.研究性学习题:
-以小组为单位,选择一个研究方向,如相似三角形在实际建筑中的应用、相似三角形在艺术作品中的体现等,进行资料收集和整理。
1.请举例说明相似三角形在实际生活中的应用。
2.如何运用相似三角形的判定定理一解决以下问题:(给出几个具体问题)
3.相似三角形判定定理一的证明过程中,有哪些关键步骤?
要求学生在讨论过程中,充分发表自己的观点,互相学习,共同解决问题。教师在旁边观察学生的讨论情况,适时给予指导。
(四)课堂练习
在课堂练习环节,设计以下练习题:

6.7用相似三角形解决问题教学设计

6.7用相似三角形解决问题教学设计
接着,我会请学生举例说明生活中见到的相似三角形的例子,如地图上的比例尺、放大镜下的图形等。这样,学生可以初步认识到相似三角形在现实生活中的广泛应用,从而激发学生的学习兴趣。
然后,我会给出相似三角形的定义,并引导学生思考相似三角形的特点和性质。通过这一环节,学生将自然地进入新课的学习状态,为后续的学习打下基础。
(三)情感态度与价值观
1.激发学生对几何图形的兴趣,培养学生的审美观念,提高学生对数学美的感知能力。
2.培养学生善于观察、勇于探索的精神,使学生在面对未知问题时,敢于尝试、勇于挑战。
3.通过小组合作、讨论交流等形式,培养学生的团队协作意识和沟通能力,使学生学会倾听、尊重他人,形成积极向上的人际关系。
e)小结反馈:对学生的学习情况进行总结,针对存在的问题进行反馈和指导。
3.教学评价:
a)过程性评价:关注学生在课堂上的参与度、合作交流、实践操作等方面的表现,鼓励学生积极参与。
b)终结性评价:通过课后作业、单元测试等形式,评价学生对相似三角形知识点的掌握程度。
c)差异化评价:根据学生的个体差异,制定合适的评价标准,关注每个学生的成长。
1.理解并掌握相似三角形的定义、性质和应用。
2.学会运用相似三角形的知识解决实际问题,提高解决问题的能力。
3.培养学生的观察能力、分析能力、归纳总结能力和团队协作能力。
(二)教学难点
1.相似三角形的性质及其应用,特别是实际问题的建模和求解。
2.学生在解决相似三角形问题时,对尺规作图、计算等方面的熟练程度。
3.提交作业时,请注意书写工整,保持作业整洁。
4.教学资源:
a)利用多媒体教学资源,如PPT、动画等,直观展示相似三角形的性质和应用。
b)提供丰富的实际案例,帮助学生更好地理解相似三角形在现实生活中的应用。

相似三角形的教学设计

相似三角形的教学设计

相似三角形的教学设计1. 引言说到三角形,大家是不是都觉得有点无趣呢?其实,三角形在我们的生活中无处不在,像是建筑物的结构、桥梁的设计,甚至连我们吃的披萨都是三角形!今天,我们就来聊聊相似三角形。

相似三角形不仅仅是课本上的知识,它们像是生活中的小伙伴,随时随地给我们提供帮助。

2. 相似三角形的基本概念2.1 什么是相似三角形?简单来说,相似三角形就是形状相同但大小不同的三角形。

就像两个小朋友,虽然身高差别很大,但他们的脸型和比例却很像。

我们可以用“比例”这个词来理解,虽然两个三角形的边长不同,但它们的角度是相同的。

这个概念听起来有点抽象,但实际上非常实用。

2.2 相似三角形的特性相似三角形有几个很有趣的特性。

首先,三角形的对应角相等,比如说,一个三角形的一个角是30度,另一个相似的三角形的对应角也是30度。

然后,它们的对应边的比例是相等的,简单的数学题就来了,假如一个三角形的边长是2,另一个是4,那么它们的比例就是1:2,聪明的小朋友肯定知道,比例保持不变。

3. 教学设计3.1 教学目标在设计相似三角形的教学时,我们的目标可不是让大家背公式,而是让每个孩子都能理解这些三角形的魅力。

希望通过这堂课,学生能明白相似三角形的基本概念,能用这些概念解决实际问题,最重要的是,培养他们的观察能力和空间想象力。

3.2 教学方法首先,我们可以通过一些有趣的活动来引入这个话题。

比如,拿出几种不同大小的三角形,让孩子们观察这些三角形的特点,并且通过放大镜或者影像来对比它们的角和边的比例。

接下来,我们可以进行一些小组活动,让学生自己动手画出相似的三角形,甚至让他们用剪刀剪出不同大小的三角形,然后进行分类和讨论。

4. 实际应用4.1 生活中的相似三角形相似三角形在生活中可不止存在于课本上。

比如说,当我们量测建筑物的高度时,往往会用到相似三角形的原理。

想象一下,你站在一棵树旁边,树的影子比你长,你可以用三角形的比例来计算树的高度,聪明的小朋友是不是觉得这个方法很酷呢?4.2 扩展知识最后,别忘了,我们可以通过一些趣味游戏来巩固所学的知识。

相似三角形教学设计

相似三角形教学设计

相似三角形教学设计相似三角形教学设计第1篇教学目标(一)教学知识点1、掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。

2、能根据相似比进行计算。

(二)能力训练要求1、能根据定义判断两个三角形是否相似,训练学生的判断能力。

2、能根据相似比求长度和角度,培养学生的运用能力。

(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系。

教学重点相似三角形的定义及运用。

教学难点根据定义求线段长或角的度数。

教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法。

现在请大家回忆一下。

[生]对应角相等,对应边成比例的两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比。

[师]很好。

请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括。

比如相似三角形,相似五边形等。

[师]由此看来,相似三角形是相似多边形的一种。

今天,我们就来研究相似三角形。

相似三角形教学设计第2篇一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。

2.掌握“两角对应相等,两个三角形相似”的判定方法。

3.能够运用三角形相似的条件解决简单的问题。

二、重点、难点1.重点:三角形相似的判定方法12.难点:三角形相似的判定方法1的运用。

三、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)ⅠABC中,点D在AB上,如果AC2=ADAB,那么ⅠACD与ⅠABC 相似吗?说说你的理由。

(3)ⅠABC中,点D在AB上,如果ⅠACD=ⅠB,那么ⅠACD与ⅠABC 相似吗?——引出课题。

(4)教材P48的探究3。

四、例题讲解例1(教材P48例2)。

分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的两个三角形相似。

人教版九年级数学下册相似《相似三角形(第1课时)》示范教学设计

人教版九年级数学下册相似《相似三角形(第1课时)》示范教学设计

相似三角形(第1课时)教学目标1.理解相似三角形的概念,知道用相似符号“∽”表示的相似三角形之间的边、角对应关系.2.掌握平行线分线段成比例的基本事实及推论,并能用其进行简单的证明和计算.3.掌握利用平行线判定两个三角形相似的定理,并能利用其判定三角形相似.教学重点掌握平行线分线段成比例的基本事实及推论,能利用平行线判定三角形相似.教学难点平行线分线段成比例的基本事实及推论的应用.教学准备准备带刻度的直尺.教学过程知识回顾1.相似多边形的概念是什么?【答案】两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.2.相似多边形的性质有哪些?【答案】相似多边形的对应角相等,对应边成比例.3.什么是相似比?【答案】相似多边形对应边的比叫做相似比.【设计意图】复习相似多边形的相关知识,巩固基础,为本节课的学习作准备.新知探究一、探究学习【问题】在相似多边形中,最简单的是____________.【师生活动】学生独立思考,得出答案:相似三角形.【追问】你能说出相似三角形的定义吗?【新知】如图,在△ABC和△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,ABA B''=BCB C''=ACA C''=k,即三个角分别相等,三条边成比例,我们就说△ABC与△A′B′C′相似,相似比为k.相似用符号“∽”表示,读作“相似于”.△ABC与△A′B′C′相似记作“△ABC∽△A′B′C′”.【思考】△A′B′C′与△ABC的相似比是什么?【师生活动】学生小组讨论,得出答案:△A′B′C′与△ABC的相似比为1k.教师让学生回顾:相似比具有顺序性.【归纳】特别提醒:用符号“∽”表示两个三角形相似时,要把表示对应顶点的大写字母写在对应的位置上.△ABC∽△A′B′C′表示顶点A与A′,B与B′,C与C′分别对应;如果仅说“△ABC与△A′B′C′相似”,没有用“∽”连接,则需要分类讨论它们之间的对应关系.【思考】如果k=1,这两个三角形有怎样的关系?【师生活动】学生小组讨论,得出答案:当ABA B''=BCB C''=ACA C''=k=1时,AB=A′B′,BC=B′C′,AC=A′C′,故△ABC≌△A′B′C′(SSS),即当k=1时,这两个三角形全等.教师讲解、总结.【归纳】全等三角形是相似比为1的相似三角形,即全等三角形是特殊的相似三角形,而相似三角形不一定是全等三角形.【思考】根据相似三角形的定义你能得到相似三角形的性质吗?【师生活动】学生自由发言,教师总结.【新知】相似三角形的定义可以看作是性质,即相似三角形的三个角分别相等,三条边成比例.符号表示:∵△ABC∽△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,ABA B''=BCB C''=ACA C''.【思考】如何判定两个三角形相似?【师生活动】学生自由发言,教师总结.【新知】相似三角形的定义也可以看作是判定,即三个角分别相等,三条边成比例的两个三角形相似.符号表示:∵∠A=∠A′,∠B=∠B′,∠C=∠C′,ABA B''=BCB C''=ACA C''=k,∴△ABC∽△A′B′C′.【设计意图】分析相似三角形的定义,让学生知道全等三角形是特殊的相似三角形,掌握相似三角形对应边、对应角的性质,并能根据定义判定两个三角形相似.【问题】判定两个三角形全等时,除了可以验证它们所有的角和边分别相等外,还可以使用简便的判定方法(SSS,SAS,ASA,AAS).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?我们先来探究下面的问题.如图,任意画两条直线l1,l2,再画三条与l1,l2都相交的平行线l3,l4,l5.分别度量l3,l4,l5在l1上截得的两条线段AB,BC和在l2上截得的两条线段DE,EF的长度,AB BC与DEEF相等吗?【师生活动】学生通过测量、计算,得出答案:ABBC=DEEF.【追问】任意平移l5,ABBC与DEEF还相等吗?直线l3,l4,l5在直线l1,l2上截得的线段有什么关系?【师生活动】学生通过测量、计算,得出答案:ABBC=DEEF;小组讨论,发现:ABBC=DE EF ,BCAB=EFDE,ABAC=DEDF,BCAC=EFDF等.教师总结.【新知】平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.注意:(1)截线是一组平行线,被截直线不一定平行;(2)所有的成比例线段是指被截直线上的线段,与这组平行线上的线段无关;(3)对应线段的比相等是指同一直线上的两条线段的比等于另一条直线上与它们对应的线段的比.把平行线分线段成比例的基本事实应用到三角形中,会出现两种情况,如图所示.在图①中,把l4看成是平行于△ABC的边BC的直线;在图②中,把l3看成是平行于△ABC的边BC的直线,那么我们可以得到结论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.【设计意图】在让学生通过画图、测量、猜想感知结论的基础上,给出平行线分线段成比例的基本事实;并将基本事实应用到三角形中,直接得出推论,为学习“利用平行线判定两个三角形相似的定理”作准备.【问题】如图,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,△ADE与△ABC有什么关系?【师生活动】学生自由发言,给出猜想:△ADE∽△ABC.教师追问:你能证明你的猜想吗?教师给出提示:利用相似的定义证明,即证明∠A=∠A,∠ADE=∠B,∠AED=∠C,AD AB =AEAC=DEBC.学生根据提示,小组讨论,发现:由前面的结论可得,ADAB=AEAC.而DEBC中的DE不在△ABC的边BC上,不能直接利用前面的结论.教师引导学生继续分析:从要证的AEAC=DEBC可以看出,除DE外,AE,AC,BC都在△ABC的边上,因此只需将DE平移到BC边上去,使得BF=DE,再证明AEAC=BFBC就可以了.如图,只要过点E作EF∥AB,交BC于点F,BF就是平移DE所得的线段.学生根据分析,完成证明.【答案】证明:如图,过点E作EF∥AB,交BC于点F.在△ADE与△ABC中,∠A=∠A.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∵DE∥BC,EF∥AB,∴四边形DBFE为平行四边形,ADAB=AEAC,BFBC=AEAC.∴DE=BF.∴DEBC=AEAC.∴ADAB=AEAC=DEBC.∴△ADE∽△ABC.【新知】因此,我们有如下判定三角形相似的定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.符号表示:∵DE∥BC,∴△ADE∽△ABC.二、典例精讲【例1】如图,DE∥BC,AB=5,AC=6,AD=2,求AE的长.【师生活动】学生独立完成,请一名学生代表板演,教师指导、讲解.【答案】解:∵DE∥BC,∴ADAC=AEAB.∵AB=5,AC=6,AD=2,∴26=5AE.∴AE=53.【设计意图】通过例1,考查学生是否会用平行线分线段成比例的基本事实解决问题.【例2】如图,在△ABC中,DE∥BC,ADAB=13,BC=12,求DE的长.【师生活动】学生独立完成,请一名学生代表板演,教师指导、讲解.【答案】解:∵DE∥BC,∴△ADE∽△ABC.∴ADAB=AEAC=DEBC.∵ADAB=13,BC=12,∴DE=13BC=4.【提醒】(1)当三角形中出现平行线时,可利用相似三角形建立比例式求线段的长;(2)在利用平行线判定两个三角形相似时,只需两条直线平行这一个条件就能证明这两个三角形相似.【设计意图】通过例2,考查学生是否能利用平行线判定两个三角形相似.课堂小结板书设计一、相似三角形二、平行线分线段成比例三、利用平行线判定两个三角形相似的定理课后作业完成教材第31页练习第1~2题.。

相似三角形的教学设计

相似三角形的教学设计

相似三角形的教学设计一、教学目标1、知识与技能目标理解相似三角形的定义和性质。

掌握相似三角形的判定方法,能够准确判断两个三角形是否相似。

能够运用相似三角形的性质和判定解决实际问题。

2、过程与方法目标通过观察、比较、猜想、验证等活动,培养学生的观察能力、思维能力和动手操作能力。

经历相似三角形的探索过程,让学生体会从特殊到一般、从具体到抽象的数学思维方法。

3、情感态度与价值观目标激发学生对数学的兴趣,培养学生的合作精神和创新意识。

通过解决实际问题,让学生感受数学与生活的紧密联系,体会数学的应用价值。

二、教学重难点1、教学重点相似三角形的定义、性质和判定方法。

相似三角形的应用。

2、教学难点相似三角形判定方法的推导和应用。

利用相似三角形解决实际问题时,如何将实际问题转化为数学问题。

三、教学方法讲授法、讨论法、探究法、练习法相结合。

四、教学过程1、导入新课展示生活中常见的相似三角形的图片,如金字塔、埃菲尔铁塔、建筑中的三角形结构等,引导学生观察并思考这些三角形的特点。

提出问题:这些三角形有什么共同之处?它们之间有什么关系?从而引出相似三角形的概念。

2、新课讲授相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。

相似比:相似三角形对应边的比叫做相似比。

相似三角形的性质:相似三角形的对应角相等。

相似三角形的对应边成比例。

相似三角形的周长比等于相似比。

相似三角形的面积比等于相似比的平方。

相似三角形的判定方法:两角分别相等的两个三角形相似。

两边成比例且夹角相等的两个三角形相似。

三边成比例的两个三角形相似。

3、例题讲解例 1:已知在△ABC 和△A'B'C'中,∠A =∠A' = 50°,∠B =70°,∠B' = 60°,判断△ABC 和△A'B'C'是否相似,并说明理由。

例 2:如图,在△ABC 中,AB = 6,AC = 8,点 D 在 AB 上,AD = 3,在 AC 上取一点 E,使△ADE 与△ABC 相似,求 AE 的长。

《相似三角形的性质》 教学设计

《相似三角形的性质》 教学设计

《相似三角形的性质》教学设计一、教学目标1、知识与技能目标(1)理解相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。

(2)掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方。

(3)能运用相似三角形的性质解决简单的实际问题。

2、过程与方法目标(1)通过观察、测量、推理等活动,经历相似三角形性质的探究过程,培养学生的动手操作能力和逻辑推理能力。

(2)在探究相似三角形性质的过程中,体会从特殊到一般、转化、类比等数学思想方法。

3、情感态度与价值观目标(1)通过小组合作探究,培养学生的合作意识和团队精神。

(2)让学生在探索相似三角形性质的过程中,体验成功的喜悦,增强学习数学的自信心。

二、教学重难点1、教学重点(1)相似三角形对应高的比、对应中线的比、对应角平分线的比、周长的比与相似比的关系。

(2)相似三角形面积的比与相似比的关系。

2、教学难点相似三角形性质的证明及应用。

三、教学方法讲授法、探究法、讨论法、练习法四、教学过程1、导入新课(1)回顾相似三角形的定义及相似比的概念。

(2)展示两个相似三角形的图片,提问:相似三角形除了对应角相等、对应边成比例外,还有哪些性质呢?2、探究相似三角形对应高的比与相似比的关系(1)画出两个相似三角形 ABC 和 A'B'C',对应边的比为 k,AD和 A'D'分别是 BC 和 B'C'边上的高。

(2)让学生通过测量、计算,得出 AD 和 A'D'的长度,进而发现AD : A'D' = k。

(3)引导学生进行推理证明:因为三角形 ABC 相似于三角形 A'B'C',所以角 B =角 B'。

又因为角 ADB =角 A'D'B' = 90°,所以三角形 ABD 相似于三角形A'B'D'。

相似三角形教学设计(共8篇)

相似三角形教学设计(共8篇)

相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。

六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。

解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。

〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。

师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

《相似三角形》教学设计

《相似三角形》教学设计

相似三角形教学设计教学目标1.知识与技能目标:使学生了解两个三角形相似的概念,学会利用相似三角形解决一些实际问题,在实际应用中加深对相似三角形的认识和理解。

培养学生的抽象思维能力和解决实际问题的能力。

2.过程与方法目标:在相似三角形概念及性质的学习过程中,引导学生对问题观察、分析、归纳、猜想,养成良好的思维习惯。

通过将相似三角形与全等三角形有关知识的对比学习,渗透类比的思想方法。

3.情感态度与价值观目标:通过本节内容教学,使学生认识数学与生活的密切联系,体验在数学学习活动中探索与创造的乐趣,通过合作交流学习,培养他们的团队合作精神,增强学习数学的兴趣和信心。

学情分析九年级学生要注重培养识图能力、运算能力、直觉猜想能力、抽象概括能力和逻辑推理能力。

通过前面对点、线、面、角、三角形、四边形等相关知识的学习,他们的认知水平、抽象思维能力有了一定基础,在相似图形这一单元仍需要进一步丰富对空间图形的认识和感受,注重所学内容与现实生活的联系,使学生经历观察→操作→推理→想象等探索过程,体验在数学学习活动中探索与创造的乐趣,增强学习数学的兴趣和信心。

重点难点重点:相似三角形的概念。

难点:相似比的概念及对应边的确定。

教学过程第一学时教学活动活动1【导入】创设情景,巧妙引入[互动1](课前将学生以前后排4人为一小组,分成若干学习小组,学生准备好两幅大小不等的浙江地图。

)(课件演示:两幅大小不等的浙江地图)教师T:这两幅地图之间有何关系(让学生从大小、形状上观察。

)学生S:(同桌交流,某代表发言)这两幅地图大小不等,形状相同。

(这两幅地图其实就是两个相似的平面曲边形,教学中可不向学生点明。

)教师T:哪位同学能在这两幅地图上分别找到三个城市的位置(如:杭州、温州、宁波)学生S1:(上台用鼠标点出所选位置)顺次连接三个城市,得到两个三角形。

T:这两个三角形有何关系S:(同桌交流)是相似三角形(也有学生回答不一定相似)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.5“相似三角形”教学设计
马强
宿州市曹村中学
4.5“相似三角形”教学设计
(教材:北师大版八年级数学(下)第四章相似图形第五节相识三角形P127-131)教学目标
知识与技能:
1、掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。

2、能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。

过程与方法:
1、领会教学活动中的类比思想,提高学生学习数学的积极性。

2、经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形的定义及表示法,会运用相似比解决相似三角形的边长问题。

情感、态度与价值观:
1、经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与一般的关系。

2、深化对相似三角形定义的理解和认识。

发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。

教学重点与难点
教学重点:相似三角形定义的理解和认识。

教学难点:1、相似三角形的定义所揭示的本质属性的理解和应用。

2、P129想一想中“渗透三角形相似与平行的内在联系”也是本节课的难点。

授课类型:新授课
教学方法:启发式教学、探究式、类比学习法
教学手段:多媒体辅助教学
教学学法:观察类比、动手实践、自主探索、合作交流等方法
教学课时:第一课时
教学过程:
一:情景引入、归纳定义
活动1:回顾与思考(教师出示课件并提问,)上节课我们学习了相似多边形的定义及记法, 请同学们观察图形,并指出哪些多边形相似?(学生观察思考、小组讨论。

并派代表汇报讨论结果。


活动2:请问相似三角形是相似多边形吗?请同学们回忆一下什么叫相似多边形?那么由“相似多边形的定义”你能得出“相似三角形的定义”吗?(教师板书课题及定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形。

)活动3:教师讲解相似三角形的表示方法、记法。

(教师板书)
二:运用定义、解决问题
活动4:P127:想一想(教师出示课件)如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?(学生动手画一画、量一量、算一算,并小组讨论,选代表说明理由。


活动5:P127:议一议(教师出示课件)
(1)两个全等三角形一定相似吗?为什么?
(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?
(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?
活动6:例题讲解
例1:如图,有一块呈三角形形状的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的长都是3.5 cm,求该草坪其他两边的实际长度.
(学生在老师的引导下利用所学知识解决实际的问题)
解:草坪的形状与其图纸上相应的形状相似,
它们的相似比是2000∶5=400∶1
如果设其他两边的实际长度都是x cm,
那么=
则x=3.5×400=1400(cm)=14(m)
所以,草坪其他两边的实际长度都是14 m .
例2:如图,已知△ABC∽△ADE, AE=50 cm, EC=30 cm, BC=70 cm,
∠BAC=45°,∠ACB=400,求:(1)∠AED和∠ADE的度数。

(2)DE的长. 解:(1)因为△ABC∽△ADE.
所以由相似三角形对应角相等,得
∠AED=∠ACB=40°
在△ADE中,
∠AED+∠ADE+∠A=180°
即40°+∠ADE+45°=180°,所以∠ADE=1800-400-450=95°.
(2)因为△ABC∽△ADE,所以由相似三角形对应边成比例,得
=即= DE==43.75(cm)
三:加深理解、探索规律
活动7:P129想一想
在例2的条件下,图中有哪些线段成比例?
(学生先独立思考,后小组合作讨论。


活动8:巩固练习
(P129随堂练习)
(老师出示课件)(略)
四:回顾反思、布置作业
活动9:这一节课你学到了什么?有什么收获?
活动10:P130习题4.6第1、2题
附:
板书设计:
4.5相似三角形
1.
2.相似三角形的判定方法——定义法例1:(略)例2:(略)学生练习
教后反思:
1、这一节课通过情景创设,引入新知能很好的使学生体验温故而知新的道理,从而调动学生探索新知的兴趣和学习的积极性。

2、这节课给学生提供自主学习,自主操作、自主活动的机会较多。

充分体现了学生是学习的主人,教师是引导者、组织者、合作者。

能够充分的调动学生的积极性和学习的热情。

比如对特殊三角形,提出这两个三角形有什么关系?理由是什么?对任意两个三角形,老师请学生量一量、算一算,结果都是由学生自己操作、判断得出。

体现了教师是数学学习的组织者、引导者和的新理念。

3、这节课最大的不足是由于课程内容容量大,学生操作计算速度慢,时间紧张。

学生对这节课所学的内容理解不是太好,不能更好应用新知解决问题,今后要加强注意给每个学生留有足够的时间和空间去思维,并且对不同的学生教师应提出不同的问题,使不同的学生得到不同的发展,进而使每个同学都得到应有的发展。

相关文档
最新文档