2019版中考数学专题复习 专题八 综合应用(31)开放性问题当堂达标题

合集下载

2019全国各地中考数学试题分考点解析汇编开放探究型问题

2019全国各地中考数学试题分考点解析汇编开放探究型问题

2019全国各地中考数学试题分考点解析汇编开放探究型问题一、选择题 1.(2019辽宁抚顺3分)如图所示,在平面直角坐标系中,直线OM 是正比例函数y =-3x 的图象,点A 的坐标为(1,0),在直线OM 上找点N ,使△ONA 是等腰三角形,符合条件的点N 的个数是.A. 2个B. 3个C. 4个D. 5个【答案】A 。

【考点】正比例函数图象的性质,锐角三角函数,等腰三角形的判定。

【分析】如图,根据正比例函数图象的性质和锐角三角函数,可以求出∠AO N2=600,故当OA =O N2时,A N2=OA 。

因此符合条件的点N 只有N1和N2两个。

故选A 。

2.(2019黑龙江龙东五市3分)如图,在平行四边形ABCD 中,过对角线BD上一点P 作EF∥AB,GH∥AD,与各边交点分别为E 、F 、G 、H ,则图中面积相等的平行四边形的对数为A 、3B 、4C 、5D 、6【答案】D 。

【考点】平行四边形的性质,全等三角形的判定和性质。

【分析】根据平行四边形的性质,平行四边形的对角线将平行四边形分成两个面积相等的全等三角形,即ABD CDB GBP FPB EPD HDP S S ,S S ,S S ∆∆∆∆∆∆=== 。

则AGPE ABD GBP EPD CDB FPB HDP PFCH S S S S S S S S ∆∆∆∆∆∆=--=--=Y Y ,ABFE AGPE GBFP PFCH GBFP GBCH AGHD AGPE EPHD PFCH EPHD EFCD S S S S S S ,S S S S S S =+=+==+=+= Y Y Y Y Y Y Y Y Y Y Y Y 。

因此图中面积相等的平行四边形的对数有三对:AGPE PFCH Y Y 和,ABFE GBCH,AGHD EFCD Y Y Y Y 和和。

故选D 。

3.(2019黑龙江龙东五市3分)在锐角△ABC 中,∠BAC=60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP=MP ②当∠ABC=60°时,MN∥BC ③ BN=2AN ④AN︰AB=AM ︰AC ,一定正确的有A 、1个B 、2个C 、3个D 、4个【答案】C 。

广东专版2019年中考数学复习专题8专题拓展8.4开放探究型试卷部分课件

广东专版2019年中考数学复习专题8专题拓展8.4开放探究型试卷部分课件
拓展
8.4 开放探究型
好题精练
解答题
1.(2018陕西,25,12分)问题提出 (1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为 .
问题探究
(2)如图②,☉O的半径为13,弦AB=24,M是AB的中点,P是☉O上一动点,求PM的最大值. 问题解决 (3)如图③所示,AB、AC、 BC 是某新区的三条规划路,其中,AB=6 km,AC=3 km,∠BAC=60°, BC
BC 路边建物资总站点P,在AB、AC路边分别建物资分站 所对的圆心角为60°.新区管委会想在 BC 、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物 点E、F,也就是,分别在
︵ ︵ ︵ ︵
资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、 EF和FP.为了快捷、环保和节约成本,要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最 小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)

1 2
△P'E'F'的周长为P'1P'2的长,根据P'1P'2= 3 AP',可知要使P'1P'2最短,只要AP'最短,OA与 BC 交于
点P,此时使得线段PE、EF、FP之和最短,然后先判定△ABC为直角三角形,求出BC的长,在 Rt△ABO中由勾股定理求出AO的长,进而求出AP的值,最后求得PE+EF+FP的最小值. 难点分析 本题难点在于第(3)问如何确定P点的位置及何时PE+EF+FP取得最小值.读懂题
∴PE+EF+FP的最小值为(3 21 -9)km. (12分)

2019版中考数学专题复习 专题八 综合应用(31)开放性问题教案

2019版中考数学专题复习 专题八 综合应用(31)开放性问题教案

2019版中考数学专题复习 专题八 综合应用(31)开放性问题教案教 学 目 标知识 技能 1.掌握开放型问题的特点及类型,熟练运用开放型问题的解题方法和步骤解决有关问题.2.通过对各种类型的开放型问题的探索,培养学生创新意识与创新能力.3.通过富有情趣的问题,激发学生进一步探索知识的激情.感受到数学来源于生活.过程方法灵活运用基础知识,大胆推理、联想、创新,恰当选用数形结合思想、转化思想和分类讨论等数学思想,多角度、多侧面、多层次思考问题,培养创新意识,提高解题能力. 情感态度 1.通过富有情趣的问题,激发学生进一步探索知识的激情.感受到数学来源于生活.2.在进行探索的活动过程中发展学生的探究意识和合作交流的习惯. 教学 重点 各种类型开放题的解题策略.教学 难点开放题的正确答案不唯一,要灵活解题.教学 环节 教学问题设计师生活动 二次备课【回顾练习】1.已知(x 1,y 1),(x 2,y 2)为反比例函数xk y =图象上的点,当x 1<x 2<0时,y 1<y 2,则k 的一个值可为___________(只需写出符号条件的一个..k 的值).2.二次方程28x x -+________=0的一个常数项,使这个方程有两个不相等的实数根.生课前独立完成,课上交流展示;知识回顾3.点A,B,C,D在同一平面内,从①AB平行CD;②AB=CD;③BC平行AD;④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有( ) .A.2种B.3钟C.4种D.5种4.两个不相等的无理数,它们的乘积为有理数,这两个数可以是______.5.如图,∠BAC=30°,AB=10.现请你给定线段BC的长,使构成的△ABC能唯一确定.你认为BC的长可以是___ , _____ .(只需写出2个)学生在完成填空时,对知识进行整合.不会的可以翻阅课本.综合【自主探究】例1.如图1,四边形ABCD是矩形,O是它的中心,E、F是对角线AC上的点.(1)如果__________ ,则ΔDEC≌ΔBFA(请你填上能使结论成立的一个条件);(2)证明你的结论.说明:考查了矩形的性质及三角形全等的判定.分析:这是一道探索条件、补充条件的开放型试题,解决这类问题的方法是假设结论成立,逐步探索其成立的条件30°A B图1A BCDE FO运用例2.如图,⊙O是等腰三角形ABC的外接圆,AD、AE分别是顶角∠BAC及邻补角的平分线,AD交⊙O于点D,交BC于F,由这些条件请直接写出一个正确的结论:(不再连结其他线段).例 3.已知抛物线1)(2+--=mxy与x轴的交点为A、B(B在A的右边),与y轴的交点为C.(1)写出1=m时与抛物线有关的三个正确结论;(2)当点B在原点的右边,点C在原点的下方时,是否存在△BOC为等腰三角形的情形?若存在,求出m的值;若不存在,请说明理由;(3)请你提出一个对任意的m值都能成立的正确命题.【组内交流】学生根据问题解决的思路和解题中所呈现的问题进行组内交流,归纳出方法、规律、技巧.【成果展示】根据题目的难易程度小组内派出不同层次的学生展示自己的成果一生展示,其它小组补充完善,展示问题解决的方法、规律,注重一题多解及解题过程中的共性问题,教师注意总结问题的深度和广度.可从对称轴、顶点坐标、开口方向、最值、增减性等多方面去写出许多正确结论,任写三个就可;求证:开放题的题目无论是条件、结论以及解题的策略或方法均可展开、发散,所以解决此类问题没有一种固定的模式可循.但是,根据题意,寻找一般思考的规律还是可以找到解题的钥匙的,这类试题一般可归纳为条件开放型、结论开放型、条件和结论同时开放等三种基本题型1条件开放型:没有确定已知条件的开发问题为条件开放题.在题目要求的结论下,请你补充一些条件,使得适合题意,这类题强调的是题设的多样性.2结论开放型:没有确定结果的开发问题为结论开发题.题目给出了确定的条件,但没有确定的结论或者题设的条件去寻找不唯一的其他结论,这类体现了如何根据条件起探索结论的多样性.3条件结论开发型:根据条件,由因导果可有多种不同的思考途径,解题时可有多种方法,常见的策略开放、情景开放等,这类题目强调的是解决实际问题的数学方法和思考的多样性.2.本课你收获了什么?师生梳理本课的知识点及及注意问——归结本节课所复习的内容,梳理知识,构建思维导图,凸显数学思想方法.生反思总结本课中的难点、重点及易错点,并在错题中整理所产生的问题.针对性问题师板书.对内容的升华理解认识三、【板书设计】例1:例2:例3:易错点总结:在指导学生复习时要回归课本,尤其是对课本中出现的实践与探索,让学生通过小组讨论,同桌探讨等方式,总结出其中包含的知识内容,加深学生对知识的理解和对课本的透彻掌握.另外,中考考察的是学生对知识的理解和掌握,更重要的是考察学生对基本知识掌握的扎实程度及全面理解情况,所以,要想提高学生的应试能力,就必须从基础知识入手.欢迎您的下载,资料仅供参考!。

中考数学复习第二讲《开放探究型问题》经典题型含答案

中考数学复习第二讲《开放探究型问题》经典题型含答案

中考数学复习专题第二讲开放探究型问题【要点梳理】开放探究型问题的内涵:所谓开放探究型问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,需要通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的条件或结论或方法.(1)常规题的结论往往是唯一确定的,而多数开放探究题的结论是不确定或不是唯一的,它是给学生有自由思考的余地和充分展示思想的广阔空间;(2)解决此类问题的方法,可以不拘形式,有时需要发现问题的结论,有时需要尽可能多地找出解决问题的方法,有时则需要指出解题的思路等.对于开放探究型问题,需要通过观察、比较、分析、综合及猜想,展开发散性思维,充分运用已学过的数学知识和数学方法,经过归纳、类比、联想等推理的手段,得出正确的结论.在解开放探究题时,常通过确定结论或补全条件,将开放性问题转化为封闭性问题.【学法指导】三个解题方法(1)条件开放型问题:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻,是一种分析型思维方式.它要求解题者善于从问题的结论出发,逆向追索,多途寻因;(2)结论开放型问题:从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想、类比、猜测等,从而获得所求的结论;(3)条件和结论都开放型:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性.【考点解析】条件开放型问题(2017贵州安顺)如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?【考点】LC:矩形的判定;L7:平行四边形的判定与性质.【分析】(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.【解答】(1)证明:∵E是AC中点,∴EC=AC.∵DB=AC,∴DB∥EC.又∵DB∥EC,∴四边形DBCE是平行四边形.∴BC=DE.(2)添加AB=BC.( 5分)理由:∵DB AE,∴四边形DBEA是平行四边形.∵BC=DE,AB=BC,∴AB=DE.∴▭ADBE是矩形.结论开放型问题(2017广西河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD 上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE ⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB=BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AB=BC.存在开放型问题(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C 四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.综合开放型问题(2017山东泰安)如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E 是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.【考点】LO:四边形综合题.【分析】(1)根据平行四边形的想知道的AD=AC,AD⊥AC,连接CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=AB=AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;(3)过E作EM⊥DA交DA的延长线于M,过E作EN⊥FC交FC的延长线于N,证得△AME≌△CNE,△ADE≌△CFE,根据全等三角形的性质即可得到结论.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)解:垂直,理由:过E作EM⊥DA交DA的延长线于M,过E作EN⊥FC交FC的延长线于N,在△AME与△CNE中,,∴△AME≌△CNE,∴∠ADE=∠CFE,在△ADE与△CFE中,,∴△ADE≌△CFE,∴∠DEA=∠FEC,∵∠DEA+∠DEC=90°,∴∠CEF+∠DEC=90°,∴∠DEF=90°,∴ED⊥EF.【真题训练】训练一:(2017日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.训练二:(2017湖北荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.训练三:如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.训练四:(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.训练五:(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.参考答案:训练一:(2017日照)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD 为矩形.请加以证明.【考点】LC:矩形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).训练二:(2017湖北荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【考点】LB:矩形的性质;KD:全等三角形的判定与性质;Q2:平移的性质.【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.训练三:如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【考点】L9:菱形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.训练四:(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB 为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证: =;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C 四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBC=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBC=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,∵△DCE是等腰三角形,易知CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBC=∠DCE=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y= []2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.训练五:(2017•黑龙江)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;L8:菱形的性质;R2:旋转的性质.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=√3OA,OD=√3OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=√3OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=√3AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,{AO=BO∠AOC′=∠BOD′OC′=OD′,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=√3AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=√3OA,OD=√3OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=√3OC′,∠AOC′=∠BOD′,∴OBOA =OD′OC′=√3,∴△AOC′∽△BOD′,∴BD′AC′=OBOA=√3,∠OAC′=∠OBD′,∴BD′=√3AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.【点评】本题考查了正方形的性质,菱形的性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.。

(广东专版)2019年中考数学一轮复习专题8专题拓展8.4开放探究型(讲解部分)素材(pdf)

(广东专版)2019年中考数学一轮复习专题8专题拓展8.4开放探究型(讲解部分)素材(pdf)

大的.
此时,四边形 EFGHᶄ 是要想裁得的四边形 EFGH 中面积最 连接 CE,则 CE = CG = 5. ʑ 点 C 在线段 EG 的中垂线上.
������������������������������������������������������������������������������������������������
周长最小. 这是因为: 在 BC 上任取一点 Gᶄ, 在 CD 上任取一点 Hᶄ,则 FGᶄ+ GᶄHᶄ+ HᶄE = FᶄGᶄ+ GᶄHᶄ+ HᶄEᶄȡEᶄFᶄ. (4 分)
由作图及已知得:BFᶄ = BF = AF = 2,DEᶄ = DE = 2, ʑ AFᶄ = 6,AEᶄ = 8. 又øA = 90ʎ , ʑ EᶄFᶄ = 10,又由已知可得 EF = 2 5 ,
解析㊀ (1) 如图,әADC 即为所画.
(2 分)
(2) 存在. 理由如下:
BC 所在直线的对称点 Fᶄ, 连接 EᶄFᶄ, 交 BC 于点 G, 交 CD 于点 H,连接 FG㊁EH,则 FᶄG = FG,EᶄH = EH,所以此时四边形 EFGH 的
如图,作点 E 关于 CD 所在直线的对称点 Eᶄ, 作点 F 关于
这对于培养答题 人 的 创 新 意 识 非 常 重 要 . 主 要 有 三 种 形 式 :
200 ㊀ ㊀ 1. 条件开放探索题的明确特征是缺少确定的条件, 问题所 一般来说,条件开放探索题的标准答案包括: 将所缺的条件
有数个或数种类型,不能由结论倒着简单地唯一的推出. 解答.
需补充的条件不是得出结论的必要条件, 即所需补充的条件具
最小? 若存在,求出它周长的最小值;若不存在,请说明理由. 问题解决

2019年江苏省中考数学真题分类汇编 专题08 函数之填空题(解析版)

2019年江苏省中考数学真题分类汇编 专题08 函数之填空题(解析版)

专题08 函数之填空题参考答案与试题解析一.填空题(共8小题)1.(2019•连云港)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为(2,4,2).【答案】解:根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).【点睛】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.2.(2019•徐州)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有4个.【答案】解以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为4;【点睛】本题考查一次函数的图象上点的特征,等腰三角形的性质;掌握利用两圆一线找等腰三角形的方法是解题的关键.3.(2019•盐城)如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是y x﹣1.【答案】解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣2,令y=0,则x=1,∴A(,0),B(0,﹣1),∴OA,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO+∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△AFE(AAS),∴AE=OB=1,EF=OA,∴F(,),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y x﹣1,故答案为:y x﹣1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.4.(2019•无锡)已知一次函数y=kx+b的图象如图所示,则关于x的不等式3kx﹣b>0的解集为x<2.【答案】解:∵图象过(﹣6,0),则0=﹣6k+b,则b=6k,故3kx﹣b=3kx﹣6k>0,∵k<0,∴x﹣2<0,解得:x<2.故答案为:x<2.【点睛】此题主要考查了一次函数与一元一次不等式,正确得出k与b之间的关系是解题关键.5.(2019•镇江)已知点A(﹣2,y1)、B(﹣1,y2)都在反比例函数y的图象上,则y1<y2.(填“>”或“<”)【答案】解:∵反比例函数y的图象在二、四象限,而A(﹣2,y1)、B(﹣1,y2)都在第二象限,∴在第二象限内,y随x的增大而增大,∵﹣2<﹣1∴y1<y2.故答案为:<【点睛】此题主要考查了反比例函数的性质,当k<0时,在每个象限内,y随x的增大而增大,由x的值变化得出y的值变化情况;也可以把x的值分别代入关系式求出y1、y2再作比较亦可.6.(2019•无锡)某个函数具有性质:当x>0时,y随x的增大而增大,这个函数的表达式可以是y=x2(答案不唯一)(只要写出一个符合题意的答案即可).【答案】解:y=x2中开口向上,对称轴为x=0,当x>0时y随着x的增大而增大,故答案为:y=x2(答案不唯一).【点睛】考查了一次函数、二次函数、反比例函数的性质,根据函数的增减性写出答案即可.7.(2019•徐州)已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为y(x﹣4)2.【答案】解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a.故原来的抛物线解析式是:y x2.设平移后的抛物线解析式为:y(x﹣b)2.把P(2,2)代入,得2(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y(x﹣4)2.故答案是:y(x﹣4)2.【点睛】考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征.利用待定系数法确定原来函数关系式是解题的关键.8.(2019•镇江)已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.【答案】解:∵抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,∴ 2∵线段AB的长不大于4,∴4a+1≥3∴a∴a2+a+1的最小值为:()21;故答案为.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据题意得出4a+1≥3是解题的关键.。

2019年全国中考数学试卷分类汇编:综合性问题【含解析】

2019年全国中考数学试卷分类汇编:综合性问题【含解析】

综合性问题一、选择题1. (2018•年山东东营,第10题3分)如图,四边形ABCD为菱形,AB=BD,点B、C、D、G四个点在同一个圆⊙O 上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结论:①AE=DF;②FH∥AB;③△DGH∽△BGE;④当CG为⊙O的直径时,DF=AF.[中其中正确结论的个数是()A. 1 B. 2 C. 3 D. 4考点:圆的综合题.分析:①由四边形ABCD是菱形,AB=BD,得出△ABD和△BCD是等边三角形,再由B、C、D、G四个点在同一个圆上,得出∠ADE=∠DBF,由△ADE≌△DBF,得出AE=DF,②利用内错角相等∠FBA=∠HFB,求证FH∥AB,③利用∠DGH=∠EGB和∠EDB=∠FBA,求证△DGH∽△BGE,④利用CG为⊙O的直径及B、C、D、G四个点共圆,求出∠ABF=120°﹣90°=30°,在RT△AFB中求出AF=AB 在RT△DFB中求出FD=BD,再求得DF=AF.解答:解:①∵四边形ABCD是菱形,∴AB=BC=DC=AD,又∵AB=BD,∴△ABD和△BCD是等边三角形,∴∠A=∠ABD=∠DBC=∠BCD=∠CDB=∠BDA=60°,又∵B、C、D、G四个点在同一个圆上,∴∠DCH=∠DBF,∠GDH=∠BCH,∴∠ADE=∠ADB﹣∠GDH=60°﹣∠EDB,∠DCH=∠BCD﹣∠BCH=60°﹣∠BCH,∴∠ADE=∠DCH,∴∠ADE=∠DBF,在△ADE和△DBF中,∴△ADE≌△DBF(ASA)∴AE=DF故①正确,②由①中证得∠ADE=∠DBF,∴∠EDB=∠FBA,∵B、C、D、G四个点在同一个圆上,∠BDC=60°,∠DBC=60°,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGE=180°﹣∠BGC﹣∠DGC=180°﹣60°﹣60°=60°,∴FGD=60°,∴FGH=120°,又∵∠ADB=60°,∴F、G、H、D四个点在同一个圆上,∴∠EDB=∠HFB,∴∠FBA=∠HFB,∴FH∥AB,故②正确,③∵B、C、D、G四个点在同一个圆上,∠DBC=60°,∴∠DGH=∠DBC=60°,∵∠EGB=60°,∴∠DGH=∠EGB,由①中证得∠ADE=∠DBF,∴∠EDB=∠FBA,∴△DGH∽△BGE,故③正确,④如下图∵CG为⊙O的直径,点B、C、D、G四个点在同一个圆⊙O上,∴∠GBC=∠GDC=90°,∴∠ABF=120°﹣90°=30°,∵∠A=60°,∴∠AFB=90°∴AF=AB,又∵∠DBF=60°﹣30°=30°,∠ADB=60°,∴∠DFB=90°,∴FD=BD,∵AB=BD,∴DF=AF,故④正确,故选:D.点评:此题综合考查了圆及菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,运用四点共圆找出相等的角是解题的关键.解题时注意各知识点的融会贯通.2. (2018•甘肃白银、临夏,第10题3分)如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是()A.B.C.D.考点:动点问题的函数图象.分析:通过相似三角形△EFB∽△EDC的对应边成比例列出比例式=,从而得到y与x之间函数关系式,从而推知该函数图象.=,即=y=角线BD 的直线l 从O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动到直线l 与正方形没有交点为止.设直线l 扫过正方形OBCD 的面积为S ,直线l 运动的时间为t (秒),下列能反映S 与t 之间函数关系的图象是( )×t×t=t t t ﹣三、解答题1. (2018•上海,第25题14分)如图1,已知在平行四边形ABCD 中,AB=5,BC=8,cosB=45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP∥CG时,求弦EF的长;∴AC=∴CP=CE==,∴EF=2=,即=∴CE==.2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.考点:二次函数综合题.分析:(1)根据抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,得到方程组,解方程组即可求出抛物线的解析式;(2)由于点M到达抛物线的对称轴时需要3秒,所以t≤3,又当点M到达原点时需要2秒,且此时点H立刻掉头,所以可分两种情况进行讨论:①当0<t≤2时,由△AMP∽△AOC,得出比例式,求出PM,AH,根据三角形的面积公式求出即可;②当2<t≤3时,过点P作PM⊥x轴于M,PF⊥y轴于点F,表示出三角形APH的面积,利用配方法求出最值即可.解答:(1)∵抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,∴,解得:,∴抛物线的解析式是:y=x2﹣x﹣4,(2)分两种情况:①当0<t≤2时,∵PM∥OC,∴△AMP∽△AOC,∴=,即=,∴PM=2t.解方程x2﹣x﹣4=0,得x1=﹣2,x2=4,∵A(﹣2,0),∴B(4,0),∴AB=4﹣(﹣2)=6.∵AH=AB﹣BH=6﹣t,∴S=PM•AH=×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,当t=2时S的最大值为8;②当2<t≤3时,过点P作PM⊥x轴于M,作PF⊥y轴于点F,则△COB∽△CFP,又∵CO=OB,∴FP=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AH=4+(t﹣2)=t+1,∴S=PM•AH=(6﹣t)(t+1)=﹣t2+4t+3=﹣(t﹣)2+,当t=时,S最大值为.综上所述,点M的运动时间t与△APQ面积S的函数关系式是S=,S的最大值为.点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.3. (2018•山东威海,第25题12分)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C (0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.,,x=.在Rt△BOC中,设BC边上的高为h,则×h=×2×4,∴=,∴y=±2﹣x+2,x+2﹣0=﹣×(﹣1)+n∴n=﹣x.x x+2=x,BD=,,∴AC=BF=DF=4. (2018•山东枣庄,第25题10分)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;•()•OH=•HD•HB=4,∴S四边形OCDB=.=,,,,﹣,(∴当x P=时,线段PF长度最大为.AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求sin∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;解直角三角形.分析:(1)由四边形ABCD是正方形,可得∠ABE=∠BCF=90°,AB=BC,又由BE=CF,即可证得△ABE≌△BCF,可得∠BAE=∠CBF,由∠ABF+∠CBF=900可得∠ABF+∠BAE=900,即AE⊥BF;(2)由△BCF≌△BPF, 可得CF=PF,BC=BP,∠BFE=∠BFP,由CD∥AB 得∠BFC=∠ABF,从而QB=QF ,设PF 为x,则BP 为2x,在Rt△QBF 中可求 QB 为25x ,即可求得答案; (3)由2)(AMAN AHM AGN =∆∆可求出△A GN 的面积,进一步可求出四边形GHMN 的面积.解答:(1)证明:∵E、F 分别是正方形ABCD 边BC 、CD 的中点,∴CF=BE,∴Rt△ABE≌Rt△BCF ∴∠BAE=∠CBF 又∵∠BAE+∠BEA=900,∴∠CBF+∠BEA=900,∴∠BGE=900, ∴AE⊥BF(2)根据题意得:FP=FC ,∠PFB=∠BFC,∠FPB=900,∵CD∥AB, ∴∠CFB=∠ABF,∴∠ABF=∠PFB.∴QF=QB 令PF=k (k>O ),则PB=2k , 在Rt△BPQ 中,设QB=x , ∴x 2=(x -k)2+4k 2, ∴x=25k ,∴sin∠BQP=54252==k k QP BP (3)由题意得:∠BAE=∠EAM,又AE⊥BF, ∴AN=AB=2,∵ ∠AHM=900, ∴GN//HM, ∴2)(AM AN AHM AGN =∆∆ ∴54)52(12==ΛAGN∴ 四边形GHMN=S ΔAHM - S ΔAGN=1一54= 54答:四边形GHMN 的面积是54.点评:此题考查了相似三角形的判定与性质、正方形的性质、全等三角形的判定与性质以及三角函数等知识.此题综合性较强,难度较大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.6. (2018•山东潍坊,第24题13分)如图,抛物线y=ax 2+bx+c (a≠O)与y 轴交于点C(O ,4),与x 轴交于点A 和点B ,其中点A 的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D ,与直线BC 交于点E . (1)求抛物线的解析式;(2)若点F 是直线BC 上方的抛物线上的一个动点,是否存在点F 使四边形ABFC 的面积为17,若存在,求出点F 的坐标;若不存在,请说明理由;(3)平行于DE 的一条动直线Z 与直线BC 相交于点P ,与抛物线相交于点Q ,若以D 、E 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标。

(江苏专版)2019年中考数学一轮复习第八章专题拓展8.3开放探究型(讲解部分)素材(pdf)

(江苏专版)2019年中考数学一轮复习第八章专题拓展8.3开放探究型(讲解部分)素材(pdf)

{
øAEO = øG,
= 90ʎ ,
解析 ㊀ ( 1) 证明:ȵ AE ʅ PB, CF ʅ BP,ʑ øAEO = øCFO
{
在әAEO 和әCFO 中, øAEO = øCFO, øAOE = øCOF, AO = OC,
ʑ әOFG 是等边三角形,ʑ OF = FG, ȵ OE = OF,ʑ OE = FG, ȵ CF = FG - CG,ʑ CF = OE - AE.
A.4 个
ʑ øABC = 90ʎ ,ADʊBC,ʑ øEAF = øACB. ȵ BEʅAC,ʑ øAFE = 90ʎ , ȵ ADʊBC,ʑ әAEFʐәCBF. ʑ AF AE 1 = = . ʑ CF = 2AF,故②正确; CF BC 2
解析㊀ ȵ 四边形 ABCD 是矩形,
B.3 个
C.2 个
D.1 个
例 1㊀ ( 2017 潍坊,15,3 分) 如图,在 әABC 中, AB ʂ AC, D㊁ E 分别为边 AB㊁AC 上的点, AC = 3AD, AB = 3AE, 点 F 为 BC 边上 一点,添加一个条件:㊀ ㊀ ㊀ ㊀ , 可以使得 әFDB 与 әADE 相似. ( 只需写出一个)
状㊁大小完全相同的方格纸,方格纸中的每个小正方形的边长均 为 1,每个小正方形的顶点叫做格点. 且øMON = 90ʎ ;
形 ABCD 面积等于(1) 中等腰直角三角形 MON 面积的 4 倍, 并 将正方形 ABCD 分割成以格点为顶点的四个全等的直角三角形
58 ㊀
5 年中考 3 年模拟 ʑ әAOEɸәCOF,ʑ OE = OF. (2) 题图 2 中的结论:CF = OE + AE. 题图 3 中的结论:CF = OE 选题图 2 中的结论证明如下:延长 EO 交 CF 于点 G,如图,

2019届人教版中考复习数学练习专题三:开放型探索专题(含答案)

2019届人教版中考复习数学练习专题三:开放型探索专题(含答案)

专题三开放型探索专题的青睐,中考题型以填空题、解答题为【课堂精讲】例1如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH时,都可以证明△BEH≌△CFH,(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.解答:(1)添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);(2)解:∵BH=CH,EH=FH,∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),∵当BH=EH时,则BC=EF,∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).本题考查了全等三角形的判定和性质以及平行四边形的判定基础题,难度不大例2.如图2-1-3,边长为1的正方形ABCD的对角线AC,BD相交于点O.有直角∠MPN,使直角顶点P与点O 重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM,PN 分别交AB,BC于E,F两点,连结EF交OB于点G,则下列结论中正确的是____.①EF =2OE ;②S 四边形OEBF ∶S 正方形ABCD =1∶4;③BE +BF =2OA ;④在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =34;⑤OG ·BD =AE 2+CF 2.图2-1-3 第4题答图【解析】 ∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°,∴∠BOF +∠COF =90°,∵∠EOF =90°,∴∠BOF +∠BOE =90°,∴∠BOE =∠COF ,∴△BOE ≌△COF (ASA ),∴OE =OF ,BE =CF ,∴EF =2OE .故①正确;∵S 四边形OE BF =S △BOE +S △BOF =S △BOF +S △COF =S △BOC =14S 正方形ABCD ,∴S 四边形OEBF ∶S 正方形ABCD =1∶4.故②正确;∵BE +BF =BF +CF =BC =2OA .故③正确;如答图,过点O 作OH ⊥BC 交BC 于点H ,∵BC =1,∴OH =12BC =12,设AE =x ,则BE =CF =1-x ,BF =x ,∴S △BEF +S △COF =12BE ·BF +12CF ·OH =12x (1-x )+12(1-x )×12=-12⎝ ⎛⎭⎪⎫x -142+932,∵a =-12<0,∴当x =14时,S △BEF +S △COF 最大,即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =14.故④错误;∵∠EOG =∠BOE ,∠OEG =∠OBE =45°,∴△OEG ∽△OBE ,∴OE ∶OB =OG ∶OE ,∴OG ·OB =OE 2,∵OB =12BD ,OE =22EF ,∴OG ·BD =EF 2,∵在△BEF 中,EF 2=BE 2+BF 2,∴EF 2=AE 2+CF 2,∴OG ·BD =AE 2+CF 2.故⑤正确.故答案为①②③⑤. 【课堂提升】1.如图,直线a 、b 被直线c 所截,若满足 ,则a 、b 平行.2.写出一个运算结果是a 6的算式 .3.如图2-1-5,CD 是经过∠BCA 顶点C 的一条直线,CA =CB .E ,F 分别是直线CD 上两点,且∠BEC =∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图①,若∠BCA=90°,∠α=90°,则BE____CF;EF____|BE-AF|(选填“>”“<”或“=”);②如图②,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件____,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图③,若直线CD经过∠BCA的外部,∠α=∠BCA,请写出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).图2-1-54.如图2-1-6①,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图②,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.5.如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,(1)观察图形,写出图中所有与∠AED相等的角。

2019年各地中考数学模拟试卷精选汇编:开放性问题(含答案)

2019年各地中考数学模拟试卷精选汇编:开放性问题(含答案)

图 1开放性问题一.选择题1. (2018•山东潍坊广文中学、文华国际学校•一模)如图1,点D 在△ABC 的边AC 上,要 判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C .AB CB BD CD = D .AD ABAB AC= 答案:C ;2. (2018•山东东营•一模)如图,在10×10的格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( )A .16B .15C .14D .13 答案:C二.填空题1. (2018•山东潍坊•第二学期期中)请写出一个以x 1=2,x 2=3为根的二元一次方程: . 答案:答案不唯一,如x 2-5x+6=0 或(x -2)(x -3)=0;三.解答题1. (2018·辽宁盘锦市一模)已知,在△ABC 中,∠BAC=90°,∠ABC=45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边做正方形ADEF ,连接CF(1)如图1,当点D 在线段BC 上时.求证CF+CD=BC ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其 他条件不变;①请直接写出CF ,BC ,CD 三条线段之间的关系②若正方形ADEF 的边长为2 2 ,对角线AE ,DF 相交于点O ,连接OC . 求OC 的长度.证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC, ∵四边形ADEF 是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC, ∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,则在△BAD 和△CAF 中,, ∴△BAD≌△CAF(SAS ),∴BD=CF∵BD+CD=BC∴CF+CD=BC (2)CF ﹣CD=BC ;(3)①CD﹣CF=BC②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF 是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF, ∴∠BAD=∠CAF,∵在△B AD 和△CAF 中,∴△BAD≌△CAF(SAS ),∴∠ACF=∠ABD, ∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°∴△FCD 是直角三角形。

开放拓展问题(精讲)-2019年中考数学高频考点突破全攻略(解析版)

开放拓展问题(精讲)-2019年中考数学高频考点突破全攻略(解析版)

【课标解读】教育部《关于初中毕业、升学考试指导意见》明确指出,中考数学要出一定的开放性问题,以更好地保障解答者创造性地发挥水平。

《数学课程标准》在编学上也十分关注这个问题,在学习选择上改革力度很大,书中有不少既符合学生特点又联系实际的开放性问题。

开放探索问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,或者条件、结论有待探求、补充等.【解题策略】在解决开放探索问题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.【考点深剖】★考点一条件开放型所谓条件开放型试题是指在结论不变的前提下,条件不唯一的题目.【典例1】(2018•安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.★考点二结论开放型数学命题,根据思维形式可分成三部分:假设——推理——判断.所谓结论开放题是指判断部分是未知要素的开放题.【典例2】(2018•安顺)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AC⊥AB,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)连接DF,由AAS证明△AFE≌△DBE,得出AF=BD,即可得出答案;(2)根据平行四边形的判定得出平行四边形ADCF,求出AD=CD,根据菱形的判定得出即可;∵AE=DE,∴四边形AFDB是平行四边形,∴BD=AF,∵AD为中线,∴DC=BD,∴AF=DC;(2)四边形ADCF的形状是菱形,理由如下:★考点三作图开放型这类题与传统的作图题比较,符合题意的答案多种多样,具有很强的开放性。

全国通用2019年中考数学复习第八章专题拓展8.5开放探究型讲解部分检测

全国通用2019年中考数学复习第八章专题拓展8.5开放探究型讲解部分检测

������������������������������������
方法的要求较高, 题型新颖, 构思精巧, 通常要结合以下数学思 想方法:分类讨论, 数形结合, 分析综合, 归纳猜想, 构建数学模 型等. 主要有三种形式:1. 条件的开放与探究;2. 结论的开放与探 究;3. 解题策略的开放与探究.
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
2. ( 2018 河南, 19, 9 分 ) 如图, AB 是 ☉O 的直径, DO ʅ AB 于点
78 ㊀
5 年中考 3 年模拟
O,连接 DA 交☉O 于点 C,过点 C 作☉O 的切线交 DO 于点 E, 连接 BC 交 DO 于点 F. (1) 求证:CE = EF; (2) 连接 AF 并延长,交☉O 于点 G. 填空:
1.
相等的矩形是正方形,即①正确.
ȵ 将әABC 绕 AB 中点 M 旋转 180ʎ ,得到әBAD, ʑ әAOCɸәBED,ʑ DE = OC = 2,AO = BE = 1, ȵ OB = 4,ʑ OE = 4-1 = 3, ʑ 点 D 的坐标为(3,-2) . ②ȵ 将әABC 绕 AB 中点 M 旋转 180ʎ ,得到әBAD, ʑ AC = BD,AD = BC, ʑ 四边形 ADBC 是平行四边形,

2019版中考数学专题复习 专题八 综合应用(29)阅读理解型当堂达标题

2019版中考数学专题复习 专题八 综合应用(29)阅读理解型当堂达标题

2019版中考数学专题复习 专题八 综合应用(29)阅读理解型当堂达标题一、选择题1.为了求1+2+22+23+…+2xx 的值,可令S =1+2+22+23+…+2xx ,则2S =2+22+23+24+…+2xx ,因此2S -S =2xx -1,所以1+2+22+23+…+2xx=2xx -1.仿照以上推理计算出1+5+52+53+…+5xx 的值是( ). A .152009-B .152010-C .4152009- D .4152010-二、填空题2.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…(2)122f ⎛⎫= ⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,…利用以上规律计算:1(2008)2008f f ⎛⎫-=⎪⎝⎭.3.小明用下面的方法求出方程230x -=的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.方程换元法得新方程 解新方程检验求原方程的解230x -= 令x t =,则230t -=32t =302t => 32x =,所以94x = 230x x +-= 240x x +--=三、解答题4.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形. 理解:(1)如图1,已知A 、B 、C 在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB 、BC 为边的两个对等四边形ABCD ; (2)如图2,在圆内接四边形ABCD 中,AB 是⊙O 的直径,A C =BD .求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.5.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△A CE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.阅读理解型复习当堂达标题答案1.D.2.1.3.方程换元法得新方程解新方程检验求原方程的解230x x+-=令x t=,则2230t t+-=……1分1213t t==-,……2分110t=>,230t=-<(舍去)……3分1x=,所以1x=.……4分240x x+--=令2x t-=,则220t t+-=……6分1212t t==-,……7分110t=>,220t=-<(舍去)……8分21x-=,所以213x x-==,.……9分4. 解:(1)如图1所示(画2个即可).(2)如图2,连接AC,BD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,在Rt△ADB和Rt△ACB中,∴Rt△ADB≌Rt△ACB,∴AD=BC,又∵AB是⊙O的直径,∴AB≠CD,∴四边形ABCD是对等四边形.(3)如图3,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,∵tan∠PBC=,∴AE=,在R t△ABE中,AE2+BE2=AB2,即,解得:x1=5,x2﹣5(舍去),∴BE=5,AE=12,∴CE=BC﹣BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AF D2中,,∴,,综上所述,CD的长度为13、12﹣或12+.5. 解:∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥D F,∴△ABE∽△FDE,∴=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.。

2019年北京市中考数学复习专项《开放型问题》精练解析卷

2019年北京市中考数学复习专项《开放型问题》精练解析卷

2019年北京市中考数学复习 专项《开放型问题》精练解析卷一、填空题1、(2018北京通州区第一学期期末)如图,AD ,AE 是正六边形的两条对角线.在不添加任何其他线段的情况下,请写出两个关于图中角度的正确结论:(1)___________________;(2)_____________.答案:2.(2018北京市朝阳区初二年级第一学期期末)在你所学过的几何知识中,可以证明两个角相等的定理有.(写出三个定理即可)答案:答案不唯一,如:全等三角形的对应角相等3.(2018北京市朝阳区初二年级第一学期期末)如图,在ABC ∆中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ∆≌CEB ∆.添加的条件是:.(写出一个即可)答案:答案不唯一,如AE=CE4、 (2018北京市丰台区初二期末)小东认为:任意抛掷一个啤酒瓶盖,啤酒瓶盖落地后印有商标一面向上的可能性的大小是12.你认为小东的想法(“合理”或“不合理”),理由是.答案:不合理,答案不唯一5.(2018北京市海淀区八年级期末)已知△ABC 中,AB =2,∠C =40°,请你添加一个适当的条件,使△ABC的形状和大小都是确定的.你添加的条件是. 答案:答案不唯一,如:∠A =60° (注意:如果给一边长,需小于或等于2)或AC=BC6.(2018北京市海淀区八年级期末)如图,在平面直角坐标系xOy 中,△DEF 可以看作是△ABC 经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC 得到△DEF 的过程:.答案:答案不唯一,如:将△ABC 关于y 轴对称,再将三角形向上平移3个单位长度7.(2018北京市怀柔区初二期末)如图,AB =AC ,点D ,E 分别在AB ,AC 上,CD ,BE 交于点F ,只添xyOA CB FE D–1–2–3123–1–2–3123加一个条件使△ABE ≌△ACD ,添加的条件是:__________(添加一个即可).答案: AE=AD ∠B=∠C ∠BEA=∠CDA8.(2018北京市怀柔区初二期末)下面是“作一个角等于已知角”的尺规作图过程.请回答:这样作一个角等于已知角的理由是.答案:全等三角形的对应角相等;有三边分别相等的两个三角形全等;同圆(等圆)的半径相等. 9、 (2018北京市平谷区初二期末)如图,线段AE ,BD 交于点C ,AB =DE ,请你添加一个条件______________,使得△ABC ≌△DEC .解:E A ∠=∠(或D B ∠=∠,或DE ∥AB )10.(2018北京市西城区八年级期末)如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,∠B =∠DEF .要使△ABC ≌△DEF ,则需要再添加的一个条件是.(写出一个即可)答案:答案不唯一.如:∠A =∠D11.(2018北京市西城区八年级期末)写出一个一次函数,使得它同时满足下列两个条件:①y 随x 的增大而减小;②图象经过点(1,4-). 答:.已知:∠AOB.求作:一个角,使它等于∠AOB. 作法:(1)作射线O A '';(2)以O 为圆心,任意长为半径作弧, 交OA 于C ,交OB 于D ;(3)以O '为圆心,OC 为半径作弧C E '', 交O A ''于C ';(4)以C '为圆心,CD 为半径作弧, 交弧C E ''于D ';(5)过点D '作射线O B ''. 所以∠A O B '''就是所求作的角E'O'C'D'DC B'A'OBA图1答案:答案不唯一.如:4y x =-12.(2018北京市平谷区初二期末)阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l 和直线l 外一点P ,用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q.”小艾的做法如下:(1)在直线l 上任取点A ,以A 为圆心,AP 长为半径画弧. (2)在直线l 上任取点B ,以B 为圆心,BP 长为半径画弧. (3)两弧分别交于点P 和点M(4)连接PM ,与直线l 交于点Q ,直线PQ 即为所求. 老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________________________________________________________. 解:到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线;(或sss ;全等三角形对应角相等;等腰三角形的三线合一)13.(2018北京市门头沟区八年级期末)已知:如图,∠BAC =∠DAC .请添加一个条件,使得△ABC ≌△ADC ,然后再加以证明.解:(1)添加条件正确;………………………………………………………………1分 (2)证明正确.……………………………………………………………………5分 三、解答题14.(2018北京市石景山区初二期末)周末,老师带同学去北京植物园中的一二﹒九运动纪念广场,这里有三座侧面为三角形的纪念亭,挺拔的建筑线条象征青年朝气蓬勃、积极向上的精神.基于纪念亭的几何特征,同学们编拟了如下的数学问题:如图1,点A ,B ,C ,D 在同一条直线上,在四个论断“EA =ED ,EF ⊥AD ,AB =DC ,FB =FC ”中选择三个..作为已知条件,另一个...作为结论,构成真命题(补充已知和求证),并进行证明.已知:如图1,点A ,B ,C ,D 在同一条直线上,. 求证:. 证明: 选择一:B AEDCF已知:如图1,点A 、B 、C 、D 在同一条直线上,EA =ED ,EF ⊥AD ,AB =CD . 求证:FB =FC .⋯⋯⋯⋯1分证明:如图,延长EF 交AD 于点H ⋯⋯⋯⋯2分 ∵EA =ED ,EF ⊥AD ,∴AH =DH .(等腰三角形的三线合一)⋯⋯⋯4分 ∵AB =CD∴BH =CH .⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 ∴EH 垂直且平分线段BC∴FB =FC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(线段垂直平分线上的点到线段两个端点的距离相等) 选择二:已知:如图1,点A 、B 、C 、D 在同一条直线上,FB =FC ,EF ⊥AD ,AB =CD . 求证:EA =ED .⋯⋯⋯⋯1分 证明方法同选择一,相应给分. 选择三:已知:如图1,点A 、B 、C 、D 在同一条直线上,FB =FC ,EF ⊥AD ,EA =ED . 求证:AB =CD .⋯⋯⋯⋯1分证明:如图,延长EF 交AD 于点H ⋯⋯⋯⋯2分 ∵EA =ED ,EF ⊥AD ,∴AH =DH .(等腰三角形的三线合一)⋯⋯⋯4分 ∵FB =FC ,EF ⊥AD ,∴BH =CH .⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 ∴AB =CD .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分 选择四:方法1已知:如图1,点A 、B 、C 、D 在同一条直线上,FB =FC ,AB =CD ,EA =ED . 求证:EF ⊥AD .⋯⋯⋯⋯1分 证明:过点F 作FH ⊥AD 于点H ∵FB =FC ,EF ⊥AD ,∴BH =CH .⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∵AB =CD ,∴AH =DH .⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ∴点F 在AD 的中垂线上. ∵EA =ED ,∴点E 在AD 的中垂线上.⋯⋯⋯⋯⋯⋯⋯5分 根据两点确定一条直线EF ⊥AD .⋯ ⋯⋯⋯6分说明:学生没作辅助线,但是由FB =FC 推得“点F 在BC 的中垂线上”,再由AB =CD 直接推出“点F 在AD 的中垂线上”,后面同上,依然得分. 方法2:简要思路①连接F A ,FD ,同方法1,证出“点F 在AD 的中垂线上”,从而证出F A =FD ;(或通过全等证明F A =FD )⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分②利用SSS 证明△EF A ≌△EFD ,从而∠1=∠2;⋯⋯⋯⋯⋯⋯⋯⋯4分H BAEDCFH BAEDCFH BAEDCF21B AEDCF③利用等腰三角形的三线合一证得EF ⊥AD .⋯⋯⋯⋯⋯⋯⋯⋯6分说明:其他方法酌情给分.15.(2018北京丰台区一模)第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲30 60 6070608030901006060100 80 60 7060 6090 60 60乙8090 40 60 8080 90 4080 5080 70 70 70 7060805080 80【整理、描述数据】按如下分数段整理、描述这两组样本数据:30≤x ≤50 50<x ≤80 80<x ≤100 甲 2 14 4 乙4142(说明:优秀成绩为80<x ≤100,良好成绩为50<x ≤80,合格成绩为30≤x ≤50.) 【分析数据】两组样本数据的平均分、中位数、众数如下表所示:学校 平均分 中位数 众数 甲 67 60 60 乙7075a其中a =__________. 【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是________校的学生;(填“甲”或“乙”) (2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为________; (3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性).解:a =80;………………………1分 (1)甲;………………………2分 (2)110;………………………3分 (3)答案不唯一,理由需支持推断结论.如:乙校竞赛成绩较好,因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多.………………………5分x 学校绩 人数 成。

(2019版)中考数学复习综合应用问题[人教版]

(2019版)中考数学复习综合应用问题[人教版]

; 外链代发 外链代发 ;
从而导致了这个下场 轶事典故编辑 1 孙子与有力焉 [9] 《读通鉴论·穆帝》 百钱差沮 君王身边本就有这样的人 站3人一排 威震天下 .国学网[引用日期2014-09-07] 司马迁 文官进位三等 韩信影视形象(15张) 攻破楚国都城郢 别都鄢 插上汉军红旗 今如此避而不击 从平王世充 和窦建德 于汉家勋可以比周 召 太公之徒 见《东周列国志·第八十六回·吴起杀妻求将 葬于茂陵东北1000米处 疲态日现 加封食邑6000户(汉书8700户) 以为汉皆已得赵王将矣 吴起没有答应 难兼卫霍功 又西行四十里 不过在后世之人看来 酬功而报德者 广宗伯 14.三是 罐可装7 斤油 受其义父史天泽被贬影响 谷永:“昔白起为秦将 .国学网[引用日期2013-01-08] 台湾嘉义东石先天宫奉白起为白府千岁 无容同叛逆之科 但你且细想 你且细看 ”人莫之徙也 李德裕--?关于孙武的结局 无不通书史 史上再无这支2019年7月战队的记载了!(《加李靖特进制》) ③李靖 李勣二人 刻画尤为鲜明突出 病尚图功 晃晃悠悠进了军营大门 孙武把宫女分为左右两队 《孙子兵法》阐述了战争中制胜敌人的规律 父母 遽请斩之 阴令怀玺送于京师 接受它带来的灾祸要比得到的好处大的多 恂恂然似不能言 兵至乞都卜 这是大利 易若摧枯 防备匈奴 卫左 氏中人也 不用此计 人物关系 病逝追封 伏发 即撤军退走 野战不如白起 汉族 朕从台观卿 后世纪念编辑 而敢力战深入之士皆属骠骑 (《旧唐书》) 他们才会听从号令 试之妇人 《唐会要·卷四十五·功臣》 侃上疏陈建国号 筑都城 立省台 兴学校等二十五事 信 越未有分地 中 情怯耳 李靖因军功进封代国公 然不能救患于应侯 平定吴乞儿 济南道士胡王的民变 以卢绾不过是刘邦的邻居这种故旧恩情 师不宿饱 ASCE中国会员 文史专栏作者 作协会员 徙高唐令

泉州市泉港区2019年届中考《开放性问题》专题复习试题含解析

泉州市泉港区2019年届中考《开放性问题》专题复习试题含解析

开放性问题一、填空题1. (2019·山东省济宁市·3分)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使△AEH≌△CEB.【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.三.解答题1.(2019·山东省滨州市·14分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题;函数及其图象.【分析】(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,易知点E坐标(﹣7,﹣)或(5,﹣),由此不难解决问题.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象可知AB只能为平行四边形的边,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为顶点时,∵直线AC解析式为y=﹣x+1,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.2.(2019·四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣2x﹣3;(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S△ABC=AB•OC=×4×3=6,∵B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),∵P点在第四限,∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,∴S△PBC=PM•OH+PM•HB=PM•(OH+HB)=PM•OB=PM,∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,∵PM=﹣x2+3x=﹣(x﹣)2+,∴当x=时,PM max=,则S△PBC=×=,此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+=,即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;(3)如图2,设直线m交y轴于点N,交直线l于点G,则∠AGP=∠GNC+∠GCN,当△AGB和△NGC相似时,必有∠AGB=∠C GB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AON和Rt△NOB中∴Rt△AON≌Rt△NOB(ASA),∴ON=OA=1,∴N点坐标为(0,﹣1),设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,∴直线m解析式为y=x﹣1,即存在满足条件的直线m,其解析式为y=x﹣1.【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、二次函数的最值、相似三角形的判定、全等三角形的判定和性质等.在(2)中确定出PM的值最时四边形ABPC的面积最大是解题的关键,在(3)中确定出满足条件的直线m的位置是解题的关键.本题考查知识点较多,综合性较强,特别是第(2)问和第(3)问难度较大.3.(2016·四川内江)(12分)如图15,已知抛物线C:y=x2-3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.(1)求m的值;(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=-3x+b交于点P,且1OA+1OB=2OP,求b 的值;(3)在 (2)的条件下,设直线l 1与y 轴交于点Q ,问:是否存在实数k 使S △APQ =S △BPQ ,若存在,求k 的值;若不存在,说明理由.[考点]二次函数与一元二次方程的关系,三角形的相似,推理论证的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019版中考数学专题复习 专题八 综合应用(31)开放性
问题当堂达标题
一、填空题
1.如图,已知AC ⊥BD 于点P ,AP =CP ,请增加一个条件,使得△ABP ≌△CDP (不能添加辅助线),你增加的条件是________.
2.反比例函数y =m x (m ≠0)与一次函数y =kx +b (k ≠0)的图象如图所示,请写出一条正确的结论:________.
3.两个不相等的无理数,它们的乘积为有理数,这两个数可以是______.
4.已知x 2-ax -24在整数范围内可以分解因式,则整数a 的值是______(只需填一个).
5.有一个二次函数的图象三位学生分别说出了它的一些特点:
甲:对称轴是直线x =4;
乙:与x 轴两个交点的横坐标都是整数;
丙:与y 轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式:______.
二、选择题
6.如图,△ABC 是不等边三角形,DE =BC ,以D 、E 为两个顶点作不同位置的三角形,使所作三角形与△ABC 全等,这种三角形最多可以画出( ) .
A .2个
B .4个
C .6个
D .8个
7.已知道三角形的三边长分别为4, 5, x ,则x 不可能是( ) .
A.3
B.5
C.7
D.9
8.点A ,B ,C ,D 在同一平面内,从①AB 平行CD ;②AB =CD ;③BC 平行AD ;④BC =AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( ) .
A.2种
B.3种
C.4种
D.5种
三、解答题
9.在一服装厂里有大量形状为等腰直角三角形的边角余布料.现找出其中的一种,测得∠C=90°,AC=BC=4,今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在△ABC的边上,且扇形的弧与△ABC的其他边相切.请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径).
10.阅读函数图象,并根据你所获得的信息回答问题:
(1)折线OAB表示某个实际问题的函数图象,请你编写一道符合该图象意义的应用题;
(2)根据你给出的应用题分别指出x轴、y轴所表示的意义,并写出A、B两点的坐标;
(3)求出图象AB的函数解析式,并注明自变量x的取值范围.
开放性问题复习当堂达标题答案
1.答案不唯一,如BP =DP 或AB =CD 或∠A =∠C 或∠B =∠D 或AB //CD .
2.答案不唯一,如反比例函数解析式为y =2x 或一次函数解析式为y =x +1等.故存在点 P 1(-3,-9)和点P 2(9,-9)满足题意.
3. 2+1和2-1等
4.略
5. :y =±(51x 2-58x -3) y =±(71x 2-78x +1)
6. B
7. D
8. C
9.
10. 答:张老师从家里出发,乘汽车去学校,汽车的速度为每小时25 km ,经过2h 到达学校.到校后由于家中有事,立即骑自行车返回,再经过5h 到家.
(2)x 轴表示运动时间,单位是小时,y 轴表示运动的路程,单位是千米.A (2,50),B (7,0)
(3)设AB 的解析式为y =kx +b ,则⎩⎨
⎧=+=+07502b k b k 解之,得⎩⎨⎧=-=7010b k ∴ y =-10x +70(2≤x ≤7).
欢迎您的下载,资料仅供参考!。

相关文档
最新文档