Moldflow模流分析报告范例

合集下载

注塑模流分析报告格式范例

注塑模流分析报告格式范例
产品壁厚较均匀。 详见P20~P27
此方案满足成型
备注
/ / Z方向收缩量
图示变形比例 不包括缩水变形量
1 -4.5~9.3mm
翘曲
结论及建议
评估项目 进胶方案
成型
外观 翘曲 最终结论
分析结果
成型采用.5点针阀热嘴转斜顶进胶 充填顺畅,无明显滞流 压力,98.12MPa 锁模力,105t
熔接线:表面熔接线见P16 气穴:注意筋位、扣位、boss柱及分型面排气
产品表面熔接线上图颜色线所示,均由孔位导致,无法避免。
达到顶出温度的时间
达到顶出温度的时间说明 大部分区域14s左右达到顶出温度。
体积收缩率
体积收缩分布说明
充填末端收缩较大,注意加强保压。
缩痕估算
体积收缩分布说明
0.07mm,有缩痕风险;
翘曲
测量产品变形的基准 (三个基准点构成)
变形说明
图示变形比例 总变形量
产品3D图片
数据版本号(数据路径)
零件编号 模具编号 零件名称 CAD模型版本 Moldflow版本 Moldflow工程师
日期
/
/ / 亮饰条 UG9.0 Moldflow 2016
2022.02.01
分析信息说明
产品/注塑机信息
功能纹
说明产品外观面及要求
结构要求
说明产品安装位置
变形要求
说明产品匹配面的位置
流动前沿温差 材料推荐成型温度范围 流前温度判断说明
19℃
产品外观面温差 13℃
230℃ ~ 270℃
产品流动前沿温度分布均匀,且不超过熔融温度±20℃。
注射压力
喷嘴压力最大时刻 保压时间 压力曲线说明

(完整版)MOLDFLOW分析报告

(完整版)MOLDFLOW分析报告

引言概述:MOLDFLOW分析是一种重要的工具,广泛应用于塑料制品设计和生产过程中。

它可以提供关于模具充填、冷却和固化的详细信息,帮助设计师优化模具设计,提高产品质量和生产效率。

本文将通过分析报告的方式,详细介绍MOLDFLOW分析的应用和意义。

正文内容:一、模具充填分析1. 熔体流动模拟:对熔体在模具中的流动进行模拟,可以分析熔体的充填情况、充填时间和充填压力等参数,以及可能出现的缺陷,如短充、气泡等。

2. 塑料充填模拟:通过模拟塑料在模具中的充填过程,可以评估模具的设计是否合理,以及可能存在的充填不良、厚薄不均等问题。

3. 充填时间分析:根据模具充填模拟的结果,可以计算出塑料充填的时间,从而优化生产周期和工艺参数。

二、冷却系统分析1. 冷却效果模拟:通过模拟冷却系统的布局和工艺参数,在模具充填结束后,对模具进行冷却效果的分析。

可以评估冷却系统的设计是否合理,以及可能存在的冷却不均、温度过高等问题。

2. 温度分布模拟:根据冷却系统分析结果,可以计算出模具内部的温度分布,帮助优化冷却系统的设计和工艺参数。

3. 冷却时间分析:根据冷却系统模拟的结果,可以计算出模具冷却的时间,从而优化生产周期和工艺参数。

三、固化模拟分析1. 熔体固化分析:通过模拟塑料在模具中的固化过程,可以评估模具冷却效果和固化时间,避免可能出现的缺陷,如收缩、变形等。

2. 温度变化分析:根据固化模拟分析结果,可以计算出模具内部的温度变化曲线,帮助优化冷却系统和固化参数的设计。

3. 固化时间分析:根据固化模拟分析的结果,可以计算出模具固化的时间,从而优化生产周期和工艺参数。

四、缺陷分析1. 模具缺陷预测:通过模拟模具充填、冷却和固化的过程,可以预测可能出现的缺陷,如短充、气泡、收缩等,并给出相应的解决方案。

2. 缺陷修复优化:根据缺陷分析结果,可以优化模具设计和工艺参数,减少缺陷的发生,并提高产品质量和生产效率。

五、效果验证与总结1. 效果验证:通过对MOLDFLOW分析结果与实际生产产品进行对比,验证分析的准确性和可靠性,并修正和改进分析模型。

Moldflow模流分析报告

Moldflow模流分析报告

Moldflow模流分析报告→↓←↓1.网格划分(如右图)节点3880柱体0连通区域 1网格体积269.066 cm^3网格面积1874.25 cm^2 边详细信息----------------------------------- 自由边0共用边11634交叉边0配向详细信息--------------------------------- 配向不正确的单元0相交详细信息---------------------------------完全重叠单元0复制柱体0三角形纵横比--------------------------------- 最小纵横比 1.161000最大纵横比14.951000平均纵横比 1.933000匹配百分比----------------------------------- 匹配百分比94.2%相互百分比91.5%2.最佳浇口的选定分析结果如下:流动正在使用存储的网格匹配和厚度数据匹配数据是使用最大球体算法计算的最大设计锁模力 = 5600.18 tonne 最大设计注射压力 = 144.00 MPa 建议的浇口位置有:靠近节点 = 31060由图看出最佳浇口选在底面蓝色部分,可信度较高,用侧浇口注射3.填充选择材料PP+40%talc)以及注塑机250t锁模力,以及250g当量注射量,螺杆直径42mm进行填充,分析结果如下:充填阶段结果摘要 :最大注射压力 (在 1.463 s) = 20.2729 MPa充填阶段结束的结果摘要 :充填结束时间 = 1.5034 s总重量(制品 + 流道) = 217.8620 g最大锁模力 - 在充填期间 = 33.6416 tonne制品的充填阶段结束的结果摘要 :制品总重量(不包括流道) = 217.8620 g体积温度 - 最大值 = 231.2270 C体积温度 - 第 95 个百分数 = 229.7820 C体积温度 - 第 5 个百分数 = 216.7120 C体积温度 - 最小值 = 209.1650 C体积温度 - 平均值 = 225.1160 C体积温度 - 标准差 = 3.7478 C剪切应力 - 最大值 = 0.2002 MPa 剪切应力 - 第 95 个百分数 = 0.0766 MPa 剪切应力 - 平均值 = 0.0444 MPa 剪切应力 - 标准差 = 0.0223 MPa冻结层因子 - 最大值 = 0.2441冻结层因子 - 第 95 个百分数 = 0.1954冻结层因子 - 第 5 个百分数 = 0.0464冻结层因子 - 最小值 = 0.0000冻结层因子 - 平均值 = 0.1267冻结层因子 - 标准差 = 0.0480剪切速率 - 最大值 = 7059.0698 1/s 剪切速率 - 第 95 个百分数 = 473.1520 1/s 剪切速率 - 平均值 = 158.8660 1/s 剪切速率 - 标准差 = 209.9460 1/s4.冷却分析分析结果如图:水道布置可从图中看出冷却介质温度进水口冷却介质温度冷却介质温度升高节点范围在回路上128 25.0 - 25.5 0.5 C288 25.0 - 26.3 1.3 C162 25.0 - 25.4 0.4 C426 25.0 - 25.6 0.6 C最后的回路温度残余: 0.00000E+00型腔温度结果摘要=====================================型腔表面温度 - 最大值 = 84.9090 C 型腔表面温度 - 最小值 = 31.8350 C 型腔表面温度 - 平均值 = 50.0860 C 平均模具外部温度 = 30.0670 C 循环时间 = 35.0000 s。

Moldflow模流分析报告

Moldflow模流分析报告

体积收缩示意图
从上图可以看出此产品的收缩趋势明显,并且收缩的一致性较差. 因此推荐采用较大的保压压力及较长的保压时间
气孔
可能出现的气孔位置如上图所示的紫色区域
熔接线
图上可能看出熔接线的位置,但深度不足以影响产品的机械性能
翘曲变形, 所有的方向
可能发生的翘曲变形如 右图所示 X方向的变形 此变形结果包括了收缩 变形 可以根据图上数值进行 判断
Back ground
1. 2. 3. 4. 5. 6. 7. 使用软件: Moldflow plastics insight 6.1. 网格类型: fusion(表面网格). 塑胶材料: Zytel EMX 505A (PA66+20%GF, DuPont Engineering Polymers (Moldflow Verified)). 分析序列: 冷却->填充->-饱和->变形. 分析目的: a). 预测成型缺陷 b)预测变形趋势.
由上表可以看出,此材料较容易充填,并且对温度的变化不敏感..
有限元模型分析
Entity counts-------------------------------Surface triangles 28290 Nodes Connectivity regions 7 Mesh volume 19.8781 cm^3 Mesh area 1549.36 cm^2
注塑参数设置(参考)
Temperature Settings -----------------------------------------------------------------------------Melt temperature: 280.0000 C Mold cavity_side temperature: 75.0000 C Mold core-side temperature: 75.0000 C -----------------------------------------------------------------------------Injection Settings -----------------------------------------------------------------------------Injection control method: Injection Time Injection Time: 1.5000 s Nominal Flow rate: 285.2910 cm^3/s Packing pressure profile Duration Pressure (s) (MPa) 0.0000 80.0000 5.0000 80.0000 1.9094 0.0000 Cooling time: 33.4732 s -----------------------------------------------------------------------------Results from Flow Analysis -----------------------------------------------------------------------------Total volume of the part and cold runners: 427.9370 cm^3 Switch-over Pressure: 53.0071 MPa Maximum clamp force required: 164.9420 tonne

Moldflow模流分析报告范例

Moldflow模流分析报告范例

14
Shear Stress at Wall 最大剪切应力
流道系统上最大剪切应力: 2.8MPa 产品上最大剪切应力:0.4MPa
一般产品上的最大剪切应力,不要超过成型材料所允许的数值(如第8页所示, 该材料允许最大剪切应力为0.5MPa )。剪切应力太大,产品易开裂。
通过加大最大剪切应处壁厚,降低注塑速度,采用低粘度的材料,提高料温,可 减小剪切速率。
一般,脱模时相邻区域的体积收缩值相差>2%,产品表面易出现缩水。
可通过优化产品壁厚、浇口放置在壁厚区域、加大保压等措施,来降低 体积收缩。
DESIGN SOLUTIONS
18
Frozen Layer Fraction 凝固层因子
6.3s 12.2s 30.9s
Frozen Layer Fraction反映的是产品的凝固顺序。该产品在6.3秒时,红色区 域已凝固,导致安装孔位保压不足,故体积收缩较大,易出现表面缩水。 当产品100%凝固,冷流道系统凝固50%以上。产品可脱模。从而确定该产 品成型周期31s(不包括开合模时间)。 可通过优化冷却水路排布、降低局部壁厚区域的厚度、优化冷流道尺寸,来 缩短成型周期。
DESIGN SOLUTIONS
19
Sink Mark Estimate 凹痕深度
一般,凹痕数值>0.03mm,表面缩水较明显。 可通过加大基本壁厚、减小加强筋和螺栓柱等壁厚、加大保压等方式,来降 低凹痕深度。
DESIGN SOLUTIONS
20
Sink Mark Shaded 凹痕阴影显示
阴影显示凹痕的分析结果。圈示区域,肉眼看起来较明显。
22
Temperature, Part 冷却结束时产品表面温度

moldflow模流分析报告

moldflow模流分析报告

材料成型CAE论文(Moldflow注塑工艺分析)姓名:郭玲玲学号:20060330332在Moldflow Plastic Insight 6.0环境中,运用MPI的各项菜单及其基本操作,来实现对所选制件在注塑成型过程中的填充、流动、冷却以及翘曲分析,以此来确定制件的最佳成型工艺方案,为工程实际生产提供合理的工艺设置依据,减少因工艺引起的制件缺陷,有助于降低实际生产成本,提高生产效率。

一、导入零件导入文件guolingling.stp。

选择【Fusion】方式。

二、划分网格【网格】—【生成网格】—【立即划分】三、网格诊断【网格】—【网格诊断】,诊断结果如下:图1、网格诊断对诊断结果进行检查,发现连通区域为1,交叉边为0,最大纵横比为7.218616<8,均符合要求,网格划分合理。

四、选择分析类型1、浇口位置1)双击任务栏下的【充填】—【浇口位置】;2)选择材料:双击任务栏下的【材料……】—【搜索】—输入“ABS”—搜索—在结果中任选一种材料,点击【选择】即可;3)双击任务栏下的【立即分析】。

在分析结果中勾选:Best gate location,查看最佳浇口位置,如下图:图2、最佳浇口由最佳浇口位置分析结果可以知道,浇口设在零件上表面的中间部位,零件的注塑工艺效果好。

可采用直接浇口。

2、流动分析1)设置注射位置:设置之前,先将方案备份。

【文件】—【另存方案为】。

双击任务栏下的【设置注射位置】—鼠标变成一个十字光标和一漏斗形状,然后在上一步分析中的最佳浇口位置处单击,即可完成注射点的设置;2)选择分析类型:双击任务栏下【浇口位置】—【流动】;3)设置浇注系统:【建模】—【浇注系统向导】,设定直浇道、横浇道、内浇道的尺寸,各浇道尺寸均采取的默认值。

根据制件的形状特征以及最佳浇口位置,采用直接浇口。

4)双击任务栏下的【立即分析】。

查看分析结果中的“pressure at V/P swithover”项,发现出现了浇不足的现象,经分析是由于注射压力过小所引起的,只需增大注射压力即可。

moldflow分析

moldflow分析

我们采用MPI/FILL、MPI/PACK来进行分析计算。预测充填状 况、型腔压力分布、温度分布、锁模力大小、体积收缩率、熔接痕、 困气位置。
Jul 2001
Page 2
Moldflow China
制品材料
EE188AI(PP+T16) 1. 推荐注射温度 4. 推荐模具温度 240.0 degC 40.0 degC 5. 6. 7. 8. 顶出温度 不流动温度 许可剪切应力 许可剪切速率 108.0 deg.C 200.0 deg.C 0. 25Mpa 100,000 1/s
Jul 2001
Page 13
Moldflow China
小结
1. 2. 3. 4. 此方案注射较为均衡,成型压力适中,型腔压力分布较为均衡,体积收缩较 为均匀。 受投影面积影响及保压压力影响,锁模力较大,可通过调整保压压力降低锁 模力。 在制品边角处形成困气,熔料包合容易烧焦或熔接痕明显,需调整浇口位置 及顺序阀开关时间。 可采用6点顺序阀式热流道方案,建议调整下面两点喷嘴及浇口位置,减小两 喷嘴间距,调整开阀注射时间,以改善充填状况及困气情况,优化保压工艺。
剪切速率—黏度曲线
Jul 2001
PVT曲线
Page 3
Moldflow China
பைடு நூலகம்方案1
浇注系统
该模具一模一腔,采 用顺序阀式热流道系 统,6点顺序阀。
Jul 2001
Page 4
Moldflow China
工艺参数
1. 2. 3. 4. 模温 熔体温度 注射时间 保压压力 50 MPa 40 MPa 0 Mpa : 40.0 deg.C : 230.0 deg.C : 6.8sec 保压时间 6s 4s 4s

MOLDFLOW完整分析报告

MOLDFLOW完整分析报告

8/2002
Page 7
ICAX论坛提供 成型工艺条件:
填充时间:2.5秒 冷却时间:20秒 模具温度:80度 熔料温度:295度 冷却水温度:25度 冷却液控制方法:雷络数控制(雷络系数=10,000) 保压曲线: 时间(秒) 2 3 保压压力 填充压力的70% 填充压力的60%
注塑成型分析
8/2002
RHEOLOGY: The material's rheological behavior was tested by Moldflow by an injection molding rheometer. Data was last updated on 29-JUN-01. This method exposes the sample to shear, temperature, and pressure history similar to those in injection molding. Studies performed by Moldflow Plastics Labs have shown the use of injection molding rheology data contribute to improved comparisons between experimental mold pressure traces and simulation results of molding pressure during the filling stage. This data is per Moldflow Plastics Labs current recommended best method for process simulation CAE. The method used applies well to most materials and applications.

Moldflow模流分析报告范例

Moldflow模流分析报告范例

DESIGN SOLUTIONS
4
产品信息
DESIGN SOLUTIONS
产品体积 (cm^3) 产品尺寸 (mm) 投影面积 (cm^2) 基本壁厚 (mm)
5
810.2 592 ×492×74 1757.7 2.0
模具信息
DESIGN SOLUTIONS
两板模,四个侧浇口。 定模侧一条水路,动模侧两条水路。
DESIGN SOLUTIONS
13
Maximum Shear Rate 最大剪切速率
最大剪切速率: 43054 1/s
一般不要超过成型材料所允许的最大剪切速度(如第8页所示,该材料允许最大 剪切速度为60000 1/s。 非透明件可放宽至三倍。透明件最大剪切速率越小外观 质量越好)。剪切速度太大,材料易降解,产品易出现冲击纹等表面缺陷。
DESIGN SOLUTIONS
30
平衡 均匀 74.3 373.2 43.54 2.8 产品上0.4MPa 有,请加强排气 局部区域收缩较大 31s (不包括开合模时间) 2.6/均匀收缩/8.5
DESIGN SOLUTIONS
31
知识回顾 Knowledge Review
DESIGN SOLUTIONS
DESIGN SOLUTIONS
16
Air Traps 困气
困在型腔内气体不能被及时排出,易导致出现表面起泡,产品内部夹气,注塑不 满等现象。
请加强紫色小球区域的排气。如果困气发生在分型面处,可通过增开排气槽加强 排气;如果困气发生在产品中间,可通过顶针或滑块的间隙逃气。
DESIGN SOLUTIONS
通过加大浇口尺寸,降低通过浇口处的注塑速度,可减小剪切速率。
DESIGN SOLUTIONS

Moldflow模流分析报告

Moldflow模流分析报告
Original1發生了嚴重的短射現象,歸因於此處肉厚太薄(只有0.6mm),而 澆口距離此處太近,塑膠流到此處因阻力太大而停滯不前,溫度急劇降 低,阻礙了後續塑膠的充填。
Original2在相同區域發生較嚴重的滯流現象,該處塑膠熔接性极差。大 部分縫合綫熔接溫度較高,應不會影響其使用強度。局部區域包風包在 塑膠内難以排除,可能會受高壓急劇升溫而燒焦產品。注入口尺寸太小 ,冷卻太快,成品將得不到有效保壓而發生縮水,有可見凹陷出現,而 試模時用105MPa的壓力持續保壓了5s之久,其實此時注入口早已凝固, 再加額外的壓力只能使產品出現負收縮(即膨脹),導致拉模現象。澆口設 計得太薄,凝固太快,即使注入口不先行凝固,產品也會有較嚴重的保 壓不良現象。另外循環周期過長,造成生産成本的浪費。
3. 產品模型介紹
-------------------------------------------------------------------------- 5
4. 原始方案澆注系統設計
-------------------------------------------------------------------------- 6
13. 最終改善方案基本成型條件 ----------------------------------------------------------------------- 29
14. 最終改善方案分析結果 --------------------------------------------------------------------30~43
冷卻凝固過程
Original2
這六個圖表示的是產品和流道的冷卻凝固過程,紅色區域表示最先凝固的區域,一般最薄處最先凝固。從 圖三可知,注入口已先行凝固(箭頭指示處),而此時產品大部分都沒凝固,説明注入口尺寸太小,成品將 得不到有效保壓而發生縮水現象。此外分析中也發現澆口亦太薄,凝固太快。

Moldflow的模流分析报告入门实例

Moldflow的模流分析报告入门实例

基于MOLDFLOW的模流分析技术上机实训教程主编:姓名:年级:专业:南京理工大学泰州科技学院实训一基于Moldflow的模流分析入门实例1.1Moldflow应用实例下面以脸盆塑料件作为分析对象,分析最佳浇口位置以及缺陷的预测。

脸盆三维模型如图1-1所示,充填分析结果如图1-2所示。

图1-1 脸盆造型图1-2 充填分析结果(1)格式转存。

将在三维设计软件如PRO/E,UG,SOLIDWORKS中设计的脸盆保存为STL格式,注意设置好弦高。

(2)新建工程。

启动MPI,选择“文件”,“新建项目”命令,如图1-3所示。

在“工程名称”文本框中输入“lianpen”,指定创建位置的文件路径,单击“确定”按钮创建一新工程。

此时在工程管理视窗中显示了“lianpen”的工程,如图1-4所示。

图1-3 “创建新工程”对话框图1-4 工程管理视图(3)导入模型。

选择“文件”,“输入”命令,或者单击工具栏上的“输入模型”图标,进入模型导入对话框。

选择STL文件进行导入。

选择文件“lianpen.stl”。

单击“打开”按钮,系统弹出如图1-5所示的“导入”对话框,此时要求用户预先旋转网格划分类型(Fusion)即表面模型,尺寸单位默认为毫米。

图1-5 导入选项单击“确定”按钮,脸盆模型被导入,如图1-6所示,工程管理视图出现“lp1_study”工程,如图1-7所示,方案任务视窗中列出了默认的分析任务和初始位置,如图1-8所示。

图1-6 脸盆模型图1-7 工程管理视窗图1-8 方案任务视窗(4)网格划分。

网格划分是模型前处理中的一个重要环节,网格质量好坏直接影响程序是否能够正常执行和分析结果的精度。

双击方案任务图标,或者选择“网格”,“生成网格”命令,工程管理视图中的“工具”页面显示“生成网格”定义信息,如图1-9所示。

单击“立即划分网格”按钮,系统将自动对模型进行网格划分和匹配。

网格划分信息可以在模型显示区域下方“网格日志”中查看,如图1-10所示。

Moldflow模流分析报告样本

Moldflow模流分析报告样本
5.结论与建议 2 16.分析说明三
18.结论与建议 3
------------------------------------------------------------------------- 3 -------------------------------------------------------------------------- 4 -------------------------------------------------------------------------- 5 -------------------------------------------------------------------------- 6 -------------------------------------------------------------------------- 7 -------------------------------------------------------------------------- 8 -------------------------------------------------------------------------- 9 -------------------------------------------------------------------- 10~30 ------------------------------------------------------------------------ 31 ------------------------------------------------------------------------ 32 11. 12. 13. 14. ------------------------------------------------------------------------ 56 ------------------------------------------------------------------------ 57 14. 15. 16. 17. ------------------------------------------------------------------------ 81

Moldflow 分析报告制作模板

Moldflow 分析报告制作模板

产品网格模型截图
产品网格质量统计截图
Results
Explanation: 结果说明

Preprocess and mesh statistics(产品网格质量统计)
Results
Explanation: 结果说明
各向指标合格。
Part thickness diagnose(产品壁厚诊断) 产品壁厚诊断截图
Max. shear stress 最大剪切应力
Shear stress-95th percentile
产品95%的剪切应力
Specification: 剪切应力说明
Max. shear stress Time 产生最大时刻
Material limit 材料许用范围
Clamp Force(锁模力)

Rheology:
PVT properties: 9
材料收缩率截图
材料供应商推荐的收缩率数值 沿着料流方向: 垂直料流方向:
Material Data(材料参数)

Initial Nozzle/Gate Locations and sizes(浇口位置/尺寸)
浇口截图
流道截图
(包含始、末端的浇口厚度和高度) (包含流道的尺寸设置数据)
侧浇口(slide gate)
Specification: 必要的说明
C
Outer:Ø15 Inner:Ø6
Cold runner& dimension
冷流道及尺寸
Valve control 顺序阀控制
D Ø4
自定(set) yes
Sequential Valve Gate Setting(顺序阀浇口设置) 顺序阀浇口设置截图

moldflow 注塑成型分析 模流分析报告

moldflow 注塑成型分析 模流分析报告

1. 熔体密度 2.实体密度 3.顶出温度 4.推荐模具温度 5.推荐熔料温度 6.材料失效温度
0.88 g/cu.cm 1.06 g/cu.cm
119 deg.C 45 deg.C 225 deg.C 290 deg.C
7. 熔料温度下限 8. 熔料温度上限 9. 模具温度上限 10.模具温度下限 11.最大剪切速率 12.最大剪切应力
Page 8
体积收缩
体积收缩结果用来判断产 品各处的体积收缩情况,收 缩不均匀会造成翘曲变形, 收缩较大则造成缩痕。 由图可见产品内部收缩较小, 且比较均匀。出现缩痕风险 小。
Page 9
困气位置
1
Air traps可提供模具的困气位 置。air traps产生在填充末端包 括高rib和boss柱位置、结合线、 流动包封位置。故而在这些位置 一般需要开设排入槽或排气入子。 另外在熔体温降较大处也应增加 排气,提高流动性。
pagepage1919尾部分子剪切作用较高故而分子取向度高并且分子结晶度高取向诱导结晶在取向方向上收缩较大故而收缩应力导致产品尾部收拉力而张开变形
Moldflow注塑成型分析
For
滨海
Reporter : 孟栋梁 sduan@
2010-07-16
分析描述
▪ 产品描述 此是汽车用产品,使用热浇道系统注射成型。
200.0 deg.C 250.0 deg.C 30.0 deg.C 60.0 deg.C 100000.0 1/s
0.25 Mpa
PVT Plow材料数据库
Page 3
工艺条件
注塑机设定:
最大锁模力:
未限定
最大注塑压力:
未限定
最大注射速度:
结合线

Moldflow模流分析经典报告(简体版)

Moldflow模流分析经典报告(简体版)
注射边界条件
设置注射压力、注射速度、注射温度等边界条件。
塑化边界条件
设置塑化温度、塑化速度等边界条件。
模拟求解与结果分析
模拟求解
根据设置的边界条件进行模拟求解。
结果分析
对模拟结果进行分析,如压力分布、温度分布、流动行为等。
结果优化
根据分析结果对模型进行优化,提高成型质量和效率。
Moldflow模流分析
Moldflow模流分析是一种计算机模 拟技术,用于预测塑料模具填充、流 动、冷却和翘曲等行为,从而优化模 具设计和产品成型过程。
通过模拟分析,Moldflow可以帮助工 程师预测和解决模具制造和塑料产品 成型过程中可能出现的问题,减少试 模次数和缩短产品上市时间。
Moldflow模流分析的重要性
2. 翘曲变形分析不准确
翘曲变形是塑料成型过程中的常见问题,分析不准确可能导致模具优化措施失效。
3. 解决方案
加强Moldflow模流分析理论学习,深入理解流动前沿、翘曲变形等关键指标的含义和影 响。结合实际案例进行分析和总结,提高模拟结果解读能力。积极参与行业交流和技术培 训,不断更新知识和技能。
Moldflow模流分析的应用领域
汽车行业
01
Moldflow在汽车行业中广泛应用于汽车零部件的模具设计和产
品成型过程优化,如保险杠、仪表盘和座椅等。
电子产品
02
Moldflow模流分析可用于手机、电视、电脑等电子产品的模具
设计和产品成型过程优化。
包装行业
03
Moldflow可以帮助包装企业优化包装盒、瓶盖等产品的模具设
案例三:热流道系统模拟
总结词
热流道系统是塑料加工中常用的技术,通过加热模具流道来控制塑料熔体的温度和流动。 Moldflow模流分析可以用于热流道系统的模拟和优化。

Moldflow注塑模具成型过程分析实例_完整经典

Moldflow注塑模具成型过程分析实例_完整经典

冷却+流动+翘曲分析 实验报告一、 问题描述用Moldflow分析如图1所示产品在注塑过程中的冷却(Cool)、流动(Flow)、翘曲(Warp)情况。

图1 分析产品模型其中,相关参数设置如下:材料:Generic PP:Generic Default模具温度:40℃料温:230℃开模时间:5S填充+保压+冷却时间:参数值为30SFilling control: AutomaticVelocity/pressure switch-over: By %volume filled 设置为97%选中Isolate cause of warpage二、 问题分析按照Moldflow的一般分析过程,本产品的分析流程图如图2所示。

图2 本产品分析流程图三、 解题步骤1.导入产品模型点击File→Import,选取待分析的产品模型,点击“打开”。

在弹出的“模型导入选项设置”对话框中,网格类型选“Fusion”,模型单位设置为“Millimeters”。

单击“OK”完成设置。

此时弹出“项目创建”对话框,在“Project”一栏设置项目名称,本实验取名为“CFW”。

在“Create in”一栏选取项目保存地址。

单击“OK”完成项目创建。

此时,窗口中会显示出导入的模型。

以防分析中修改变动,习惯先对模型进行复制。

对着左上角“Project”栏内的模型名称,在右击菜单中选择“Duplicate”,完成模型复制。

其后操作都在复制的模型中进行。

一般在做流动分析时,要求产品锁模力方向(一般也为产品分型面的垂直方向)与Z轴的正方向一直。

此时的模型位姿不对(如图3所示),需要用旋转命令对模型进行旋转操作。

执行Modeling→Move\Cope→Rotate,在左侧选项栏中,点击“Select”一栏的选框,其意思为选取旋转对象,框选产品模型。

“Axis”一栏选取X轴。

“Angle”填写90。

选取“Move”,其他不变。

点击“Apply”。

Moldflow模流分析报告样本

Moldflow模流分析报告样本

Page 3

Moldflow Analysis Report
塑 料 材 料 简 介
PPE+PS+40%GF Xyron X1764 Asahi Kasei Corporation
7. Melt Temperature Minimum 8. Melt Temperature Maximum 9. Mold Temperature Minimum 10.Mold Temperature Maximum 11.Maximum Shear Rate 12.Maximum Shear Stress 250.000000 deg.C 300.000000 deg.C 50.000000 deg.C 100.000000 deg.C 50000.000000 1/s 0.4500000 Mpa
1. Melt Density 1.2827 g/cu.cm 2. Solid Density 1.3645 g/cu.cm 3. Ejection Temperature 110.000000 deg.C 4. Recommended Mold Temperature 75 deg.C 5. Recommended Melt Temperature 275 deg.C 6. Absolute Max. Melt Temperature 340 deg.C
Page 21
Moldflow Analysis Report
冷却凝固过程
Original1
50% 50%
Page 2
Moldflow Analysis Report
分 析 说 明 一
如下图的产品,为复印机上的零件,对尺寸精度要求较高。采用PPE+PS+40%GF的塑 料以热流道成型,产品结构与进浇位置均已确定,客户希望通过调整冷却水路或冷却条件 将整个周期时间缩短,因此藉以Moldflow模流分析验证是否可行。 因Moldflow材料数据库内暂无客户使用的 GE PPE+PS+40%GF塑料,故在分析中使用 物性较为相似的Asahi Kasei Corporation的PPE+PS+40%GF塑料来代替,在数值上会与 实际试模有差异,但趋势是一致的。此报告中以几种方案进行分析比较,其中 Original n 为客户原始设计方案,Revised n为我们基于Moldflow上的改善方案。

moldflow模流分析经典案例

moldflow模流分析经典案例

前挡泥板试模工艺卡(根据模流分析而来)
温度 235 240 230 220 205 190 175
储料 位置mm 170 射退 位置mm 5
压力bar 60 压力% 20
速度% 60 速度% 10
背压% 5
模温 °C 烘料
阀式浇口 G1 G2 G3 G4
定模 45 80度
打开时间点 0 1.2 1.2 1.9 2.8 2.8 2.9 2.5 2.5 2.8
动模 45 2-4小时
持续时间 4 2.8 2.8ቤተ መጻሕፍቲ ባይዱ3.1 2.8 2.7 2.6 1.5 1.5 1.2
压力 速度 位置mm KGF mm/s 60 44 139 60 80 80 60 87 35 60 63 25 0 0 20 冷却时间s
注射
保压 压力 bar 30 0 0
速度% 10 0 0
前风窗盖板
该注塑零件在安装时雨刷安装孔与车身钣金孔位置偏离了3mm, 导致无法装车
X方向翘曲变形量
雨刷安装孔
通过模流分析发现红色方框区域内收,导致雨刷安装孔位置偏移。 于是建议预先将雨刷孔作大3mm,待试模工艺稳定后再根据装配孔 的便宜方向来调整塑件上雨刷安装孔的位置和大小;最终得到解决。
2
前挡泥板
反变形处理
对下图中红色线框区域做反 变形处理
反变形点云和重新建构的表面
做与变形后,最终零件周边轮廓度在公差之内
模流分析变形结果
最大变形5.14mm,用矫形工装也无法使零件恢复正常 形状尺寸。螺钉孔的位置度和底面的平面度也远远超 出公差范围
这些位置变形量很大,远远 超出了设计公差范围。
模流分析得到反变形点云后,重新建 模生成实体
反变形实体

(完整版)MOLDFLOW分析报告

(完整版)MOLDFLOW分析报告
Page 3
Moldflow Analysis Report 塑料材料簡介
PPE+PS+40%GF Xyron X1764 Asahi Kasei Corporation
1. Melt Density 1.2827 g/cu.cm 2. Solid Density 1.3645 g/cu.cm 3. Ejection Temperature 110.000000 deg.C 4. Recommended Mold Temperature 75 deg.C 5. Recommended Melt Temperature 275 deg.C 6. Absolute Max. Melt Temperature 340 deg.C
Moldflow Analysis Report
Moldflow模流分析報告
B039பைடு நூலகம்901
Page 1
Moldflow Analysis Report 内容提要
1. 分析说明一 2. 塑料材料简介 3. 产品模型简介 4. 分析模型简介 5. 原始方案浇注系统设计 6. 原始方案冷却系统设计 7. 原始方案基本成型条件 8. 原始方案分析结果 9. 结论与建议 1 10.分析说明二 11.改善方案1浇注系统设计 12.改善方案1冷却系统设计 13.改善方案1基本成型条件 14.改善方案1分析结果 15.结论与建议 2 16.分析说明三 14.改善方案2浇注系统设计 15.改善方案2冷却系统设计 16.改善方案2基本成型条件 17.改善方案2分析结果 18.结论与建议 3
Page 2
Moldflow Analysis Report 分析说明一
➢如下图的产品,为复印机上的零件,对尺寸精度要求较高。采用PPE+PS+40%GF的塑 料以热流道成型,产品结构与进浇位置均已确定,客户希望通过调整冷却水路或冷却条件 将整个周期时间缩短,因此藉以Moldflow模流分析验证是否可行。 ➢因Moldflow材料数据库内暂无客户使用的GE PPE+PS+40%GF塑料,故在分析中使用 物性较为相似的Asahi Kasei Corporation的PPE+PS+40%GF塑料来代替,在数值上会与 实际试模有差异,但趋势是一致的。此报告中以几种方案进行分析比较,其中Original n 为客户原始设计方案,Revised n为我们基于Moldflow上的改善方案。

模流分析报告

模流分析报告

V/P切换时,注塑压力在产品上的压力梯度分布比较均匀。
Result : Injection Pressure
在填充阶段,最大的注塑压力为76.0Mpa.
Result : Volumetric Shrinkage Distribution
产品整体的收缩比较均匀,红色位置的收缩比较大。
Result : Displacements, hardware final shift (x5)
Moldflow Analysis Report
Runner System
浇口改为1端侧浇口
Result : Fill Pattern
Result : Temperature Distribution (Melt Front)
熔体前锋的温度分布比较均匀。
Result : Pressure at V/P switchover
五金件在Y方向的变形较大, 红色位置会移动0.86mm 0.86mm
五金件在Z轴上有较小的变 形,红色位置会移动0.05mm 0.05mm
五金嵌件在填充过程中,会产生较大的变形,约为0.87mm.
Result : Von Mises Stress, core
五金嵌件在填充过程中受力不均匀。
Conclusions From the above analysis: 将产品的浇口位置改为此处,对五金件的变形没有改善,变形量比原方案还要 大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

373.2
43.54 2.8 产品上0.4MPa 有,请加强排气 局部区域收缩较大 31s (不包括开合模时间) 2.6/均匀收缩/8.5
DESIGN SOLUTIONS
30
DESIGN SOLUTIONS
31
12
Clamp Force 锁模力
最大锁模力: 373.2T。请选择合适规格的注塑机。 通过调整充填速度、浇口位置和速度、产品壁厚、换用低粘度的材料、减少 型腔数量、提高模温和料温,来降低锁模力的需求。
DESIGN SOLUTIONS
13
Maximum Shear Rate 最大剪切速率
最大剪切速率: 43054 1/s
AMI 2011 CAD-IT xxxxxxxx
3
分析目标
产品外观要求 强度要求 变形要求(mm) 成型周期 (s) 非外观件 一般 4 40
成型材料
注塑机最大锁模力 (T) Moldflow 分析模块
BASF: Ultramid B3GM35 Q641 GF15%M25%(PA6)
1000 AMI 2011 Performance
Moldflow分析结果及优化方案
CAD-IT Consultants (Shanghai) Co., Ltd Jason Qiu Bring you tomorrow's technology today...
DESIGN SOLUTIONS
1
AMI主要分析结果
充填模式 V/P时刻注塑压力 冷却液温度 冷却管壁温度
26
Deflection, all effects: Y Component Y向变形
该产品Y向均匀收缩。请在模具设计时,设置合理的收缩率。
DESIGN SOLUTIONS
27
Deflection, all effects: Z Component Z向变形
3.4mm
2.8mm
4.9mm
3.6mm
2.0mm
该产品Z向整体变形量:8.5mm。不符合装配要求。 图中可看出,有筋条的角落无乎没有变形。可考虑在其它角落增加 筋条。
DESIGN SOLUTIONS
28
Deflection, Z, Different Cooling、Shrinkage、Orientation & Corner Effects
6
成型工艺参数
成型机参数: 海天 1000T 螺杆直径: 100mm 最大行程: 48cm 最大注射压力:211Mpa 最大注射速率:700cm^3/s 280 螺杆速度曲线
料温 (℃) 模温 (℃)
85 70
2.8 15 5 30 846.5 3 25 2 20 保压曲线
冷却水路进水口温度 (℃)
DESIGN SOLUTIONS
21
Circuit Coolant Temperature 冷却液温度
一般,冷却液入水口和出水口的温度差控制在2~3℃以内,表明冷却 水路排布较合理。 可通过合理排布冷却系统、将长的串联水路优化成多条并联的水路, 可降低出入水口的温度差。
DESIGN SOLUTIONS
DESIGN SOLUTIONS
19
Sink Mark Estimate 凹痕深度
一般,凹痕数值>0.03mm,表面缩水较明显。 可通过加大基本壁厚、减小加强筋和螺栓柱等壁厚、加大保压等方式,来降 低凹痕深度。
DESIGN SOLUTIONS
20
Sink Mark Shaded 凹痕阴影显示
阴影显示凹痕的分析结果。圈示区域,肉眼看起来较明显。
16
Air Traps 困气
困在型腔内气体不能被及时排出,易导致出现表面起泡,产品内部夹气,注塑不 满等现象。 请加强紫色小球区域的排气。如果困气发生在分型面处,可通过增开排气槽加强 排气;如果困气发生在产品中间,可通过顶针或滑块的间隙逃气。
DESIGN SOLUTIONS
17
Volumetric Shrinkage at Ejection 脱模时刻体积收缩
DESIGN SOLUTIONS
9
Fill Time (F5 Animation)
充填模式
充填流动较平衡,无明显滞流现象,塑料熔体同时到达各个末端。 如果充填结束时,局部区域灰色,表明产品短射。 如果流动不平衡,可能会出现滞流、过保压等情况。可通过优化浇口位置和 数量、流道排布和尺寸、产品结构和壁厚,来平衡流动模式。
该产品Z向变形最主要原因,是纤维取向。 可通过优化浇口位置和产品结构,来降低变形。
DESIGN SOLUTIONS
29
分析结果列示
充填模式 波前温度 (℃) 最大注射压力 (MPa) 平衡 均匀 74.3
最大锁模力 (T)
最大剪切速率 (1/s) 最大剪切应力 (MPa) 熔接纹 & 困气 体积收缩 (%Volume) 成型周期 (s) 变形X/Y/Z (mm)
DESIGN SOLUTIONS
23
Deflection, all effects: Deflection 整体变形
该产品整体变形情况如上图,放大3倍。
DESIGN SOLUTIONS
24
Deflection, all effects: X Component X向变形
2.6mm
1.9mm
该产品X向最大变形量:2.6mm。请确认是否符合装配要求。
DESIGN SOLUTIONS
4
产品信息
产品体积 (cm^3) 产品尺寸 (mm)
810.2 592 ×492×74
投影面积 (cm^2)
基本壁厚 (mm)
DESIGN SOLUTIONS
1757.7
2.0
5
模具信息
两板模,四个侧浇口。
定模侧一条水路,动模侧两条水路。
DESIGN SOLUTIONS
22
Temperature, Part 冷却结束时产品表面温度
冷却结束时,该产品表面绝大部分区域温差都较均匀,但在局部凹槽内, 温度较高。 一般,冷却结束时,产品表面的温差在10℃以内,表明冷却效果较好。 局部温度高的区域,可通过增加冷却水路、加挡板、喷泉、铍铜镶件等 方式,来确保产品表面温度均匀。
DESIGN SOLUTIONS
25
Deflection, X, Different Cooling、Shrinkage、Orientation & Corner Effects
该产品X向变形最主要原因,是收缩不均匀和纤维取向。
可通过优化浇口位置和产品结构,来降低X向变形。
DESIGN SOLUTIONS
充填时间 (S) V/P切换 (mm螺杆位置) 保压时间 (S) 保压压力 (MPa) 产品 + 流道体积 (cm^3)
DESIGN SOLUTIONS
7
成型材料性能
BASF:Ultramid B3GM35 Q641 GF15%M25%(PA6)
1. 熔体密度 2. 固体密度 3. 顶出温度 4. 推荐模温 5. 推荐料温 6. 降解温度 1.27 1.50 185 85 280 310 g/cm^3 g/cm^3 ℃ ℃ ℃ ℃ 7. 最低料温 8. 最高料温 9. 最低模温 10. 最高模温 11.最大剪切速率 12.最大剪切应力 270 ℃ 290 ℃ 80 ℃ 90 ℃ 60000 1/s 0.5 MPa
P-V-T曲线
粘度曲线
DESIGN SOLUTIONS
8
分析结果列示
• • • • • • • • • • • • • • • Fill Time (Animation) 充填模式 Temperature at Flow Front 料流前锋温度 Pressure 注射压力 Clamp Force 锁模力 Maximum Shear Rate 最大剪切速率 Shear Stress at Wall 最大剪切应力 Weld Lines 熔接纹 Air Traps 困气 Volumetric Shrinkage at Ejection 脱模时刻体积收缩 Frozen Lay Fraction 凝固层因子 Sink Mark Estimate 凹痕深度 Sink Mark Shaded 凹痕阴影显示 Circuit Coolant Temperature 冷却液温度 Temperature Part at the End of Cooling 冷却结束时产品表面温度 Deflection (X/Y/Z/all deflection cause) 产品变形(X/Y/Z/变形原因)
料流前锋温度 剪切速率
脱模时刻体积收缩 产品凝固时间 凝固层因子 困气
最大锁模力
冷却系统散热效率 冷却结束后模具表面温度 冷却结束后产品表面温度
每个浇口填充区域
产品整体收缩变形 产品X向收缩变形 产品Y向收缩变形 产品Z向收缩变形
冷却对产品收缩变形的影响
注塑压力
收缩对产品收缩变形的影响 剪切应力 纤维取向对产品收缩变形的影响 角落效应对产品收缩变形的影响
一般不要超过成型材料所允许的最大剪切速度(如第8页所示,该材料允许最大 剪切速度为60000 1/s。 非透明件可放宽至三倍。透明件最大剪切速率越小外观 质量越好)。剪切速度太大,材料易降解,产品易出现冲击纹等表面缺陷。
通过加大浇口尺寸,降低通过浇口处的注塑速度,可减小剪切速率。
DESIGN SOLUTIONS
一般,脱模时相邻区域的体积收缩值相差>2%,产品表面易出现缩水。
可通过优化产品壁厚、浇口放置在壁厚区域、加大保压等措施,来降低 体积收缩。
DESIGN SOLUTIONS
18
Frozen Layer Fraction 凝固层因子
6.3s 12.2s 30.9s
相关文档
最新文档