高频 高频功率放大器
第6章高频功率放大器
Tr 1
vi
vBE v • 这样选择的主要考虑是消
除由静态工作点所带来的无 用功耗,从而提高放大器的
效率。
V BB
V CC
• 使用并联谐振回路作负载 具有选频和阻抗变换的作用
3、功率放大器的工作频率
1、低频区: f 0.5f 低频区工作时,不考虑等效电路中的电抗分量与载流子 的渡越时间,分析方法同低频电子线路的分析方法一致, 方法成熟。
vO VC1M cosct Ic1MRP cosCt
i C I C ( 0 M ( ) 1 ( ) cC o t 2 ( s ) c 2 o C t ) s
iO IC1M cosct ICM1()cosCt
P D C T 1 c0 T C V C iC C d 2 t 10 2 V C iC C d (C t) V C I C CM 0 ()
半个周期
丙类(C类)
小于半个周期
丁类(D类) 管子应用在开关状态,半个周期 饱和导通,半个周期截止
导通 角 1800
900
<900
η cmax 50% 78.5%
三、高频功率放大器
1、功用:放大高频信号,并且以高效输出大功率为目的
2、输出功率范围很大,小到便携式发射机的毫瓦级,大到无线 电广播电台的几十千瓦,甚至兆瓦级。0.001~1000000
Tr 1
vi
vBE v CE
vi
L
Cv C
RL
转换为高频功率。
VBB、VCC为电源,常使得管 子处于C类工作状态。
V BB
V CC
负载:采用谐振回路作负载,对信号进行频率选择,同 时完成阻抗变换。
高频功率放大器的基本原理(一)
高频功率放大器的基本原理(一)高频功率放大器的基本原理1. 什么是高频功率放大器高频功率放大器是一种用于增强高频信号幅度的电子设备。
它通常用于无线通信、雷达、高频电视和天线系统等领域。
高频功率放大器可以将低功率的高频信号放大到足够大的功率,以便传输和处理。
2. 高频功率放大器的工作原理高频功率放大器的工作原理可以简单分为三个步骤:放大输入信号、增加信号的功率和输出放大后的信号。
2.1 放大输入信号高频功率放大器的第一个任务是放大输入信号。
它通常使用晶体三极管(BJT)或场效应晶体管(FET)作为放大器的关键元件。
这些元件根据输入信号的幅度和频率变化进行放大操作。
2.2 增加信号的功率放大后的信号仍然可能是低功率的,因此高频功率放大器的下一个任务是增加信号的功率。
这一步骤通常通过使用功率放大器级联来实现。
级联多个放大器可以将信号功率从较低级别逐步增加到所需的功率级别。
2.3 输出信号在增加信号的功率之后,高频功率放大器将输出放大后的信号。
这个信号可以被用于进一步的处理或传输。
输出信号的幅度将取决于放大器的设计和配置。
3. 高频功率放大器的关键考虑因素在设计高频功率放大器时,需要考虑一些关键因素来确保性能和稳定性。
3.1 频率响应高频功率放大器应该能够在指定的频率范围内提供稳定的放大。
对于不同的应用,频率范围和响应要求会有所不同。
3.2 功率输出高频功率放大器应该能够提供足够的功率输出,以满足特定应用的需求。
功率输出的大小通常由设备和系统的要求来确定。
3.3 效率高频功率放大器的效率是指输入功率与输出功率之间的比率。
高效率的放大器能够最大限度地利用输入能量,减少能量浪费。
3.4 线性度高频功率放大器的线性度是指输出信号与输入信号之间的线性关系。
较好的线性度可以保持输入信号的准确度和完整性。
3.5 稳定性高频功率放大器的稳定性是指在各种工作条件下保持良好的性能。
它应该能够在不出现振荡或失真的情况下工作。
高频功率放大器
3.1 谐振功率放大器
(2)晶体管输出电流、电压波形
当基极输入一余弦高频信号ui=ubm cos( ωt)时,基极与发 射极之间的电压为
(3. 1)
上一页 下一页 返回
3.1 谐振功率放大器
其波形如图3一3(a)所示,当ube的瞬时值大于晶体管的导通电 压UBZ时,晶体管导通,产生基极脉冲电流,由转移特性可 得集电极流过的电流或也为脉冲波形,如图3一3 (b)所示。将
下一页 返回
3.1 谐振功率放大器
2.工作原理 谐振高频功率放大器的发射结在UBB的作用下处于负偏压
状态,当无输入信号电压时,晶体管处于截止状态,集电极 电流ic = 0。当输入信号为ui=ubm cos( ωt)时,基极与发射极 之间的电压为ube =UBB +ubm cos(ω t )。为分析电路的工作波 形,先对晶体管的特性曲线进行折线化处理,处理后分析与 计算大大简化,但误差也大,所以实际电路工作时需要调整。
流电阻很小,也可近似认为短路。这样,脉冲形状的集电极
电流ic经谐振回路时,只有基波电流才产生电压降,因而LC 谐振回路两端输出不失真的高频信号电压uc。
(3. 3)
上一页 下一页 返回
3.1 谐振功率放大器
式中Ucm=ReIc1m,为基波电压幅度,所以晶体管的输出电 压为
其波形如图3一3(c)所示。
上一页 下一页 返回
3.1 谐振功率放大器
(1)特性曲线的折线化 对高频谐振功率放大器进行精确计算是十分困难的,为了
研究谐振功率放大器的输出功率、管耗、效率,并指出一个 大概的变化规律,可采用近似估算的方法,即对特性曲线进 行折线化处理:忽略高频效应,晶体管按照低频特性分析;忽 略基区宽变效应,输出特性水平、平行且等间隔,如图3-2 (a) 所示;忽略管子结电容和载流子基区渡跃时间;忽略穿透电流, 截止区ICEO = 0。
简述高频功率放大器的特点
简述高频功率放大器的特点高频功率放大器是一种电子设备,它具有放大高频信号的功能。
高频信号是指信号频率在1MHz以上的信号,高频功率放大器主要用于无线电通信、雷达、医学设备和工业加热等领域。
它具有以下特点:1.高效率:高频功率放大器通常使用功率放大管作为放大器核心,这些管子具有高效率的特点。
在高频信号下,功率放大管的效率可以达到60%以上,这意味着大部分的输入功率都能转化为输出功率,从而实现高效率的功率放大。
2.高线性:高频功率放大器要求在放大高频信号时,输出信号要与输入信号保持一致。
这就要求功率放大器具有高线性度,即输出信号随着输入信号的变化而变化,而不会出现非线性失真。
3.高稳定性:在高频信号下,功率放大器的稳定性尤为重要。
任何微小的变化都可能导致输出信号的失真。
因此,高频功率放大器通常采用恒定电流源或者负反馈电路来提高稳定性。
4.高功率密度:高频功率放大器需要在小体积内实现高功率输出,因此需要具有高功率密度。
这要求功率放大器的散热和结构设计都要优化,以实现高功率密度。
5.宽带:高频功率放大器需要能够放大多种频率的信号,因此需要具有宽带特性。
这就要求功率放大器的带宽尽可能宽,能够放大从几百kHz到几GHz的信号。
在中心扩展下,高频功率放大器的应用领域不断扩大。
例如,在无线电通信领域,高频功率放大器可以用于增强信号的传输距离和穿透能力;在雷达领域,高频功率放大器可以用于增强信号的探测能力和精度;在医学设备领域,高频功率放大器可以用于磁共振成像等应用;在工业加热领域,高频功率放大器可以用于快速加热和热处理等应用。
总的来说,高频功率放大器具有高效率、高线性、高稳定性、高功率密度和宽带等特点。
随着应用领域的扩大,高频功率放大器的需求也会越来越高,未来有望在更广泛的领域得到应用。
第六章 高频功率放大器(高频电子技术)
高频电子技术第六章 高频功率放大器§6.1 概述为了获得足够大的高频输出功率,必须采用高频功率放大器。
如发射机中,振荡器产生的高频振荡功率往往很小,因此在后面要经过一系列放大——缓冲级、中间放大级、末级功率放大器,才能获得足够的高频功率,然后从天线将信号发送出去。
高频功率放大器的工作频率很高,且工作时要求其频带很窄,如调幅广播电台(535~1605kHz 频段范围),每个台的频带宽度为10kHz ,与1000kHz 左右的工作频率相比,仅相当于百分之一。
因此,高频功率放大器的负载一般都是选频网络(选择有用信号,滤除干扰)。
§6.2 谐振功率放大器的工作原理晶体管的工作频率范围分为三部分:低频区:βf f 0.5<(βf 截止频率,放大倍数下降为低频值的2/1) 中频区:T f f f 2.00.5<<β(T f 特征频率,放大倍数下降为1时的频率) 高频区:T T f f f <<2.0中频区需要考虑晶体管结电容的作用,高频需进一步考虑电极引线电感的作用,分析和计算都非常困难。
因此,从低频区入手来进行分析。
6.2.1 获得高效率所需要的条件(P206)率直流电源提供的直流功==P交流输出信号功率=o P 集电极本身耗散功率=c P 则c o P P P +== 定义集电极效率co oo c P P P P P +===η 可见,如果能降低集电极耗散功率c P ,则集电极效率c η就会提高,给定直流电源提供功率=P 时,晶体管的交流输出功率o P 就会增加。
由c cco P P )1(ηη-=可知 如果%20=c η(甲类功放),则c o P P 41)(1=,如果%75=c η(丙类功放)则得到c o P P 3)(2=,可见,c η从20%提高到75%,输出功率则提高12倍。
************************************************************************************** 甲类功放:通角180°,晶体管完全工作在线性区,交流大信号完全通过晶体管传递到下一级; 乙类功放:通角90°,晶体管部分工作在线性区,部分工作在截止区,交流大信号半波通过晶体管;丙类功放:通角小于90°,晶体管小部分工作在线性区,大部分工作在截止区,交流大信号半波的一部分通过晶体管;丁类功放:固定通角为90°,且工作于开关状态:导通时,进入饱和区,内阻接近于0;截止时,电流为0,内阻接近无穷大。
高频功率放大器的基本原理
高频功率放大器的基本原理高频功率放大器的基本原理什么是高频功率放大器?高频功率放大器是用于增强高频信号幅度的电子设备。
它主要用于通信系统、雷达系统和无线电频率发生器等领域,扮演着至关重要的角色。
高频功率放大器的工作原理高频功率放大器的工作原理需要涉及到以下几个基本概念:•放大器:它是一个电子设备,用于将输入信号增幅到所需的输出水平。
在高频功率放大器中,放大器用于放大输入信号的功率。
•功率:功率是指单位时间内能量转化或传输的速率。
在高频功率放大器中,功率是指输出信号的能量。
•频率:频率是指信号中的周期性变化的次数。
在高频功率放大器中,频率通常指电信号的高频部分。
•增益:增益是指输入信号放大倍数。
在高频功率放大器中,增益是指输出信号相对于输入信号的增强程度。
高频功率放大器的工作原理可以概括如下步骤:1.输入信号经过输入端进入放大器。
2.放大器对输入信号进行放大,提高其电压、电流或功率。
3.放大后的信号通过输出端输出到下一个电路或设备。
高频功率放大器的分类根据高频功率放大器的工作原理和结构,它可以分为以下几种主要类型:1.B类功率放大器:B类功率放大器是最常见且最常用的高频功率放大器类型之一。
它具有高效率和较低的失真,适用于大部分高频应用。
2.D类功率放大器:D类功率放大器是一种高效率的放大器,通过高速切换开关将输入信号转换为脉冲宽度调制(PWM)信号。
它具有较高的功率转换效率,适用于需要高功率输出的应用。
3.AB类功率放大器:AB类功率放大器综合了B类和A类功率放大器的优点,既具有高效率又具有较低的失真。
因此,AB类功率放大器是广泛应用于音频放大器的一种常见类型。
高频功率放大器的应用领域由于高频功率放大器具有增强信号功率的能力,因此它在许多领域中得到了广泛的应用,包括:•通信系统:高频功率放大器在无线通信系统中用于放大传输信号,以提高其覆盖范围和传输距离。
•雷达系统:高频功率放大器在雷达系统中用于放大雷达信号,以增强探测目标的能力。
w第3章-高频功率放大器要点
LC并联回路两 端的压降
晶体管c、 e极间压降
uc RpIc1m cost
uc电压符号的定义:
下为+,上为-
Ucm Ic1mRp
uce VCC uc VCC RpIc1m cost VCC Ucm cost
高频电子
uce VCC Ucm cost
Ucm Ic1m Rp
由于谐振回路的选频, 集电极的输出电压仍 是与输入电压相同的 正弦波,相位相反, 幅度增大。
高频电子 推导第二个ic=f(uce)
当放大器工作在谐振状态时
ube uce
Vbb Vcc
Ubm U cm
cos t cos t
ube
Vbb
Ubm
Vcc uce U cm
晶体管外部电路 约束,方程1
ic gc (ube Ubz )
ube≥Ubz,晶体管工作在线性区时,内部约束,方程2
9kHz,相对带宽0.6 ℅~1.7℅.
高频第电子二节 谐振高频功放的工作原理
一、基本电路及其特点
电路形式:中间级(a)、输出级(b)
实际负载 是天线
实际负载是 下一级的输 入阻抗
中间级、输出级的负载均 可等效为并联谐振回路
天线等效阻
抗 CA 、rA
高频电子 高频功率放大器的特点
特点1、为了提高效率,放 大器常工作于丙类状态, 晶体管发射结为静态负偏 压,由Vbb< 0来保证。流 过晶体管的电流为失真的 脉冲波型;非线性状态 (非线性电路),且输入 是大信号;
高频输出功率、效率、功率增益、带宽和谐波抑制度等。由于 输出功率高,通常要求效率高,因此,高频功率放大器多选择 工作在丙类工作状态。
三、高频功率放大器的分类
第四章高频功率放大器
0 120 • n 次谐波取最大值时的流通角为: n
= 60。 • 三次谐波最大值出现在 = 40。
可以看出,基波最大值出现在 = 120处。
1 1 .32 ,这与效率有关。 但是此时 0
因此, 值的选择需综合考虑。
例:如果某个非线性器件的伏安特性可用折线 表示,其中, V B Z =1V,g=10mA/V。现加偏置 电压为VB=-1V,输入余弦信号的幅值Vim=4V, 查表(pp366-368)计算电流中的直流、基波 和二倍频分量幅值。
谐振功率放大器的各 极电压、电流波形
7.2.1
二、输出功率与效率
在谐振功率放大器中,由于其静态工作点选择在集电极电流 为零的情况,因而消除了静态功耗,提高了工作效率。
如何进一步提高效率,则是需要研究的问题。这涉及如何合 理地利用好晶体管转移特性的非线性。 Po Po:输出信号的功率 谐振功放的效率定义为: PD PD:电源提供的功率
三、谐振功率放大器与低频功率放大器的异同点
相同点:1、都要求输出功率大和效率高;2、激励信号幅度均 为大信号。 不同点:1、工作频率与相对频宽不同;2、放大器的负载不同; 3、放大器的工作状态不同。
四、谐振功率放大器与小信号谐振放大器的异同点
相同点:1、放大的信号均为高频信号;2、放 大器的负载均为谐振回路。 不同点:1、激励信号幅度大小不同;2、放大 器的工作点不同;晶体管动态范围不同。
2 1 12 V c m 输出信号功率为 :P I V I R o c m 1 c m c m 1 2 2 2 R
i () • Icm1: 集电极电流中的基波分量幅度 I cm 1 c max 1
1 P i V o c m ax 1 cm 因此得: 2
第章高频功率放大器
第一章高频功率放大器概述高频功率放大器是一种专用放大器,主要用于放大高频信号以改善信号传输和处理的效果。
高频信号在传输过程中容易受到噪声和信号衰减等影响,因此需要使用高质量的放大器来解决这些问题。
高频功率放大器通常用于广播、通信、雷达和医学设备等领域。
在这些应用场合中,高频信号需要被放大到足够高的水平以保证其正常工作。
然而高频信号的放大并不是一件简单的事情,因为高频信号具有特别的特性,需要专门的技术和设备才能处理。
第二章高频功率放大器的原理高频功率放大器的工作原理类似于普通放大器,但它需要更多的细节和技巧。
以下是高频功率放大器的工作原理。
2.1 放大器基本原理放大器的基本原理是将输入信号增加到一个可控范围内的输出信号。
在高频功率放大器中,输入信号是原始高频信号,输出信号是经过放大和处理后的高频信号。
在放大器中,晶体管是主要的放大器元件,因为它们以高速工作,且具有稳定的放大特性。
2.2 高频功率放大器的原理高频功率放大器的原理类似于普通放大器的原理,主要包括功率放大和线性放大两种模式。
功率放大模式将输入信号的强度直接放大到最大,保证输出信号的功率尽可能大。
这种模式下的放大器通常用于发射机和雷达等应用场合。
线性放大模式将输入信号的强度放大到一个可以被处理的范围内,以保持输出信号的线性特性。
这种模式下的放大器通常用于接收机和信号处理器等领域。
第三章高频功率放大器的性能指标高频功率放大器的性能指标是衡量其性能和质量的标准,以下是几个常见的指标:3.1 频率响应频率响应表示放大器对于不同频率的输入信号的响应能力,它直接影响着信号的传输和处理效果。
3.2 增益增益表示输出信号与输入信号之间的增加比例,越高的增益意味着越大的信号输出。
3.3 噪声系数噪声系数是指输入信号和输出信号之间的信噪比,噪声越小,信噪比越高,放大器的效果就越好。
3.4 带宽带宽是指在特定的频率范围内,放大器能够保持其放大性能的能力,带宽越宽,放大器的应用范围就越广。
高频功率放大器原理
高频功率放大器原理
高频功率放大器是一种电子设备,用于将射频信号的功率放大到更高的水平。
其原理是通过增加输入信号的幅度,使其达到更高的功率输出。
高频功率放大器通常由多个级联的放大器组成,每个级别都能增加信号的幅度。
高频功率放大器的核心组件是晶体管或管子,它们具有高增益和较高的功率处理能力。
晶体管工作在饱和区,充分利用其线性增益特性。
信号经过输入阻抗匹配网络后进入晶体管的基极或栅极,然后通过晶体管的放大作用,输出到负载上。
高频放大器在输入和输出之间应用匹配网络,以确保最大功率传递。
这些匹配网络通常由L型或π型网络组成,通过调整电感和电容的参数来实现阻抗匹配。
匹配网络的设计要求与输入和输出负载的特性相匹配,以确保最大功率传输和信号衰减的最小化。
此外,高频功率放大器还需要提供稳定的偏置电路,以确保晶体管在稳定的工作条件下工作。
偏置电路通常由电阻和电容组成,它们用来提供适当的偏置电压和电流,以保持晶体管的工作在稳定的线性增益区。
总的来说,高频功率放大器通过级联的放大器和匹配网络,将输入信号的功率放大到更高的水平。
它在无线通信、雷达、卫星通信等高频应用中起着至关重要的作用。
高频功率放大器(C类)要点课件
将放大器输出阻抗匹配至负载,提高 信号传输效率,降低功率损耗。
偏置电路设计
确定合适的偏置电压和电流
根据放大器的工作状态和性能要求,选择合适的直流偏置电压和电流,以保证 放大器正常工作。
偏置电路稳定性
确保偏置电路的稳定性,防止因温度、时间等因素引起的偏置电压或电流漂移 。
稳定性与反馈技术
效率与功率特性
效率
C类放大器的效率较高,通常可以达到 70%以上,这是由于其工作方式可以减 少能量损失。
VS
功率特性
C类放大器通常用于高功率应用,能够提 供较大的输出功率,满足各种需求。
频率响应与稳定性
频率响应
C类放大器的频率响应较窄,因此适用于特定频率的应用。
稳定性
C类放大器的稳定性较好,不易受温度、电源电压等外部因素的影响。
雷达系统
C类放大器在雷达系统中 用于产生高功率的射频信 号,用于探测和跟踪目标 。
电子战系统
C类放大器在电子战系统 中用于干扰敌方通信和雷 达信号,保护己方安全。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
C类放大器的电路设计
输入与输出匹配网络
输入匹配网络
将信号源阻抗匹配至放大器输入端, 降低信号源内阻对放大器性能的影响 。
广播电视系统中的应用
广播电视系统需要将信号传输到各个 角落,因此需要大功率的信号源。C 类放大器的高效率和输出功率特性使 得它在广播电视系统中得到广泛应用 。
C类放大器在广播电视系统中的应用, 可以提高信号的覆盖范围和传输质量 ,同时减少能源的消耗和散热问题。
其他应用案例分析
C类放大器因其高效率、大输出功率的特性,还被广泛应用于其他领域,如科学研究、工业生产、医 疗设备等。
第3章高频功率放大器
遗留问题:
(1) 丙类导通角<90o,何时最优? (2) 放大、临界、饱和,何处最优?
功率放大器的的概述
五、高频功率放大器的分类
1、窄带高频功率放大器:以LC谐振回路为负
载又称谐振功率放大器,主要工作在丙类 或者丁类。(主要掌握的内容) 2、宽带高频功率放大器:以传输变压器为负载 工作在甲类,采用功率合成技术来增大输出 功率。在军事上为了保密和反敌干扰多采用 此放大器
2.晶体管工作在什么区?(在后续的课程中仔细体会)
强调:功率放大的含义
根据能量守恒定律能量是不能放大的,功率放大 的本质是将直流电源VCC的能量转化为高频交流信号能 量的形式的过程,从现象上看就是高频小功率信号被 放大为高频大 功率信号。
3.1 丙类谐振功率放大器的工作原理
二、工作原理及性能分析
uBE= Uim coswt –VBB
iC vbemax
V BZ
- V BB
t
vBE
Uim
1 Pc T
T 0
i C v CE dt
1. iC 脉冲最大时,vCE最小,使得Pc较小; 2. 导通时间越短,即导通角越小,
导通角qc <90o,Pc越小;
三种类型功率放大器的比较
转移特性曲线
ic f uBE u
C E 常量
1 π PC uCE iC d t 2π π
结论:要提高高频功率放大器的输出效率,就要
尽可能降低器件的功率损耗,因此谐振功
率放大器中晶体管工作在丙类工作状态。
功率放大器的的概述
2. 效率与失真矛盾的解决
重点体会:电流波形严重失真,但输出波形又
不失真(完整的正弦波),且频率
高频电子线路第六章 高频功率放大器
6.3.4 高频功放的负载特性(输出特性) 高频功放工作于非线性状态,负载特性是指在晶体 管及VCC,VBB Ubm一定时,改变负载电阻RP,功放的各 处电压、功率及效率η随RP变化的关系。 1. Ico 、Icm1与RP关系曲线 在欠压状态,随Rp增大,ICO、ICm1基本不变,在 过压区,随着Rp增大,ic出现下凹,ICO、IC1m减小, 如图6-5(a)。
图 6-5 高频功放的负载特性
2. UCm与RP的关系曲线 如图6-5(a),欠压区内,Icm1变化很小;UCm1 =Icm1RP随RP增大而上升; 在过压区,RP线性增 加,Icm1减小较慢,UCm稍有上升。
3.功率,效率P= 、PO、 ηc与RP的关系曲线 在欠压状态,随Rp增大,P=基本保持不变,PO线性 增大,ηc逐渐增大。进入过压状态,随Rp增大,P= 减少。由此看出,临界状态输出功率最大。而集 电极效率在弱过压区由于PO下降较P=下降缓慢,ηc 略增,在临近临界线的弱过压区,ηc出现最大值。图 6-5(b)是随Rp变化的规律。
=g1(θc)ξ/2 (g1(θc)= α1 (θc)/ α0 (θc),称为波形系数)
6.3.2 高频功放的uBE~uCE的关系
图6-3 高频功放uBE~uCE的关系
动特性是指当加上激励信号及接上负载阻抗时, 晶体管集
电极电流iC与电压uCE的关系曲线,它在ic~uCE坐标系中是
一条曲线。图6-3表示在动态特性一定时uBE~uCE的关系。
(6-10)
直流输入功率与集电极输出高频功率之比就是集 电极定义集电极效率。
由式(6 -7)、(6-8)可以得到输出功率Po和集电极损 耗功率Pc之间的关系为:
第三章高频功率放大器
分电压与电流的关系
11
二、输出功率和效率计算
功率放大器的作用原理是利用输入到基极的信号来控 制集电极的直流电源所供给的直流功率,使之转变为交流 信号功率输出去。
有一部分功率以热能的形式消耗在集电极上,成为集 电极耗散功率。表示转换能力,引入集电极效率的概念。
Pdc=直流电源供给的直流功率; Po=集电极交流输出基波信号功率; Pc=集电极耗散功率;
高频区:0.2fT<f工作<fT (考虑内部电抗、引线电感等)
20
根据理想化原理晶体管的静态转移特性可用交横轴于VBZ的 一条直线来表示(VBZ为截止偏压)。
ic gc
ic
临界线
过压区 gcr
欠压区
vB
0 VBZ
(a)
理想化折线 (虚线)
vB 0 (b)
晶体管实际特性和理想折线
vC 21
由上图可见,在饱和区,根据理想化原理,集电极电流 只受基极电压的控制,而与集电极电压无关。
故得:
cosc
VBB VBZ Vbm
必须强调指出,集电极电流ic虽
然是脉冲状,但由于谐振回路的
这种滤波作用,仍然能得到正弦
波形的输出。
ic
ic
转移
特性
ic max
理想化
–VBB
t
+c o VBZ o
–c
vB +c o –c vb
Vbm
m
vBmax
t
谐振功率放大器转移特性曲线
谐振功率放大器各部分的电压与电 流的波形图如下图所示
到最大值。这样看来, 取c=120应该是最佳通 角了。但此时放大器处
于甲乙类工作状态效率太低。尖源自脉冲的分解系数18c
第三章 高频功率放大器
C:ωt=180°时,
2 斜率: R p 2 c sin 2 c
iC 0
uce EC U c
讨论:三种工作状态
1、欠压工作状态:如 曲线1所示。此时负 载较小,Uc也较小, 集电极电流为尖顶脉 冲,三极管工作于放 大区。
2、随着负载的增加,动态曲线 斜率逐渐减小,交点A向右移动。 到达临界线时即为临界工作状态。 如曲线2所示。集电极电流仍为尖顶 脉冲,但高度略微减小。三极管工作于临界饱和。
2c
iC max
po U c I c1 1 a1(c ) 1 6、高频功放的能量关系 c 1(c ) p E 2 E C I co 2 a0(c ) 2 提高效率: c 和 谐振阻抗
丙类功放的最 佳通角取700左 右;倍频器的 通角参考 值为600。
Ube=-Eb+Ubcosωt
ic是余弦脉冲波(Io,I1,I2,...,In)
3 、负载为选频网络 集电极电压为完整的余弦电压波形
ic I CO I c1 cost I c 2 cos 2t I c 3 cos3t
Icmax θc ic ic1 ic2 i c3 Ico ωt
0
•
ICEO EC
•
uCE
90 o
U BB U BZ
o C 类: 90 , UBB UBZ 。
近年来双出现了 D 类、E 类及 S 类等开关功率放大器
§3-2 -1 丙类功放的工 作特点(工作原理) 1、发射结静态 电压反偏或弱正偏。
2、集 电极 电流 为余 弦尖 顶 脉 冲。
二、耦合网络
V1 M Cb C1 K L3
C2 L1 L2
-24 V
第三章 高频功率放大器
∴
A 'B 段的电压:
u A' B Vcc U c cos (Vcc - U c) u A' B Vcc U c cos Vcc U c U c (1 cos )
Rd
VA' B I cM
U c (1 cos ) I c1 R p (1 cos ) (I c1R p:谐振基波电压) I cM I cM I c1 ) I cM
开启电压
晶体管输入特性曲线
大于VbZ ,导通 小于VbZ,截止
一个周期中,只有( –θ,θ ) 是导 通的,所以ib 是一串尖顶余弦脉 冲,以 IbM 为高度,以 2θ为宽 度,以T为周期。 2θ 称为导通角, θ称为截止角(截止起点)。由 于 2 , 2 ,认为是工作 在丙类状态。
上式中:
gd g
V U Vbb U c Vbz U c Vo cc b Ub
输送到负载上去。
作图法求负载线:
方法:求二点就可以做直线:(或用一点和斜率)
①取 t 0 : ②取t 2 :
ube Vbb uce Vcc
ube Vbb U b U be max uce Vcc U c U cemin
I c1 1 () I cM ① 90 180 时, 1 ( ) 大。在θ =120∘时, 1 ( ) 最大, 也达到最大值,集电极输出功率达到最大值,因而高频功放最好 工作在甲乙类。但这时集电极效率低,所以还是选θ =70∘
2 ( ) 最大,I () I 最大,可以用来实现二倍频。 ②θ =60∘时, c2 2 cM 3 ( ) 最大,I c 3 3 () I cM 最大,可以用来实现三倍频。 ③θ =45∘时,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学实验报告课程名称:高频电路
实验项目名称:高频功率放大器实验电路学院:
专业:
指导教师:
报告人:学号:班级:
实验时间:2019年4月22日星期一
实验报告提交时间:2019年5月6日星期一
教务部制
、激励电压、电源电压及负载变化对丙类功放工作状态的影响
对放大器工作状态的影响
E对放大器工作状态的影响
(2)集电极电源电压
C
L R 分别为0.336K Ω、1.007KΩ、4.000KΩ
、功放调谐特性测试 f(MHz) 5.3 5.5 5.7 5.9 6.1 6.3 6.5 6.7 6.9 7.1 7.3 Vc(Vpp) 1.84 1.70 1.68
1.54
1.52
1.48
1.40
1.32
1.28
1.24
1.12
可观察到,随着bm U 的增大, cm U 也增大,当bm U 增大到一定程度,c U 波形出现凹陷,
依然增大。
时放大器工作在欠压状态,C E 等于2C E 时放大器工作在临界状态,时放大器工作在过压状态,当C E 由大变小时放大器的工作状态由欠压进入过压,弦脉冲波形变为中间凹陷的脉冲波。
)负载电阻L R 变化对放大器工作状态的影响
增加,动态负载线的斜率逐渐减小,cm U 逐渐增大,放大器工作状态由欠压到临界,幅值比欠压时略小,当C R 继续增大,cm U 进一步增大,放大器进入过压状态,此时动态负载线与饱和线相交,此后电流c i 随cm U 沿饱和线下降,电流波形顶端下凹。
可知,随着输入频率的增大,输出电压值随之减小指导教师批阅意见:
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。