高中物理竞赛教程(超详细修订版)_第九讲_机械振动和机械波

合集下载

高中物理竞赛专题之机械振动(共33张PPT)

高中物理竞赛专题之机械振动(共33张PPT)



提示:撤去策动力前、后振子在平衡位置的速率不变。
振子受稳态受迫振动时, 在平衡位置处的速率为:


A
在平振衡子位自置由处振的动速时率,为: A
A 2
A
理学院物理系
张晚云
2. 一摆在空中振动,某时刻振幅为A0= 0.03m,经过 t1=10s后,振幅变为 A1=0.01m,问:由振幅为A0时起 经多长时间,其振幅减为A2=0.003m ?
1、振幅
A
x02

υ0 2 ω2
注意弹簧的串、并联 及弹簧自身质量的影响
2、角频率
ω弹
k m
ω单
g l
ω复
mgl c I
3、初相位 tan φ υ0 ω x0
同一振动中位相差 与时间差的关系:
或由旋转矢量法确定
Δt Δφ ω
三、简谐振动的三种表示方法
1、 解析表达法
2、 振动曲线法
2g
g T 2g
T
标准钟的秒摆周期T=1s,移地后的周期:T 86400 1s
86400 10
T T T T 1 86400 1 10
T TT
86400 10 86390
g T 2g 2 9.800 10 0.0023m / s2
d
2 (q
dt 2
)

[ 2(1 2cos2 q0 )
g R
cosq
0
]q
cosq0
=
g

2
d 2(q )
dt 2

R2 4 g 2 R2 2
q

0

高二物理竞赛课件:振动和波动

高二物理竞赛课件:振动和波动

dt
23
t 0 , v 3 (m / s) , a 2 / 2(m / s 2 )
2)振动曲线:
x
A
o
t
-A
T
振幅:旋转矢量的模A
圆频率:旋转矢量的角速度 位相:旋转矢量与Ox轴的夹角t+
y
M
A
t
M0
P
O
x
x
4.简谐振动的速度和加速度
x Acos(t )
v dx A sin(t ) A cos(t )
dt
2
a dv A 2 cos(t ) A 2 cos(t )
dt
➢ 速度和加速度作与位移同频率的简谐振动
➢ vm A , am A 2
➢ 速度位相比位移位相超前/2;加速度位相比 位移位相超前。
2A ωAA
a v
x
OO
t
A
T
例 9-1 已知某质点的振动曲线如图所示,求: (1)质点的振动表达式; (2) t 0 时质点的速度和加速度。
x(cm)
4
时间按余弦(或正弦)规律随时间变化:
x Acos(t )
则物体的运动为简谐振动。
2.描述简谐振动的物理量
x Acos(t )
2.1 周期和频率
T 2 , 1
T 2
2.2 振幅 A
2.3 位相与初相
t 时刻的位相: t+ 初相:
3.简谐振动的表示
1)振动表达式:x A cos(t )
§9-1 简谐振动的描述 §9-2 简谐振动的动力学特征 §9-3 简谐振动的合成 *§9-4 阻尼振动 受迫振动 共振
1.简谐振动的定义
1.1 机械振动 物体在一定位置附近作来回往复的运动。

高中物理竞赛辅导机械振动和机械波

高中物理竞赛辅导机械振动和机械波

机械振动和机械波§5.1简谐振动5.1.1、简谐振动的动力学特点如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。

即满足:K F -=回的关系,那么这个物体的运动就定义为简谐振动根据牛顿第二是律,物体的加速度m K m F a -==回,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大小成正比,方何相反。

现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。

现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。

当物体运动到离O 点距离为x 处时,有mg x x k mg F F -+=-=)(0回式中0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,因此kx F =回说明物体所受回复力的大小与离开平衡位置的位移x 成正比。

因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。

注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。

5.1.2、简谐振动的方程由于简谐振动是变加速运动,讨论起来极不方便,为此。

可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0ϕ,那么在时刻t ,参考圆上的质点与O 的连线跟x 的夹角就成为0ϕωϕ+=t ,它在x 轴上的投影点的坐标)cos(0ϕω+=t A x (2)这就是简谐振动方程,式中0ϕ是t=0时的相位,称为初相:0ϕω+t 是t 时刻的相位。

参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是0cos(ϕωω+-=t A v ) (3) 这也就是简谐振动的速度参考圆上的质点的加速度为2ωA ,其方向指向圆心,它在x 轴上的投影是02cos(ϕωω+-=t A a ) (4)这也就是简谐振动的加速度 由公式(2)、(4)可得x a 2ω-=由牛顿第二定律简谐振动的加速度为图5-1-1图5-1-2x m k m F a -==因此有m k=2ω (5)简谐振动的周期T 也就是参考圆上质点的运动周期,所以k m w T ⋅==ππ225.1.3、简谐振动的判据物体的受力或运动,满足下列三条件之一者,其运动即为简谐运动: ①物体运动中所受回复力应满足 kx F -=;②物体的运动加速度满足 x a 2ω-=;③物体的运动方程可以表示为)cos(0ϕω+=t A x 。

高考物理力学知识点之机械振动与机械波图文解析

高考物理力学知识点之机械振动与机械波图文解析

高考物理力学知识点之机械振动与机械波图文解析一、选择题1.一列横波某时刻的波形图如图甲所示,图乙表示介质中某质点此后一段时间内的振动图象.下列说法正确的是()A.若波沿x轴正方向传播,则图乙表示的是质点N的振动图象B.若波沿x轴负方向传播,则图乙表示的是质点K的振动图象C.若图乙表示的是质点L的振动图象,则波沿x轴正方向传播D.若图乙表示的是质点M的振动图象,则波沿x轴负方向传播2.如图所示,一单摆在做简谐运动,下列说法正确的是A.单摆的幅度越大,振动周期越大B.摆球质量越大,振动周期越大C.若将摆线变短,振动周期将变大D.若将单摆拿到月球上去,振动周期将变大3.一洗衣机在正常工作时非常平稳,当切断电源后,发现洗衣机先是振动越来越剧烈,然后振动再逐渐减弱,对这一现象,下列说法正确的是()①正常工作时,洗衣机波轮的运转频率比洗衣机的固有频率大;②正常工作时,洗衣机波轮的运转频率比洗衣机的固有频率小;③正常工作时,洗衣机波轮的运转频率等于洗衣机的固有频率;④当洗衣机振动最剧烈时,波轮的运转频率恰好等于洗衣机的固有频率.A.①B.③C.①④D.②④4.在天花板O点处通过细长轻绳栓一小球构成单摆,在O点正下方A点有一个能挡住摆线的钉子,OA的距离是单摆摆长的一半,如图所示。

现将单摆向左方拉开一个小角度θ(θ<5°),然后无初速度地释放,关于单摆以后的运动,下列说法正确的是()A .摆球往返运动一次的周期比无钉子时的单摆周期小B .摆球在平衡位置右侧上升的最大高度大于在平衡位置左侧上 升的最大高度C .摆球在平衡位置左、右两侧走过的最大弧长相等D .摆球向左经过最低点的速度大于向右经过最低点的速度5.两个弹簧振子,甲的固有频率是100Hz ,乙的固有频率是400Hz ,若它们均在频率是300Hz 的驱动力作用下做受迫振动,则 ( ) A .甲的振幅较大,振动频率是100Hz B .乙的振幅较大,振动频率是300Hz C .甲的振幅较大,振动频率是300Hz D .乙的振幅较大,振动频率是400Hz6.图甲所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图乙为这个弹簧振子的振动图象,由图可知下列说法中正确的是A .在t =0.2s 时,弹簧振子运动到O 位置B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 的时间内,弹簧振子的动能持续地减小D .在t =0.2s 与t =0.6s 两个时刻,弹簧振子的加速度相同7.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2Tt ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于mkx m M+ 8.在平静的水面上激起一列水波,使漂浮在水面上相距6.0m 的小树叶a 和b 发生振动,当树叶a 运动到上方最大位移处时,树叶b 刚好运动到下方最大位移处,经过1.0s 后,树叶a 的位移第一次变为零。

高中物理机械振动和机械波PPT课件

高中物理机械振动和机械波PPT课件
2
练习2:
有两个简谐运动:
x1

3a sin(4bt


4
)和x2

9a sin(8bt

)
2
它们的振幅之比是多少?它们的周期各是
多少 ?t =0时它们的相位差是多少?
五、简谐运动的几何描述—参考圆
匀速圆周运动在x轴上的投影为简谐运动。
五、简谐运动的几何描述—参考圆
用旋转矢量图画简谐运动的 x t 图
t 1 t 2 1 2
同相:频率相同、初相相同(即相差为0) 的两个振子振动步调完全相同。
反相:频率相同、相差为π 的两个振子 振动步调完全相反。
练习1:
下图是甲乙两弹簧振子的 x – t 图象,两
振动振幅之比为_2__∶___1,频率之比为_1_∶___1 ,
甲和乙的相差为_____ 。
实验器材
带有铁夹的铁架台、中心有小孔的金属小球,不易伸长的细线(约 1 米)、秒表、毫米刻度尺和游标卡尺.
实验步骤
(1)用细线和金属小一个球制作单摆。 (2)把单摆固定悬挂在铁架台上,让摆球自然下垂,在单摆平衡位 置处作上标记。 (3)用毫米刻度尺量出摆线长度 l′,用游标卡尺测出摆球的直径, 即得出金属小球半径 r,计算出摆长 l=l′+r. (4)把单摆从平衡位置处拉开一个很小的角度(不超过 5°),然后放 开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成 30~ 50 次全振动所用的时间 t,计算出金属小球完成一次全振动所用时 间,这个时间就是单摆的振动周期,即 T=Nt (N 为全振动的次数).
解析 作一条过原点的与 AB 线平行的直线,所作的直线就是准确测
量摆长时所对应的图线.过横轴上某一点作一条平行纵轴的直线,则 和两条图线的交点不同,与准确测量摆长时的图线的交点对应的摆长

全国高中物理竞赛专题六 机械振动与机械波

全国高中物理竞赛专题六  机械振动与机械波

专题六 机械振动和机械波【基本内容】 一、机械振动1、物体在它的平衡位置附近所作的往复运动.如声源的振动、钟摆的摆动等.2、产生振动的条件:有恢复力的作用且所受阻力足够小.3、回复力:物体离开平衡位置时所受到的指向平衡位置的力. 二、简谐振动1、简谐振动:如果一个物体振动的位移按余弦(或正弦)函数的规律时间变化,称这种运动为简谐振动.2、周期与频率:物体进行一次全振动(振动物体运动状态完全重复一次)所需要的时间,称为振动的周期T ;单位时间的全振动次数称为频率ν,2π秒内的全振动次数称为圆频率ω.3、振幅A :质点离开平衡位置的最大位移的绝对值,称为振幅.4、相位:振动方程中的t ωϕ+称为相位.5、简谐振动的振动曲线:振动位移时间的变化关系曲线称为振动曲线.如图所示.6、旋转矢量表示法如图所示,当矢量OM 绕其始点(坐标原点)以角速度ω做匀速转动时,其末端在x 轴上的投影点P 的运动简谐振动.三、简谐振动的能量与共振1、以弹簧振子为例,简谐振动的能量为 222212121kA kx mv E E E P K =+=+=2、阻尼振动:在阻尼作用下振幅逐渐减少的振动称为阻尼振动,其振动方程为0cos()t x A e t βωϕ-=+式中, β为阻尼因子,ω为振动的圆频率,它与固有圆频率0ω和阻尼因子β关系为ω=3、受迫振动:在周期性外力作用下的振动,称为受迫振动,在稳定情况下,受迫振动是简谐振动,振动频率等于外力的频率,与振动系统的固有频率无关,其振幅为22'22'220(2)()h A βωωω=+- 当强迫力的频率等于系统固有频率时,系统将有最大的振动振幅,这种现象称为共振.强迫力的频率偏离系统的固有频率越大,振幅则越小. 四、两个简谐振动的合成有如下四种形式的合成:1、同方向、同频率的简谐振动合成,合成的结果仍然是与分振动同方向、同频率的简谐振动,合振动的振幅和相分别为A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+2、同方向、频率相近的简谐振动的合成,合成的结果不再是简谐振动,合振动的振幅随时间缓慢地周期性变化,称为“拍”的频率.拍的频率12ννν=-3、相互垂直的同频率简谐振动的合成,合成运动的轨迹方程是22221212212122cos()sin ()x y xy A A A A ϕϕϕϕ+--=- 4、相互垂直、频率之比为整数比的两简谐振动合成,这时是有一定规律的稳定闭合曲线,形成李萨如图形.五、机械波1、机械振动在弹性媒质中的传播,称为机械波.当质点振动方向和波的传播方向垂直时,称为横波;当振动方向与波的传播方向一致时,称为纵波.2、波的周期(频率)、波长和波速一个完整波通过媒质中某点所需的时间,称为波的周期,在波源和观察(接收)者相对媒质静止时,波的周期就是各媒质元的振动周期,用符号T 表示.单位时间内通过媒质中某点的完整波的数目,称为波的频率,波的频率就是各媒质元的振动频率,用符号ν表示,周期和频率反映了波在时间上的周期性,有关系式 1T ν=.沿波的传播方向上相位差为2π的两点间的距离,一个完整波形的长度,称为波的波长,用符号λ表示,波长反映了波在空间的周期性.单位时间内某振动状态传播的距离,称为波速,又称相速,用符号u 表示,上述各量之间有如下关系u Tλλν==.3、波面和波线波动过程中,介质中振动相位相同的点连成的面称为波阵面,简称波面,而某一时刻,最前面的波面,称为该时刻的波前.沿波的传播方向所作的有向曲线称为波射线,简称波线.六、平面简谐波若波源和波线上各质点都作简谐振动的连续波称为简谐波,简谐波是最基本的波,各种复杂的波都可以看成许多不同频率的简谐波的合成.在波动中,每一个质点都在进行振动,对一个波的完整的描述,应该是给出波动中任一质点的振动方程,这种方程称为波函数,平面简谐在理想的无吸收的均匀无限大介质中传播的波函数表达式为2cos ()cos 2()cos ()x t x y A t A A x ut uT πωϕπϕϕλλ⎡⎤⎡⎤⎡⎤=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦式中,“-”代表沿轴正方向传播的波,“+”代表沿轴反方向传播的波. 七、波的能量、能流和能流密度波的能量包括媒质中质元的振动动能和因媒质形变产生的弹性势能,可以采用能量密度表示,即媒质单位体积内的波动能量,称为波的能量密度,用ω表示,有222sin dE x A t dV u ωρωω⎛⎫==- ⎪⎝⎭考虑一个周期内能量的平均值,称为平均能量,用ω表示,则有220112T dt A T ωωρω==⎰伴随波的传播,波的能量也在传播,将单位时间通过传播方向上单位面积的(平均)能量,称为平均能流密度,又称波的强度.用符号I 表示,有 I u ω= 八、波的干涉和衍射1、惠更斯原理在波的传播过程中,波阵面上的一点都可以看做是发射子波的波源,在其后的任一时刻,这些子波的包迹就成为新的波阵面,这就是惠更斯原理.2、波的叠加原理几列波在同一介质空间相遇时,每一列波都将独立地保持自已原有的特性,并不会因其他波的存在而改变,在它们重叠区域内,一点的振动是各列单独在该点引起振动的矢量和,波的这种性质称为波的叠加原理.3、波的干涉满足相干条件的波在空间相遇叠加时,某些点的振动始终加强,另一些点的振动始终减弱,在空间形成一个稳定的分布,这种现象称为波的干涉,两束相干波的合振幅为A =其中21212()r r πϕϕϕλ∆=---4、波的衍射波在传播中遇到障碍物时改变传播方向,传到障碍“阴影”区域的现象叫做波的衍射.发生明显衍射现象的条件是:障碍物或孔的尺寸比波长小,或者跟波长相差不多. 九、驻波由两列同振幅,相向传播的相干波叠加而成的波,称为驻波,相应的驻波方程为 22cos cos 2y A x ππνλ=十、声波弹性媒质中,各质点振动的传播过程称为“声波”,它是一种机械波.起源于发声体的、振动频率在2020000Hz 的声波能引起人的听觉,又称可听声波,频率在41020Hz - 的机械波称为次声波,频率在48210210Hz ⨯⨯ 的机械波称为超声波.1、声波的反射、干涉和衍射声波遇到障碍物而改变原来传播方向的现象称为声波的反射.围绕发生的音叉转一周听到忽强忽弱的声音,这种现象实际上就是声波的干涉. 由于声波的波长在17cm 17m 之间,声波很容易绕过障碍物进行传播.我们把这一现象叫声波的衍射.2、声音的共鸣共鸣就声音的共振现象. 3乐音与噪音好听、悦耳的声音叫乐音,是由周期性振动的声源发出的.嘈杂刺耳的声音为噪音,是由非周期性振动的声源产生的.4、音调、响度和音品是乐音的三要素 音调:基音频率的高低,基频高则称音调高.响度:声音强弱的主观描述,跟人、声强(单位时间内通过垂直于声波传播方向的单位面积的能量)等有关.音品:俗称音色,它反映了不同声源发出的声音具有不同的特色,音品由声音所包含的语言的强弱和频率决定. 十一、多普勒效应当波源、观察者相对传播波的介质运动时,观察接受到的频率偏离波源频率的现象,称为多普勒现象,有如下关系RR sR u u νννν±=式中,R ν为观察接收的频率,依赖于观察者相对于媒质的速率(R v )和波源相对于媒质的速率(s v ),s v 为波源的频率,u 为波速.【例题】例1 如图所示,弹簧下端固定在水平桌面上,当质量为1m 的A 物体连接在弹簧的上端并保持静止时,弹簧被压缩了长度a 。

高中物理竞赛机械振动和机械波知识点讲解

高中物理竞赛机械振动和机械波知识点讲解

高中物理竞赛机械振动和机械波知识点讲解知识点击1.简谐运动的描述和基本模型⑴简谐振动的描述:当一质点,或一物体的质心偏离其平衡位置x,且其所受合力kk2???xx?a???0)kx??(k?F满足,故得,F mm则该物体将在其平衡位置附近作简谐振动。

⑵简谐运动的能量:一个弹簧振子的能量由振子的动能和弹簧的弹性势能构成,111?222??kx??mkAE即222?F??kx,那么这个物体⑶简谐运动的周期:如果能证明一个物体受的合外力?m2?2??T,式中m一定做简谐运动,而且振动的周期是振动物体的质量。

?k⑷弹簧振子:恒力对弹簧振子的作用:只要m和k都相同,则弹簧振子的振动周期T就是相同的,这就是说,一个振动方向上的恒力一般不会改变振动的周期。

多振子系统:如果在一个振动系统中有不止一个振子,那么我们一般要找振动系统的等效质量。

悬点不固定的弹簧振子:如果弹簧振子是有加速度的,那么在研究振子的运动时应加上惯性力.5⑸单摆及等效摆:单摆的运动在摆角小于l?l和0时可近似地看做是一个简谐运动,振g2T?的含义及值会发生变化。

,在一些“异型单摆”中,动的周期为g(6)同方向、同频率简谐振动的合成:若有两个同方向的简谐振动,它们的圆频率??,则它们的运动学方程分别为和和都是ω,振幅分别为AA,初相分别为2121??)cos(A?t?x111??)cos(A?t?x222x仍应在同一直线因振动是同方向的,所以这两个简谐振动在任一时刻的合位移x?x?x上,而且等于这两个分振动位移的代数和,即21??)tAcos(?x?由旋转矢量法,可求得合振动的运动学方程为这表明,合振动仍是简谐振动,它的圆频率与分振动的圆频率相同,而其合振幅为22??)Acos(?AA?A?2A?121122??sinsinA?A?2211?tan合振动的初相满足??cosA?Acos2112 2.机械波:(1)机械波的描述:如果有一列波沿x 方向传播,振源的振动方程为y=Acosωt,?,那么在离振源x波的传播速度为远处一个质点的振动方程便是x???(t??Acos)y,在此方程中有两个自变量:t和x,当t不变时,这个方程描写?????某一时刻波上各点相对平衡位置的位移;当x不变时,这个方程就是波中某一点的振动方程.(2)简谐波的波动方程:简谐振动在均匀、无吸收的弹性介质中传播所形成的波ox xyo?轴正方向传播,振沿平面内,以波速叫做平面简谐波。

(高考系列)高中物理竞赛教程(超详细)_第九讲_动量_角动量..

(高考系列)高中物理竞赛教程(超详细)_第九讲_动量_角动量..

第四讲动量角动量和能量§4.1动虽与冲量动童定理4. 1. 1.动量在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。

当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。

物体的质量和速度的乘积mv遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。

在这些事实基础上,人们就引用mv来星度物体的“运动量”,称之为动量。

4. 1. 2.冲量要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小的力作用较长的时间,只要力F和力作用的时间也的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F△,叫做冲量。

4. 1. 3.质点动量定理由牛顿定律,容易得出它们的联系:对单个物体:FAi=ma^t=/nAv=mv x-mv Q FZ=Np即冲量等于动量的增量,这就是质点动定理.在应用动量:定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一宣线上时,可将矢景投影到某方向上,分量式为:F4=mv tt-mv Qs气&=-mv Qy F=Z=mv c-mv0:对于多个物体组成的物体系,按照力的作用者划分成内力和外力。

对各个质点用动量定理:第1个,外+L内=扪十1,一川+|。

第2个匕外+4内='"2四一华玲0第n个/“外+/”内=""”一〃"”0由牛顿第三定律:,内+匕内+....+A»内=0因此得到:L外+】2外+……+.外=(WiV l/+zn2v2/+......+m n v n,)_(w,v,0+/n2v20+......m…v nQ)即:质点系所有外力的冲量和等于物体系总动量的增量。

§4,2角动虽角动虽守值定律动量对空间某点或某轴线的矩,叫动量矩,也叫角动量。

它的求法跟力矩完全一样,只要把力F换成动量P即可,故B点上的动量P对原点O的动量矩J为J=rxP(尸=OB)以下介绍两个定理:O(1).角动量定理:质点对某点或某轴线的动景矩对时间的微商,等于作用在该质点上的力对比同点或同轴的力矩,即dJ u出(M为力矩)。

(完整word)高中物理机械波教案讲义.doc

(完整word)高中物理机械波教案讲义.doc

机械振动与机械波一、基础知识1. 简谐运动2π ( 1)位移表达式:x=Asin( ωt+ φ),x 表示距离平衡位置的距离,A 表示振幅, ω表示角速度ω= ,φT表示起始位置的角度。

( 2)特征: 回复力与相对平衡位置的位移成正比。

F=-kx 或 F=-mglx( 3)周期: 弹簧振子 T=2πm;单摆 T=2πl k g2. 机械波( 1)特点: 每个质点都以它的平衡位置为中心做简谐运动,后一质点的振动总是落后于前一质点的 振动。

波的传播只是振动形式的传播,质点不随波移动。

( 2)振动图像: 表示一个质点一段时间内的活动,记录各个时刻相对平衡位置的位移,随时间的推移,图像将沿横坐标正方向延伸,原有图像不发生变化。

( 3)波动图像: 表示某时刻各个质点相对平衡位置的位移,随时间推移,波的图像将沿波的传播方 向平移,每经过一个周期,图像又恢复原来的形状。

λs ( 4 )波的速度: v= T = t( 5)质点的位移和路程:在半周期内,质点的位移为2A ,若t=nT,则路程 s=2nA 。

当质点的初2 始位移为 x 0时,经过 T的奇数倍时, x 1=-x 0,经过 T的偶数倍时, x 2 0 。

22 =x二、习题1.一列沿 x 轴正方向传播的简谐机械横波 ,波速为 4m/s 。

某时刻波形如图所示,下列说法正确的是 ( D)A. 这列波的振幅为 4 cmB. 这列波的周期为 1 sC.此时 x= 4m 处质点沿 y 轴负方向运动D. 此时 x= 4m 处质点的加速度为λ振幅为 2cm , A 错。

T= v =2s , B 错。

同侧法 x=4m 处质点沿 y 轴正方向运动, C 错。

平衡位置的质点速度最大,加速度为 0,D 对。

2.一列横波在x 上播。

t= 0s ,x 上0 至12m 区域内的波形象如所示(x= 8m 的点P 恰好位于平衡位置),t= 1.2s ,其恰好第三次重复出示的波形。

根据以上的信息,不能确定的是( C )A. 波的播速度的大小B. t= 1.2s 内点P 的路程C.t= 0.6s 刻点P 的速度方向D. t= 0.6s 刻的波形1.2s 第三次重复出示的波形,明周期T=0.6s,波知道,可以确定波速, A 。

高中物理竞赛讲义(完整版)

高中物理竞赛讲义(完整版)

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (4)一、高中物理奥赛概况 (4)二、知识体系 (4)第一部分力&物体的平衡 (5)第一讲力的处理 (5)第二讲物体的平衡 (7)第三讲习题课 (7)第四讲摩擦角及其它 (11)第二部分牛顿运动定律 (13)第一讲牛顿三定律 (13)第二讲牛顿定律的应用 (13)第二讲配套例题选讲 (20)第三部分运动学 (21)第一讲基本知识介绍 (21)第二讲运动的合成与分解、相对运动 (22)第四部分曲线运动万有引力 (24)第一讲基本知识介绍 (24)第二讲重要模型与专题 (25)第三讲典型例题解析 (33)第五部分动量和能量 (33)第一讲基本知识介绍 (33)第二讲重要模型与专题 (35)第三讲典型例题解析 (46)第六部分振动和波 (46)第一讲基本知识介绍 (46)第二讲重要模型与专题 (49)第三讲典型例题解析 (58)第七部分热学 (58)一、分子动理论 (58)二、热现象和基本热力学定律 (60)三、理想气体 (61)四、相变 (67)五、固体和液体 (71)第八部分静电场 (71)第一讲基本知识介绍 (71)第二讲重要模型与专题 (74)第九部分稳恒电流 (83)第一讲基本知识介绍 (83)第二讲重要模型和专题 (87)第十部分磁场 (95)第一讲基本知识介绍 (95)第二讲典型例题解析 (98)第十一部分电磁感应 (103)第一讲、基本定律 (103)第二讲感生电动势 (106)第三讲自感、互感及其它 (109)第十二部分量子论 (112)第一节黑体辐射 (112)第二节光电效应 (114)第三节波粒二象性 (120)第四节测不准关系 (123)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称IPhO)① 1967年第一届,(波兰)华沙,只有五国参加。

高二物理竞赛振动和波动课件

高二物理竞赛振动和波动课件
5.理解同频垂直振动的合成。 6.了解不同频、同方向振动的合成。 7.了解不同频、相互垂直的两个简谐振动的合成结果。 8.了解谐振分析。 9.了解阻尼振动和受迫振动,了解位移共振和速度共振。

10.理解机械波产生的条件。 掌握根据已知质点的简谐振动方程 建立平面简谐波的波动方程的方法, 以及波动方程的物理意义,理解波形曲线。
它们的合振动为有一定规律的稳定的闭合曲线,
m
另一端连结一个可以视为质点的 了解不同频、同方向振动的合成。
14.理解驻波及其形成条件。
自由运动的物体所组成的振动系统, 这个物体连同对它施加回复力的物体组成振动系统。
这个物体连同对它施加回复力的物体组成振动系统。
便是一个弹簧振子。 比位移的相位超前 。
这样的振动称为简谐振动。 了解波的衍射。
理解半波损失。 15.了解多普勒效应及其产生原因。 13.了解声波。
二、内容提要

1.简在一有限范围内变动,
就说该物理量在振动。
如果物理量在振动时, 周期振动 每隔一定的时间间隔其数值就重复一次,
这样的振动称为周期振动。
简谐振动
如果物体振动的位移随时间按正(余)弦函数规律变化
A A12 A22 2A1 A2 cos(2 1)
tan A1 sin 1 A2 sin 2 A1 cos1 A2 cos2
合振动的振幅最大 A A12 A22 2A1 A2 A1 A2
合振动的振幅最小 A A12 A22 2A1 A2 A1 A2
(2)同频率、相互垂直的两简谐振动的合成,一般为椭圆运动。
x
O
x
理解惠更斯原理和波的叠加原理。 掌握波的相干条件。
d x 能建立弹簧振子和单摆谐振动的微分方程。

高中物理竞赛名校冲刺讲义设计—机械波第一节机械波产生和传播

高中物理竞赛名校冲刺讲义设计—机械波第一节机械波产生和传播

2021高中物理竞赛江苏省苏州高级中学竞赛班上课讲义第九章机械振动第一次课:2学时1 题目:§机械波的产生和传播§平面简谐波的波动方程简谐振动的特征量§波的能量能流密度目的:掌握平面简谐波的波动方程及其物理意义,理解波形图。

掌握平面简谐波的特征量。

掌握由质点的简谐振动方程建立波动方程的方法。

理解谐波的能流和能流密度的概念。

一、引入课题:振动在空间的传播过程叫做波动,波动是一种重要的运动形式。

波现象广泛存在于自然界中,投石于静水中,水面兴波;击物发声,激起声波;光波引起视觉;无线电涉及其电视工作。

近代物理告诉我们,微观粒子乃至任何物质都具有波动性,这种波叫物质波。

这些波虽然本质上不相同,但很多基本规律是一样的。

由于机械波最富于直观性,我们通过学习机械波来掌握波的基本规律。

本章讨论:机械波(Mechanicalwave)的特征和有关规律,具体为,(1)波动的根本概念;(2)与波的传播特性有关的原理、现象和规律;(3)与波的叠加特性有关的原理、现象和规律。

二、讲授新课:§ 机械波的产生和传播一、机械波产生的条件机械波:机械振动在弹性介质中的传播。

1.波源:引起波动的初始振动的物体 介质:能够传播这种机械振动的弹性介质 注意:〔1〕波动只是振动状态的传播,介质中的各质点并不随波前进,各质点只是在各自的平衡位置附近振动; 〔2〕振动状态的传播速度称为波速; 〔3〕波速和质点的振动速度是两个概念。

简谐波:假设媒质中的所有质元均按一定的相位传播规律做简谐振动,此种波称为简谐波(simpleharmonicwave)。

以下我们主要讨论简谐波。

波是振动状态的传播以弹性绳上的横波为例,由图可见:·0····4····8····12····16····20····t=0·········································································· ························t=T/4t=T/2 t=3T/4t=T由图可见:(1)媒质中各质元都只在自己的平衡位置附近振动,并未“随波逐流〞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五讲 机械振动和机械波§5.1简谐振动5.1.1、简谐振动的动力学特点如果一个物体受到的回复力回F与它偏离平衡位置的位移x 大小成正比,方向相反。

即满足:K F -=回的关系,那么这个物体的运动就定义为简谐振动。

根据牛顿第二定律,物体的加速度m Km F a -==回x ,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大小成正比,方何相反。

现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。

现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。

当物体运动到离O 点距离为x 处时,有mg x x k mg F F -+=-=)(0回式中0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,因此kx F =回说明物体所受回复力的大小与离开平衡位置的位移x 成正比。

因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。

注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。

5.1.2、简谐振动的方程由于简谐振动是变加速运动,讨论起来极不方便,为此。

可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0ϕ,那么在时刻t ,参考圆上的质点与O 的连线跟x 的夹角就成为0ϕωϕ+=t ,它在x 轴上的投影点的坐标)cos(0ϕω+=t A x (2)这就是简谐振动方程,式中0ϕ是t=0时的相位,称为初相:0ϕω+t 是t 时刻的相位。

参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是0cos(ϕωω+-=t A v ) (3) 这也就是简谐振动的速度参考圆上的质点的加速度为2ωA ,其方向指向圆心,它在x 轴上的投影是02cos(ϕωω+-=t A a ) (4) 这也就是简谐振动的加速度由公式(2)、(4)可得x a 2ω-=由牛顿第二定律简谐振动的加速度为x m km F a -==因此有m k=2ω (5)简谐振动的周期T 也就是参考圆上质点的运动周期,所以图5-1-1图5-1-2k m w T ⋅==ππ225.1.3、简谐振动的判据物体的受力或运动,满足下列三条件之一者,其运动即为简谐运动: ①物体运动中所受回复力应满足 kx F -=;②物体的运动加速度满足 x a 2ω-=;③物体的运动方程可以表示为)cos(0ϕω+=t A x 。

事实上,上述的三条并不是互相独立的。

其中条件①是基本的,由它可以导出另外两个条件②和③。

§5.2 弹簧振子和单摆简谐振动的教学中经常讨论的是弹簧振子和单摆,下面分别加以讨论。

5.2.1、弹簧振子弹簧在弹性范围内胡克定律成立,弹簧的弹力为一个线性回复力,因此弹簧振子的运动是简谐振动,振动周期k mT π2=。

(1)恒力对弹簧振子的作用比较一个在光滑水平面上振动和另一个竖直悬挂振动的弹簧振子,如果m 和k 都相同(如图5-2-1),则它们的振动周期T 是相同的,也就是说,一个振动方向上的恒力不会改变振动的周期。

如果在电梯中竖直悬挂一个弹簧振子,弹簧原长0l ,振子的质量为m=1.0kg ,电梯静止时弹簧伸长l ∆=0.10m ,从t=0时,开始电梯以g/2的加速度加速下降s t π=,然后又以g/2加速度减速下降直至停止试画出弹簧的伸长l ∆随时间t 变化的图线。

由于弹簧振子是相对电梯做简谐运动,而电梯是一个有加速度的非惯性系,因此要考虑弹簧振子所受到的惯性力f 。

在匀速运动中,惯性力是一个恒力,不会改变振子的振动周期,振动周期m k T /2/2πωπ==因为l mg k ∆=/,所以 物体受力平衡点为平衡位置,速度为零时与平衡点距离即为振幅)(2.02s g l T ππ=∆=因此在电梯向下加速或减速运动的过程中,振动的次数都为)(52.0//次===ππT t n当电梯向下加速运动时,振子受到向上的惯性力mg/2,在此力和重力mg 的共同作用下,振子的平衡位置在2//211l k mg l ∆==∆的地方,同样,当电梯向下减速运动时,振子的平衡位置在2/3/232l k mg l ∆==∆的地方。

在电梯向下加速运动期间,振子正好完成5次全振动,因此两个阶段内振子的振幅都是2/l ∆。

弹簧的伸长随时间变化的规律如图5-2-2所示,读者可以思考一下,如果电梯第二阶段的匀减速运动不是从5T 时刻而是从4.5T 时刻开始的,那么t l ~∆图线将是怎样的?(2)弹簧的组合 设有几个劲度系数分别为1k 、2k ……n k的轻弹簧串联起来,组成一个新弹簧组,当这个图5-2-12图5-2-2新弹簧组在F 力作用下伸长时,各弹簧的伸长为1x ,那么总伸长∑==ni ix x 1各弹簧受的拉力也是F ,所以有i i k F x /=故∑==ni i k F x 11根据劲度系数的定义,弹簧组的劲度系数x F k /=即得∑==ni i k k 11/1 如果上述几个弹簧并联在一起构成一个新的弹簧组,那么各弹簧的伸长是相同的。

要使各弹簧都伸长x ,需要的外力∑∑====ni in i i k x x k F 11根据劲度系数的定义,弹簧组的劲度系数∑===ni ik x Fk 1导出了弹簧串、并联的等效劲度系数后,在解题中要灵活地应用,如图5-2-3所示的一个振动装置,两根弹簧到底是并联还是串联?这里我们必须抓住弹簧串并联的本质特征:串联的本质特征是每根弹簧受力相同;并联的本质特征是每根弹簧形变相同。

由此可见图5-2-3中两根弹簧是串联。

当m 向下偏离平衡位置x ∆时,弹簧组伸长了2 x ∆,增加的弹力为212122k k k k xxk F +∆=∆=m 受到的合外力(弹簧和动滑轮质量都忽略)x k k kk k k k k xF ∆+=+∆⨯=∑21212121422所以m 的振动周期21214)(2k k k k m T +=π=2121)(k k k k m +π再看如图5-2-4所示的装置,当弹簧1由平衡状态伸长1l ∆时,弹簧2由平衡位置伸长了2l ∆,那么,由杆的平衡条件一定有(忽略杆的质量)b l k a l k 2211∆=∆∙1212l b ak k l ∆⋅⋅=∆由于弹簧2的伸长,使弹簧1悬点下降122212l b a k k b a l x ∆⋅⋅=∆='∆因此物体m 总的由平衡位置下降了图5-2-3图5-2-422221111l b a k k x l x ∆⎪⎪⎭⎫⎝⎛+⋅='∆+∆=∆此时m 所受的合外力1222122111x b k a k b k k l k F ∆+=∆=∑所以系统的振动周期2212221)(2b k k b k a k m T +=π(3)没有固定悬点的弹簧振子 质量分别为A m 和B m 的两木块A 和B ,用一根劲度系数为k 的轻弹簧连接起来,放在光滑的水平桌面上(图5-2-5)。

现在让两木块将弹簧压缩后由静止释放,求系统振动的周期。

想象两端各用一个大小为F 、方向相反的力将弹簧压缩,假设某时刻A 、B 各偏离了原来的平衡位置A x 和B x ,因为系统受的合力始终是零,所以应该有B B A A x m x m = ① A 、B 两物体受的力的大小k x x F F B A B A )(+== ②由①、②两式可解得ABBA A x m m m k F +=BB BA B x m m m k F +=由此可见A 、B 两物体都做简谐运动,周期都是)(2B A BA m m k m m T +=π此问题也可用另一种观点来解释:因为两物体质心处的弹簧是不动的,所以可以将弹簧看成两段。

如果弹簧总长为0l ,左边一段原长为0l m m m B A B +,劲度系数为k m m m B B A +;右边一段原长为0l m m m B A A+,劲度系数为k m m m B BA +,这样处理所得结果与上述结果是相同的,有兴趣的同学可以讨论,如果将弹簧压缩之后,不是同时释放两个物体,而是先释放一个,再释放另一个,这样两个物体将做什么运动?系统的质心做什么运动?5.2.2、单摆一个质量为m 的小球用一轻质细绳悬挂在天花板上的O 点,小球摆动至与竖直方向夹θ角,其受力情况如图5-2-6所示。

其中回复力,即合力的切向分力为θsin ⋅=mg F 回当θ<5º时,△OAB 可视为直角三角形,切向分力指向平衡位置A ,且l x=θsin ,所以x l mgF =回图5-2-5图5-2-6kx F =回(式中l mg k =)说明单摆在摆角小于5º时可近似地看作是一个简谐振动,振动的周期为g l k m T ππ22==在一些异型单摆中,l 和g 的含意以及值会发生变化。

(1)等效重力加速度g '单摆的等效重力加速度g '等于摆球相对静止在平衡位置时,指向圆心的弹力与摆球质量的比值。

如在加速上升和加速下降的升降机中有一单摆,当摆球相对静止在平衡位置时,绳子中张力为)(a g m ±,因此该单摆的等效重力加速度为g '=a g ±。

周期为a g lT ±=π2 再如图5-2-7所示,在倾角为θ的光滑斜面上有一单摆,当摆球相对静止在平衡位置时,绳中张力为θsin mg ,因此单摆的等效重力加速度为g '=θsin g ,周期为θπsin 2g l T = 又如一节车厢中悬挂一个摆长为l 的单摆,车厢以加速度a 在水平地面上运动(如图5-2-8)。

由于小球m 相对车厢受到一个惯性力ma f =,所以它可以“平衡”在OA 位置,g atga =,此单摆可以在车厢中以OA 为中心做简谐振动。

当小球相对静止在平衡位置A 处时,绳中张力为22g a m +,等效重力加速度22g a g +=',单摆的周期222g a l T +=π(2)等效摆长l '单摆的等效摆长并不一定是摆球到悬点的距离,而是指摆球的圆弧轨迹的半径。

如图5-2-9中的双线摆,其等效摆长不是l ,而是θsin l ,周期g l T θπsin 2=再如图5-2-10所示,摆球m 固定在边长为L 、质量可忽略的等边三角形支架ABC 的顶角C 上,三角支架可围绕固定的AB 边自由转动,AB 边与竖直方向成a 角。

当m 作小角度摆动时,实际上是围绕AB 的中点D 运动,故等效摆长L L l 2330cos 0=='正因为m 绕D 点摆动,当它静止在平衡位置时,指向D 点的弹力为a mg sin ,等效重力加速度为a g sin ,因此此异型摆的周期图5-2-7a图5-2-8图5-2-9图5-2-10a g L g l T sin 2322ππ=''=(3)悬点不固定的单摆如图5-2-11,一质量为M 的车厢放在水平光滑地面上,车厢中悬有一个摆长为l ,摆球的质量为m 的单摆。

相关文档
最新文档