用配方法解一元二次方程

合集下载

2.2.2用配方法求解一元二次方程(教案)

2.2.2用配方法求解一元二次方程(教案)
3.重点难点解析:在讲授过程中,我会特别强调配方法的步骤和一元二次方程的求解这两个重点。对于难点部分,我会通过具体的方程示例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用配方法求解一个具体的一元二次方程,从而直观地看到结果。
3.培养学生的数学运算能力,熟练运用配方法解一元二次方程,提高解题效率;
4.培养学生的数据分析能力,让学生在解决一元二次方程问题时,能够分析问题、提炼关键信息,并进行合理判断;
5.培养学生的创新意识,鼓励学生在掌握配方法的基础上,探索和尝试新的解题方法,提高解决问题的灵活性。
三、教学难点与重点
1.教学重点
-实际问题的数学建模:培养学生将现实问题抽象成一元二次方程,并运用配方法求解的能力。
-重点细节:
-识别问题中的已知量和未知量,建立方程模型;
-将实际问题中的条件转化为方程的约束条件;
-运用配方法求解方程,得出问题的解答。
2.教学难点
-配方法的推导过程理解:学生需要理解配方法背后的数学原理,这对于逻辑思维能力有一定的要求。
-难点举例:
-学生可能会对为什么要添加和减去同一个数感到困惑;
-对于如何将方程转化为完全平方公式感到不熟悉。
-配方法在实际问题中的应用:将配方法应用于解决实际问题,需要学生具备一定的分析能力和创造性思维。
-难点举例:
-在实际问题中,学生可能难以找到合适的方程模型;
-在应用配方法时,可能会出现计算错误,导致最终答案错误。
-配方法的步骤及应用:配方法是一元二次方程求解的重要方法,本节课的核心是让学生掌握配方法的步骤,并能将其应用于求解实际问题。

初中数学教学课例《用配方法求解一元二次方程》课程思政核心素养教学设计及总结反思

初中数学教学课例《用配方法求解一元二次方程》课程思政核心素养教学设计及总结反思

要性和作用,基于学生的学习心理规律,在学习了估算
法求解一元二次方程的基础上,学生自然会产生用简单
方法求其解的欲望;同时在以前的数学学习中学生已经
经历了很多合作学习的过程,具有了一定的合作学习的
经验,具备了一定的合作与交流的能力。
活动目的:利用实际问题,让学生初步体会开方法
在解一元二次方程中的应用,为后面学习配方法作好铺
两边都加上(一次项系数 8 的一半的平方),得
x2+8x+42=9+42.
(x+4)2=25
开平方,得 x+4=±5,
即 x+4=5,或 x+4=-5.
所以 x1=1,x2=-9.
(2)解决梯子底部滑动问题:(仿照例 1,学生
独立解决)
解:移项得 x2+12x=15,
两边同时加上 62 得,x2+12x+62=15+36,即
可以根据学生的实际情况进行适当调整。学生在初一、
初二已经学过完全平方公式和如何对一个正数进行开
方运算,而且普遍掌握较好,所以本节课从这两个方面 入手,利用几个简单的实际问题逐步引入配方法。教学 中将难点放在探索如何配方上,重点放在配方法的应用 上。本节课老师安排了三个例题,通过前两个例题规范 用配方法解一元二次方程的过程,帮助学生充分掌握用 配方法解一元二次方程的技巧,同时本节课创造性地使 用教材,把配方法(3)中的一个是设计方案问题改编 成一个实际应用问题,让学生体会到了方程在实际问题 中的应用,感受到了数学的实际价值。培养了学生分析 问题,解决问题的能力。
一个正数的两个平方根,并且也学习了完全平方公式。
在本章前面几节课中,又学习了一元二次方程的概念,
并经历了用估算法求一元二次方程的根的过程,初步理

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1

x

=
.


4
16

3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )

用配方法解一元二次方程

用配方法解一元二次方程

以上解法中,为什么在方程 x 6 x 4
2
两边加9 ? 加其他数行吗? 像上面那样,通过配成完全平方形式来解一 元二次方程的方法叫做
配方法解一元二次方程

2
a 的形式.(a为非负常数)
解一元二次方程的基本思路
二次方程 一次方程(降次)
把原方程转化为(x+a)2=b的形 式 (其中a、b是常数)
a2+2ab+b2=(a+b)2
反过来:
(a+b)2=a2+2ab+b2
你能填上适当的数使其构成完全平方吗?
(1) x
2
2 2 1 2 x _____ 1 ( x ___)
2 2 (2) x 8 x _____ 4 4 ( x ___) 2 5 2 2 5 (3) y 5 y _____ ( y ___) 2 2 2 2 2 1 1 1 (4) y y ____ ( y ___) 4 2 4 2
-1 8.若a2+2a+b2-6b+10=0,则a= 。
,3 b=
1.一般地,对于形如x2=a(a≥0)的方程, 根据平方根的定义,可解得 x a ,x a 1 2 这种解一元二次方程的方法叫做直接开平方 法.
2.把一元二次方程的左边配成一个完全平方 式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法. 注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
x 6x 4 0
2
移项 2
两边加上32,使左边配成 完全平方式
2
x 6 x 3 4 3
2 2
左边写成完全平方的形式

1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法考点一.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.考点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.题型1:配方法解一元二次方程1.用配方法解一元二次方程2620x x -+=,此方程可化为( )A .2(3)7x -=B .2(3)11x -=C .2(3)7x +=D .2(3)11x +=【答案】A 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.2222()a ab b a b ±+=±【解析】解:2620x x -+=Q ,262x x \-=-,则26929x x -+=-+,即()237x -=,故选:A .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.2.用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( )A .103B .73C .2D .433.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t æö-=ç÷èøD .23420x x --=化为221039x æö-=ç÷èø【答案】B【分析】根据配方的步骤计算即可解题.【解析】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确,故选:B【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化1;第二步移项,把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完全平方式;第五步,直接开方即可.4.关于y 的方程249996y y -=,用___________法解,得1y =__,2y =__.【答案】 配方 102 98-【分析】利用配方法解一元二次方程即可得.【解析】249996y y -=,24499964y y -+=+,2(2)10000y -=,2100y -=±,1002y =±+,12102,98y y ==-,故答案为:配方,102,98-.【点睛】本题考查了利用配方法解一元二次方程即可得,熟练掌握配方法是解题关键.5.用配方法解方程ax 2+bx +c =0(a ≠0),四个学生在变形时得到四种不同结果,其中配方正确的是( )A .2224()24b ac b x a a -+=B .2224()22b b ac x a a -+=C .2224()24b b ac x a a -+=D .2222()22b b ac x a a ++=6.用配方法解方程22103x x -+=,正确的是( )A .212251()1,,333x x x -===-B .224(),39x x -==C .238(29x -=-,原方程无实数解D .2()1839x -=-,原方程无实数解7.用配方法解下列方程:(1)2352x x -=;(2)289x x +=;(3)212150x x +-=;(4)21404x x --=;(5)2212100x x ++=;(6)()22040x px q p q ++=-³.8.ABC D 的三边分别为a 、b 、c ,若8+=b c ,21252bc a a =-+,按边分类,则ABC D 是______三角形【答案】等腰【分析】将8+=b c ,代入21252bc a a =-+中得到关系式,利用完全平方公式变形后,根据非负数的性质求出a 与c 的值,进而求出b 的值,即可确定出三角形形状.【解析】解:∵8+=b c ∴8b c =- ,∴()288bc c c c c =-=-+,∴2212528bc a a c c =-+=-+,即2212361680a a c c -+++-=,整理得:()()22640a c -+-=,∵()260a -³,()240c -³,∴60a -=,即6a =;40c -=,即4c =,∴844b =-=,则△ABC 为等腰三角形.故答案是:等腰.【点睛】此题考查了配方法的应用,非负数的性质,以及等腰三角形的判定,熟练掌握完全平方公式是解本题的关键.9.如果一个三角形的三边均满足方程210250x x -+=,则此三角形的面积是______10.已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【解析】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.题型3:配方法的应用2-比较整式大小与求值问题11.若M =22x -12x +15,N =2x -8x +11,则M 与N 的大小关系为( )A .M ≥NB .M >NC .M ≤ND .M <N 【答案】A【解析】∵M=22x -12x +15,N=2x -8x +11,∴M-N=222222(21215)(811)2121581144(2)x x x x x x x x x x x -+--+=-+-+-=-+=- .∵2(2)0x -³,∴M-N ³0,∴M ³N.故选A.点睛:比较两个含有同一字母的代数式的大小关系时,当无法直接比较两者的大小关系时,可以通过求出两者的“差”,再看“差”的值是“正数”、“负数”或“0”来比较两者的大小.12.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定【答案】A【分析】把x =a 代入3个方程得出a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,3个方程相加即可得出(a +b +c )(a 2+a +1)=0,即可求出答案.【解析】把x =a 代入ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0得:a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,相加得:(a +b +c )a 2+(b +c +a )a +(a +b +c )=0,13.已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-14.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【分析】把二次三项式进行配方即可解决.【解析】配方得:226(3)9x x c x c -+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴90c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.15.无论x 、y 取任何实数,多项式x 2+y 2-2x -4y+16的值总是_______数.【答案】正【解析】x 2+y 2-2x -4y +16=(x 2-2x +1)+(y 2-4y +4)-1-4+16=(x -1)2+(y -2)2+11,由于(x -1)2≥0,(y -2)2≥0,故(x -1)2+(y -2)2+11≥11,所以x 2+y 2-2x -4y +16的值总是正数.故答案为正.点睛:要证明一个式子的值总是正数,可以用配方法将式子写成多个非负数之和与一个正数的和的形式即可证明.16.不论x ,y 为什么数,代数式4x 2+3y 2+8x ﹣12y +7的值( )A .总大于7B .总不小于9C .总不小于﹣9D .为任意有理数【答案】C【分析】先将原式配方,然后根据偶次方的非负性质,判断出代数式的值总不小于−9即可.【解析】解:4x 2+3y 2+8x ﹣12y +7=4x 2+8x +4+3y 2−12y +3=4(x 2+2x +1)+3(y 2−4y +1)=4(x +1)2+3(y 2−4y +4−4+1)=4(x +1)2+3(y −2)2−9,∵(x +1)2≥0,(y −2)2≥0,∴4x 2+3y 2+8x ﹣12y +7≥−9.即不论x 、y 为什么实数,代数式4x 2+3y 2+8x ﹣12y +7的值总不小于−9.故选:C .【点睛】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.解决本题的关键是掌握配方法.17.若12123y z x +--==,则x 2+y 2+z 2可取得的最小值为( )A .3B .5914C .92D .618.关于代数式12a a ++,有以下几种说法,①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a =③若2a >-,则12a a ++存在最小值且最小值为0.在上述说法中正确的是( )A .①B .①②C .①③D .①②③19.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =.这个公式也被称为海伦—秦九韶公式.若3p =,2c =,则此三角形面积的最大值是_________.20.已知y=x,y均为实数),则y的最大值是______.21.已知152a b c +--=-,则a b c ++=____________22.已知212y x x c =+-,无论x 取任何实数,这个式子都有意义,则c 的取值范围_______.【答案】c <−1【分析】将原式分母配方后,根据完全平方式的值为非负数,只需−c−1大于0,求出不等式的解集即可得到c 的范围.【解析】原式分母为:x 2+2x−c =x 2+2x +1−c−1=(x +1)2−c−1,∵(x +1)2≥0,无论x 取任何实数,这个式子都有意义,∴−c−1>0,解得:c <−1.故填:c <−1【点睛】此题考查了配方法的应用,以及分式有意义的条件,灵活运用配方法是解本题的关键.23.(1)设220,3a b a b ab >>+=,求a b a b+-的值.(2)已知代数式257x x -+,先用配方法说明:不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?24.选取二次三项式2(0)ax bx c a ++¹中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(4)x x x x -+=+-或2242((4x x x x -+=+-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.25.若实数x ,y ,z 满足x <y <z 时,则称x ,y ,z 为正序排列.已知x =﹣m 2+2m ﹣1,y =﹣m 2+2m ,若当m 12>时,x ,y ,z 必为正序排列,则z 可以是( )A .m 14+B .﹣2m +4C .m 2D .1A.甲B.乙C.丙D.丁故选:D .【点睛】本题考查了解一元二次方程,掌握配方法是解题的关键.7.代数式243x x -+的最小值为( ).A .1-B .0C .3D .5【答案】A【分析】利用配方法对代数式做适当变形,通过计算即可得到答案.【解析】代数式()2224344121x x x x x -+=-+-=--∵()220x -³,∴()2211x --³-即代数式2|431x x -+³-,故选:A .【点睛】本题考查了完全平方公式和不等式的知识;解题的关键是熟练掌握完全平方公式和不等式的性质,从而完成求解.8.已知625N m =-,22M m m =-(m 为任意实数),则M 、N 的大小关系为( )A .M N<B .M N >C .M N =D .不能确定【答案】B 【分析】求出M N -的结果,再判断即可.【解析】根据题意,可知()22226258169490M N m m m m m m -=--+=-++=-+>,所以M N >.故选:B .【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.9.若22242021p a b a b =++++,则p 的最小值是( )A .2021B .2015C .2016D .没有最小值【答案】C【分析】将等式右边分组,配成两个完全平方式,即可根据平方的非负性进行解答.【解析】解:22242021p a b a b =++++2221442016a ab b =++++++()()2221442016a ab b =++++++()()22120162a b ++=++,∵()210a +³,()220b +³,∴p 的最小值为2016,故选:C .【点睛】本题主要考查了配方法的应用,解题的关键是将原式分组配方.10.新定义:关于x 的一元二次方程21()0a x m k -+=与22()0a x m k -+=称为“同族二次方程”.如22021(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”,那么代数式22021ax bx ++能取的最小值是( )A .2013B .2014C .2015D .2016【答案】D【分析】根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【解析】解:22(1)10x -+=Q 与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x \++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a \++-+=+-+++,∴42(2)83b a a -=-+ìí=+î,解得:510a b =ìí=-î.∴()22220215102021512016ax bx x x x ++=-+=-+\当1x =时,22021ax bx ++取最小值为2016.故选:D .【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.二、填空题11.将一元二次方程2410x x -+=变形为()2x h k +=的形式为______三、解答题。

2用配方法求解一元二次方程

2用配方法求解一元二次方程

4.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2配方正 确的是 ( )
A.(x-p)2=5
B.(x-p)2=9
C.(x-p+2)2=9 D.(x-p+2)2=5
答案 B ∵x2-6x+q=0可配方为(x-p)2=7,即(x-p)2-7=0,则x2-6x+q=2可配 方为(x-p)2-7=2,即(x-p)2=9.故选B.
的长为
cm.
答案 6
解析 设小矩形的长为x cm,则小矩形的宽为(8-x)cm, 根据题意得x[x-(8-x)]=24. 解得x=6或x=-2(舍去). 故小矩形的长为6 cm.
3.某养牛场的一边靠墙,墙长25 m,另三边用栅栏围成,现有材料可制作 栅栏40 m. (1)养牛场的面积能达到200 m2吗?若能,请求出养牛场的长和宽,若不能, 请说明理由; (2)能围成面积为250 m2的养牛场吗?请说明理由.
一移
通过配成完全平方式来解一元二次方程的方法,叫做配方法 将常数项移到方程等号的右边
步骤
二除 三配 四开
如果二次项系数不是1,将方程两边同时除以二次项系数,将其化为1
方程两边都加上一次项系数一半的平方,将方程左边配成完全平方式 如果方程的右边是一个非负数,就可以直接开平方解方程;如果是一个负数,则原方程
2
程无解,∴不能围成面积为250 m2的养牛场.
一、选择题 1.(2017天津河北汇森中学模拟,8,★★☆)用配方法解下列方程,配方正 确的是 ( ) A.2y2-4y-4=0可化为(y-1)2=4 B.x2-2x-9=0可化为(x-1)2=8 C.x2+8x-9可化为(x+4)2=16 D.x2-4x=0可化为(x-2)2=4 答案 D A.2y2-4y-4=0可化为(y-1)2=3,故错误; B.x2-2x-9=0可化为(x-1)2=10,故错误; C.x2+8x-9=0可化为(x+4)2=25,故错误; D.x2-4x=0可化为(x-2)2=4,故正确.故选D.

解一元二次方程(直接开方法配方法公式法因式分解法)

解一元二次方程(直接开方法配方法公式法因式分解法)

解一元二次方程(直接开方法、配方法、公式法、因式分解法)一元二次方程知识讲解只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【例题讲解】例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得: 40-16x-10x+4x2=18 移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.小试牛刀1. 将方程(x+1)2+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.2求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.10一元二次方程的解叫做一元二次方程的根解一元二次方程:直接开方法配方法公式法因式分解法【例题讲解】例1:解方程:x+4x+4=1 解:由已知,得:(x+2)2=1 直接开平方,得:x+2=±1 即x+2=1,x+2=-1所以,方程的两根x1=-1,x2=-3例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为增长率应为正的,因此,x2=-2.2应舍去.即,每年人均住房面积增长率应为20%.例题共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.?我们把这种思想称为“降次转化思想”直接开方法:由应用直接开平方法解形如x2=p(p≥0),那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±p,达到降次转化之目的.【小试牛刀】1. 求出下列方程的根吗?102(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=02.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?例题讲解例1. 解下列方程(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0 解:(1)移项,得:x2+6x=-5 配方:x+6x+3=-5+3(x+3)=4 由此可得:x+3=±2,即x1=-1,x2=-5 (2)移项,得:2x2+6x=-2二次项系数化为1,得:x2+3x=-1 配方x2+3x+(由此可得x+32335)=-1+()2(x+)2= 2224222355353=±,即x1=-,x2=-- 222222 (3)去括号,整理得:x2+4x-1=0 移项,得x2+4x=1配方,得(x+2)2=5 ,x+2=±5,即x1=5-2,x2=-5-2从以上例题可以看出,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.配方法:总结用配方法解一元二次方程的步骤10(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.【小试牛刀】用配方法解以下方程(1)3x2-5x=2.(2)x2+8x=9(3)x2+12x-15=0 (4)【课堂引入】例1. 用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=52例2.某数学兴趣小组对关于x的方程(m+1)xm212x-x-4=0 4?2+(m-2)x-1=0提出了下列问题.若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.解:存在.根据题意,得:m2+1=2 ,即m2=1 m=±1 当m=1时,m+1=1+1=2≠010当m=-1时,m+1=-1+1=0(不合题意,舍去)∴当m=1时,方程为2x2-1-x=0 a=2,b=-1,c=-1b2-4ac=(-1)2-4×2×(-1)=1+8=9 x=1?(?1)?91?3 即 x1=1,x2=- ?22?241. 2 因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-公式法:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,?b?b2?4ac?将a、b、c代入式子x=就得到方程的根.2a (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.小试牛刀1.用公式法解下列方程.(1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 因式分解法因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A・B=0A=0或B=0.【例题精讲】例1:用因式分解法解下列方程:10感谢您的阅读,祝您生活愉快。

一元二次方程的解法(二)配方法—知识讲解(基础

一元二次方程的解法(二)配方法—知识讲解(基础

一元二次方程的解法(二)配方法—知识讲解(基础)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. (•淄博)解方程:x 2+4x ﹣1=0.【思路点拨】首先进行移项,得到x 2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【答案与解析】解:∵x 2+4x ﹣1=0∴x 2+4x=1∴x 2+4x +4=1+4∴(x +2)2=5 ∴x=﹣2±∴x 1=﹣2+,x 2=﹣2﹣.【总结升华】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 举一反三:【变式】用配方法解方程.(1)x 2-4x-2=0; (2)x 2+6x+8=0.【答案】(1)方程变形为x 2-4x=2.两边都加4,得x 2-4x+4=2+4.利用完全平方公式,就得到形如(x+m)2=n 的方程,即有(x-2)2=6.解这个方程,得x-2=或x-2=-. 于是,原方程的根为x=2+或x=2-. (2)将常数项移到方程右边x 2+6x=-8.两边都加“一次项系数一半的平方”=32,得 x 2+6x+32=-8+32, ∴ (x+3)2=1.用直接开平方法,得x+3=±1,∴ x=-2或x=-4.类型二、配方法在代数中的应用2.若代数式221078M a b a =+-+,2251N a b a =+++,则M N -的值( )A.一定是负数 B.一定是正数 C.一定不是负数 D.一定不是正数【答案】B ;【解析】(作差法)22221078(51)M N a b a a b a -=+-+-+++2222107851a b a a b a =+-+----29127a a =-+291243a a =-++2(32)30a =-+>.故选B. 【总结升华】本例是“配方法”在比较大小中的应用,通过作差法最后拆项、配成完全平方,使此差大于零而比较出大小.【高清ID 号:388499关联的位置名称(播放点名称):配方法与代数式的最值—例4】3.用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0. 【答案与解析】解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣,∵(x ﹣)2≥0,∴﹣8(x ﹣)2≤0,∴﹣8(x ﹣)2﹣<0,即﹣8x 2+12﹣5的值一定小于0.【总结升华】利用配方法将代数式配成完全平方式后,再分析代数式值的符号. 注意在变形的过程中不要改变式子的值.举一反三:【高清ID 号:388499关联的位置名称(播放点名称):配方法与代数式的最值—例4变式1】 【变式】求代数式 x 2+8x+17的最小值【答案】x 2+8x+17= x 2+8x+42-42+17=(x+4)2+1∵(x+4)2≥0,∴当(x+4)2=0时,代数式 x 2+8x+17的最小值是1.4.已知223730216b a a b -+-+=,求4a b -的值. 【思路点拨】解此题关键是把3716拆成91416+ ,可配成两个完全平方式. 【答案与解析】将原式进行配方,得2291304216b a a b ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭, 即2231024a b ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, ∴ 302a -=且104b -=, ∴ 32a =,14b =.∴ 3312222a -=-=-=-. 【总结升华】本题可将原式用配方法转化成平方和等于0的形式,进而求出a .b 的值.一元二次方程的解法(二)配方法—巩固练习(基础)【巩固练习】一、选择题1. (贵州)用配方法解一元二次方程x 2+4x ﹣3=0时,原方程可变形为( )A .(x +2)2=1B .(x +2)2=7C .(x +2)2=13D .(x +2)2=192.下列各式是完全平方式的是( )A .277x x ++B .244m m --C .211216n n ++ D .222y x -+ 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .3±D .以上都不对4.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-15.把方程x 2+3=4x 配方,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=26.用配方法解方程x 2+4x=10的根为( )A .2.-2..二、填空题7.(1)x 2+4x+ =(x+ )2;(2)x 2-6x+ =(x- )2;(3)x 2+8x+ =(x+ )2.8.(长兴县月考)用配方法将方程x 2-6x+7=0化为(x +m )2=n 的形式为 .9.若226x x m ++是一个完全平方式,则m 的值是________.10.求代数式2x 2-7x+2的最小值为 .11.当x= 时,代数式﹣x 2﹣2x 有最大值,其最大值为 .12.已知a 2+b 2-10a-6b+34=0,则的值为 .三、解答题13. 用配方法解方程(1) (2)221233x x +=14.已知a 2+b 2﹣4a+6b+13=0,求a+b 的值.15.已知a ,b ,c 是△ABC 的三边,且2226810500a b c a b c ++---+=.(1)求a ,b ,c 的值;(2)判断三角形的形状.【答案与解析】一、选择题1.【答案】B .【解析】x 2+4x=3,x 2+4x +4=7,(x +2)2=7.2.【答案】C ; 【解析】211216n n ++214n ⎛⎫=+ ⎪⎝⎭. 3.【答案】C ;【解析】 若x 2+6x+m 2是一个完全平方式,则m 2=9,解得m=3±;4.【答案】A ;【解析】a 2-4a+5= a 2-4a+22-22+5=(a-2)2+1 ;5.【答案】C ;【解析】方程x 2+3=4x 化为x 2-4x=-3,x 2-4x+22=-3+22,(x-2)2=1.6.【答案】B ;【解析】方程x 2+4x=10两边都加上22得x 2+4x+22=10+22,x=-214二、填空题7.【答案】(1)4;2; (2)9;3; (3)16;4.【解析】配方:加上一次项系数一半的平方.8.【答案】(x ﹣3)2=2.【解析】移项,得x 2﹣6x=﹣7,在方程两边加上一次项系数一半的平方得,x 2﹣6x +9=﹣7+9, (x ﹣3)2=2.9.【答案】±3;【解析】2239m ==.∴ 3m =±.10.【答案】-338; 【解析】∵2x 2-7x+2=2(x 2-72x )+2=2(x-74)2-338≥-338,∴最小值为-338, 11.【答案】-1,1 【解析】∵﹣x 2﹣2x=﹣(x 2+2x )=﹣(x 2+2x+1﹣1)=﹣(x+1)2+1,∴x=﹣1时,代数式﹣x 2﹣2x 有最大值,其最大值为1;故答案为:﹣1,1.【解析】 -3x 2+5x+1=-3(x-56)2+3712≤3712,• ∴最大值为3712. 12.【答案】4.【解析】∵a 2+b 2-10a-6b+34=0∴a 2-10a+25+b 2-6b+9=0∴(a-5)2+(b-3)2=0,解得a=5,b=3,∴=4.三、解答题13.【答案与解析】(1)x 2-4x-1=0x 2-4x+22=1+22(x-2)2=5x-2=5 x 1=5x 2=5(2) 221233x x += 226x x +=2132x x += 222111()3()244x x ++=+2149()416x +=1744x +=± 132x = 22x =-14.【答案与解析】解:∵a 2+b 2﹣4a+6b+13=0,∴a 2﹣4a+4+b 2+6b+9=0,∴(a ﹣2)2+(b+3)2=0,∴a ﹣2=0,b+3=0,∴a=2,b=﹣3,∴a+b=2﹣3=﹣1.15.【答案与解析】(1)由2226810500a b c a b c ++---+=,得222(3)(4)(5)0a b c -+-+-= 又2(3)0a -≥,2(4)0b -≥,2(5)0c -≥,∴ 30a -=,40b -=,50c -=,∴ 3a =,4b =,5c =.(2)∵ 222345+= 即222a b c +=,∴ △ABC 是以c 为斜边的直角三角形.。

用配方法解一元二次方程

用配方法解一元二次方程

《用配方法解一元二次方程》教案教学目标:(一)教学知识点1.会用配方法解简单的数字系数的一元二次方程。

2.理解用配方法解一元二次方程的基本步骤。

(二)水平训练要求1.理解配方法;知道“配方”是一种常用的数学方法。

2.会用配方法解简单的数字系数的一元二次方程。

3.能说出用配方法解一元二次方程的基本步骤。

(三)情感与价值观要求通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和水平。

教学重点:用配方法求解一元二次方程。

教学难点:理解配方法。

教学方法讲练结合法。

教学过程:导学探究:阅读教材P6-9,回答以下问题:1.将以下各式配成完全平方式:(1)x2 -12x+_____=(x+_____)2;(2)x2 –x +______=(x-_____)2;(3)x2 - x +_______=(x-____)2.2.回顾:(1)等式的基本性质是什么?(2)用直接开平方法解一元二次方程x2 + 6x + 9 = 73.(1)解一元二次方程x2+12x=15的困难在哪里? 如何转化才能将其化为上面方程的形式求解? 试试看. (2)对于一元二次方程x2-2x -2 =0,如何转化才能化为上面方程的形式求解? 试试看. 4.上面解一元二次方程的方法叫什么方法比较适宜? 请你给这种方法下一个定义,并简要说明这种方法的基本思想.归纳梳理1.配方法的基本要求是把一元二次方程的一边配方化为一个__________,另一边化为_________________,然后用法求解.2.配方法的一般步骤:(1)移项,使方程左边为_________项、_______项,右边为_____项:(一移)2.(2)方程两边都除以______系数,将________系数化为l:(二除) (3)配方,方程两边都加上_________________的平方,使方程左边成为一个__________,右边是一个______________的形式;(三配)(4)假如右边是___________,两边直接开平方,求这个一元二次方程的解3..(四开) 假如右边是负数.则这个方程没有实数解. 典例探究1.配方法解一元二次方程【例1】用配方法解以下方程时,配方有错误的选项是()A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25C.2t2﹣7t﹣4=0化为(t﹣)2= D.3x2﹣4x﹣2=0化为(x﹣)2=总结:配方法解一元二次方程的一般步骤:(1)把二次项的系数化为1;(2)把常数项移到等号的右边;(3)等式两边同时加上一次项系数一半的平方.(4)用直接开平方法解这个方程.练1用配方法解方程:(1)x2﹣2x﹣24=0;(2)3x2+8x-3=0;(3)x(x+2)=120. 2.用配方法求多项式的最值4.【例2】当x,y取何值时,多项式x2+4x+4y2﹣4y+1取得最小值,并求出最小值.总结:配方法是求代数式的最值问题中最常用的方法.基本思路是:把代数式配方成完全平方式与常数项的和,根据完全平方式的非负性求代数式的最值.练2用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.练3已知a、b、c为△ABC三边的长.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.夯实基础一、选择题1.若把代数式x2﹣2x+3化为(x﹣m)2+k形式,其中m,k为常数,结果为()A.(x+1)2+4 B.(x﹣1)2+2 C.(x﹣1)2+4 D.(x+1)2+22.一元二次方程x2﹣8x﹣1=0配方后为()A.(x﹣4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x﹣4)2=17或(x+4)2=173.一元二次方程x2﹣6x ﹣5=0配方组可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4二、填空题4.一元二次方程x2﹣6x+a=0,配方后为(x﹣3)2=1,则a=.5.当x=时,代数式3x2﹣6x的值等于12.三、解答题6.用配方法解方程:x2﹣2x﹣4=0.7.试说明:不管x,y取何值,代数式x2+4y2﹣2x+4y+5的值总是正数.你能求出当x,y取何值时,这个代数式的值最小吗?5.8.阅读下面的材料并解答后面的问题:小李:能求出x2+4x﹣3的最小值吗?假如能,其最小值是多少?小华:能.求解过程如下:因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7而(x+2)2≥0,所以x2+4x﹣3的最小值是﹣7.问题:(1)小华的求解过程准确吗?(2)你能否求出x2﹣3x+4的最小值?假如能,写出你的求解过程.9.阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4﹣(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值为4仿照上面的解答过程,求m2+m+4的最小值和4﹣2x﹣x2的最大值.10.已知代数式x2﹣2mx﹣m2+5m ﹣5的最小值是﹣23,求m的值.11.配方法能够用来解一元二次方程,还能够用它来解决很多问题.例如:因为3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此时a=0;同样,因为﹣3(a+1)2≤0,所以﹣3(a+1)2+6≤6,即﹣3(a+1)2+6有最大值6,此时a=﹣1.①当x=时,代数式﹣2(x﹣1)2+3有最(填写大或小)值为.②当x=时,代数式﹣x2+4x+3有最(填写大或小)值为.③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?。

一元二次方程的解法(配方法)

一元二次方程的解法(配方法)

元二次方程的解法(配方法)[内容]教学目标(一)使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0, b≠0, c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;(二)在理的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;(三)在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。

教学重点和难点重点:掌握用配方法配一元二次方程。

难点:凑配成完全平方的方法与技巧。

教学过程设计(一)复习1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)2.不完全一元二次方程的哪几种形式?(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例解方程:(x-3) 2=4 (让学生说出过程)。

解:方程两边开方,得 x-3=±2,移项,得 x=3±2。

所以 x1=5,x2=1. (并代回原方程检验,是不是根)4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。

(把这个展开过程写在黑板上)(x-3) 2=4, ①x2-6x+9=4, ②x2-6x+5=0. ③(二)新课1.逆向思维我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。

这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。

(添一项+1)即 (x2+2x+1)=(x+1) 2.练习,填空:x2+4x+( )=(x+ ) 2; y2+6y+( )=(y+ ) 2.算理 x2+4x=2x·22的平方,y2+6y=y2+2y33的平方。

专题11配方法解一元二次方程-重难点题型(学生版)

专题11配方法解一元二次方程-重难点题型(学生版)

专题2.3 配方法解一元二次方程-重难点题型将一元二次方程配成(x+m)2=n的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型1 用配方法解二次项系数为1的一元二次方程】【例1】(2021春•上城区校级期中)用配方法解一元二次方程x2+2x﹣3=0,配方后得到的方程是()A.(x﹣1)2=4B.(x+1)2=4C.(x+2)2=1D.(x﹣2)2=1【变式1-1】(2020秋•隆回县期末)把x2﹣3x+1=0的左边配方后,方程可化为()A.(x−32)2=134B.(x+32)2=134C.(x−32)2=54D.(x+32)2=54【变式1-2】(2020秋•崂山区期末)解方程:x2﹣5x+1=0(配方法).【变式1-3】(2020秋•白银期末)解方程:x2+2=2√2x.【题型2 用配方法解二次项系数不为1的一元二次方程】【例2】(2020秋•陇县期中)用配方法解方程2x2=7x﹣3,方程可变形为()A.(x−72)2=374B.(x−72)2=434C.(x−74)2=116D.(x−74)2=2516【变式2-1】(2020秋•巩义市期中)用配方法解下列方程时,配方有错误的是()A.2m2+m﹣1=0化为(m+14)2=916B.x2﹣6x+4=0化为(x﹣3)2=5C.2t2﹣3t﹣2=0化为(t−32)2=2516D.3y2﹣4y+1=0化为(y−23)2=19【变式2-2】(2020秋•开江县期末)解方程:3x2+1=2√3x.【变式2-3】(2020春•朝阳区校级期中)已知y 1=13x 2+8x ﹣1,y 2=6x +2,当x 取何值时y 1=y 2.【题型3 利用一元二次方程的配方求字母的值】【例3】(2020秋•津南区期中)一元二次方程x 2﹣8x +c =0配方,得(x ﹣m )2=11,则c 和m 的值分别是( )A .c =5,m =4B .c =10,m =6C .c =﹣5,m =﹣4D .c =3,m =8【变式3-1】(2020•镇江校级期中)已知方程x 2﹣6x +q =0配方后是(x ﹣p )2=7,那么方程x 2+6x +q =0配方后是( )A .(x ﹣p )2=5B .(x +p )2=5C .(x ﹣p )2=9D .(x +p )2=7 【变式3-2】(2020秋•内江期末)如果x 2﹣8x +m =0可以通过配方写成(x ﹣n )2=6的形式,那么x 2+8x +m =0可以配方成( )A .(x ﹣n +5)2=1B .(x +n )2=1C .(x ﹣n +5)2=11D .(x +n )2=6 【变式3-3】(2020秋•邓州市期末)若一元二次方程x 2+bx +5=0配方后为(x ﹣4)2=k ,则k 的值为 .【题型4 利用一元二次方程的配方法解新定义问题】【例4】(2020秋•建平县期末)设a 、b 是两个整数,若定义一种运算“△”,a △b =a 2+b 2+ab ,则方程(x +2)△x =1的实数根是( )A .x 1=x 2=1B .x 1=0,x 2=1C .x 1=x 2=﹣1D .x 1=1,x 2=﹣2【变式4-1】(2021秋•北辰区校级月考)在实数范围内定义运算“☆”和“★”,其规则为:a ☆b =a 2+b 2,a ★b =ab 2,则方程3☆x =x ★12的解为 .【变式4-2】(2020秋•福州期中))将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成|a c bd |,定义|a c b d |=ad ﹣bc ,上述记号就叫做2阶行列式.若|x +11−x x −1x +1|=8x ,则x = .【变式4-3】(2020秋•市中区期中)阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,复数一般表示为a +bi (a ,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加法,减法,乘法运算与整式的加法,减法,乘法运算类似.例如:解方程x 2=﹣1,解得:x 1=i ,x 2=﹣i .同样我们也可以化简√−4=√4×(−1)=√22×i 2=2i ;读完这段文字,请你解答以下问题:(1)填空:i3=,i4=,i6=,i2020=;(2)在复数范围内解方程:(x﹣1)2=﹣1.(3)在复数范围内解方程:x2﹣4x+8=0.【题型5 配方法的应用】【例5】(2021春•常熟市期中)我们知道“a2≥0”,其中a表示任何有理数,也可表示任意代数式.有时我们通过将某些代数式配成完全平方式进行恒等变形来解决符号判断、大小比较等问题,简称“配方法”.例如:x2+2x+2=x2+2x+1+1=(x+1)2+1.∵(x+1)2≥0,∴(x+1)2+1≥1.即:x2+2x+2≥1.试利用“配方法”解决以下问题:(1)填空:x2﹣2x+4=(A)2+B,则代数式A=,常数B=;(2)已知a2+b2=6a﹣4b﹣13,求a b的值;(3)已知代数式M=4x﹣5,N=2x2﹣1,试比较M,N的大小.【变式5-1】(2020秋•石狮市校级月考)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m,n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知△ABC的三边长a,b,c,且满足a2+b2﹣10a﹣12b+61=0,求c的取值范围;(2)已知P=2x2+4y+13,Q=x2﹣y2+6x﹣1,比较P,Q的大小.【变式5-2】(2021春•历城区期中)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,例如:x2﹣8x+17=x2﹣2•x•4+42﹣42+17=(x﹣4)2+1.根据以上材料,解答下列问题:(1)填空:将多项式x2﹣2x+3变形为(x+m)2+n的形式,并判断x2﹣2x+3与0的大小关系,∵x2﹣2x+3=(x﹣)2+;所以x2﹣2x+30(填“>”、“<”、“=”);(2)将多项式x2+6x﹣9变形为(x+m)2+n的形式,并求出多项式的最小值;(3)求证:x、y取任何实数时,多项式x2+y2﹣4x+2y+6的值总为正数.【变式5-3】(2021春•南京月考)教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如:求代数式2x2+4x﹣6的最小值:2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣6m﹣7.(2)当a,b为何值时,多项式a2+b2﹣4a+6b+20有最小值,并求出这个最小值;(3)当a,b为何值时,多项式a2﹣2ab+2b2﹣2a﹣4b+28有最小值,并求出这个最小值.【题型6 一元二次方程的几何解法】【例6】(2020秋•内江期末)《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6B.3√5−3C.3√5−2D.3√5−3 2【变式6-1】(2020春•丰台区期末)公元9世纪,阿拉伯数学家花拉子米在他的名著《代数学》中用图解一元二次方程.他把一元二次方程x2+2x﹣35=0写成x2+2x=35的形式,并将方程左边的x2+2x看作是由一个正方形(边长为x)和两个同样的矩形(一边长为x,另一边长为1)构成的矩尺形,它的面积为35,如图所示,于是只要在这个图形上添加一个小正方形,即可得到一个完整的大正方形,这个大正方形的面积可以表示为:x2+2x+=35+,整理,得(x+1)2=36.因为x表示边长,所以x=.【变式6-2】(2020秋•东海县期中)某“优学团”在社团活动时,研究了教材第12页的“数学实验室”他们发现教材阐述的方法其实是配方过程的直观演示.他们查阅资料还发现,这种构图法有阿拉伯数学家阿尔花拉子米和我国古代数学家赵爽两种不同构图方法.该社团以方程x 2+10x ﹣39=0为例,分别进行了展示,请你完成该社团展示中的一些填空.因为x 2+10x ﹣39=0,所以有x (x +10)=39.展示1:阿尔•花拉子米构图法如图1,由方程结构,可以看成是一个长为(x +10),宽为x ,面积为39的矩形若剪去两个相邻的,长、宽都分别为5和x 的小矩形,重新摆放并补上一个合适的小正方形,可以拼成如图2的大正方形.(1)图2中,补上的空白小正方形的边长为 ;通过不同的方式表达大正方形面积,可以将原方程化为(x + )2=39+ ;展示2:赵爽构图法如图3,用4个长都是(x +10),宽都是x 的相同矩形,拼成如图3所示的正方形.(2)图3中,大正方形面积可以表示为( )2(用含x 的代数式表示);另一方面,它又等于4个小矩形的面积加上中间小正方形面积,即等于4×39+ ,故可得原方程的一个正的根为 .(3)请选择上述某一种拼图方法直观地表示方程x 2+2x =3的配方结果(请在相应位置画出图形,需在图中标注出相关线段的长度).【变式6-3】(2020春•杭州期中)如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 长为半径画弧,交线段AB 于点D ,连接CD .以点A 为圆心,AC 长为半径画弧,交线段AB 于点E ,连接CE .(1)求∠DCE 的度数.(2)设BC =a ,AC =b .①线段BE 的长是关于x 的方程x 2+2bx ﹣a 2=0的一个根吗?说明理由.②若D 为AE 的中点,求a b 的值.。

一元二次方程的解法配方法—知识讲解基础

一元二次方程的解法配方法—知识讲解基础

一元二次方程的解法(二)配方法—知识讲解(基础)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程;2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力.【要点梳理】知识点一、一元二次方程的解法---配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1.(2014•岱岳区校级模拟)用配方法解方程:2x2+3x﹣1=0.举一反三:【变式】用配方法解方程.(1)x2-4x-2=0; (2)x2+6x+8=0.类型二、配方法在代数中的应用2.若代数式,,则的值()A.一定是负数B.一定是正数C.一定不是负数D.一定不是正数3.(2014•甘肃模拟)用配方法证明:二次三项式﹣8x2+12x﹣5的值一定小于0.举一反三:【变式】求代数式 x2+8x+17的最小值4.已知,求的值.。

用配方法和公式法解一元二次方程

用配方法和公式法解一元二次方程

用配方法和公式法解一元二次方程一.教学内容:1.知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解係数较简单的一元二次方程.2.理解用配方法推汇出一元二次方程的求根公式,了解求根公式中的条件b2-4ac≥0的意义,知道b2-4ac的值的符号与方程根的情况之间的关係.3.能熟练地运用求根的公式解简单的数字係数的一元二次方程.二. 知识要点:1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.通过配方,方程的左边变形为含x的完全平方形式(mx+n)2=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.3.用配方法解一元二次方程的步骤:(1)把二次项係数化为1;(2)移项,方程的一边为二次项和一次项,另一边为常数项;(3)方程两边同时加上一次项係数一半的平方;(4)用直接开平方法求出方程的根.(3)当b2-4ac<0时,方程没有实数根.三. 重点难点:本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.例2. 用配方法解方程:(1)x2+2x-5=0;(2)4x2-12x-1=0;(3)(x+1)2-6(x+1)2-45=0.分析:方程(1)是一元二次方程的一般形式,且二次项係数为1,所以直接移项、配方、求解即可;方程(2)要先把二次项係数化为1;方程(3)不要急于开启括号,可把(x+1)2看成一个整体合併,可避免重複配方.(3)将方程整理得(x+1)2-6(x+1)2=45,-5(x+1)2=45,(x+1)2=-9,由于x取任意实数时(x+1)2≥0,则上式都不成立,所以原方程无实数根.评析:配方法作为一种求解的方法,与其他方法比显得複杂些,为此,除非题目有特别指明用配方法解外,一般不用这种方法,但配方法是一种重要的数学方法,应用很广,应力争掌握好.例4. 不解方程判断下列方程根的情况.(1)4x2-11x=2;(2)4x2-x+5=0;(3)y2+14y+49=0;(4)x2+(m+2)x+m=0.分析:判断一元二次方程的根的情况应先把方程转化成一般形式,再计算b2-4ac的值.解:(1)原方程化为4x2-11x-2=0,a=4,b=-11,c=-2,b2-4ac=(-11)2-4×4×(-2)=153>0,所以原方程有两个不相等的实数根.(2)a=4,b=-1,c=5,b2-4ac=(-1)2-4×4×5=-79<0,所以原方程没有实数根.(3)a=1,b=14,c=49,b2-4ac=142-4×1×49=0,原方程有两个相等的实数根.(4)a=1,b=m+2,c=m,b2-4ac=(m+2)2-4×1×m=m2+4m+4-4m=m2+4,无论m取何值,m2+4>0,∴b2-4ac>0,原方程有两个不相等的实数根.评析:(1)b2-4ac是对一元二次方程一般形式而言的,计算前必须把方程化成一般形式;(2)当讨论含有字母系数的方程根的情况时,通常把计算结果化成(通过配方)(m+n)2+p的形式,由平方数的非负性说明它的符号.例5. 先用配方法说明:不论x取何值,代数式x2-5x+7的值总大于0.再求出当x取何值时,代数式x2-5x+7的值最小?最小值是多少?分析:準确配方,利用完全平方公式的非负性确定值的非负性及最小值.解:x2-5x+7=(x-)2+>0.当x=时,代数式x2-5x+7的值最小,最小值是.例6. 某农场要建一个矩形的养鸭场,养鸭场的一边靠墙,墙长25m,另三边用竹栏围成,竹栏长为40m.(1)养鸭场的面积能达到150m2吗?能达到200m2吗?(2)能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.分析:根据题意列出方程,利用配方法或求根公式解方程,如果方程有解且符合实际意义,则满足要求,否则,不能满足要求.解:设与墙垂直的一边长为x m,则另一边长(40-2x)m.(1)当面积为150m2时,x(40-2x)=150,整理得:x2-20x+75=0,即(x-10)2=25.解得x1=5,x2=15.此时的设计方案为:与墙垂直的一边长为5m,另一边长为30m,或与墙垂直的边长为15m,另一边长为10m.而当面积为200m2时,x(40-2x)=200,解得x1=x2=10.此时的设计方案为:与墙垂直的边长为10m,另一边长为20m.(2)当面积为250m2时,x(40-2x)=250,此方程无解.所以养鸭场的面积不能达到250m2.【预习导学】(用因式分解法解一元二次方程)一. 预习前知1. 想一想,因式分解有几种方法?2. 分解因式:(1)25(7x-3)2-16;(2)5x(2x+7)-3(2x+7);(3)x2-4x+4;(4)(x-1)2+2x(x-1).二. 预习导学1. 根据“ab=0,则a=0或b=0”解下列方程.(1)(x-1)(2x+3)=0;(2)x(x+1)=0;(3)(x-2)(x+1)=0.2. 用因式分解法解下列方程.(1)x2+x=0;(2)(3x-1)2-1=0;(3)x2-2x+1=0.反思:(1)用因式分解法适合解什幺样的一元二次方程?(2)用因式分解法解一元二次方程的基本步骤是什幺?【模拟试题】(答题时间:60分钟)一. 选择题1. 下列方程不能用开平方法求解的是()a. x2-6x+9=0b. (x-5)2=7c. 4x2=1d. 2y2+4y+4=03. 用配方法解方程x2+3=4x时,这个方程可化为()a. (x-2)2=7b. (x+2)2=1c. (x-2)2=1d. (x+2)2=2 *4. 方程x2+x-1=0的根精确到的近似值是()a. ,b. ,-c. -,d. -,-5. 一元二次方程x2-2x-3=0的根是()a. x1=1,x2=3b. x1=-1,x2=3c. x1=-1,x2=-3d. x1=1,x2=-3*6. 用配方法解方程时,下列配方错误的是()*7. 下列关于x的一元二次方程中有两个不相等的实数根的是()a. x2+1=0b. x2+2x+1=0c. x2+2x+3=0d. x2+2x-3=0**8. 若x2-2(k+1)x+k2+5是一个完全平方式,则k等于()a. -1b. 2c. 1d. -2二. 填空题1. 如果(x-2)2=9,则x2. 方程(2y+1)2-16=0的根是3. 方程(x+m)2=n有解的条件是4. 填空:(1)x2+10xx2;(2)m2-8mm2;(3)x2+3xx2;(4)x2+1;(5)x2-mxx2.*5. 把下列各式化为(x+m)2+n的形式:(1)x2-4x+72)x2+2x-36. 方程x2+5x+3=0中,b2-4ac=_______,由求根公式可得方程的根是x1=_______,x2=_______.7. 如果关于x的方程x2+4x+a=0有两个相等的实数根,那幺a三. 解答题1. 用直接开平方法解下列一元二次方程:(1)(x-1)2=4;(2)4m2-4m=-1;(3)3(4x-1)2=48;(4)y2-2y-8=0.2. 用配方法解方程:(1)x2-6x-7=0;(2)x2-2x-1=0;(3)2x2+x=0;(4)(x+1)2=x-1.3. 关于x的二次三项式x2+2mx+4-m2是一个完全平方式,求m的值.4. 如图,一个5m长的梯子斜靠在墙上,梯子的顶端距离地面3m,如果顶端下滑1m,那幺,梯子的底端也将滑动1m吗?请你用所学知识来解释.5. 若关于x的方程x2+(2k-1)x+k2-7=0有两个相等的实数根,求k 的值.6. 方程x2+kx-6=0的一个根是2,试求另一个根及k的值.7. 用100m长的铁丝围成一个长方形,面积是600m2,长、宽分别是多少?能否再围成一个面积是800m2的长方形呢?。

用配方法解一元二次方程

用配方法解一元二次方程

《用配方法解一元二次方程》教学设计与反思一、教材分析1.对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基础:同时一元二次方程又是今后学生学习二次函数等知识的基础。

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。

我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过的一元二次方程、二次根式、平方根的意义、完全平方式等知识加以巩固。

初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,如观察、类比、转化等,在本章教材中都有比较多的体现、应用和提升。

我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法。

解一元二次方程的基本策略是将其转化为一元一次方程,这就是降次。

2.本节课由简到难展开学习,使学生认识配方法的基本原理并掌握具体解法。

二、学情分析1.知识掌握上,九年级学生学习了平方根的意义。

即如果如果x2=a,那么x=± 。

;他们还学习了完全平方式x2+2xy+y2=(x+y)2.这对配方法解一元二次方程奠定了基础。

2.学生学习本节的障碍。

学生对配方法怎样配系数是个难点,老师应该予以简单明白、深入浅出的分析。

3.我们老师必须从学生的认知结构和心理特征出发,分析初中学生的心理特征,他们有强烈的好奇心和求知欲。

当他们在解决实际问题时发现要解的方程不再是以前所学过的一元一次方程或可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的问题。

而从学生的认知结构上来看,前面我们已经系统的研究了完全平方式、二次根式,这就为我们继续研究用配方法解一元二次方程奠定了基础。

三、教学目标:知识与能力:1. 会用开平法解形如 (x+m) 2=n(n ≥ 0)的方程;理解配方法,会用配方法解简单的数字系数的一元二次方程。

2.经历到方程解实际问题的过程,体会一元二次是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力。

一元二次方程的解法(配方法)教案

一元二次方程的解法(配方法)教案

★★★★★《一元二次方程的解法(配方法)》教案教学目标(一)使学生知道解完全的一元二次方程ax2+bx+c=0(a≠0,b≠0,c≠0)可以转化为适合于直接开平方法的形式(x+m)2=n;(二)在理的基础上,牢牢记住配方的关键是“添加的常数项等于一次项系数一半的平方”;(三)在数学思想方法方面,使学生体会“转化”的思想和掌握配方法。

教学重点和难点重点:掌握用配方法配一元二次方程。

难点:凑配成完全平方的方法与技巧。

教学过程设计(一)复习1.完全的一元二次方程的一般形式是什么样的?(注意a≠0)2.不完全一元二次方程的哪几种形式?(答:只有三种ax2=0,ax2+c=0,ax2+bx=0(a≠0))3.对于前两种不完全的一元二次方程ax2=0 (a≠0)和ax2+c=0 (a≠0),我们已经学会了它们的解法。

特别是结合换元法,我们还会解形如(x+m) 2=n(n≥0)的方程。

例解方程:(x-3) 2=4 (让学生说出过程)。

解:方程两边开方,得 x-3=±2,移项,得x=3±2。

所以 x1=5,x2=1. (并代回原方程检验,是不是根)4.其实(x-3) 2=4是一个完全的一元二次方程,我们把原方程展开、整理为一元二次方程。

(把这个展开过程写在黑板上)(x-3) 2=4, ①x2-6x+9=4, ②x2-6x+5=0. ③(二)新课1.逆向思维我们把上述由方程①→方程②→方程③的变形逆转过来,可以发现,对于一个完全的一元二次方程,不妨试试把它转化为(x+m) 2=n的形式。

这个转化的关键是在方程左端构造出一个未知数的一次式的完全平方式(x+m) 2。

2.通过观察,发现规律问:在x2+2x上添加一个什么数,能成为一个完全平方(x+?)2。

(添一项+1)即 (x2+2x+1)=(x+1) 2.练习,填空:x2+4x+( )=(x+ ) 2; y2+6y+( )=(y+ ) 2.算理 x2+4x=2x·2,所以添2的平方,y2+6y=y2+2y3,所以添3的平方。

02用配方法求解一元二次方程

02用配方法求解一元二次方程
(4)?2 x2+?1 x-2=0.
33
栏目索引
解析 (1)配方得(x+2)2=4,所以x+2=±2,所以x1=0,x2=-4.
(2)移项得x2-2x=2,配方得(x-1)2=3,所以x-1=±? 3 ,所以x1=? 3 +1,x2=-? 3 +1.
? (3)系数化为1得x2-?3 2
x-3=0,配方得??
2
? ??
=1+???
1 3
2
? ?
,即?? x
??
?
1 3
2
? ??
=
?10
9
,
栏目索引
直接开平方,得x+?1 =±?10 , 33
∴x+?1 =?10 或x+?1 =-?10 ,
33
33
∴x1=?? 1? 10 ,x2=??1? 10 .
3
3
点拨 x1,x2表示方程的两个实根,其下标与根的大小无关.注意当方程配
栏目索引
5.若3?x2m2 ?m y2与-x4m-2y2是同类项,则m=
.
答案 2或?1
2
解析 由题意得2m2-m=4m-2,移项、合并同类项,得2m2-5m=-2,二次项系
? ? ? 数化为1,得m2-?5 2
m=-1,配方,得m2-?5
2
m+??? ?
5 4
2
? ??
=-1+??? ?
5
2
?
4 ??
x2=-? 2 +2.
? (2)
系数化为1,得x2-?1
6
x-2=0.移项,得x2-?1
6
x=2.配方,得x2-?1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用配方法解一元二次方程(第3课时用)
一、学考目标:
理解配方的意义,会用配方法求二次项系数不为1的一元二次方程的根
二、重点:
熟练运用配方法解二次项系数不为1的一元二次方程
三、难点:
用配方法解二次项系数为分数的一元二次方程
(一)课前小测(5分钟):
1、解方程:x 2-4x-1=0
2、填空:1)x 2-2x+( )=[x +( )]2 ;
2)x 2+6x +( )=[x-( )]2
二、试把下列一元二次方程的二次项系数化为1:
(1)2x 2-4x-6=0 (2)3x 2-6x-3=0 (3)4x 2-6x-1=0
(4)-3x 2-9x-3=0 (5)232x +2x -1=0; (6)221
x -5x -6=0.
三、例题1:用配方法解方程:2x 2-6=4x . 例题2:用配方法解方程:-3x 2-9x-3=0
解:移项,得:2x 2 -6=0, 解:方程两边同时除以 得: 方程两边同时除以 得: 配方得: 移项,得 配方得:
四、小结用配方法解下列各一元二次方程的步骤:
1、 2、
3、 4、 5 、
五、练习:利用配方法解下列各一元二次方程:
A 组:(1)2x 2+4x-2=0 (2)3x 2-15x+18=0
B 组:(3)221
x -5x -1=0 (4)232
x +2x -1=0.
C 组(速度快的同学选做):
(5)223
x =2x+1 (6)(2x -1)(2+x )=2x
用配方法解一元二次方程课堂小测:
1、223)(+=++x x x ;
2、2
234)(-=+-x x x
3、用配方法解方程: 2082+=x x
4、用配方法解方程:2x 2-6x+4=0
(拓展)5、用配方法将二次三项式222+-a a 变形,结果是( ) A)()112+-a B)()112++a
C)()112-+a D)()112--a。

相关文档
最新文档