安庆四中2019-2020学年第二学期九年级开学检测数学试卷
【附5套中考模拟试卷】安徽省安庆市2019-2020学年中考数学第二次调研试卷含解析
安徽省安庆市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A .3036101.5x x -= B .3030101.5x x -= C .3630101.5x x-= D .3036101.5x x+= 2.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定 3.按一定规律排列的一列数依次为:﹣23,1,﹣107,179、﹣2611、3713…,按此规律,这列数中的第100个数是( ) A .﹣9997199B .10001199C .10001201D .99972014.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2a <05.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B .40°C .50°D .60°6.下列运算正确的是( ) A .x 3+x 3=2x 6B .x 6÷x 2=x 3C .(﹣3x 3)2=2x 6D .x 2•x ﹣3=x ﹣17.不等式组310xx<⎧⎨-≤⎩中两个不等式的解集,在数轴上表示正确的是A.B.C.D.8.下列图形中,是正方体表面展开图的是()A.B.C. D.9.下列各数中,无理数是()A.0 B.227C.4D.π10.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个11.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A.0.286×105B.2.86×105C.28.6×103D.2.86×10412.下列二次根式中,最简二次根式是()A9a B.35a C22a b+D1 2 a+二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;②如果方程M有两根符号相同,那么方程N的两根符号也相同;③如果方程M和方程N有一个相同的根,那么这个根必是x=1;④如果5是方程M的一个根,那么15是方程N的一个根.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.15.若方程x2+(m2﹣1)x+1+m=0的两根互为相反数,则m=______16.如图所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.17.新定义[a,b]为一次函数(其中a≠0,且a,b为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程的解为.18.函数121y xx=--中自变量的取值范围是______________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元[求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.20.(6分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.21.(6分)如图,AD 是等腰△ABC 底边BC 上的高,点O 是AC 中点,延长DO 到E ,使AE ∥BC ,连接AE .求证:四边形ADCE 是矩形;①若AB =17,BC =16,则四边形ADCE 的面积= . ②若AB =10,则BC = 时,四边形ADCE 是正方形.22.(8分)如图,在平面直角坐标系xOy 中,一次函数y =x 与反比例函数()0ky k x=≠的图象相交于点()3,Aa .(1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y =x 、反比例函数ky x=的图象相交于点M 、N ,当MN =2时,画出示意图并直接写出b 的值.23.(8分)如图二次函数的图象与x 轴交于点()30A -,和()10B ,两点,与y 轴交于点()0,3C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象经过B 、D求二次函数的解析式;写出使一次函数值大于二次函数值的x 的取值范围;若直线BD 与y 轴的交点为E 点,连结AD 、AE ,求ADE ∆的面积; 24.(10分)如图,AB 为圆O 的直径,点C 为圆O 上一点,若∠BAC=∠CAM ,过点C 作直线l 垂直于射线AM ,垂足为点D .(1)试判断CD 与圆O 的位置关系,并说明理由;(2)若直线l 与AB 的延长线相交于点E ,圆O 的半径为3,并且∠CAB=30°,求AD 的长.25.(10分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题: (1)本次调查的学生人数是 人;(2)图2中α是 度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有 人;(4)老师想从学习效果较好的4位同学(分别记为A 、B 、C 、D ,其中A 为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A 的概率.26.(12分)如图,AB是⊙O的直径,D是⊙O上一点,点E是AC的中点,过点A作⊙O的切线交BD 的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=5,tan∠FAC=12,求FC的长.27.(12分)如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB =60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.2.B【解析】【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=12,设抛物线与x轴交于点A、B,∴AB<1,∵x取m时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,故选B.【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.3.C【解析】根据按一定规律排列的一列数依次为:23-,1,107-,179,2611-,3713…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,21n +型;分子为21n +型,可得第100个数为210011000121001201+=⨯+. 【详解】按一定规律排列的一列数依次为:23-,1,107-,179,2611-,3713…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,21n +型;分子为21n +型,可得第n 个数为2121n n ++,∴当100n =时,这个数为2211001100012121001201n n ++==+⨯+, 故选:C . 【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键. 4.B 【解析】试题分析:由数轴可知,a <-2,A 、a 的相反数>2,故本选项正确,不符合题意;B 、a 的相反数≠2,故本选项错误,符合题意;C 、a 的绝对值>2,故本选项正确,不符合题意;D 、2a <0,故本选项正确,不符合题意. 故选B .考点:实数与数轴. 5.C 【解析】试题分析:∵DC ∥AB ,∴∠DCA=∠CAB=65°. ∵△ABC 绕点A 旋转到△AED 的位置,∴∠BAE=∠CAD ,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC ﹣∠DCA="50°." ∴∠BAE=50°. 故选C .考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质. 6.D 【解析】分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可. 详解:根据合并同类项法则,可知x 3+x 3=2x 3,故不正确;根据同底数幂相除,底数不变指数相加,可知a 6÷a 2=a 4,故不正确; 根据积的乘方,等于各个因式分别乘方,可知(-3a 3)2=9a 6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x 2•x ﹣3=x ﹣1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键. 7.B 【解析】由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B . 8.C 【解析】 【分析】利用正方体及其表面展开图的特点解题. 【详解】解:A 、B 、D 经过折叠后,下边没有面,所以不可以围成正方体,C 能折成正方体. 故选C . 【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形. 9.D 【解析】 【分析】利用无理数定义判断即可. 【详解】 解:π是无理数, 故选:D. 【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键. 10.B 【解析】 【分析】通过图象得到a 、b 、c 符号和抛物线对称轴,将方程24ax bx c ++=转化为函数图象交点问题,利用抛物线顶点证明()+x ax b a b ≤+. 【详解】由图象可知,抛物线开口向下,则0a <,0c >,Q 抛物线的顶点坐标是()1,4A ,∴抛物线对称轴为直线12bx a=-=, ∴2b a =-,∴0b >,则①错误,②正确;方程24ax bx c ++=的解,可以看做直线4y =与抛物线2y ax bx c =++的交点的横坐标, 由图象可知,直线4y =经过抛物线顶点,则直线4y =与抛物线有且只有一个交点, 则方程24ax bx c ++=有两个相等的实数根,③正确;由抛物线对称性,抛物线与x 轴的另一个交点是()1,0-,则④错误; 不等式()x ax b a b +≤+可以化为2ax bx c a b c ++≤++,Q 抛物线顶点为()1,4,∴当1x =时,y a b c =++最大, ∴2ax bx c a b c ++≤++故⑤正确.故选:B . 【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式. 11.D 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n ,其中1≤|a|<10,n 为整数,据此判断即可 【详解】28600=2.86×1.故选D . 【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n ,其中1≤|a|<10,确定a 与n 的值是解题的关键 12.C 【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A.被开方数含能开得尽方的因数或因式,故A不符合题意,B.被开方数含能开得尽方的因数或因式,故B不符合题意,C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,D.被开方数含分母,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②④【解析】试题解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;②∵ca和ac符号相同,ba和ab符号也相同,∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,∵a≠c,∴x2=1,解得:x=±1,错误;④∵5是方程M的一个根,∴25a+5b+c=0,∴a+15b+1+25c=0,∴15是方程N的一个根,正确.故正确的是①②④.14.2 5【解析】【详解】解:根据题意可得:列表如下共有20种所有等可能的结果,其中两个颜色相同的有8种情况, 故摸出两个颜色相同的小球的概率为82205=. 【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键. 15.﹣1 【解析】 【分析】根据“方程 x 2+(m 2﹣1)x+1+m =0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可. 【详解】∵方程 x 2+(m 2﹣1)x+1+m =0 的两根互为相反数, ∴1﹣m 2=0, 解得:m =1 或﹣1, 把 m =1代入原方程得: x 2+2=0, 该方程无解,∴m =1不合题意,舍去, 把 m =﹣1代入原方程得: x 2=0,解得:x 1=x 2=0,(符合题意), ∴m =﹣1, 故答案为﹣1. 【点睛】本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 16.65°【解析】 【分析】根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,根据角平分线的性质解答即可. 【详解】根据已知条件中的作图步骤知,AG 是∠CAB 的平分线,∵∠CAB=50°, ∴∠CAD=25°;在△ADC 中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余); 故答案是:65°. 17.. 【解析】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数, 得到y=3x+m+2为正比例函数,即m+2=0, 解得:m=-2, 则分式方程为,去分母得:2-(x-1)=2(x-1), 去括号得:2-x+1=2x-2, 解得:x=,经检验x=是分式方程的解考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义. 18.x≤2且x≠1 【解析】 【分析】 【详解】 解:根据题意得:20x -≥且x−1≠0,解得:2x ≤且 1.x ≠ 故答案为2x ≤且 1.x ≠三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41. 【解析】 【分析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案. 【详解】(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++,当50≤x≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤⎪=⎨-+≤≤⎪⎩<. (2)当1≤x <50时,二次函数开口下,二次函数对称轴为x=45, 当x=45时,y 最大=-2×452+180×45+2000=6050, 当50≤x≤90时,y 随x 的增大而减小, 当x=50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解2218020004800x x -++≥,结合函数自变量取值范围解得2050x ≤<, 解120120004800x -+≥,结合函数自变量取值范围解得5060x ≤≤ 所以当20≤x≤60时,即共41天,每天销售利润不低于4800元. 【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用. 20.(1)50(2)420(3)P=58【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图; (2)由题意可求得130~145分所占比例,进而求出答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);如图:(2)根据题意得:考试成绩评为“B”的学生大约有1450×1600=448(名),答:考试成绩评为“B”的学生大约有448名;(3)画树状图得:∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,∴所选两名学生刚好是一名女生和一名男生的概率为:816=12.考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识视频21.(1)见解析;(2)①1;②2【解析】试题分析:(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)①求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的长.试题解析:(1)证明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四边形ADCE是平行四边形.∵AD是BC边上的高,∴∠ADC=90°.∴□ADCE 是矩形.(2)①解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:22AC CD-22178-=12,∴四边形ADCE的面积是AD×DC=12×8=1.②当BC=102时,DC=DB=52.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.22.(1)3a=,k=2;(2)b=2或1.【解析】【分析】(1)依据直线y=x与双曲线kyx=(k≠0)相交于点()3A a,,即可得到a、k的值;(2)分两种情况:当直线x=b在点A的左侧时,由3x-x=2,可得x=1,即b=1;当直线x=b在点A的右侧时,由x3x-=2,可得x=2,即b=2.【详解】(1)∵直线y=x与双曲线kyx=(k≠0)相交于点()3A a,,∴3a=,∴()33A,,∴33=,解得:k=2;(2)如图所示:当直线x=b在点A的左侧时,由3x-x=2,可得:x=1,x=﹣2(舍去),即b=1;当直线x=b在点A的右侧时,由x3x-=2,可得x=2,x=﹣1(舍去),即b=2;综上所述:b=2或1.【点睛】本题考查了利用待定系数法求函数解析式以及函数的图象与解析式的关系,解题时注意:点在图象上,就一定满足函数的解析式.23.(1)()()31y x x =-+-;(2)2x <-或1x >;(3)1. 【解析】 【分析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x 的取值范围; (3)分别得出EO ,AB 的长,进而得出面积. 【详解】(1)∵二次函数与x 轴的交点为()30A -,和()10B , ∴设二次函数的解析式为:()()31y a x x =+- ∵()0,3C 在抛物线上, ∴3=a(0+3)(0-1), 解得a=-1,所以解析式为:()()31y x x =-+-; (2)()()31y x x =-+-=−x 2−2x +3, ∴二次函数的对称轴为直线1x =-;∵点C 、D 是二次函数图象上的一对对称点;()0,3C ∴()2,3D -;∴使一次函数大于二次函数的x 的取值范围为2x <-或1x >;(3)设直线BD :y =mx +n , 代入B (1,0),D (−2,3)得023m n m n ⎧⎨-⎩+=+=,解得:11m n -⎧⎨⎩==, 故直线BD 的解析式为:y =−x +1, 把x =0代入()()31y x x =-+-得,y=3, 所以E (0,1), ∴OE =1, 又∵AB =1, ∴S △ADE =12×1×3−12×1×1=1. 【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键. 24.(1)CD 与圆O 的位置关系是相切,理由详见解析;(2) AD=92. 【解析】 【分析】(1)连接OC ,求出OC 和AD 平行,求出OC ⊥CD ,根据切线的判定得出即可;(2)连接BC ,解直角三角形求出BC 和AC ,求出△BCA ∽△CDA ,得出比例式,代入求出即可. 【详解】(1)CD 与圆O 的位置关系是相切, 理由是:连接OC ,∵OA=OC , ∴∠OCA=∠CAB , ∵∠CAB=∠CAD , ∴∠OCA=∠CAD , ∴OC ∥AD , ∵CD ⊥AD , ∴OC ⊥CD , ∵OC 为半径,∴CD 与圆O 的位置关系是相切; (2)连接BC ,∵AB 是⊙O 的直径, ∴∠BCA=90°, ∵圆O 的半径为3, ∴AB=6, ∵∠CAB=30°, ∴133332BC AB AC BC ====,, ∵∠BCA=∠CDA=90°,∠CAB=∠CAD , ∴△CAB ∽△DAC , ∴,AC ABAD AC= 3333= ∴92AD =. 【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.25.(1)40;(2)54,补图见解析;(3)330;(4)12. 【解析】 【分析】(1)根据由自主学习的时间是1小时的人数占30%,可求得本次调查的学生人数; (2)63605440α=⨯︒=︒,由自主学习的时间是0.5小时的人数为40×35%=14; (3)求出这40名学生自主学习时间不少于1.5小时的百分比乘以600即可;(4)根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A 的情况,再利用概率公式求解即可求得答案. 【详解】(1)∵自主学习的时间是1小时的有12人,占30%, ∴12÷30%=40, 故答案为40; (2)63605440α=⨯︒=︒,故答案为54; 自主学习的时间是0.5小时的人数为40×35%=14; 补充图形如图:(3)600×14840+=330; 故答案为330; (4)画树状图得:∵共有12种等可能的结果,选中小亮A 的有6种可能,∴P (A )=61122=. 26. (1)见解析;(2)103.【解析】分析:(1)由AB 是直径可得BE ⊥AC ,点E 为AC 的中点,可知BE 垂直平分线段AC ,从而结论可证; (2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE ,从而可设AE=x ,BE=2x ,由勾股定理求出AE 、BE 、AC 的长. 作CH ⊥AF 于H ,可证Rt △ACH ∽Rt △BAC ,列比例式求出HC 、AH 的值,再根据平行线分线段成比例求出FH ,然后利用勾股定理求出FC 的值. 详解:(1)证明:连接BE. ∵AB 是⊙O 的直径, ∴∠AEB=90°, ∴BE ⊥AC ,而点E为AC的中点,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,设AE=x,则BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如图,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,FC==.点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到Rt△ACH∽Rt△BAC是解(2)的关键.27.(1)见解析;(2)2【解析】试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.(1)连接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°.∵四边形的内角和为360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(2)连接OP,∵PA、PB是⊙O的切线,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.233π-B.233π-C.3π-D.3π-2.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b63.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1 D.m<14.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是()A.1 B.-6 C.2或-6 D.不同于以上答案5.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高6.计算6m 3÷(-3m 2)的结果是( )A .-3mB .-2mC .2mD .3m7.二次函数y =3(x ﹣1)2+2,下列说法正确的是( )A .图象的开口向下B .图象的顶点坐标是(1,2)C .当x >1时,y 随x 的增大而减小D .图象与y 轴的交点坐标为(0,2)8.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .89.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( )A .3(2)29x x -=+B .3(2)29x x +=-C .9232x x -+=D .9232x x +-= 10.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .11.二次函数y=ax 2+bx+c(a≠0)的图象如图,则反比例函数y=a x与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A.B.C.D.12.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:32a ab=_______________.14.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n根图形需要____________根火柴.15.如图,已知,第一象限内的点A在反比例函数y=2x的图象上,第四象限内的点B在反比例函数y=kx的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.16.如图,这是一幅长为3m,宽为1m的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m1.174______.18.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由. 20.(6分)如图,ABC ∆的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.在图1中画出AB 边上的中线CD ;在图2中画出ABEF Y ,使得ABEF ABC S S ∆=Y .21.(6分)如图,在Rt △ABC 中,∠B=90°,点O 在边AB 上,以点O 为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使∠BCM=2∠A .判断直线MN 与⊙O 的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.22.(8分)如图,二次函数232(0)2y ax x a =-+≠的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).求抛物线与直线AC 的函数解析式;若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;若点E 为抛物线上任意一点,点F 为x轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.。
2019-2020年九年级下学期开学考试数学试卷
2019-2020年九年级下学期开学考试数学试卷一、选择题:(本大题共有8小题,每小题3分,共24分)1. 若一个数的相反数为6,则这个数为 ( ▲ ) A .B .±6C . 6D .-62. 下列运算中,计算结果正确的是 ( ▲ ) A . B . C . D .3. 某市目前汽车拥有量约为3 100 000辆.则这个数用科学记数法表示为( ▲ ) A.31×105辆 B. 0.31×107辆 C. 3.1×106辆 D. 3×106辆 4. 一元一次方程的解是 ( ▲ ) A. B. C . D .5.抛物线 的顶点坐标为 ( ▲ )A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1) 6.已知是等腰直角三角形的一个锐角,则的值是 ( ▲ ) A.B. C. D.7. 如图是抛物线y=ax 2+bx+c 的大致图像,则一元二次方程ax 2+bx+c =0 ( ▲ ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定8. 如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O→C→D→O 的路线匀速运动,设∠APB=y(单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( ▲ )二、填空题:(本大题共10小题,共30分.) 9.一元一次不等式3x-2<0的解集为_____▲______. 10. 分解因式:3x-12= ▲ .11.如图,是二次函数y=3x 2的图像,把该图像向左平移1个单位,第7题图O xy再向下平移2个单位,所得的抛物线的函数关系式为 ▲ . 12.已知点(a ,3)是函数y=的图像上一点,则a=___▲___.13.在某次体育考试中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下:44,45,42,48,46,47,45.则这组数据的极差为 ▲ . 14. xx 年年底,NBA 运动员科比宣布将在本赛季结束后退役,一代名将即将告别喜欢他的无数球迷.如图是科比在一场比赛中正在投篮,已知该场比赛中,科比两分球和三分球一共投进了25个,两项共得57分.如果设他分别投中了x 个两分球和y 个三分球,可得二元一次方程组 ▲ .15.△ABC 中,∠C=90°,AB=8,sinA=,则BC 的长= ▲ . 16.已知一面积为6πcm 2的扇形的弧长为πcm,则该扇形的半径= ▲ . 17.已知B 点的坐标为(-1,3),将B 点绕坐标原点顺时针旋转90°,则点B 的对应点D 的坐标为 ▲ .18.已知二次函数y 1,y 2,y 3,…y n 的最小值分别为a 1,,a 2,a 3,…a n ,若y 1的解析式为:y 1=x 2-2x+1,并且满足:=-, =-,=-…依次类推,则a xx = ▲ .三、解答题:(本大题共有10小题,共96分) 19.(本小题5分)计算: -20.(本小题7分)先化简,再求值:,其中.21. (本小题10分)为响应我市创建国家文明城市的号召,我校举办了一次“包容天下,崛起江淮”主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀.这次竞赛中甲、乙两组学生(各10名学生)成绩的条形统计图如下.(1)补充完成下列的成绩统计分析表:第17题图第11题图第14题图(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 ▲ 组学生;(填“甲”或“乙”)(3)从两个小组的整体情况来看, ▲ 组的成绩更加稳定一些.(填“甲”或“乙”) (4)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.22.(本小题10分)在一个不透明的布袋中装有5个完全相同的小球,分别标有数字0,1,2,﹣1,﹣2.(1)如果从布袋中随机抽取一个小球,小球上的数字是正数的概率为 ▲ ;(2)如果从布袋中随机抽取一个小球,记录标有的数字为x ,放回后搅匀,再从袋中随机抽取一个小球,记录标有的数字为y ,记点M 的坐标为(x ,y ),用画树状图或列表的方法列举出点M 所有可能的坐标,并求出点M 恰好落在第二像限的概率.23.(本小题10分)星期天的早晨,小明步行从家出发,到离家1050m 的书店买书.出发1分钟后,他到达离家150m 的地方,又过一分钟后,小明加快了速度.如图,是小明从家出发后,小明离家的路程y (米)与他行驶时间x (分钟)之间的函数图像.根据图像回答问题: (1)直接写出点A 的坐标,并求线段AB 所在的直线的函数关系式.(2)求小明出发多长时间后,离书店还剩250米的路程?24.(本小题8分)如图,某大楼AD 的高为10米,远处有一塔BC ,某人在楼底A 处测得塔顶B 处的仰角为60º,爬到楼顶D 点测得塔顶B 点的仰角为30º,求塔BC 的高度.ABB25. (本小题10分)如图,在Rt△ABC 中,∠C=90°,∠ABC 的平分线交AC 于点D ,点O 是AB 上一点,⊙O 过B 、D 两点,且分别交AB 、BC 于点E 、F .(1)试说明:AC 是⊙O 的切线;(2)已知AB=10,BC=6,求⊙O 的半径r .26.(本小题10分)如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.(1)当通道宽a 为10米时,花圃的面积= ▲ ; (2)通道的面积与花圃的面积之比能否恰好等于3:5?如果可以,试求出此时通道的宽.27.(本小题12分)定义:数学活动课上,兵兵老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A 、B 、C 在格点(小正方形的顶点)上,请用两种不同的方法再画出一个格点D ,使四边形ABCD 为对等四边形 ;(2)如图2,在圆内接四边形ABCD 中,AB 是⊙O 的直径,AC=BD .试说明:四边形ABCD 是对等四边形;(第27题图2)(第27题图1)(3)如图3,点D ,B 分别在x 轴和y 轴上,且D (8,0),cos ∠BDO=,点A 是边BD 上的一点,且AD ∶AB=4:1.试在x 轴上找一点C ,使四边形ABOC 为对等四边形,请直接写出所有满足条件的C 点坐标.28.(本小题14分)如图,在△ABC 中,∠C =90º,AC=4,AB=5,点P 从点A 出发,以每秒4个单位长度的速度沿A -C -B 运动,到点B 时停止.当点P 不与△ABC 的顶点重合时,过点P 作其所在的直角边的垂线,交AB 于点Q ,再以PQ 为斜边作等腰直角三角形△PQR ,使点R 与△ABC 的另一条直角边在PQ 的同侧.设点P 运动的时间为t (秒).(1)BC 的长= ▲ ,AB 边上的高= ▲ . (2)当点P 在AC 上运动时,①请用含有t 的代数式表示线段PQ 的长;②设△PQR 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.(3)在点P 的运动过程中,△PQR 的直角顶点R 是否有可能恰好落在△ABC 的某条高上?如果可以,直接写出相应的t 值,如果不可能,请说明理由.二、填空题:(本大题共有10小题,每小题3分,共30分)9.x<2/3 10.3(x-4) 11. 12.-2 13.6 14. 15.6 16.12CPRQBA(第28题图)17.(3,1) 18.-1008三、解答题:(本大题共有10小题,共96分)19.3 ------5分 20.------7分21.6,8,甲,乙,答案不唯一每小题2分22.0.4 ------3分,列表或数状图4分,3分23.(1)A(2,300)---2分,y AB=300x-300 ---4分(2) ------4分24.BC=15 ---8分25.(1)证明略--5分(2)--5分26.(1)800—3分(2)5 ---7分27.(1)图略—4分(2)证明略4分(3)(2,0)或(,0)4分28.(1)3 ------2分, ------2分;(2)①3t ---2分,②当时,.当时,. ------4分;(3),,,.-----4分。
安徽省安庆市2019-2020学年中考数学二模试卷含解析
安徽省安庆市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列事件是必然事件的是( )A .任意作一个平行四边形其对角线互相垂直B .任意作一个矩形其对角线相等C .任意作一个三角形其内角和为360︒D .任意作一个菱形其对角线相等且互相垂直平分2.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等3.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin h αB .cos h αC .tan h αD .cot h α4.一个几何体的三视图如图所示,这个几何体是( )A .三菱柱B .三棱锥C .长方体D .圆柱体5.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( )动时间(小时) 3 3.5 4 4.5人数 1 1 2 1 A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.86.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80°B.50°C.30°D.20°7.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.34B.43C.35D.458.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为( )A.152B.154C.3 D.839.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为()A.B.C.D.10.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.304015x x=-B.304015x x=-C.304015x x=+D.304015x x=+11.3点40分,时钟的时针与分针的夹角为()A.140°B.130°C.120°D.110°12.下列图形中,是轴对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,且AC=CD ,∠ACD=120°,CD 是⊙O 的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.14.6-的相反数是_____,倒数是_____,绝对值是_____15.如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于____度.16.如果a ,b 分别是2016的两个平方根,那么a+b ﹣ab=___.17.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,若⊙O 的半径是5,CD =8,则AE =______.18.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,∠ABC=90°,BD 为AC 边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C 作直线CE ,使CE ⊥BC 于点C ,交BD 的延长线于点E ,连接AE ;(2)求证:四边形ABCE 是矩形.20.(6分)如图,经过点C (0,﹣4)的抛物线2y ax bx c =++(0a ≠)与x 轴相交于A (﹣2,0),B 两点.(1)a 0,0(填“>”或“<”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E 的坐标;若不存在,请说明理由.21.(6分)如图1,已知扇形MON的半径为2,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.22.(8分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.23.(8分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.24.(10分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.25.(10分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高(1)△ACD与△ABC相似吗?为什么?(2)AC2=AB•AD 成立吗?为什么?26.(12分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA、PB、AB、OP,已知PB是⊙O的切线.(1)求证:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半径为32,求BC的长.27.(12分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).(1)求抛物线L的顶点坐标和A点坐标.(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.【详解】解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;C、三角形的内角和为180°,所以任意作一个三角形其内角和为360 是不可能事件,故本选项错误;D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,故选:B.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.2.C【解析】【分析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.3.B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=CDBC,可得BC=cos cosCD hBCDα=∠.故选B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.4.A【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.故选:B.【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.C【解析】试题解析:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:3 3.542 4.55++⨯+=3.1.故选C.6.D【解析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.7.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=34 BCAC=.故选A.【点睛】本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键. 8.A【解析】∵∠AED=∠B,∠A=∠A∴△ADE∽△ACB∴AE DE AB BC=,∵DE=6,AB=10,AE=8,∴8610BC=,解得BC=15 2.故选A.9.C【解析】【分析】先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.【详解】如图,根据勾股定理得,BC==12,∴sinA=.故选C .【点睛】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键. 10.C【解析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为x 千米/小时,则乙甲车的速度为15x +千米/小时∴甲车行驶30千米的时间为30x,乙车行驶40千米的时间为4015x +, ∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x =+.故选C . 11.B【解析】【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:3点40分时针与分针相距4+2060=133份, 30°×133=130, 故选B .【点睛】本题考查了钟面角,确定时针与分针相距的份数是解题关键.12.B【解析】分析:根据轴对称图形的概念求解.详解:A 、不是轴对称图形,故此选项不合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不合题意;D 、不是轴对称图形,故此选项不合题意;故选B .点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2233π- 【解析】 试题分析:连接OC ,求出∠D 和∠COD ,求出边DC 长,分别求出三角形OCD 的面积和扇形COB 的面积,即可求出答案.连接OC ,∵AC=CD ,∠ACD=120°,∴∠CAD=∠D=30°,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD=90°,∴∠COD=60°,在Rt △OCD 中,∠OCD=90°,∠D=30°,OC=2,∴CD=23,∴阴影部分的面积是S △OCD ﹣S 扇形COB =12×2×23﹣2602360π⨯=23﹣23π,故答案为23﹣23π.考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.14.6 ,6-6 【解析】∵只有符号不同的两个数是互为相反数,∴6-的相反数是6;∵乘积为1的两个数互为倒数,∴6-的倒数是66-; ∵负数得绝对值是它的相反数,∴6-绝对值是 6.故答案为(1).6 (2). 66- (3). 615.30【解析】 试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE ,根据折叠可得:BC=CE ,则BC=AE=BE=AB ,则∠A=30°.考点:折叠图形的性质16.1【分析】先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论.【详解】∵a,b分别是1的两个平方根,∴20162016==-,,a b∵a,b分别是1的两个平方根,∴a+b=0,∴ab=a×(﹣a)=﹣a2=﹣1,∴a+b﹣ab=0﹣(﹣1)=1,故答案为:1.【点睛】此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.17.2【解析】【分析】连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可【详解】设AE为x,连接OC,∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,则AE是2,故答案为:2此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.18.2 3【解析】共有3种等可能的结果,它们是:3,2,3;4, 2, 3;5, 2, 3;其中三条线段能够成三角形的结果为2,所以三条线段能构成三角形的概率=23.故答案为23.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析.【解析】【分析】(1)根据题意作图即可;(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.【详解】(1)解:如图所示:E点即为所求;(2)证明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD为AC边上的中线,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四边形ABCE是平行四边形,∵∠ABC=90°,∴平行四边形ABCE 是矩形.【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.20.(1)>,>;(2)214433y x x =--;(3)E (4,﹣4)或(227+,4)或(227-,4). 【解析】【分析】(1)由抛物线开口向上,且与x 轴有两个交点,即可做出判断;(2)根据抛物线的对称轴及A 的坐标,确定出B 的坐标,将A ,B ,C 三点坐标代入求出a ,b ,c 的值,即可确定出抛物线解析式;(3)存在,分两种情况讨论:(i )假设存在点E 使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形,过点C 作CE ∥x 轴,交抛物线于点E ,过点E 作EF ∥AC ,交x 轴于点F ,如图1所示;(ii )假设在抛物线上还存在点E′,使得以A ,C ,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC 交x 轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC ∥E′F′,如图2,过点E′作E′G ⊥x 轴于点G ,分别求出E 坐标即可.【详解】(1)a >0,>0; (2)∵直线x=2是对称轴,A (﹣2,0),∴B (6,0),∵点C (0,﹣4),将A ,B ,C 的坐标分别代入2y ax bx c =++,解得:13a =,43b =-,4c =-, ∴抛物线的函数表达式为214433y x x =--; (3)存在,理由为:(i )假设存在点E 使得以A ,C ,E ,F 为顶点所组成的四边形是平行四边形,过点C 作CE ∥x 轴,交抛物线于点E ,过点E 作EF ∥AC ,交x 轴于点F ,如图1所示,则四边形ACEF 即为满足条件的平行四边形,∵抛物线214433y x x =--关于直线x=2对称, ∴由抛物线的对称性可知,E 点的横坐标为4,又∵OC=4,∴E 的纵坐标为﹣4,∴存在点E (4,﹣4);(ii )假设在抛物线上还存在点E′,使得以A ,C ,F′,E′为顶点所组成的四边形是平行四边形, 过点E′作E′F′∥AC 交x 轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,∴AC=E′F′,AC ∥E′F′,如图2,过点E′作E′G ⊥x 轴于点G ,∵AC ∥E′F′,∴∠CAO=∠E′F′G ,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO ≌△E′F′G ,∴E′G=CO=4,∴点E′的纵坐标是4,∴2144433x x =--,解得:1227x =+,2227x =-, ∴点E′的坐标为(227+,4),同理可得点E″的坐标为(227-,4).21.(1)证明见解析;(2) 2=+y x 02<≤x 1422=x . 【解析】 分析:(1)先判断出∠ABM=∠DOM ,进而判断出△OAC ≌△BAM ,即可得出结论;(2)先判断出BD=DM ,进而得出DM ME BD AE =,进而得出AE=122x (),再判断出2OA OC DM OE OD OD==,即可得出结论; (3)分三种情况利用勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD ⊥BM ,AB ⊥OM ,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M ,∴∠ABM=∠DOM .∵∠OAC=∠BAM ,OC=BM ,∴△OAC ≌△BAM ,∴AC=AM .(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴DM MEBD AE=,∴AE=EM.∵OM=2,∴AE=122x-().∵DE∥AB,∴2OA OC DMOE OD OD==,∴22DM OAyOD OE x=∴=+,.(02x≤<)(3)(i)当OA=OC时.∵111222DM BM OC x===.在Rt△ODM中,222124OD OM DM x=-=-.∵2121224xDMyOD xx=∴=+-,.解得142x-=,或142x--=(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三角形时,x的值为142-.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.22.见解析【解析】试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD,邻边相等的平行四边形是菱形;(2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC 是直角三角形.试题解析:梯形ABCD中,AD∥BC,∴四边形ABED是平行四边形,又AB=AD,∴四边形ABED是菱形;(2)∵四边形ABED是菱形,∠ABC=60°,∴∠DEC=60°,AB=ED,又EC=2BE,∴EC=2DE,∴△DEC是直角三角形,考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定23.(1)y=﹣x2+x+3;D(1,);(2)P(3,).【解析】【分析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.【详解】解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),将点C(0,3)代入得:﹣8a=3,解得:a=﹣,y=﹣x2+x+3=﹣(x﹣1)2+,∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);(2)∵B(4,0),C(0,3),∴BC的解析式为:y=﹣x+3,∵D(1,),当x=1时,y=﹣+3=,∴E (1,),∴DE=-=,设P (m ,﹣m 2+m+3),则F (m ,﹣m+3),∵四边形DEFP 是平行四边形,且DE ∥FP ,∴DE=FP , 即(﹣m 2+m+3)﹣(﹣m+3)=,解得:m 1=1(舍),m 2=3,∴P (3,).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.24.证明过程见解析【解析】【分析】要证明BE=CD ,只要证明AB=AC 即可,由条件可以求得△AEC 和△ADB 全等,从而可以证得结论.【详解】∵BD ⊥AC 于点D ,CE ⊥AB 于点E ,∴∠ADB=∠AEC=90°,在△ADB 和△AEC 中,ADB AEC AD AEA A ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.考点:全等三角形的判定与性质.25.(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.【解析】【分析】(1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;(2)根据相似三角形的性质得出比例式,再进行变形即可.【详解】解:(1)△ACD 与△ABC相似,理由是:∵在Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,∴∠ADC=∠ACB=90°,∵∠A=∠A,∴△ACD∽∠ABC;(2)AC2=AB•AD成立,理由是:∵△ACD∽∠ABC,∴=,∴AC2=AB•AD.【点睛】本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.26.(1)证明见解析;(2)BC=1.【解析】【分析】(1)连接OB,根据切线的性质和圆周角定理求出∠PBO=∠ABC=90°,即可求出答案;(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【详解】(1)连接OB,∵PB 是⊙O 的切线,∴PB ⊥OB ,∴∠PBA+∠OBA=90°,∵AC 是⊙O 的直径,∴∠ABC=90°,∠C+∠BAC=90°,∵OA=OB ,∴∠OBA=∠BAO ,∴∠PBA=∠C ;(2)∵⊙O 的半径是2 ,∴22,∵OP ∥BC ,∴∠BOP=∠OBC ,∵OB=OC ,∴∠OBC=∠C ,∴∠BOP=∠C ,∵∠ABC=∠PBO=90°,∴△ABC ∽△PBO ,∴BC BO =AC OP 32=629,∴BC=1. 【点睛】本题考查平行线的性质,切线的性质,相似三角形的性质和判定,圆周角定理等知识点,能综合运用知识点进行推理是解题关键.27.(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x 2-103x+3, 2239y x x =++,y=x 2-4x+3, 2833y x x =++. 【解析】【分析】(1)将点B 和点C 代入求出抛物线L 即可求解.(2)将抛物线L 化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得△PAC 为等腰直角三角形,作出所有点P 的可能性,求出代入23y x dx =++即可求解.【详解】(1)将点B (-3,0),C (0,3)代入抛物线得: {0=9-3b+cc=3,解得{b=4c=3,则抛物线243y x x =++. Q 抛物线与x 轴交于点A,∴ 2043x x =++,12x =-3x =-1,,A (-1,0),抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1).(2)抛物线L 化顶点式可得()2y=x+2-1,由此可得顶点坐标顶点(-2,-1) Q 抛物线L 1的顶点与抛物线L 的顶点关于原点对称,1L ∴对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得△PAC 为等腰直角三角形,作出所有点P 的可能性.1P AC ∆Q 是等腰直角三角形1P A CA ∴=,190,90CAO ACO CAO P AE ∠+∠=︒∠+∠=︒Q ,1CAO P AE ∴∠=,190PEA COA =∠=︒Q , ()1CAO APE AAS ∴∆≅∆,∴求得()14,1P -.,同理得()22,1P -,()33,4P -,()43,2P ,由题意知抛物线23y x dx =++并将点代入得:222228103,43,3,3933y x x y x x y x x y x x =++=-+=++=-+. 【点睛】本题主要考查抛物线综合题,讨论出P 点的所有可能性是解题关键.。
安徽省安庆市2019-2020学年第二次中考模拟考试数学试卷含解析
安徽省安庆市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .02.如图所示的正方体的展开图是( )A .B .C .D .3.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°4.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是( ) A .1 B .-6 C .2或-6 D .不同于以上答案5.如图,矩形ABCD 中,E 为DC 的中点,AD :AB =3:2,CP :BP =1:2,连接EP 并延长,交AB 的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②2BF =PB•EF ;③PF•EF =22AD ;④EF•EP =4AO•PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④6.把多项式ax 3﹣2ax 2+ax 分解因式,结果正确的是( )A .ax (x 2﹣2x )B .ax 2(x ﹣2)C .ax (x+1)(x ﹣1)D .ax (x ﹣1)27.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是( )A .5B .9C .15D .228.已知:二次函数y=ax 2+bx+c (a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m (am+b )(m≠-1);④ax 2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A .2个B .3个C .4个D .5个9.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -10.下列立体图形中,主视图是三角形的是( )A .B .C .D .11.化简221121211x x x x ÷+--++的结果是( ) A .1 B .12 C .11x x -+ D .222(1)x x -+ 12.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)二、填空题:(本大题共6个小题,每小题4分,共24分.)13162(5)-=_____510.14.方程1223x x =+的解为__________. 15.如图,等腰△ABC 中,AB =AC =5,BC =8,点F 是边BC 上不与点B ,C 重合的一个动点,直线DE 垂直平分BF ,垂足为D .当△ACF 是直角三角形时,BD 的长为_____.16.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.17.分解因式:x2–4x+4=__________.18.早春二月的某一天,大连市南部地区的平均气温为﹣3℃,北部地区的平均气温为﹣6℃,则当天南部地区比北部地区的平均气温高_____℃.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).20.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:OC OP PD AP;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.21.(6分)已知关于x 的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.求k 的取值范围;写出一个满足条件的k 的值,并求此时方程的根.22.(8分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人.23.(8分)解方程:1+231833x x x x x-=-- 24.(10分)如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .求证:AB =DC ;试判断△OEF 的形状,并说明理由.25.(10分)如图,在平面直角坐标系中,一次函数y=kx+b 与反比例函数y=m x(m≠0)的图象交于点A (3,1),且过点B (0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P 是x 轴上一点,且△ABP 的面积是3,求点P 的坐标.26.(12分)计算:033.14 3.1412cos45π⎫-+÷-⎪⎪⎝⎭o )()12009211-++-.27.(12分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数k y x=的图象上,将这两点分别记为A ,B ,另一点记为C ,(1)求出k 的值;(2)求直线AB 对应的一次函数的表达式;(3)设点C 关于直线AB 的对称点为D ,P 是x 轴上的一个动点,直接写出PC +PD 的最小值(不必说明理由).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k=1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k=1时,34430∆=--+=-<,∴k=1不合题意,故舍去,∆=-++=>,符合题意,当k=−1时,34450∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.2.A【解析】【分析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.3.B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.4.C【解析】解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;②当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1.故选C.点睛:注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.5.B【解析】【分析】由条件设,AB=2x,就可以表示出,x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴,CD=2x∵CP:BP=1:2∴CP=3,x∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCEC=3,tan∠EBC=ECBC=3∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=433x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·43x·322AD2=2×3)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=3 3x∵tan∠PAB=PBAB=33∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,,∴4AO·2又EF·2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.6.D【解析】【分析】先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.【详解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选D.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.7.B【解析】【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B .【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键. 8.B【解析】【分析】根据二次函数的图象与性质判断即可.【详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误;②Q 对称轴为直线x=-1,12b a∴-=-,即b=2a, 所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值,即a-b+c <2am bm c ++(1m ≠-),即a ﹣b <m (am+b )(m≠﹣1),故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;⑤由图像可得,当x=2时,y >1,即: 4a+2b+c >1,故⑤正确.故正确选项有③④⑤,故选B.【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.9.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】 A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.10.A【解析】【分析】考查简单几何体的三视图.根据从正面看得到的图形是主视图,可得图形的主视图【详解】A 、圆锥的主视图是三角形,符合题意;B 、球的主视图是圆,不符合题意;C 、圆柱的主视图是矩形,不符合题意;D 、正方体的主视图是正方形,不符合题意.故选A .【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看11.A【解析】原式=()()111x x +-•(x –1)2+21x +=11x x -++21x +=11x x ++=1,故选A . 12.A【解析】【分析】关于y 轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M (1,2)关于y 轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 5【解析】【分析】根据二次根式的性质即可求出答案.【详解】①原式=4;②原式=5-=5;③原式,故答案为:①4;②5;③【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.14.1x =【解析】【分析】两边同时乘2(3)x x +,得到整式方程,解整式方程后进行检验即可.【详解】解:两边同时乘2(3)x x +,得34x x +=,解得1x =,检验:当1x =时,2(3)x x +≠0,所以x=1是原分式方程的根,故答案为:x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.15.2或78【解析】【分析】分两种情况讨论:(1)当AFC 90∠︒=时,AF BC ⊥,利用等腰三角形的三线合一性质和垂直平分线的性质可解;(2)当CAF 90=∠︒时,过点A 作AM BC ⊥于点M ,证明AMC FAC V V ∽,列比例式求出FC ,从而得BF ,再利用垂直平分线的性质得BD .【详解】解:(1)当AFC 90∠︒=时,AF BC ⊥,142AB ACBF BC BF=∴=∴=Q∵DE垂直平分BF,8122BCBD BF=∴==Q.(2)当CAF90=∠︒时,过点A作AM BC⊥于点M,AB ACQ=BM CM=∴在Rt AMCV与Rt FACV中,AMC FAC90C C∠∠∠∠︒==,=,AMC FAC∴V V∽,AC MCFC AC=Q2ACFCMC∴=15,42254AC MC BCFC===∴=Q2578441728BF BC FCBD BF∴=-=-=∴==.故答案为2或78.【点睛】本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.16.215【解析】【分析】如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=12OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=15,即CD=2CH=215.【详解】解:如图,作OH⊥CD于H,连结OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴22OC OH15-=∴15故答案为15【点睛】本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可17.(x–1)1【解析】试题分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.考点:分解因式.18.3【解析】【分析】用南部气温减北部的气温,根据“减去一个数等于加上这个数的相反数”求出它们的差就是高出的温度.【详解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:当天南部地区比北部地区的平均气温高3℃,故答案为:3.【点睛】本题考查了有理数的减法运算法则,减法运算法则:减去一个数等于加上这个数的相反数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.【解析】【分析】过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD=tanCDCAD∠=3x,根据AD+BD=AB列方程求解可得.【详解】解:过点C作CD⊥AB于点D,设CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵tanCD CADAD ∠=,∴AD=tan CDCAD∠=tan30x︒33,由AD+BD=AB3=10,解得:x=3﹣5,答:飞机飞行的高度为(5)km .20. (1)详见解析;(2)10.【解析】【分析】 ①只需证明两对对应角分别相等可得两个三角形相似;故OC OP PD AP=. ②根据相似三角形的性质求出PC 长以及AP 与OP 的关系,然后在Rt △PCO 中运用勾股定理求出OP 长,从而求出AB 长.【详解】①∵四边形ABCD 是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折叠可得:AP=AB ,PO=BO ,∠PAO=∠BAO ,∠APO=∠B.∴∠APO=90°.∴∠APD=90°−∠CPO=∠POC.∵∠D=∠C ,∠APD=∠POC.∴△OCP ∽△PDA. ∴OC OP PD AP=. ②∵△OCP 与△PDA 的面积比为1:4,∴OCPD=OPPA=CPDA=14−−√=12.∴PD=2OC ,PA=2OP ,DA=2CP.∵AD=8,∴CP=4,BC=8.设OP=x ,则OB=x ,CO=8−x.在△PCO 中,∵∠C=90∘,CP=4,OP=x ,CO=8−x ,∴x 2=(8−x)2+42.解得:x=5.∴AB=AP=2OP=10.∴边AB 的长为10.【点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.21.方程的根120=2x x =-或【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【详解】(1)∵关于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有两个不相等的实数根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<14.(1)当k=0时,原方程为x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴当k=0时,方程的根为0和﹣1.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.22.(1)图形见解析;(2)1;(3)1.【解析】【分析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【详解】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×105100=1(人),故答案为1.【点睛】 此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.23.无解.【解析】【分析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x 2﹣3x ﹣x 2=3x ﹣18,解得:x =3,经检验x =3是增根,分式方程无解.【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.24.(1)证明略(2)等腰三角形,理由略【解析】【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF , 即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.25.(1)y=3x;y=x-2;(2)(0,0)或(4,0) 【解析】试题分析:(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB 与x 轴的交点,设交点是C ,然后根据S △ABP =S △ACP +S △BCP 即可列方程求得P 的横坐标.试题解析:(1)∵反比例函数y=m x (m≠0)的图象过点A (1,1), ∴1=1m ∴m=1. ∴反比例函数的表达式为y=3x . ∵一次函数y=kx+b 的图象过点A (1,1)和B (0,-2).∴31{2k b b ==+-,解得:1{2k b -==, ∴一次函数的表达式为y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函数y=x-2的图象与x 轴的交点C 的坐标为(2,0).∵S △ABP =1,12PC×1+12PC×2=1. ∴PC=2,∴点P 的坐标为(0,0)、(4,0).【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S △ABP =S △ACP +S △BCP 列方程是关键.26.π【解析】【分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【详解】原式()3.14 3.141π=--+÷ ()21-+-3.14 3.141π=-+-11π=-π=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.27.(2)2;(2)y=x+2;(3)34.【解析】【分析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.【详解】解:(2)∵反比例函数y=kx的图象上的点横坐标与纵坐标的积相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)设直线AB的解析式为y=mx+n,则有221 m nm n++⎧⎨-+-⎩=,解得11mn⎧⎨⎩==,∴直线AB的解析式为y=x+2.(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值223+5=34【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.。
安徽省安庆市九年级下学期数学开学考试试卷
安徽省安庆市九年级下学期数学开学考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·亳州期中) 已知,两数在数轴上对应的点如图所示,下列结论正确的是()A . >B . <0C . >0D . >02. (2分) (2019七上·象山期末) 某同学在解关于x的方程时,误将看作,得到方程的解为,则a的值为A . 3B .C . 2D . 13. (2分)在“地球停电一小时”活动的某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A . 30x-8=31x+26B . 30x+8=31x+26C . 30x-8=31x-26D . 30x+8=31x-264. (2分)下面如图是一个圆柱体,则它的正视图是()A .B .C .D .5. (2分)如图,在□ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,则□ABCD 的周长为()A .B .C .D . 或6. (2分) (2017八上·濮阳期末) 已知等腰三角形的一个内角是70°,则这个等腰三角形的顶角为()A . 70°B . 40°C . 70°或40°D . 以上答案都不对7. (2分) (2020八下·椒江期末) 为了在甲、乙两名运动员中选拔一人发加全省射击比赛,对他们的射击水平进行考核.在相同的情况下,两人的比赛成绩经统计计算后如下表;运动员射击次数中位数(环)方差平均数(环)甲157 1.68乙1580.78某同学根据上表分析得出如下结论:①甲、乙两名运动员成绩的平均水平相同;②乙运动员优秀的次数多于甲运动员(环数≥8环为优秀);③甲运动员成绩的波动比乙大,上述结论正确的是()A . ①②③B . ①②C . ①③D . ②③8. (2分)(2017·郯城模拟) 如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y= 与正方形ABCD有公共点,则k的取值范围为()A . 1<k<9B . 2≤k≤34C . 1≤k≤16D . 4≤k<169. (2分)(2019·本溪) 为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是()A .B .C .D .10. (2分) (2019九上·房山期中) 已知:二次函数y=ax2+bx+c的图象如图所示,下列说法中正确的是()A .B .C .D . 当,二、填空题 (共9题;共9分)11. (1分)(2017·黄石港模拟) 分解因式:y3﹣4x2y=________.12. (1分) (2020七下·哈尔滨期中) 如图,在△ABC中,点D在AC上,点E在BD上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC的度数为________.13. (1分)若分式无意义,当时,则m=________.14. (1分) (2019八下·哈尔滨期中) 菱形有一个内角是120°,有一条对角线为6cm,则此菱形的边长是________cm.15. (1分)已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=-1,则m的值是________16. (1分) (2018九上·郑州开学考) 如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=________s时,△PAB 为等腰三角形.17. (1分)(2017·邗江模拟) 如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2 ,则MF的长是________.18. (1分)(2019·崇川模拟) 如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ面积的最小值为;④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是________.19. (1分) (2020八下·武汉期中) 如图,矩形ABCD中,AB=12,点E是AD上的一点,AE=6,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G.若G是CD的中点,则BC的长是________.三、解答题 (共9题;共83分)20. (10分) (2019九上·长春期中) 计算:.21. (5分)(2018·新疆) 先化简,再求值:( +1)÷ ,其中x是方程x2+3x=0的根.22. (5分)(2020·陕西模拟) 某市为了创建绿色生态城市,在城东建了“东州湖”景区,小明和小亮想测量“东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算“东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,≈1.414.)23. (11分) (2020七上·乾县期末) 某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调查(每人只选一种书籍),如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了________名学生;(2)在扇形统计图中,“其他”所在扇形的圆心角等于________度。
安徽省安庆市2019-2020学年中考第二次大联考数学试卷含解析
安徽省安庆市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知正比例函数(0)y kx k =≠的图象经过点(1,3)-,则此正比例函数的关系式为( ). A .3y x =- B .3y x = C .13y x = D .13y x =- 2.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象可能是( )A .B .C .D .3.计算3–(–9)的结果是( )A .12B .–12C .6D .–64.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D . 5.某圆锥的主视图是一个边长为3cm 的等边三角形,那么这个圆锥的侧面积是( )A .4.5πcm 2B .3cm 2C .4πcm 2D .3πcm 26.下列函数中,y 随着x 的增大而减小的是( )A .y=3xB .y=﹣3xC .3y x =D .3y x=- 7.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3) 8.下列运算正确的是( )A .x 3+x 3=2x 6B .x 6÷x 2=x 3C .(﹣3x 3)2=2x 6D .x 2•x ﹣3=x ﹣19.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -= C .800800401.25x x -= D .800800401.25x x -= 10.若a 与﹣3互为倒数,则a=( )A .3B .﹣3C .D .-11.已知二次函数y =a (x ﹣2)2+c ,当x =x 1时,函数值为y 1;当x =x 2时,函数值为y 2,若|x 1﹣2|>|x 2﹣2|,则下列表达式正确的是( )A .y 1+y 2>0B .y 1﹣y 2>0C .a (y 1﹣y 2)>0D .a (y 1+y 2)>012.下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.数学综合实践课,老师要求同学们利用直径为6cm 的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________cm .14.如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为,则BC的长是_____.15.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.16.方程242x-=的根是__________.17.如图,直线a∥b,直线c 分别于a,b 相交,∠1=50°,∠2=130°,则∠3 的度数为()A.50°B.80°C.100°D.130°18.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:3221xx x=+-.20.(6分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.21.(6分)已知:如图,梯形ABCD中,AD∥BC,DE∥AB,DE与对角线AC交于点F,FG∥AD,且FG=EF.(1)求证:四边形ABED 是菱形;(2)联结AE ,又知AC ⊥ED ,求证:21·2AE EF ED .22.(8分)(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB 的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC 为4米,落在斜坡上的影长CD 为3米,AB ⊥BC ,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ 在斜坡上的影长QR 为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)23.(8分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示 分组频数 4.0≤x <4.22 4.2≤x <4.43 4.4≤x <4.65 4.6≤x <4.88 4.8≤x <5.017 5.0≤x <5.2 5(1)求活动所抽取的学生人数;(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.24.(10分)先化简,再求值:242a a a a⎛⎫--÷ ⎪⎝⎭,其中a 满足a 2+2a ﹣1=1. 25.(10分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西55°方向行驶4千米至B 地,再沿北偏东35°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B 、C 两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)26.(12分)如图1,直线l :y=34x+m 与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线y=12 x 2+bx+c 经过点B ,与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)点D 在抛物线上,DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2),设点D 的横坐标为t (0<t <4),矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值; (3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.27.(12分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据待定系数法即可求得.【详解】解:∵正比例函数y=kx的图象经过点(1,﹣3),∴﹣3=k,即k=﹣3,∴该正比例函数的解析式为:y=﹣3x.故选A.【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题. 2.C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.3.A【解析】【分析】根据有理数的减法,即可解答.【详解】 ()393912,--=+=故选A .【点睛】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相反数.4.B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0,∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.5.A【解析】【分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.6.B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、3yx=,每个象限内,y随着x的增大而减小,故此选项错误;D、3yx=-,每个象限内,y随着x的增大而增大,故此选项错误;故选B.考点:反比例函数的性质;正比例函数的性质.7.A【解析】【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.8.D【解析】分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.9.C【解析】【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【详解】小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒,∵小进比小俊少用了40秒,方程是800800401.25x x-=,故选C.【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.10.D【解析】试题分析:根据乘积是1的两个数互为倒数,可得3a=1,∴a=,故选C.考点:倒数.11.C【解析】【分析】分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.【详解】解:①a>1时,二次函数图象开口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,无法确定y1+y2的正负情况,a(y1﹣y2)>1,②a<1时,二次函数图象开口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,无法确定y1+y2的正负情况,a(y1﹣y2)>1,综上所述,表达式正确的是a(y1﹣y2)>1.故选:C.【点睛】本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.12.D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3105【解析】【分析】根据题意作图,可得AB=6cm ,设正方体的棱长为xcm ,则AC=x ,BC=3x ,根据勾股定理对称62=x 2+(3x )2,解方程即可求得.【详解】解:如图示,根据题意可得AB=6cm ,设正方体的棱长为xcm ,则AC=x ,BC=3x ,根据勾股定理,AB 2=AC 2+BC 2,即()22263x x =+,解得3105x = 故答案为:3105. 【点睛】本题考查了勾股定理的应用,正确理解题意是解题的关键.14.1【解析】分析:设∠AEF=n°,由题意,解得n=120,推出∠AEF=120°,在Rt △EFD 中,求出DE 即可解决问题.详解:设∠AEF=n°,由题意,解得n=120,∴∠AEF=120°,∴∠FED=60°,∵四边形ABCD 是矩形,∴BC=AD ,∠D=90°,∴∠EFD=10°,∴DE=EF=1,∴BC=AD=2+1=1,故答案为1.点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.1.【解析】【详解】∵∠AOB=∠COD,∴S阴影=S△AOB.∵四边形ABCD是平行四边形,∴OA=12AC=12×1=2.∵AB⊥AC,∴S阴影=S△AOB=12OA•AB=12×2×1=1.【点睛】本题考查了扇形面积的计算.16.1.【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:2x﹣1=1,解得:x=1,经检验:x=1是原方程的解.故答案为:1.【点睛】本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验.17.B【解析】【分析】根据平行线的性质即可解决问题【详解】∵a ∥b ,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°, 故选B .【点睛】考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题.18.1.1【解析】【分析】先判断出x ,y 中至少有一个是1,再用平均数求出x+y=11,即可得出结论.【详解】∵一组数据4,x ,1,y ,7,9的众数为1,∴x ,y 中至少有一个是1,∵一组数据4,x ,1,y ,7,9的平均数为6, ∴16(4+x+1+y+7+9)=6, ∴x+y=11,∴x ,y 中一个是1,另一个是6,∴这组数为4,1,1,6,7,9, ∴这组数据的中位数是12×(1+6)=1.1, 故答案为:1.1.【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x ,y 中至少有一个是1是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.x=12,x=﹣2 【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】3221x x x=+-, 则2x (x+1)=3(1﹣x ),2x 2+5x ﹣3=0,(2x﹣1)(x+3)=0,解得:x1=12,x2=﹣3,检验:当x=12,x=﹣2时,2(x+1)(1﹣x)均不等于0,故x=12,x=﹣2都是原方程的解.【点睛】本题考查解分式方程的能力.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.20.(1)证明见解析;(2)CD的长为223.【解析】【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根据30°的性质和勾股定理可求出EF和DF的长,在Rt△CEF 中,根据勾股定理可求出CF的长,从而可求CD的长.【详解】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=, ∵CE=3,∴CF=2, ∴CD=2+..【点睛】本题考查了全等三角形的判定与性质,平行线的性质,菱形的判定,含30°的直角三角形的性质,勾股定理.证明AD=BC 是解(1)的关键,作EF ⊥CD 于F ,构造直角三角形是解(2)的关键.21. (1)见解析;(2)见解析【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到ABED 是平行四边形. 再由平行线分线段成比例定理得到:FG CF AD CA =, EF CF AB CA = ,FG AD =EF AB,即可得到结论; (2)连接BD ,与AE 交于点H .由菱形的性质得到12EH AE BD =,⊥AE ,进而得到90DHE ∠=o ,90AFE o ∠=,即有DHE AFE ∠∠=,得到△DHE ∽△AFE ,由相似三角形的性质即可得到结论. 详解:(1)∵ AD ∥BC DE ,∥AB ,∴四边形ABED 是平行四边形.∵FG ∥AD ,∴FG CF AD CA =. 同理 EF CF AB CA= . 得:FG AD =EF AB∵FG EF =,∴AD AB =.∴四边形ABED 是菱形.(2)连接BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE BD =,⊥AE . 得90DHE ∠=o .同理90AFE o ∠=.∴DHE AFE ∠∠=.又∵AED ∠是公共角,∴△DHE ∽△AFE . ∴EH DE EF AE=.∴21·2AE EF ED .点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.22.13.1.【解析】试题分析:如图,作CM ∥AB 交AD 于M ,MN ⊥AB 于N ,根据=,可求得CM 的长,在RT △AMN中利用三角函数求得AN 的长,再由MN ∥BC ,AB ∥CM ,判定四边形MNBC 是平行四边形,即可得BN 的长,最后根据AB=AN+BN 即可求得AB 的长.试题解析:如图作CM ∥AB 交AD 于M ,MN ⊥AB 于N .由题意=,即=,CM=,在RT △AMN 中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN ∥BC ,AB ∥CM ,∴四边形MNBC 是平行四边形,∴BN=CM=,∴AB=AN+BN=13.1米.考点:解直角三角形的应用.23.(1)所抽取的学生人数为40人(2)37.5%(3)①视力x <4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【解析】【分析】(1)求出频数之和即可;(2)根据合格率=合格人数÷总人数×100%即可得解; (3)从两个不同的角度分析即可,答案不唯一.【详解】(1)∵频数之和=3+6+7+9+10+5=40,∴所抽取的学生人数为40人;(2)活动前该校学生的视力达标率=1540×100%=37.5%; (3)①视力x <4.4之间活动前有9人,活动后只有5人,人数明显减少;②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.24.a 2+2a ,2【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后根据a 2+2a−2=2,即可解答本题.【详解】 解:242a a a a⎛⎫--÷ ⎪⎝⎭ =2242a a a a -⋅- =2(2)(2)2a a a a a +-⋅- =a (a+2)=a 2+2a ,∵a 2+2a ﹣2=2,∴a 2+2a =2,∴原式=2.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.B 、C 两地的距离大约是6千米.【解析】【分析】过B 作BD ⊥AC 于点D ,在直角△ABD 中利用三角函数求得BD 的长,然后在直角△BCD 中利用三角函数求得BC 的长.【详解】解:过B 作BD AC ⊥于点D .在Rt ABD V 中,BD AB sin BAD 40.8 3.2(∠=⋅=⨯=千米),BCD QV 中,CBD 903555∠=-=o o o ,CD BD tan CBD 4.48(∠∴=⋅=千米),BC CD sin CBD 6(∠∴=÷≈千米).答:B 、C 两地的距离大约是6千米.【点睛】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.26.(1)n=2;y=12x 2﹣54x ﹣1;(2)p=272855t t -+;当t=2时,p 有最大值285;(3)6个,712或43; 【解析】【分析】(1)把点B 的坐标代入直线解析式求出m 的值,再把点C 的坐标代入直线求解即可得到n 的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A 的坐标,从而得到OA 、OB 的长度,利用勾股定理列式求出AB 的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF ,再解直角三角形用DE 表示出EF 、DF ,根据矩形的周长公式表示出p ,利用直线和抛物线的解析式表示DE 的长,整理即可得到P 与t 的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A 1O 1∥y 轴时,B 1O 1∥x 轴,旋转角是180°判断出A 1O 1∥x 轴时,B 1A 1∥AB ,根据图3、图4两种情形即可解决.【详解】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值.(3)“落点”的个数有6个,如图1,图2中各有2个,图3,图4各有一个所示.如图3中,设A1的横坐标为m,则O1的横坐标为m+,∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,解得m=,如图4中,设A1的横坐标为m,则B1的横坐标为m+,B1的纵坐标比例A1的纵坐标大1,∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,解得m=,∴旋转180°时点A1的横坐标为或【点睛】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,解题时注意要分情况讨论.27.(1)证明见解析;(2)能;BE=1或116;(3)9625【解析】【详解】(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF =∠B ,又∵∠AEF +∠CEM =∠AEC =∠B +∠BAE , ∴∠CEM =∠BAE ,∴△ABE ∽△ECM ;(2)能.∵∠AEF =∠B =∠C ,且∠AME >∠C , ∴∠AME >∠AEF ,∴AE≠AM ;当AE =EM 时,则△ABE ≌△ECM ,∴CE =AB =5,∴BE =BC−EC =6−5=1,当AM =EM 时,则∠MAE =∠MEA ,∴∠MAE +∠BAE =∠MEA +∠CEM ,即∠CAB =∠CEA , 又∵∠C =∠C ,∴△CAE ∽△CBA , ∴CE AC AC CB=, ∴CE =2256CB AC =, ∴BE =6−256=116; ∴BE =1或116; (3)解:设BE =x ,又∵△ABE ∽△ECM , ∴CM CE BE AB=,即:65CM x x -=, ∴CM =22619(3)5555x x x -+=--+, ∴AM =5−CM 2116(3)55x =-+, ∴当x =3时,AM 最短为165, 又∵当BE =x =3=12BC 时, ∴点E 为BC 的中点,∴AE ⊥BC ,∴AE4=,此时,EF⊥AC,∴EM125 =,S△AEM=1161296 25525创=.。
2019-2020年九年级数学下学期开学考试试题(V).docx
2019-2020 年九年级数学下学期开学考试试题(V)考生须知:1.本试卷满分为 120 分,考试时间为 120 分钟。
2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚。
3.请按照题号的顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草纸、试题纸上答题无效。
4. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5 毫米的黑色字迹的签字笔书写,字体工整、笔记清楚。
5.保持卡面整洁、不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷选择题(共30 分)(涂卡)一、选择题(每题 3 分,共计30 分)1.在 3, -l , O,这四个数中,最大的数是( ).A. 3 B.-1 C.0 D.2. 下列运算正确的是()A.2x 2?x3=2x5B.(x-2)2 = x2-4C.x2+ x3= x 5D. (x3) 4= x 73. 下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.如图,它是由 5 个完全相同的小正方体搭建的几何体,若将最右边的小正方体拿走,则下列结论正确的是() 4 题图A.主视图不变 B.左视图不变C. 俯视图不变D.三视图都不变5.对于每一象限内的双曲线y= m2, y 都随x 的增大而增大,则m的取值范围是()xA. m> -2 B. m>2 C.m<-2 D.m<6. 如图,在综合实践活动中,小明在学校门口的点 C 处测得树的顶端 A 仰角为 37°,同时测得 BC=20米,则树的高AB(单位:米 ) 为 ( )A.20B.20C. 20tan 37°D.20sin 37°sin 370tan 3706 题图7 题图7.如图, PA、PB 是⊙ O 的切线,切点分别是A、B,如果∠ E= 60°,那么∠ P 等于()A.60 °B.90 °C.120 °D.150 °8. 如图,E是平行四边形ABCD的边BA延长线上的一点,CE 交AD于点F,下列各式中错误的是() .A.AEEF B.AB CFCD CF AE AF AE AFBEC.AB DFD.BCEC AB9 题图9. 如图,AOB90°, B 30°,△ A OB 可以看作是由△ AOB 绕点 O 顺时针旋转角度得到的.若点 A 在 AB 上,则旋转角的大小可以是()A.30° B. 45° C. 60° D.90°10.甲、乙两人都从 A 出发经 B 地去 C 地,乙比甲晚出发 1 分钟,两人同时到达 B 地,甲在B 地停留 1 分钟,乙在 B 地停留 2 分钟,他们行走的路程y(米)与甲行走的时间x(分钟)之间的函数关系如图所示,则下列说法中正确的个数有y/m)1000(①甲到 B 地前的速度为 100m/min②乙从 B 地出发后的速度为 300m/min400③ A、 C两地间的路程为 1000mO1489 x/min10 题图④甲乙再次相遇时距离 C 地 300km.A .1 个B.2 个C.3 个D.4 个第Ⅱ卷 非选择题(共 90 分) 二、填空题 ( 每小题 3 分,共计30 分)11. 太阳的半径约是 69000 千米,用科学记数法表示约是 千米。
安徽省安庆市2019-2020学年中考数学教学质量调研试卷含解析
安徽省安庆市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6 B .8.23×10﹣7 C .8.23×106 D .8.23×1072.下列各式计算正确的是( )A .(b+2a )(2a ﹣b )=b 2﹣4a 2B .2a 3+a 3=3a 6C .a 3•a=a 4D .(﹣a 2b )3=a 6b 33.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3xB .由,得2x ﹣2﹣x =﹣4C .由,得2y-15=3yD .由,得3(y+1)=2y+64.下列方程中,没有实数根的是( )A .x 2﹣2x=0B .x 2﹣2x ﹣1=0C .x 2﹣2x+1 =0D .x 2﹣2x+2=05.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+6.下列调查中,最适合采用普查方式的是( )A .对太原市民知晓“中国梦”内涵情况的调查B .对全班同学1分钟仰卧起坐成绩的调查C .对2018年央视春节联欢晚会收视率的调查D .对2017年全国快递包裹产生的包装垃圾数量的调查7.如图,A 、B 、C 是⊙O 上的三点,∠BAC =30°,则∠BOC 的大小是( )A .30°B .60°C .90°D .45°8.6的相反数为( )A .-6B .6C .16-D .169.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )A .B .C .D .10.计算1211x xx x +---的结果是( )A .1B .﹣1C .1﹣xD .311x x +-11.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于()A .125B .95C .65 D .16512.如图,△ABC 内接于⊙O ,AD 为⊙O 的直径,交BC 于点E ,若DE=2,OE=3,则tan ∠ACB·tan ∠ABC=( )A .2B .3C .4D .5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因:22424x xy y x y --++=______________________.14.已知23-是一元二次方程240x x c-+=的一个根,则方程的另一个根是________.15.若x2+kx+81是完全平方式,则k的值应是________.16.不等式组()3241213x xxx⎧--<⎪⎨+-≤⎪⎩的解集为______.17.计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的,请写出一个符合上述规律的算式.(2)设其中一个数的十位数字为a,个位数字为b,请用含a,b的算式表示这个规律.18.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,抛物线y=14x2﹣x+34与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.(1)A点坐标为;B点坐标为;F点坐标为;(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=14,求证:直线DE必经过一定点.20.(6分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED 灯泡普通白炽灯泡进价(元)45 25 标价(元) 60 30(1)该商场购进了LED 灯泡与普通白炽灯泡共300个,LED 灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED 灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?21.(6分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3∶2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?22.(8分)我们知道ABC △中,如果3AB =,4AC =,那么当AB AC ⊥时,ABC △的面积最大为6;(1)若四边形ABCD 中,16AD BD BC ++=,且6BD =,直接写出AD BD BC ,,满足什么位置关系时四边形ABCD 面积最大?并直接写出最大面积.(2)已知四边形ABCD 中,16AD BD BC ++=,求BD 为多少时,四边形ABCD 面积最大?并求出最大面积是多少?23.(8分)如图,BD 是矩形ABCD 的一条对角线.(1)作BD 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,垂足为点O .(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF .24.(10分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)25.(10分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣3.26.(12分)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加109m%小时,求m的值.27.(12分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP 且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000823=8.23×10-1.故选B.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.C【解析】各项计算得到结果,即可作出判断.解:A、原式=4a2﹣b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=﹣a6b3,不符合题意,故选C.3.D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.4.D【解析】【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【详解】A 、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A 选项错误;B 、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B 选项错误;C 、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C 选项错误;D 、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D 选项正确.故选D .5.A【解析】【分析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.【详解】解:大正方形的面积-小正方形的面积=22a b -,矩形的面积=()()a b a b +-,故22()()a b a b a b +-=-,故选:A .【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.6.B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A 、调查范围广适合抽样调查,故A 不符合题意;B 、适合普查,故B 符合题意;C 、调查范围广适合抽样调查,故C 不符合题意;D 、调查范围广适合抽样调查,故D 不符合题意;故选:B .点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.B【解析】【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.【详解】∵∠BAC=30°,∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半),故选B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.A【解析】【分析】根据相反数的定义进行求解.【详解】1的相反数为:﹣1.故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.9.A【解析】【分析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.10.B【解析】【分析】根据同分母分式的加减运算法则计算可得.【详解】解:原式=121 x x x+--=1-1 x x-=() --11 x x-=-1,故选B.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.11.A【解析】【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM= 22AB BM-= 2253-=4,又S△AMC=12MN•AC=12AM•MC,∴MN=·AM CM AC= 125.故选A.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.12.C【解析】【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三角形的判定定理可得ACE BDE ∆~∆,然后由相似三角形的性质可得AC CE BD DE =,同理可得AB AE CD CE =;又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案. 【详解】如图,连接BD 、CD ,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDE AEC BED ∠=∠⎧⎨∠=∠⎩ACE BDE ∴∆~∆AC CE BD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CE BD ∴= 同理可得:ABE CDE ∆~∆ AB AE CD CE ∴=,即8AB CD CE = AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∴∠=∠=∠=∠= 8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅= 故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(x-2y)(x-2y+1)【解析】【分析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】22--++424x xy y x y=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)14.23【解析】【分析】通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将3代入计算即可.【详解】设方程的另一根为x1,又∵3x13,解得x13.故答案为:23【点睛】解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.15.±1【解析】试题分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x 2+kx+81是完全平方式,∴k=±1.故答案为±1. 考点:完全平方式.16.1<x≤1【解析】解不等式x ﹣3(x ﹣2)<1,得:x >1, 解不等式1213x x +-≤,得:x≤1, 所以不等式组解集为:1<x≤1,故答案为1<x≤1.17. (1)十位和个位,44×46=2024;(2) 10a (a+1)+b (1﹣b )【解析】分析:(1)、根据题意得出其一般性的规律,从而得出答案;(2)、利用代数式表示出其一般规律得出答案.详解:(1)由已知等式知,每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,例如:44×46=2024, (2)(1a+b )(1a+1﹣b )=10a (a+1)+b (1﹣b ).点睛:本题主要考查的是规律的发现与整理,属于基础题型.找出一般性的规律是解决这个问题的关键.18.1.【解析】【分析】设小矩形的长为x ,宽为y ,则由图1可得5y=3x ;由图2可知2y-x=2.【详解】解:设小矩形的长为x ,宽为y ,则可列出方程组,3522x y y x =⎧⎨-=⎩,解得106x y =⎧⎨=⎩, 则小矩形的面积为6×10=1. 【点睛】本题考查了二元一次方程组的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(1,0),(3,0),(0,34);(2)在直线AC 下方的抛物线上不存在点P ,使S △ACP =4,见解析;(3)见解析【解析】【分析】(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC 下方轴x 上一点,使S △ACH =4,求出点H 坐标,再求出直线AC 的解析式,进而得出点H 坐标,最后用过点H 平行于直线AC 的直线与抛物线解析式联立求解,即可得出结论;(3)联立直线DE 的解析式与抛物线解析式联立,得出213(1)044x k x m -++-=,进而得出44a b k ++=,34ab m -=,再由DAG MAO ∆∆∽得出DG AG MO AO =,进而求出1(3)4OM a -=,同理可得1(3)4ON b -=,再根据111(3)(3)444OM ON a b ⋅-⋅-==,即可得出结论. 【详解】(1)针对于抛物线21344y x x =-+, 令x =0,则34y =, ∴3(0)4F ,,令y =0,则213044x x -+=, 解得,x =1或x =3,∴(10)(30)A B ,,,, 综上所述:0(1)A ,,(30)B ,,3(0)4F ,; (2)由(1)知,(30)B ,,3(0)4F ,, ∵BM =FM , ∴33(,)28M , ∵0(1)A ,, ∴直线AC 的解析式为:33y x 44=-, 联立抛物线解析式得:233441344y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩, 解得:1110x y =⎧⎨=⎩或226154x y =⎧⎪⎨=⎪⎩, ∴15(6,)4C ,如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,∴1154 24a⨯=,解得:3215a=,∴47(,0)15H,过H作l∥AC,∴直线l的解析式为347420y x=-,联立抛物线解析式,解得2535620x x-+=,∴4949.60.60∆--<==,即:在直线AC下方的抛物线上不存在点P,使4ACPSV=;(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,设213(,)44D a a a-+,213(,)44E b b b-+,直线DE的解析式为y kx m+=,联立直线DE的解析式与抛物线解析式联立,得213(1)044x k x m-++-=,∴44a b k++=,34ab m-=,∵DG⊥x轴,∴DG∥OM,∴DAG MAO∆∆∽,∴DG AGMO AO=,即1(1)(3)141a a aOM---=,∴1(3)4OM a-=,同理可得1(3)4ON b-=∴111(3)(3)444OM ON a b⋅-⋅-==,∴3()50ab a b-++=,即343(44)50m k--++=,∴31m k =--,∴直线DE 的解析式为31(3)1y kx k k x ----==, ∴直线DE 必经过一定点(3,1)-.【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.20.(1)LED 灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.【解析】【分析】1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为y 个,利用该商场购进了LED 灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;(2)设该商场购进LED 灯泡a 个,则购进普通白炽灯泡(120-a )个,这批灯泡的总利润为W 元,利用利润的意义得到W=(60-45)a+(30-25)(120-a )=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a 的范围,然后根据一次函数的性质解决问题.【详解】(1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为y 个.根据题意,得300(6045)(0.93025)3200x y x y +=⎧⎨-+⨯-=⎩ 解得200100x y =⎧⎨=⎩答:该商场购进LED 灯泡与普通白炽灯泡的数量分别为200个和100个.(2)设该商场再次购进LED 灯泡a 个,这批灯泡的总利润为W 元.则购进普通白炽灯泡(120﹣a )个.根据题意得W=(60﹣45)a+(30﹣25)(120﹣a )=10a+1.∵10a+1≤[45a+25(120﹣a )]×30%,解得a≤75,∵k=10>0,∴W 随a 的增大而增大,∴a=75时,W 最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.答:该商场再次购进LED 灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.【点睛】本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.21.(1)甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天;(2)甲队应得的报酬为1600元,乙队应得的报酬为2400元.【解析】【分析】(1)设甲队单独完成此项工程需要3x 天,则乙队单独完成此项工程需要2x 天,根据两队共同施工6天可以完成该工程,即可得出关于x 的分式方程,解之经检验即可得出结论;(2)根据甲、乙两队单独完成这项工作所需的时间比可得出两队每日完成的工作量之比,再结合总报酬为4000元即可求出结论.【详解】(1)设甲队单独完成此项工程需要3x 天,则乙队单独完成此项工程需要2x 天, 根据题意得:661,32x x += 解得:x=5,经检验,x=5是所列分式方程的解且符合题意.∴3x=15,2x=1.答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要1天.(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,∴甲、乙两队每日完成的工作量之比是2:3, ∴甲队应得的报酬为24000160023⨯=+(元), 乙队应得的报酬为4000﹣1600=2400(元).答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22. (1)当AD BD ⊥,BC BD ⊥时有最大值1;(2)当8BD =时,面积有最大值32.【解析】【分析】(1)由题意当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,由此即可解决问题.(2)设BD=x ,由题意:当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,构建二次函数,利用二次函数的性质即可解决问题.【详解】(1) 由题意当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大, 最大面积为12×6×(16-6)=1. 故当AD BD ⊥,BC BD ⊥时有最大值1;(2)当AD BD P ,BC BD ⊥时有最大值,设BD x =, 由题意:当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,16AD BD BC ++=Q16AD BC x ∴+=-ABD CBD ABCD S S S ∴=+V V 四边形1122AD BD BC BD =⋅+⋅ ()12AD BC BD =+⋅ ()1162x x =- ()21=8322x --+ 102-<Q ∴抛物线开口向下∴当8BD = 时,面积有最大值32.【点睛】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题. 23.(1)作图见解析;(2)证明见解析;【解析】【分析】(1)分别以B 、D 为圆心,以大于12BD 的长为半径四弧交于两点,过两点作直线即可得到线段BD 的垂直平分线;(2)利用垂直平分线证得△DEO ≌△BFO 即可证得结论.【详解】解:(1)如图:(2)∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠ADB=∠CBD ,∵EF 垂直平分线段BD ,∴BO=DO ,在△DEO 和三角形BFO 中,{ADB CBDBO DO DOE BOF∠=∠=∠=∠,∴△DEO ≌△BFO (ASA ),∴DE=BF .考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.24. (1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC 中,已知AC 的长度,又知道了∠ACB 的度数,那么AB 的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的. 解:(1)在Rt △BAC 中,∠ACB=68°,∴AB=AC•tan68°≈100×2.1=21(米)答:所测之处江的宽度约为21米.(2)①延长BA 至C ,测得AC 做记录;②从C 沿平行于河岸的方向走到D ,测得CD ,做记录;③测AE ,做记录.根据△BAE ∽△BCD ,得到比例线段,从而解答25.解:原式=4x 2﹣9﹣4x 2+4x+x 2﹣4x+4 =x 2﹣1.当x=3时,原式=3)2﹣1=3﹣1=﹣2.【解析】应用整式的混合运算法则进行化简,最后代入x 值求值.26.(1)1600千米;(2)1【解析】试题分析:(1)利用“从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时”,分别得出等式组成方程组求出即可;(2)根据题意得出方程(80+120)(1-m%)(8+109m%)=1600,进而解方程求出即可. 试题解析:(1)设原时速为xkm/h ,通车后里程为ykm ,则有: ()()8120816320x y x y ⎧+⎪⎨++⎪⎩== , 解得:801600x y ⎧⎨⎩== . 答:渝利铁路通车后,重庆到上海的列车设计运行里程是1600千米;(2)由题意可得出:(80+120)(1﹣m%)(8+109m%)=1600, 解得:m 1=1,m 2=0(不合题意舍去),答:m 的值为1.27. (1)、(t+6,t );(2)、当t=2时,S 有最小值是16;(3)、理由见解析.【解析】【分析】【详解】(1)如图所示,过点E 作EG ⊥x 轴于点G ,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t ,∵PE ⊥CP 、PF ⊥OP ,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG ,∴∠CPF=∠EPG ,又∵CO ⊥OG 、FP ⊥OG ,∴CO ∥FP ,∴∠CPF=∠PCO ,∴∠PCO=∠EPG ,在△PCO 和△EPG 中,∵∠PCO=∠EPG ,∠POC=∠EGP ,PC=EP ,∴△PCO ≌△EPG (AAS ), ∴CO=PG=6、OP=EG=t ,则OG=OP+PG=6+t ,则点E 的坐标为(t+6,t ),(2)∵DA ∥EG ,∴△PAD ∽△PGE ,∴AD PA GE PG =,∴46AD t t -=, ∴AD=16t (4﹣t ), ∴BD=AB ﹣AD=6﹣16t (4﹣t )=16t 2﹣23t+6, ∵EG ⊥x 轴、FP ⊥x 轴,且EG=FP ,∴四边形EGPF 为矩形,∴EF ⊥BD ,EF=PG ,∴S 四边形BEDF =S △BDF +S △BDE =12×BD×EF=12×(16t 2﹣23t+6)×6=12(t ﹣2)2+16, ∴当t=2时,S 有最小值是16;(3)①假设∠FBD 为直角,则点F 在直线BC 上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D不可能在EF上,即∠FDB不可能为直角;③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,如图2,作FH⊥BD于点H,则FH=PA,即4﹣t=6﹣t,方程无解,∴假设不成立,即△BDF不可能是等腰直角三角形.。
(3份试卷汇总)2019-2020学年安徽省安庆市中考数学经典试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°2.估算9153+÷的运算结果应在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间3.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233πC.32π-D.3π-4.下列计算或化简正确的是()A.234265=B842=C2(3)3-=-D2733=5.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球6.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为()A.13B.24C2D.37.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣348.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°9.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A.120100x x10=-B.120100x x10=+C.120100x10x=-D.120100x10x=+10.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺二、填空题(本题包括8个小题)11.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD 沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()12.如图,在△ABC中,BA=BC=4,∠A=30°,D是AC上一动点,AC的长=_____;BD+12DC的最小值是_____.13.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.14.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.15.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.16.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF17.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.18.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m1.三、解答题(本题包括8个小题)19.(6分)在“双十二”期间,,A B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)20.(6分)已知关于x的方程x2-(m+2)x+(2m-1)=0。
安徽省安庆市2019-2020学年中考二诊数学试题含解析
安徽省安庆市2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是( )A .9=±3B .﹣32=9C .(﹣3)﹣2=19D .﹣3+|﹣3|=﹣62.下列图形中,主视图为①的是( )A .B .C .D .3.若a+b=3,,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣14.如图,矩形ABCD 中,AD=2,AB=3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )A 5B .136C .1D .565.下列图形中一定是相似形的是( )A .两个菱形B .两个等边三角形C .两个矩形D .两个直角三角形6.下列说法错误的是( )A .2-的相反数是2B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是07.在一张考卷上,小华写下如下结论,记正确的个数是m ,错误的个数是n ,你认为m n (-= ) ①有公共顶点且相等的两个角是对顶角 40.00041 4.110--=-⨯②2525=③④若12390∠∠∠++=o ,则它们互余 A .4 B .14 C .3- D .138.下列关于事件发生可能性的表述,正确的是( )A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D.掷两枚硬币,朝上的一面是一正面一反面的概率为1 39.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣3B.π+3C.π+23D.2π﹣2310.下列各式属于最简二次根式的有()A.8B.21x C.3y D.1 211.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A.12a B.a C.32a D.3a12.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=3x在第一象限的图象经过点 B ,则△OAC 与△BAD 的面积之差 S △OAC ﹣S △BAD 为_______.14.有一组数据:3,5,5,6,7,这组数据的众数为_____.15.如图,设△ABC 的两边AC 与BC 之和为a ,M 是AB 的中点,MC =MA =5,则a 的取值范围是_____.16.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数是_____.17.我国自主研发的某型号手机处理器采用10 nm 工艺,已知1 nm=0.000000001 m ,则10 nm 用科学记数法可表示为_____m .18.若关于x 的一元二次方程2210mx x --=无实数根,则一次函数y mx m =+的图象不经过第_________象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO .(1)求证:BC 是∠ABE 的平分线;(2)若DC=8,⊙O 的半径OA=6,求CE 的长.20.(6分)抛物线y=﹣x 2+(m ﹣1)x+m 与y 轴交于(0,3)点.(1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标;(3)x 取什么值时,抛物线在x 轴上方?(4)x 取什么值时,y 的值随x 值的增大而减小?21.(6分)如图,在平行四边形ABCD 中,24BC AB ==,点E 、F 分别是BC 、AD 的中点. (1)求证:ABE ∆≌CDF ∆;(2)当AE CE =时,求四边形AECF 的面积.22.(8分)如图,在平面直角坐标系中,直线y=x +4与x 轴、y 轴分别交于A 、B 两点,抛物线y=-x 2+bx +c 经过A 、B 两点,并与x 轴交于另一点C (点C 点A 的右侧),点P 是抛物线上一动点. (1)求抛物线的解析式及点C 的坐标;(2)若点P 在第二象限内,过点P 作PD ⊥轴于D ,交AB 于点E .当点P 运动到什么位置时,线段PE 最长?此时PE 等于多少?(3)如果平行于x 轴的动直线l 与抛物线交于点Q ,与直线AB 交于点N ,点M 为OA 的中点,那么是否存在这样的直线l ,使得△MON 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.23.(8分)如图,在平行四边形ABCD 中,过点A 作AE ⊥DC ,垂足为点E ,连接BE ,点F 为BE 上一点,连接AF ,∠AFE=∠D .(1)求证:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=45.求证:AF=BF.24.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.25.(10分)(1)计算:0353tan60502-+-+sin45°(2)解不等式组:3(1)5211132x xx x++-⎧⎪+-⎨-≤⎪⎩f26.(12分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.27.(12分)如图,菱形ABCD中,,E F分别是,BC CD边的中点.求证:AE AF=.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可.【详解】9,故选项A不合题意;﹣32=﹣9,故选项B不合题意;(﹣3)﹣2=19,故选项C符合题意;﹣3+|﹣3|=﹣3+3=0,故选项D不合题意.故选C.【点睛】本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键.2.B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.3.B【解析】【详解】∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故选B.考点:完全平方公式;整体代入.4.D【解析】【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB//CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到AE ADAF FH=,于是得到AE=AF,列方程即可得到结论.【详解】解:如图:解:过F作FH⊥AE于H,Q四边形ABCD是矩形,∴AB=CD,AB∥CD,Q AE//CF, ∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3-DE,∴24DE+Q∠FHA=∠D=∠DAF=90o,∴∠AFH+∠HAF=∠DAE+∠FAH=90, ∴∠DAE=∠AFH, ∴△ADE~△AFH,∴AE AD AF FH=∴AE=AF,∴3DE=-,∴DE=5 6 ,故选D.【点睛】本题主要考查平行四边形的性质及三角形相似,做合适的辅助线是解本题的关键.5.B【解析】【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【点睛】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.6.D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.7.D【解析】【分析】首先判断出四个结论的错误个数和正确个数,进而可得m、n的值,再计算出mn-即可.【详解】解:①有公共顶点且相等的两个角是对顶角,错误;40.00041 4.110--=-⨯②,正确; 2525⋅=③,错误;④若12390∠∠∠++=o ,则它们互余,错误;则m 1=,n 3=,m 1n 3-=, 故选D .【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m 、n 的值.8.C【解析】【分析】根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.【详解】解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.D. 掷两枚硬币,朝上的一面是一正面一反面的概率为12,故错误. 故选:C.【点睛】考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.9.D【解析】分析:观察图形可知,阴影部分的面积= S 半圆ACD +S 半圆BCD -S △ABC ,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD .∵∠C=90°,AC=2,AB=4,∴.∴阴影部分的面积= S 半圆ACD +S 半圆BCD -S △ABC=2211112222ππ⨯+⨯-⨯⨯=322ππ+-2π=-.故选:D . 点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S 半圆ACD +S 半圆BCD -S △ABC 是解答本题的关键.10.B【解析】【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【详解】A =A 选项错误;B 是最简二次根式,故B 选项正确;C =D =D 选项错误; 故选:B .【点睛】 考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.11.A【解析】【分析】取CB 的中点G ,连接MG ,根据等边三角形的性质可得BH=BG ,再求出∠HBN=∠MBG ,根据旋转的性质可得MB=NB ,然后利用“边角边”证明∴△MBG ≌△NBH ,再根据全等三角形对应边相等可得HN=MG ,然后根据垂线段最短可得MG ⊥CH 时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC 的中点G ,连接MG ,∵旋转角为60°, ∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°, ∴∠HBN=∠GBM ,∵CH 是等边△ABC 的对称轴, ∴HB=12AB , ∴HB=BG ,又∵MB 旋转到BN , ∴BM=BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===, ∴△MBG ≌△NBH (SAS ), ∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a,∴HN=2a ,故选A . 【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点. 12.C 【解析】 【详解】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B 错误,看不到的线要用虚线,故A 错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13,故D错误,所以C正确.故此题选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3 2【解析】【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.【详解】设△OAC和△BAD的直角边长分别为a、b,则B点坐标为(a+b,a-b)∵点B在反比例函数y=3x在第一象限的图象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=12a2-12b2=32【点睛】此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.14.1【解析】【分析】根据众数的概念进行求解即可得.【详解】在数据3,1,1,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1.【点睛】本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键.15.10<.【解析】【分析】根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy 的值,再把该值依据根与系数的关系置于一元二次方程z 2-az+21002a -=0中,最后由根的判别式求得a 的取值范围. 【详解】∵M 是AB 的中点,MC=MA=5, ∴△ABC 为直角三角形,AB=10; ∴a=AC+BC >AB=10; 令AC=x 、BC=y . ∴22100x y ax y +⎧⎨+⎩==, ∴xy=21002a -,∴x 、y 是一元二次方程z 2-az+21002a -=0的两个实根,∴△=a 2-4×21002a -≥0,即.综上所述,a 的取值范围是10<.故答案为10<. 【点睛】本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点. 16.32° 【解析】 【分析】根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A 的度数,根据圆周角定理解答即可. 【详解】∵AB 是⊙O 的直径, ∴∠ADB=90°, ∵∠ABD=58°, ∴∠A=32°, ∴∠BCD=32°, 故答案为32°. 17.1×10﹣1 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:10nm用科学记数法可表示为1×10-1m,故答案为1×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18.一【解析】【分析】根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根据一次函数的性质判断一次函数y=mx+m的图象所在的象限即可.【详解】∵关于x的一元二次方程mx2-2x-1=0无实数根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)4.1.【解析】试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.考点:切线的性质.20.(1);(2),;(1);(2)【解析】试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.列表得:X﹣10 1 2 1 y 0 1 2 1 0 图象如下.(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.∴抛物线与x轴的交点为(﹣1,0),(1,0).∵y=﹣x2+2x+1=﹣(x﹣1)2+2∴抛物线顶点坐标为(1,2).(1)由图象可知:当﹣1<x<1时,抛物线在x轴上方.(2)由图象可知:当x>1时,y的值随x值的增大而减小考点: 二次函数的运用21.(1)见解析;(2)3【解析】 【分析】(1)根据平行四边形的性质得出AB=CD ,BC=AD ,∠B=∠D ,求出BE=DF ,根据全等三角形的判定推出即可;(2)求出△ABE 是等边三角形,求出高AH 的长,再求出面积即可. 【详解】(1)证明:∵四边形ABCD 是平行四边形, ∴AB CD =,BC AD =,B D ∠∠=, ∵点E 、F 分别是BC 、AD 的中点, ∴1BEBC 2=,1DF AD 2=, ∴BE DF =, 在ΔABE 和ΔCDF 中AB CDB D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴ΔABE ≌ΔCDF (SAS ); (2)作AH BC ⊥于H ,∵四边形ABCD 是平行四边形, ∴AD//BC ,AD BC =,∵点E 、F 分别是BC 、AD 的中点,BC 2AB 4==, ∴1BE CE BC 22===,1DF AF AD 22===, ∴AF //CE ,AF CE =, ∴四边形AECF 是平行四边形, ∵AE CE =,∴四边形AECF 是菱形, ∴AE AF 2==, ∵AB 2=,∴AB AE BE 2===, 即ΔABE 是等边三角形,BH HE 1==,由勾股定理得:22AH213=-=,∴四边形AECF的面积是2323⨯=.【点睛】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.22.(1)y=-x2-2x+1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(-2,6)(2)存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为(3+13-,2)或(313--,2)或(3+17-,2)或(317--,2)【解析】解:(1)∵直线y=x+1与x轴、y轴分别交于A、B两点,∴A(-1,0),B(0,1).∵抛物线y=-x2+bx+c经过A、B两点,∴164b c0?{c4--+==,解得b3?{c4=-=.∴抛物线解析式为y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如图1,设D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=y P-y E=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴当t=-2时,线段PE的长度有最大值1,此时P(-2,6).(2)存在.如图2,过N 点作NH ⊥x 轴于点H .设OH=m (m >0),∵OA=OB ,∴∠BAO=15°. ∴NH=AH=1-m ,∴y Q =1-m . 又M 为OA 中点,∴MH=2-m . 当△MON 为等腰三角形时:①若MN=ON ,则H 为底边OM 的中点, ∴m=1,∴y Q =1-m=2. 由-x Q 2-2x Q +1=2,解得Q 313x -±=∴点Q 3+13-,2313--,2). ②若MN=OM=2,则在Rt △MNH 中,根据勾股定理得:MN 2=NH 2+MH 2,即22=(1-m )2+(2-m )2, 化简得m 2-6m +8=0,解得:m 1=2,m 2=1(不合题意,舍去). ∴y Q =2,由-x Q 2-2x Q +1=2,解得Q 317x 2-=. ∴点Q 3+17-2317--2). ③若ON=OM=2,则在Rt △NOH 中,根据勾股定理得:ON 2=NH 2+OH 2,即22=(1-m )2+m 2, 化简得m 2-1m +6=0,∵△=-8<0,∴此时不存在这样的直线l ,使得△MON 为等腰三角形.综上所述,存在这样的直线l ,使得△MON 为等腰三角形.所求Q 点的坐标为 (3+132-,2)或(3132-,2)或(3+172-,2)或(3172-,2). (1)首先求得A 、B 点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x 轴另一交点C 的坐标.(2)求出线段PE 长度的表达式,设D 点横坐标为t ,则可以将PE 表示为关于t 的二次函数,利用二次函数求极值的方法求出PE 长度的最大值.(2)根据等腰三角形的性质和勾股定理,将直线l 的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l 是否存在,并求出相应Q 点的坐标. “△MON 是等腰三角形”,其中包含三种情况:MN=ON ,MN=OM ,ON=OM ,逐一讨论求解.23.(1)见解析;(2)【解析】 【分析】(1)根据相似三角形的判定,易证△ABF ∽△BEC ,从而可以证明∠BAF=∠CBE 成立; (2)根据锐角三角函数和三角形的相似可以求得AF 的长 【详解】(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AD=BC , ∴∠D+∠C=180°,∠ABF=∠BEC , ∵∠AFB+∠AFE=180°,∠AFE=∠D , ∴∠C=∠AFB , ∴△ABF ∽△BEC , ∴∠BAF=∠CBE ;(2)∵AE ⊥DC ,AD=5,AB=8,sin ∠D=45, ∴AE=4,DE=3 ∴EC=5∵AE ⊥DC ,AB ∥DC , ∴∠AED=∠BAE=90°,在Rt △ABE 中,根据勾股定理得:=∵BC=AD=5,由(1)得:△ABF ∽△BEC , ∴AF BC =AB AE =BFEC即5AF =5BF解得:【点睛】本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答24.(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=1平方单位.故答案为1.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理25.(1)7552;(2)﹣2<x≤1.【解析】【分析】(1)根据绝对值、特殊角的三角函数值可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【详解】(1)0 3-+×2+1(2)(2)()315211132x xx x>①②⎧++-⎪⎨+--≤⎪⎩由不等式①,得x>-2,由不等式②,得x≤1,故原不等式组的解集是-2<x≤1.【点睛】本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.26.(1)详见解析;(2)tan2C=【解析】【分析】(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出AE,CE=4AE,然后在Rt△BEC 中,即可求得tanC的值.【详解】(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴2222AB AE AE-=,在RT△BEC中,tanC=222 BE AECE==.27.证明见解析.【解析】【分析】根据菱形的性质,先证明△ABE≌△ADF,即可得解. 【详解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D. ∵点E,F分别是BC,CD边的中点,∴BE=12BC,DF=12CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.。
(数学答案)2019-2020学年第二学期开学调研测试数学试题参考答案(1)
2019-2020学年度第二次教学质量检测九年级数学试题参考答案及评分建议一、1.B ;2. B ;3. A ;4.D ;5.A ; 6.B ;7.D ;8.C ;9.C ;10.C 二、11. 3; 12. 12; 13. 8; 14. −1;15. xy 12-=;16.2√5 ;17.122. 三、解答题(一)18.解:原式=1−(2−√3)+√3┅…┅…┅…┅3分(每一个计算结果正确得1分)=1−2+√3+√3┅…┅…┅…┅…4分=2√3−1┅…┅…┅…┅…┅…┅…6分 19.解:原式=()()()33232x x x x x x +--⋅-- ┅…┅…┅…┅2分 ()3=x x + ┅…┅…┅…┅3分 解方程240x -=得:12x =,22x =- ┅...┅...┅...┅4分 由于当2x =时,22x x -=0,原式无意义,所以2x =- ┅...┅...┅ (5)当2x =-时,原式=()323122x x +-+==-- ┅...┅...┅ (6)20.解:把点A(-1,8)、B (2,-1)、C (0,3)代入y =ax 2+bx +c ,得: {a −b +c =84a +2b +c =−1c =3┅…┅…┅…┅…┅…┅…2分解得:a=1,b=-4,c=3┅…┅…┅…┅…┅…4分243y x x =-+┅…┅…┅…┅…┅…┅…┅…6分四、解答题(二)21.解: ⑴结论、作图正确┅...┅...┅ (4)⑵ ∵AC =1.5m,S ∆ABC=1.5m 2,即BC=2 m ┅……5分证:△BFD ∽△BCA ┅……┅……6分∴ED BE AC BC=即 ED 1.5=2−ED 2 ...┅...┅...┅7分 ∴DE=DF=67 m . ...┅...┅ (8)22.解:乙厂每天生产口罩x 万只,则甲厂每天生产口罩1.5x 万只 ┅…┅…1分 根据题意得:606051.5x x-= ┅...┅...┅...┅3分 解得:x=4 ┅...┅...┅ (4)经检验,x=4 是原方程的解,且符合题意, ┅…┅…┅…┅5分 ∴1.5x=6 . ┅…┅…┅…┅6分 ∴甲厂每天生产口罩6万只,乙厂每天生产口罩4万只.设安排两个工厂工作a 天才能完成任务(64)100a +≥ ┅…┅…┅…┅…┅7分 10a ≥答:所以至少应安排两个工厂工作10天才能完成任务. ┅...┅...┅ (8)23. 解:(1)∵四边形ABCD 是正方形∴AD//BC ,AD=BC ,∠DAB=∠DCB=90°┅...┅...┅...┅ (1)∴∠DAE=∠AEC ,∠DAC=45° ┅...┅...┅...┅ (2)∵AC=EC∴∠AEC=∠EAC ┅...┅...┅...┅ (3)∴∠DAE =∠EAC=22.5° ┅...┅...┅...┅ (4)(2)在Rt △DAB 中,正方形ABCD 边长为1,由勾股定理得:DB=√2=AC∴EB=1+√2 ┅...┅...┅...┅ (5)∵∠DAE=∠AEB, ∠APDC=∠EPB∴△DAP ∽△BPE ┅...┅...┅...┅ (6)∴AD EB =DP BP ┅…┅…┅…┅…┅7分 即11+√2=√2−BP BP∴BP=1 ┅...┅...┅...┅ (8)五、解答题(三)24.(1)答:()2,0A -,()2,4C ┅…┅2分(写对一个点的坐标得1分)(2)2y x =+,8y x= ┅…┅6分 (求对一个表达式得2分) (3)()0,9P 或()05-, ┅…┅10分(写对一个点的坐标得1分)25.解:(1)当0x =吋,y x m m =+=, B ∴ (0,)m ,8AB =Q ,而(0,)A m -,()12m m ∴--=,6m ∴=,2:6L y x x ∴=+,L ∴的对称轴3x =-,又知O 、D 两点关于对称轴对称,则OP DP =OB OP PB OB DP PB ∴++=++∴当B 、P 、D 三共线时OBP ∆周长最短,此时点P 为直线a 与对称轴的交点, 当3x =-吋,63y x =+=,(3P ∴-,3 );┅ (3)(2)22()24m m y x =+-, L ∴的顶点2(,)24m m C --, Q 点C 在l 上方,C ∴与l 的距离221()(2)1144m m m =---=--+..., ∴点C 与l 距离的最大值为1;┅ (6)(3)当2020m =时,抛物线解析式2:2020L y x x =+直线解析式:2020a y x =+联立上述两个解析式可得:12020x =-,21x =,∴可知每一个整数x 的值 都对应的一个整数y 值,且2020-和1之间(包括2020-和1)共有2022个整数;Q另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2022个整数点∴总计4044个点,Q这两段图象交点有2个点重复重复,-=(个);∴美点”的个数:404424042故2020m=时“美点”的个数为4042个.┅ (10)。
安徽省安庆市2019-2020学年中考数学二模考试卷含解析
安徽省安庆市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.2.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°3.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的()A.中位数相等B.平均数不同C.A组数据方差更大D.B组数据方差更大4.的倒数是()A.B.C.D.5.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-26.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.7.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A.4 B.﹣4 C.2 D.±2 8.下列说法正确的是()A .一个游戏的中奖概率是则做10次这样的游戏一定会中奖B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D .若甲组数据的方差 S =" 0.01" ,乙组数据的方差 s = 0 .1 ,则乙组数据比甲组数据稳定9.给出下列各数式,①2?--() ②2-- ③2 2- ④22-() 计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个10.在平面直角坐标系xOy 中,若点P (3,4)在⊙O 内,则⊙O 的半径r 的取值范围是( ) A .0<r <3 B .r >4 C .0<r <5 D .r >511.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .612.以坐标原点为圆心,以2个单位为半径画⊙O ,下面的点中,在⊙O 上的是( )A .(1,1)B .(2,2)C .(1,3)D .(1,2)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的方程x 2+x ﹣a+54=0有两个不相等的实数根,则满足条件的最小整数a 的值是( ) A .﹣1 B .0 C .1 D .214.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.15.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.16.将多项式32m mn -因式分解的结果是 .17.如图,在网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则∠OAB 的正弦值是_____.1811_____1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程组220y x x y =⎧⎨+-=⎩. 20.(6分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.21.(6分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.22.(8分)如图,在Rt △ABC 中,∠C=90°,BE 平分∠ABC 交AC 于点E ,作ED ⊥EB 交AB 于点D ,⊙O 是△BED 的外接圆.求证:AC 是⊙O 的切线;已知⊙O 的半径为2.5,BE=4,求BC ,AD 的长.23.(8分)(阅读)如图1,在等腰△ABC 中,AB=AC ,AC 边上的高为h ,M 是底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1,h 1.连接AM .∵ABM ACM ABC S S S ∆∆∆+= ∴12111222h AB h AC hAC +=(思考)在上述问题中,h 1,h 1与h 的数量关系为: .(探究)如图1,当点M 在BC 延长线上时,h 1、h 1、h 之间有怎样的数量关系式?并说明理由. (应用)如图3,在平面直角坐标系中有两条直线l 1:334y x =+,l 1:y=-3x+3,若l 1上的一点M 到l 1的距离是1,请运用上述结论求出点M 的坐标.24.(10分)如图,AB 是半圆O 的直径,D 为弦BC 的中点,延长OD 交弧BC 于点E ,点F 为OD 的延长线上一点且满足∠OBC =∠OFC ,求证:CF 为⊙O 的切线;若四边形ACFD 是平行四边形,求sin ∠BAD 的值.25.(10分)在Rt △ABC 中,∠ACB =90°,BE 平分∠ABC ,D 是边AB 上一点,以BD 为直径的⊙O 经过点E ,且交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若BF =6,⊙O 的半径为5,求CE 的长.26.(12分)如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)m y x x =>经过点B .(1)求直线10y kx =-和双曲线m y x=的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD ,①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值;③当1361DC =时,请直接写出t 的值.27.(12分)如图,AD 是△ABC 的中线,CF ⊥AD 于点F ,BE ⊥AD ,交AD 的延长线于点E ,求证:AF+AE=2AD.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.B【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.3.D分别求出两组数据的中位数、平均数、方差,比较即可得出答案.【详解】A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;∴两组数据的中位数不相等,平均数相等,B组方差更大.故选D.【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键. 4.C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵,∴的倒数是.故选C5.A【解析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.6.A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.D根据点M(a ,2a)在反比例函数y =8x 的图象上,可得:228a =,然后解方程即可求解. 【详解】因为点M(a ,2a)在反比例函数y =8x的图象上,可得: 228a =,24a =,解得: 2a =±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 8.C【解析】【分析】众数,中位数,方差等概念分析即可.【详解】A 、中奖是偶然现象,买再多也不一定中奖,故是错误的;B 、全国中学生人口多,只需抽样调查就行了,故是错误的;C 、这组数据的众数和中位数都是8,故是正确的;D 、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【点睛】考核知识点:众数,中位数,方差.9.B【解析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=;∴上述各式中计算结果为负数的有2个.故选B.10.D【解析】【分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r 的范围.【详解】∵点P 的坐标为(3,4),∴OP 2234=+=1.∵点P (3,4)在⊙O 内,∴OP <r ,即r >1.故选D .【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.11.D【解析】分析: 连接OB ,根据等腰三角形三线合一的性质可得BO ⊥EF ,再根据矩形的性质可得OA=OB ,根据等边对等角的性质可得∠BAC=∠ABO ,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC ,再利用勾股定理列式计算即可求出AB. 详解: 如图,连接OB ,∵BE=BF ,OE=OF ,∴BO ⊥EF ,∴在Rt △BEO 中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC ,∴∠BAC=∠ABO ,又∵∠BEF=2∠BAC ,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴3∴3,∴22AC BC -22(43)(23)-6,故选D .点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键. 12.B【解析】【分析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A 选项,(1,1)<2,因此点在圆内,B 选项) 到坐标原点的距离为2=2,因此点在圆上,C 选项 (1,3) >2,因此点在圆外D 选项(1) 因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.D【解析】【分析】根据根的判别式得到关于a 的方程,求解后可得到答案.【详解】关于x 的方程2504x x a +-+=有两个不相等的实数根, 则251410,4a ⎛⎫∆=-⨯⨯-+> ⎪⎝⎭解得: 1.a >满足条件的最小整数a 的值为2.故选D.【点睛】本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键.14.6【解析】试题分析:设所求正n 边形边数为n ,则120°n=(n ﹣2)•180°,解得n=6; 考点:多边形内角与外角.15.40403+【解析】【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+403=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=12AB=40,BQ3AQ=3,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+33x,解得:x 40403+40403+/时;40403+.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键. 16.m(m+n)(m﹣n).【解析】试题分析:原式=22()m m n -=m (m+n )(m ﹣n ).故答案为:m (m+n )(m ﹣n ).考点:提公因式法与公式法的综合运用.17.5 【解析】【详解】如图,过点O 作OC ⊥AB 的延长线于点C ,则AC=4,OC=2,在Rt △ACO 中,22224225AC OC ++=,∴sin ∠OAB=525OC OA ==. 5. 18.>【解析】【分析】 先将1化为根号的形式,根据被开方数越大值越大即可求解. 【详解】 解:93=Q 119> ,,故答案为>.【点睛】本题考查实数大小的比较,比较大小时,常用的方法有:①作差法,②作商法,③如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.22x y =-⎧⎨=-⎩或11x y =⎧⎨=⎩. 【解析】【分析】把y=x 代入220x y +-=,解得x 的值,然后即可求出y 的值;【详解】把(1)代入(2)得:x 2+x ﹣2=0,(x+2)(x ﹣1)=0,解得:x =﹣2或1,当x =﹣2时,y =﹣2,当x =1时,y =1, ∴原方程组的解是22x y =-⎧⎨=-⎩或11x y =⎧⎨=⎩. 【点睛】本题考查了高次方程的解法,关键是用代入法先求出一个未知数,再代入求出另一个未知数. 20.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.【解析】【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可.【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216263x y x y -=⎧⎨+=⎩, 解得:1210x y =⎧⎨=⎩, 则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备m 台,乙型设备()10m -台,则()121010110m m +-≤,∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =,∴有6种购买方案;(3)由题意:()240180102040m m +-≥,∴4m ≥,∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元),当5m =时,购买资金为:125105110⨯+⨯=(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.21.40%【解析】【分析】先设第次降价的百分率是x ,则第一次降价后的价格为500(1-x )元,第二次降价后的价格为500(1-2x ),根据两次降价后的价格是240元建立方程,求出其解即可.【详解】第一次降价的百分率为x ,则第二次降价的百分率为2x ,根据题意得:500(1﹣x )(1﹣2x )=240,解得x 1=0.2=20%,x 2=1.3=130%.则第一次降价的百分率为20%,第二次降价的百分率为40%.【点睛】本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可.22.(1)证明见解析;(2)BC=165,AD=457. 【解析】分析:(1)连接OE ,由OB=OE 知∠OBE=∠OEB 、由BE 平分∠ABC 知∠OBE=∠CBE ,据此得∠OEB=∠CBE ,从而得出OE ∥BC ,进一步即可得证;(2)证△BDE ∽△BEC 得BD BE BE BC =,据此可求得BC 的长度,再证△AOE ∽△ABC 得AO OE AB BC=,据此可得AD 的长.详解:(1)如图,连接OE ,∵OB=OE ,∴∠OBE=∠OEB ,∵BE 平分∠ABC ,∴∠OBE=∠CBE ,∴∠OEB=∠CBE ,∴OE ∥BC ,又∵∠C=90°,∴∠AEO=90°,即OE ⊥AC ,∴AC 为⊙O 的切线;(2)∵ED ⊥BE ,∴∠BED=∠C=90°,又∵∠DBE=∠EBC ,∴△BDE ∽△BEC , ∴BD BE BE BC =,即54=4BC, ∴BC=165; ∵∠AEO=∠C=90°,∠A=∠A ,∴△AOE ∽△ABC , ∴AO OE AB BC =,即 2.5 2.51655AD AD +=+, 解得:AD=457. 点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.23.【思考】h 1+h 1=h ;【探究】h 1-h 1=h .理由见解析;【应用】所求点M 的坐标为(13,1)或(-13,4).【解析】【分析】 思考:根据等腰三角形的性质,把代数式12111222h AB h AC hAC +=化简可得12h h h +=. 探究:当点M 在BC 延长线上时,连接AM ,可得ABM ACM ABC S S S ∆∆∆-=,化简可得12h h h -=.应用:先证明AB AC =,△ABC 为等腰三角形,即可运用上面得到的性质,再分点M 在BC 边上和在CB 延长线上两种情况讨论,第一种有1+My=OB ,第二种为M y -1=OB ,解得M 的纵坐标,再分别代入2l 的解析式即可求解.【详解】思考Q ABM ACM ABC S S S ∆∆∆+= 即12111222h AB h AC hAC += Q AB AC =∴h 1+h 1=h .探究h 1-h 1=h .理由.连接AM ,∵ABM ACM ABC S S S ∆∆∆-= ∴12111222h AB h AC hAC -= ∴h 1-h 1=h .应用 在334y x =+中,令x=0得y=3; 令y=0得x=-4,则:A (-4,0),B (0,3)同理求得C (1,0),5AB =,又因为AC=5,所以AB=AC ,即△ABC 为等腰三角形.①当点M 在BC 边上时,由h 1+h 1=h 得:1+My=OB ,My=3-1=1,把它代入y=-3x+3中求得:13x M =, ∴1,23M ⎛⎫ ⎪⎝⎭;②当点M 在CB 延长线上时,由h 1-h 1=h 得:M y -1=OB ,M y =3+1=4,把它代入y=-3x+3中求得: 13x M =-, ∴1,43M ⎛⎫- ⎪⎝⎭, 综上,所求点M 的坐标为1,23⎛⎫ ⎪⎝⎭或1,43⎛⎫- ⎪⎝⎭.【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.24. (1)见解析;(2)13. 【解析】【分析】(1)连接OC ,根据等腰三角形的性质得到∠OCB=∠B ,∠OCB=∠F ,根据垂径定理得到OF ⊥BC ,根据余角的性质得到∠OCF=90°,于是得到结论;(2)过D 作DH ⊥AB 于H ,根据三角形的中位线的想知道的OD=12AC ,根据平行四边形的性质得到DF=AC ,设OD=x ,得到AC=DF=2x ,根据射影定理得到CD=2x ,求得BD=2x ,根据勾股定理得到AD=226AC CD +=x ,于是得到结论.【详解】解:(1)连接OC ,∵OC=OB ,∴∠OCB=∠B ,∵∠B=∠F ,∴∠OCB=∠F ,∵D 为BC 的中点,∴OF ⊥BC ,∴∠F+∠FCD=90°,∴∠OCB+∠FCD=90°,∴∠OCF=90°,∴CF 为⊙O 的切线;(2)过D 作DH ⊥AB 于H ,∵AO=OB ,CD=DB ,∴OD=12AC , ∵四边形ACFD 是平行四边形,∴DF=AC ,设OD=x ,∴AC=DF=2x ,∵∠OCF=90°,CD ⊥OF ,∴CD 2=OD•DF=2x 2,∴x ,∴x ,∴=,∵OD=x ,x ,∴,∴DH=3CD BD OB ⋅=x , ∴sin ∠BAD=DH AD =13. 【点睛】 本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.25.(1)证明见解析;(2)CE=1.【解析】【分析】(1)根据等角对等边得∠OBE=∠OEB ,由角平分线的定义可得∠OBE=∠EBC ,从而可得∠OEB=∠EBC ,根据内错角相等,两直线平行可得OE ∥BC ,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC 是⊙O 的切线.(2)根据垂径定理可求BH=12BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长. 【详解】(1)证明:如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵ BE平分∠ABC.∴∠OBE=∠EBC,∴∠OEB=∠EBC,∴OE∥BC,∵∠ACB=90°,∴∠OEA=∠ACB=90°,∴ AC是⊙O的切线.(2)解:过O作OH⊥BF,∴BH=12BF=3,四边形OHCE是矩形,∴CE=OH,在Rt△OBH中,BH=3,OB=5,∴22OB OH,∴CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.26.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152. 【解析】【分析】(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值; ②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OM BCD DAB OA∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案.【详解】(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a -∴将点(12,0)A 代入得12100k -= 解得56k = 故直线的表达式为5106y x =- 将点(,5)B a -代入直线的表达式得51056a -=- 解得6a =(6,5)B ∴- ∵双曲线(0)m y x x=>经过点(6,5)B - 56m ∴=-,解得30m =- 故双曲线的表达式为30y x=-; (2)①//AC y Q 轴,点A 的坐标为(12,0)A∴点C 的横坐标为12将其代入双曲线的表达式得305122y =-=- ∴C 的纵坐标为52-,即52AC = 由题意得512t AC ⋅==,解得52t = 故当点C 在双曲线上时,t 的值为52; ②当06t <<时,BCD ∠的大小不发生变化,求解过程如下: 若点D 与点A 重合由题意知,点C 坐标为(12,)t -由两点距离公式得:222(612)(50)61AB =-+--= 2222(126)(5)36(5)BC t t =-+-+=+-+22AC t =由勾股定理得222AB BC AC +=,即226136(5)t t ++-+=解得12.2t =因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧 如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK 由(1)知,直线AB 的表达式为5106y x =- 令0x =得10y =-,则(0,10)M -,即10OM =Q 点K 为CD 的中点,BD BC ⊥12BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半) 同理可得:12AK DK CK CD === BK DK CK AK ∴===∴A 、D 、B 、C 四点共圆,点K 为圆心BCD DAB ∴∠=∠(圆周角定理)105tan tan 126OM BCD DAB OA ∴∠=∠===;③过点B 作⊥BM OA 于M由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置此时,四边形ACBD 是矩形,则5AC BD ==,即5t =因此,分以下2种情况讨论:如图2,当05t <<时,过点C 作CN BM ⊥于N(6,5(1),2,0),(12,)B A t C --Q12,6,6,5,OA OM AM OA OM BM AC t ∴===-===90CBN DBM BDM DBM ∠+∠=∠+∠=︒QCBN BDM ∴∠=∠又90CNB BMD ∠=∠=︒QCNB BMD ∴∆~∆CN BN BM DM∴= AM BM AC BM DM -∴=,即655t DM-= 5(5)6DM t ∴=- 56(5)6AD AM DM t ∴=+=+- 由勾股定理得222AD AC CD += 即222513616(5)(612t t ⎡⎤+-+=⎢⎥⎣⎦解得52t =或152t =(不符题设,舍去) 当512t ≤<时,同理可得:222513616(5)(612t t ⎡⎤--+=⎢⎥⎣⎦解得152t =或52t =(不符题设,舍去)综上所述,t 的值为52或152.【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.27.证明见解析.【解析】【分析】由题意易用角角边证明△BDE ≌△CDF ,得到DF=DE ,再用等量代换的思想用含有AE 和AF 的等式表示AD 的长.【详解】证明:∵CF ⊥AD 于,BE ⊥AD ,∴BE ∥CF ,∠EBD=∠FCD ,又∵AD 是△ABC 的中线,∴BD=CD ,∴在△BED 与△CFD 中,EBD FCD BED CFD BD CD ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△△BED ≌△CFD (AAS )∴ED=FD ,又∵AD=AF+DF ①,AD=AE-DE ②,由①+②得:AF+AE=2AD.【点睛】该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.。
安徽省安庆市2019-2020学年中考第二次质量检测数学试题含解析
安徽省安庆市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b-- 2.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个3.如图,在菱形纸片ABCD 中,AB=4,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上.则sin ∠AFG 的值为( )A .217B .27C .57D .7 4.二次函数y =ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②3b+2c <0;③4a+c <2b ;④m (am+b )+b <a (m≠﹣1),其中结论正确的个数是( )A .1B .2C .3D .45.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是()A.2 B.3 C.4 D.56.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A.相离B.相切C.相交D.不确定7.观察下列图形,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.1789.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A.35°B.60°C.70°D.70°或120°10.如图,直线AB 与▱ MNPQ 的四边所在直线分别交于A、B、C、D,则图中的相似三角形有()A.4 对B.5 对C.6 对D.7 对11.计算25()77-+-的正确结果是()A.37B.-37C.1 D.﹣112.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是()A.a+c>0 B.b+c>0 C.ac>bc D.a﹣c>b﹣c 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个几何体的三视图如左图所示,则这个几何体是( )A .B .C .D .14.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x =的图象相交于(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论: ①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<. 其中正确结论的序号是__________.15.已知实数a 、b 、c 满足2a+b+c (2005)(6)a b ++-+|10﹣2c|=0,则代数式ab+bc 的值为__. 16.已知 x(x+1)=x+1,则x =________.17.抛物线y=(x+1)2 - 2的顶点坐标是 ______ .18.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A .由父母一方照看;B .由爷爷奶奶照看;C .由叔姨等近亲照看;D .直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?20.(6分)列方程解应用题八年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.21.(6分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?22.(8分)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:分组分数段(分)频数A 36≤x<41 22B 41≤x<46 5C 46≤x<51 15D 51≤x<56 mE 56≤x<61 10(1)求全班学生人数和m的值;(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段;(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.23.(8分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.24.(10分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.25.(10分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:3≈1.73)26.(12分)如图,已知一次函数y=12x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=12x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.27.(12分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=mx的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=mx的表达式;过x轴上的点D(a,0)作平行于y 轴的直线l (a >1),分别与直线y=kx+2和双曲线y=m x交于P 、Q 两点,且PQ=2QD ,求点D 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.2.B【解析】【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.3.B【解析】【分析】如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sin∠AFG的值.【详解】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.∵四边形ABCD是菱形,AB=4,∠DAB=60°,∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB∴∠HDE=∠DAB=60°,∵点E是CD中点∴DE=12CD=1在Rt△DEH中,DE=1,∠HDE=60°∴DH=1,3∴AH=AD+DH=5在Rt△AHE中,22AH HE7∴7,AE⊥GF,AF=EF∵CD=BC,∠DCB=60°∴△BCD是等边三角形,且E是CD中点∴BE⊥CD,∵BC=4,EC=1∴BE=13∵CD∥AB∴∠ABE=∠BEC=90°在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.∴EF=7 2由折叠性质可得∠AFG=∠EFG,∴sin∠EFG= sin∠AFG =727772ENEF==,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.4.C【解析】【分析】试题解析:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选C.考点:二次函数图象与系数的关系.【详解】请在此输入详解!5.D【解析】【分析】设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.【详解】设这个数是a,把x=1代入得:13(-2+1)=1-5a3-,∴1=1-5a3-,解得:a=1.故选:D.【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.6.A【解析】【分析】根据角平分线的性质和点与直线的位置关系解答即可.【详解】解:如图所示;∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,∴以点P为圆心的圆与直线CD相离,故选:A.【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.7.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、既不是轴对称图形,也不是中心对称图形.故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.9.D【解析】【分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,。
2019-2020学年度人教版九年级第二学期第一阶段学业质量监测数学试卷(含答案)
2019-2020学年度九年级第二学期第一阶段学业质量监测数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效. 一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.计算(a 2)3÷(a 2)2的结果是 A .aB .a 2C .a 3D .a 42.2018年南京市地区生产总值,连跨4个千亿台阶、达到1 171 500 000 000元,成为全国第11个突破万亿规模的城市.用科学记数法表示1 171 500 000 000是 A .0.11715×1013B .1.1715×1011C .1.1715×1012D .1.1715×10133.小明参加射击比赛,10次射击的成绩如下:若小明再射击2次,分别命中7环、9环,与前10次相比,小明12次射击的成绩 A .平均数变大,方差不变B .平均数不变,方差不变C .平均数不变,方差变大D .平均数不变,方差变小4.数轴上的A 、B 、C 三点所表示的数分别为a 、b 、1,且│a -1│+│b -1│=│a -b │, 则下列选项中,满足A 、B 、C 三点位置关系的数轴为 A .B .C .D .5.如图,在Rt △ABC 中,∠C =90°,∠A >∠B ,则下列结论正确的是A .sin A <sinB B .cos A <cos BC .tan A <tan BD .sin A <cos A6.如图,在平面直角坐标系xOy 中,点A 、C 、F 在坐标轴上,E 是OA 的中点,四边形AOCB 是矩形,四边形BDEF 是正方形,若点C 的坐标为(3,0),则点D 的坐标为 A .(1,2.5)B .(1,1+3)C .(1,3)D .(3-1,1+3)二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案直接填写在答题卷...相应位置....上)ACB(第5题) (第6题)A B C a b1 a b 1 a b 1 ab1ACB A7.-2的相反数是 ▲ ;-2的绝对值是 ▲ .8.若式子x +1在实数范围内有意义,则x 的取值范围是 ▲ . 9.计算 327-8×12的结果是 ▲ . 10.分解因式6a 2b -9ab 2-a 3的结果是 ▲ .11.已知反比例函数y =kx 的图像经过点(-3,-1),则k = ▲ .12.设x 1、x 2是方程x 2-mx +3=0的两个根,且x 1=1,则m -x 2= ▲ .13.如图,⊙O 的半径为6,AB 是⊙O 的弦,半径OC ⊥AB ,D 是⊙O 上一点,∠CDB =22.5°,则AB = ▲ .14.如图,正六边形ABCDEF 内接于⊙O ,顺次连接正六边形ABCDEF 各边的中点G 、H 、I 、J 、K 、L ,则S 六边形ABCDEFS 六边形GHIJKL= ▲ .15.如图,四边形ABCD 是菱形,以DC 为边在菱形的外部作正三角形CDE ,连接AE 、BD ,AE 与BD 相交于点F ,则∠AFB = ▲ °.16.如图,矩形ABCD 中,AB =5,BC =8,点P 在AB 上,AP =1.将矩形ABCD 沿CP 折叠,点B 落在点B ′处,B ′P 、B ′C 分别与AD 交于点E 、F ,则EF = ▲ .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧3x ≥x +2,4x -2<x +4.18.(6分)计算⎝⎛⎭⎫1+1x ÷x 2-1x .19.(8分)已知二次函数y =(x -m )2+2(x -m )(m 为常数).(1)求证:不论m 为何值,该函数的图像与x 轴总有两个不同的公共点; (2)当m 取什么值时,该函数的图像关于y 轴对称?20.(8分)如图,在“飞镖形”ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.A BCDEFB ′ P(第16题)(第20题)C ABFDEGH (第14题)(第15题)ABC DE F (第13题)(1)求证:四边形EFGH 是平行四边形;(2)“飞镖形”ABCD 满足条件 ▲ 时,四边形EFGH 是菱形.21.(8分)某中学九年级男生共250人,现随机抽取了部分九年级男生进行引体向上测试,相关数据的统计图如下.设学生引体向上测试成绩为x (单位:个).学校规定:当0≤x <2时成绩等级为不及格,当2≤x <4时成绩等级为及格,当4≤x <6时成绩等级为良好,当x ≥6时成绩等级为优秀.样本中引体向上成绩优秀的人数占30%,成绩为1个和2个的人数相同.(1)补全统计图;(2)估计全校九年级男生引体向上测试不及格的人数.22.(8分)把3颗算珠放在计数器的3根插棒上构成一个数字,例如,如图摆放的算珠表示数300.现将3颗算珠任意摆放在这3根插棒上.(1)若构成的数是两位数,则十位数字为1的概率为 ▲ ; (2)求构成的数是三位数的概率.(第22题)抽取的九年级男生引体向上测试成绩统计图/个(第21题)23.(8分)如图,一辆轿车在经过某路口的感应线B 和C 处时,悬臂灯杆上的电子警察拍摄到两张照片,两感应线之间距离BC 为6 m ,在感应线B 、C 两处测得电子警察A 的仰角分别为∠ABD =18°,∠ACD =14°.求电子警察安装在悬臂灯杆上的高度AD 的长.(参考数据:sin14°≈0.242,cos14°≈0.97,tan14°≈0.25,sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)24.(8分)某校为迎接市中学生田径运动会,计划由八年级(1)班的3个小组制作240面彩旗,后因1个小组另有任务,其余2个小组的每名学生要比原计划多做4面彩旗才能完成任务.如果这3个小组的人数相等,那么每个小组有学生多少名?25.(8分)如图,在□ABCD 中,过A 、B 、C 三点的⊙O 交AD 于点E ,连接BE 、CE ,BE =BC . (1)求证△BEC ∽△CED ;(2)若BC =10,DE =3.6,求⊙O 的半径.26.(9分)换个角度看问题. 【原题重现】(第23题)ABCD(第25题)【问题再研】若设慢车行驶的时间为x (h ),慢车与甲地的距离为s 1(km ),第一列快车与甲地的距离为s 2(km ),第二列快车与甲地的距离为s 3 (km ),根据原题中所给信息解决下列问题: (1)在同一直角坐标系中,分别画出s 1、s 2与x 之间的函数图像; (2)求s 3与x 之间的函数表达式; (3)求原题的答案.27.(11分)数学概念在两个等腰三角形中,如果其中一个三角形的底边长和底角的度数分别等于另一个三角形的腰长和顶角的度数,那么称这两个等腰三角形互为姊妹三角形. 概念理解(1)如图①,在△ABC 中,AB =AC ,请用直尺和圆规作出它的姊妹三角形(保留作图痕迹,不写作法).特例分析(2)①在△ABC 中,AB =AC ,∠A =30°,BC =6-2,求它的姊妹三角形的顶角的度数和腰长;②如图②,在△ABC 中,AB =AC ,D 是AC 上一点,连接BD .若△ABC 与△ABD 互为姊妹三角形,且△ABC ∽△BCD ,则∠A = ▲ °. 深入研究(3)下列关于姊妹三角形的结论: ①每一个等腰三角形都有姊妹三角形;②等腰三角形的姊妹三角形是锐角三角形;③如果两个等腰三角形互为姊妹三角形,那么这两个三角形可能全等;④如果一个等腰三角形存在两个不同的姊妹三角形,那么这两个三角形也一定互为姊妹三角形. 其中所有正确结论的序号是 ▲ .D ABC②ABC①参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.二、填空题(每小题2分,共20分) 7.2;2 8.x ≥-1 9.1 10.-a (a -3b )2 11.3 12.113.6 214.4315.60 16.3512三、解答题(本大题共11小题,共计88分) 17.(本题6分)解: 解不等式①,得x ≥1. ························································································ 2分解不等式②,得x <2. ························································································ 4分 所以,不等式组的解集是1≤x <2. ······································································· 6分18.(本题6分)解:⎝⎛⎭⎫1+1x ÷x 2-1x .=⎝⎛⎭⎫x x +1x ÷(x +1)(x -1)x ·························································································· 2分=x +1x ·x(x +1)(x -1) ··························································································· 4分=1x -1. ············································································································ 6分19.(本题8分)解法一:(1)令y =0,(x -m )(x -m +2)=0. ······································································· 1分解这个方程,得x 1=m ,x 2=m -2. ································································· 3分 因为m ≠m -2,所以不论m 为何值,该方程总有两个不相等的实数根. ·················· 4分 不论m 为何值,该函数的图像与x 轴总有两个不同的公共点. ······························· 5分 (2)因为函数的图像关于y 轴对称,所以m -2+m =0. ······················································································ 7分 解这个方程,得m =1.所以m 的值为1. ························································································· 8分解法二:(1)令y =0,即(x -m )2+2(x -m )=0. ··································································· 1分x 2-(2m -2)x +m 2-2m =0.因为a =1,b =-(2m -2),c =m 2-2m ,所以b 2-4ac =[-(2m -2)]2-4(m 2-2m )=4>0. ················································ 3分 所以不论m 为何值,该方程总有两个不相等的实数根.········································ 4分 不论m 为何值,该函数的图像与x 轴总有两个不同的公共点. ······························· 5分 (2)因为函数的图像关于y 轴对称, 所以-b2a =0即--(2m -2) 2=0. ····················· 7分 解这个方程,得m =1.所以m 的值为1. ························································································· 8分20.(本题8分)(1)证明: 连接AC . ····························································································· 1分∵E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点. ∴EF 、GH 分别是△ABC 、△ACD 的中位线.∴EF ∥AC ,EF =12AC ,GH ∥AC ,GH =12AC . ······ 3分∴EF =GH ,EF ∥GH . ··································· 5分 ∴四边形EFGH 是平行四边形. ························· 6分(2)AC =BD . ······································································································· 8分21.(本题8分)解:(1)1个和2个人数均为4个. ··············································································· 4分 (2)250×1+450=25(人).答:全校九年级男生引体向上测试不及格的人数为25人. ··········································· 8分22.(本题8分)解:(1)37. ·············································································································· 2分(2)将3颗算珠任意摆放在3根插棒上,所有可能出现的结果有:(百,百,百)、(百,百,十)、(百,百,个)、(百,十,百)、(百,十,十)、(百,十,个)、(百,个,百)、(百,个,十)、(百,个,个)、(十,百,百)、……、(十、个、个)、(个、百、百)、……、(个,个,个),共有27种,它们出现的可能性相同.所有的结果中,满足“构成的数是三位数”(记为事件A )的结果有19种,所以P(A )=1927. ··········· 8分23.(本题8分)解:设电子警察安装在悬臂灯杆上的高度AD 的长为x m .CABF D E GH在Rt △ADB 中,tan ∠ABD =AD BD, ········································································· 1分 ∴ BD =AD tan ∠ABD =xtan18° . ················································································· 2分在Rt △ACD 中,tan ∠ACD =AD CD, ··········································································· 3分 ∴ CD =AD tan ∠ACD =xtan14° . ················································································· 4分∵ BC =CD -BD , ∴x tan14°-xtan18°=6. ∴ 4x -4013x =6. ·································································································· 6分解这个方程,得x =6.5. ······················································································· 7分 答:电子警察安装在悬臂灯杆上的高度AD 的长为6.5 m . ············································ 8分24.(本题8分)解:设每个小组有学生x 名. ························································································ 1分根据题意,得2402x -2403x =4.··················································································· 4分解这个方程,得x =10. ························································································ 6分 经检验,x =10是原方程的根. ··············································································· 7分 答:每个小组有学生10名.··················································································· 8分 (说明:如果学生只设了未知数,没有用未知数表示相关量不给分)25.(本题8分)解:(1)证明:∵BE =BC ,∴∠BEC =∠BCE . ······································ 1分 ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠BCE =∠DEC ,∠A +∠D =180°.∴∠BEC =∠DEC . ······················································································ 2分 ∵四边形ABCD 内接于⊙O , ∴∠A +∠BCE =180°.∴∠BCE =∠D . ·························································································· 3分 ∴△BEC ∽△CED . ······················································································ 4分 (2)过点O 作OF ⊥CE ,垂足为F ,连接OC . ∴CF =12CE . ······························································································ 5分∴直线OF 垂直平分CE . ∵BE =BC ,∴直线OF 经过点B .∵△BEC ∽△CED ,又由(1)可知CE =CD , ∴BC CE =CE DE. ∵BC =10,DE =3.6,∴CE =CD =6. ··························································································· 6分 ∴CF =12CE =3.设⊙O 的半径为r .易得BF =BC 2-CF 2=91,OF =91-r . 在Rt △OCF 中,OF 2+CF 2=OC 2,∴(91-r )2+9=r 2. ···················································································· 7分 ∴r =509191. ······························································································ 8分26.(本题9分)解:(1)s 1、s 2与x 之间的函数图像如图所示.····································· 4分(21············································ 5分当x =4.5时,s 1=562.5,设s 3与x 之间的函数表达式为s 3=150x +b . 当x =4.5时,s 3=562.5,s 3=150x -112.5. ···························································································· 7分 (3)根据题意,当s 3=0时,x =0.75. ······································································· 8分所以第二列快车比第一列快车晚出发0.75小时.···················································· 9分27.(本题11分)解:(1)如图,△DEF 即为所求.····································· 2分EFABC D。
安徽省安庆市2019-2020学年中考四诊数学试题含解析
安徽省安庆市2019-2020学年中考四诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若在同一直角坐标系中,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,则有( ) A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<02.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+13.下列方程中是一元二次方程的是( ) A .20ax bx c ++= B .2211x x += C .(1)(2)1x x -+=D .223250x xy y --=4.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .(1,4)B .(7,4)C .(6,4)D .(8,3)5.下列计算正确的是( ) A .(a -3)2=a 2-6a -9 B .(a +3)(a -3)=a 2-9 C .(a -b)2=a 2-b 2D .(a +b)2=a 2+a 26.如图,正比例函数y=x 与反比例函数的图象交于A (2,2)、B (﹣2,﹣2)两点,当y=x 的函数值大于的函数值时,x 的取值范围是( )A.x>2 B.x<﹣2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>27.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图38.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )A.四条边相等的四边形是菱形B.一组邻边相等的平行四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形9.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.17810.下列各数中是有理数的是()A.πB.0 C2D3511.下列各数中,最小的数是()A.﹣4 B.3 C.0 D.﹣212.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A .30°B .60°C .90°D .45°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.方程6x x -=+的解是_________.14.二次函数y=x 2-2x+1的对称轴方程是x=_______.15.如图,在▱ABCD 中,AC 是一条对角线,EF ∥BC ,且EF 与AB 相交于点E ,与AC 相交于点F ,3AE =2EB ,连接DF .若S △AEF =1,则S △ADF 的值为_____.16.因式分解:3222x x y xy +=﹣__________.17.因式分解:x 2y-4y 3=________. 18.计算:a 3÷(﹣a )2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)我们来定义一种新运算:对于任意实数 x 、y ,“※”为 a ※b =(a+1)(b+1)﹣1. (1)计算(﹣3)※9(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断 ( 正确、错误) (3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.20.(6分)已知:如图1,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),根据对称性△AMB 恒为等腰三角形,我们规定:当△AMB 为直角三角形时,就称△AMB 为该抛物线的“完美三角形”.(1)①如图2,求出抛物线2y x =的“完美三角形”斜边AB 的长; ②抛物线21y x +=与2y x =的“完美三角形”的斜边长的数量关系是 ; (2)若抛物线24y ax +=的“完美三角形”的斜边长为4,求a 的值;(3)若抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,且225y mx x+n =+-的最大值为-1,求m ,n 的值.21.(6分)如图,AB 是半径为2的⊙O 的直径,直线l 与AB 所在直线垂直,垂足为C ,OC =3,P 是圆上异于A 、B 的动点,直线AP 、BP 分别交l 于M 、N 两点. (1)当∠A =30°时,MN 的长是 ; (2)求证:MC•CN 是定值;(3)MN 是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;(4)以MN 为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由.22.(8分)(1)计算:(12-)﹣1+12﹣(π﹣2018)0﹣4cos30°(2)解不等式组:34(1)223x x x x ≥-⎧⎪-⎨-≤⎪⎩,并把它的解集在数轴上表示出来.23.(8分)先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=. 24.(10分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为,中位数在第组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.组别成绩x分频数(人数)第1组50≤x<60 6第2组60≤x<70 8第3组70≤x<80 14第4组80≤x<90 a第5组90≤x<100 1025.(10分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)26.(12分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=3(0)xxf的图象交于A (1,m )、B (n ,1)两点. (1)求直线AB 的解析式;(2)根据图象写出当y 1>y 2时,x 的取值范围; (3)若点P 在y 轴上,求PA+PB 的最小值.27.(12分) (1)解方程组31021x y x y +=⎧⎨-=⎩(2)若点A 是平面直角坐标系中坐标轴上的点,( 1 )中的解 , x y 分别为点B 的横、纵坐标,求AB 的最小值及AB 取得最小值时点A 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】当k 1,k 2同号时,正比例函数y =k 1x 与反比例函数y =2k x的图象有交点;当k 1,k 2异号时,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,即可得当k 1k 2<0时,正比例函数y =k 1x 与反比例函数y =2k x的图象无交点,故选D. 2.B 【解析】 【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n , 右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.【点睛】考点:规律型:数字的变化类. 3.C 【解析】 【分析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可. 【详解】解:A 、当a=0时,20ax bx c ++=不是一元二次方程,故本选项错误; B 、2211x x+=是分式方程,故本选项错误; C 、(1)(2)1x x -+=化简得:230x x +-=是一元二次方程,故本选项正确; D 、223250x xy y --=是二元二次方程,故本选项错误; 故选:C . 【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键. 4.B 【解析】 如图,经过6次反弹后动点回到出发点(0,3), ∵2018÷6=336…2,∴当点P 第2018次碰到矩形的边时为第336个循环组的第2次反弹, 点P 的坐标为(7,4). 故选C . 5.B 【解析】 【分析】利用完全平方公式及平方差公式计算即可.解:A、原式=a2-6a+9,本选项错误;B、原式=a2-9,本选项正确;C、原式=a2-2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项错误,故选:B.【点睛】本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.6.D【解析】试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值.故选D.考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用.7.C【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.8.A【解析】【分析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.【详解】∵将△ABC 延底边 BC 翻折得到△DBC ,∴AB=BD , AC=CD ,∵AB=AC ,∴AB=BD=CD=AC ,∴四边形 ABDC 是菱形;故选A.【点睛】本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.9.B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.10.B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C 是无理数,故本选项错误;D 故选B .【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键. 11.A 【解析】 【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可 【详解】根据有理数比较大小的方法,可得 ﹣4<﹣2<0<3∴各数中,最小的数是﹣4 故选:A 【点睛】本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小 12.B 【解析】【分析】欲求∠BOC ,又已知一圆周角∠BAC ,可利用圆周角与圆心角的关系求解. 【详解】∵∠BAC=30°,∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半), 故选B .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.x=-2 【解析】方程x -=26x x =+,解得:1232x x ==-,,检验:(1)当x=3时,方程左边=-3,右边=3,左边≠右边,因此3不是原方程的解; (2)当x=-2时,方程左边=2,右边=2,左边=右边,因此-2是方程的解.∴原方程的解为:x=-2.故答案为:-2.点睛:(1)根号下含有未知数的方程叫无理方程,解无理方程的基本思想是化“无理方程”为“有理方程”;(2)解无理方程和解分式方程相似,求得未知数的值之后要检验,看所得结果是原方程的解还是增根. 14.1【解析】【分析】利用公式法可求二次函数y=x 2-2x+1的对称轴.也可用配方法.【详解】∵-2b a =-22=1, ∴x=1.故答案为:1【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.15.【解析】【分析】由3AE =2EB ,和EF ∥BC ,证明△AEF ∽△ABC,得=,结合S △AEF =1,可知再由==,得==,再根据S △ADF = S △ADC 即可求解. 【详解】 解:∵3AE =2EB ,设AE=2a,BE=3a,∵EF ∥BC ,∴△AEF ∽△ABC,∴=()2=()2=,∵S △AEF =1,∴S △ABC =,∵四边形ABCD 为平行四边形,∴∵EF ∥BC, ∴===, ∴==,∴S △ADF = S △ADC =, 故答案是:【点睛】本题考查了图形的相似和平行线分线段成比例定理,中等难度,找到相似比是解题关键.16.()2x x y -【解析】【分析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy yx x y =-+=-, 故答案为:()2x x y -【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.17.y (x++2y )(x-2y )【解析】【分析】首先提公因式y ,再利用平方差进行分解即可.【详解】原式()224(2)(2)y x y y x y x y =-=-+.故答案是:y (x+2y )(x-2y ).【点睛】考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18.a【解析】【分析】利用整式的除法运算即可得出答案.【详解】原式,.【点睛】本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)-21;(2)正确;(3)运算“※”满足结合律【解析】【分析】(1)根据新定义运算法则即可求出答案.(2)只需根据整式的运算证明法则a※b=b※a即可判断.(3)只需根据整式的运算法则证明(a※b)※c=a※(b※c)即可判断.【详解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a※b=(a+1)(b+1)-1b※a=(b+1)(a+1)-1,∴a※b=b※a,故满足交换律,故她判断正确;(3)由已知把原式化简得a※b=(a+1)(b+1)-1=ab+a+b∵(a※b)※c=(ab+a+b)※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c∴(a※b)※c=a※(b※c)∴运算“※”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.20.(1)AB=2;相等;(2)a=±12;(3)34m=-,83n=.【解析】【分析】(1)①过点B 作BN ⊥x 轴于N ,由题意可知△AMB 为等腰直角三角形,设出点B 的坐标为(n ,-n ),根据二次函数得出n 的值,然后得出AB 的值,②因为抛物线y=x 2+1与y=x 2的形状相同,所以抛物线y=x 2+1与y=x 2的“完美三角形”的斜边长的数量关系是相等;(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B 的坐标,得出a 的值;根据最大值得出mn -4m -1=0,根据抛物线的完美三角形的斜边长为n 得出点B 的坐标,然后代入抛物线求出m 和n 的值.(3)根据225y mx x+n =+-的最大值为-1,得到()45414m n m --=-化简得mn-4m-1=0,抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,所以抛物线2y mx =2的“完美三角形”斜边长为n ,得出B 点坐标,代入可得mn 关系式,即可求出m 、n 的值.【详解】(1)①过点B 作BN ⊥x 轴于N ,由题意可知△AMB 为等腰直角三角形,AB ∥x 轴,易证MN=BN ,设B 点坐标为(n ,-n ),代入抛物线2y x =,得2n n =,∴1n =,0n =(舍去),∴抛物线2y x =的“完美三角形”的斜边2AB = ②相等;(2)∵抛物线2y ax =与抛物线24y ax =+的形状相同, ∴抛物线2y ax =与抛物线24y ax =+的“完美三角形”全等,∵抛物线24y ax +=的“完美三角形”斜边的长为4,∴抛物线2y ax =的“完美三角形”斜边的长为4, ∴B 点坐标为(2,2)或(2,-2),∴12a=±. (3)∵ 225y mx x+n =+-的最大值为-1,∴ ()45414m n m --=-, ∴410mn m --= ,∵抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,∴抛物线2y mx =的“完美三角形”斜边长为n ,∴B 点坐标为,22nn ⎛⎫- ⎪⎝⎭, ∴代入抛物线2y mx =,得222n n m ⎛⎫⋅=- ⎪⎝⎭, ∴ mn 2=-(不合题意舍去),∴34m =-, ∴83n = 21.(1)83;(2)MC•NC =5;(3)a+b 的最小值为25;(4)以MN 为直径的一系列圆经过定点D ,此定点D 在直线AB 上且CD 的长为5.【解析】【分析】(1)由题意得AO =OB =2、OC =3、AC =5、BC =1,根据MC =ACtan ∠A = 53、CN =3tan BC BNC=∠可得答案; (2)证△ACM ∽△NCB 得MC AC BC NC=,由此即可求得答案; (3)设MC =a 、NC =b ,由(2)知ab =5,由P 是圆上异于A 、B 的动点知a >0,可得b =5a (a >0),根据反比例函数的性质得a+b 不存在最大值,当a =b 时,a+b 最小,据此求解可得;(4)设该圆与AC 的交点为D ,连接DM 、DN ,证△MDC ∽△DNC 得MC DC DC NC=,即MC •NC =DC 2=5,即DC 5MN 为直径的一系列圆经过定点D ,此顶点D 在直线AB 上且CD 5【详解】(1)如图所示,根据题意知,AO =OB =2、OC =3,则AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直线l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×333,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=3 tan3BCBNC==∠则MN=MC+CN=533+383,83;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴MC AC BC NC=,即MC•NC=AC•BC=5×1=5;(3)设MC=a、NC=b,由(2)知ab=5,∵P是圆上异于A、B的动点,∴a>0,∴b=5a(a>0),根据反比例函数的性质知,a+b不存在最大值,当a=b时,a+b最小,由a =b 得a =5a ,解之得a =5(负值舍去),此时b =5, 此时a+b 的最小值为25;(4)如图,设该圆与AC 的交点为D ,连接DM 、DN ,∵MN 为直径,∴∠MDN =90°,则∠MDC+∠NDC =90°,∵∠DCM =∠DCN =90°,∴∠MDC+∠DMC =90°,∴∠NDC =∠DMC ,则△MDC ∽△DNC ,∴MC DC DC NC=,即MC•NC =DC 2, 由(2)知MC•NC =5,∴DC 2=5,∴DC 5∴以MN 为直径的一系列圆经过定点D ,此定点D 在直线AB 上且CD 5【点睛】本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点.22. (1)-3;(2) 2x 4≤≤.【解析】分析:(1)代入30°角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;(2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.(1)原式=()1011220184cos302π-⎛⎫---︒ ⎪⎝⎭ =3223142-+-⨯= -3. (2) ()34x 1x 223x x ⎧≥-⎪⎨--≤⎪⎩①② 解不等式①得: x 4≤,解不等式②得:x 2≥,∴不等式组的解集为:2x 4≤≤不等式组的解集在数轴上表示:点睛:熟记零指数幂的意义:01(0)a a =≠,1 p p aa-=(0a ≠,p 为正整数)即30°角的余弦函数值是本题解题的关键.23.1【解析】 试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值. 试题解析:原式=21(2)2111x x x x x x x x x -+⋅-+-+=+ ∵x 2−x−1=0,∴x 2=x+1,则原式=1.24.(1)①12,3. ②详见解析.(2)13. 【解析】分析:(1)①根据题意和表中的数据可以求得a 的值;②由表格中的数据可以将频数分布表补充完整; (2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率. 详解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为12,3;②如图,(2)121050×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).所以小明和小强分在一起的概率为:13.点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.25.(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】【分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=12 BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.26.(1)y=﹣x+4;(2)1<x<1;(1)5【解析】【分析】(1)依据反比例函数y2=3x(x>0)的图象交于A(1,m)、B(n,1)两点,即可得到A(1,1)、B(1,1),代入一次函数y1=kx+b,可得直线AB的解析式;(2)当1<x <1时,正比例函数图象在反比例函数图象的上方,即可得到当y 1>y 2时,x 的取值范围是1<x <1;(1)作点A 关于y 轴的对称点C ,连接BC 交y 轴于点P ,则PA+PB 的最小值等于BC 的长,利用勾股定理即可得到BC 的长.【详解】(1)A (1,m )、B (n ,1)两点坐标分别代入反比例函数y 2=3x(x >0),可得 m=1,n=1,∴A (1,1)、B (1,1),把A (1,1)、B (1,1)代入一次函数y 1=kx+b ,可得 313k b k b +⎧⎨+⎩==,解得14k b -⎧⎨⎩==, ∴直线AB 的解析式为y=-x+4;(2)观察函数图象,发现:当1<x <1时,正比例函数图象在反比例函数图象的上方,∴当y 1>y 2时,x 的取值范围是1<x <1.(1)如图,作点A 关于y 轴的对称点C ,连接BC 交y 轴于点P ,则PA+PB 的最小值等于BC 的长, 过C 作y 轴的平行线,过B 作x 轴的平行线,交于点D ,则Rt △BCD 中,22222425CD BD +=+=∴PA+PB 的最小值为5【点睛】本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出不等式的取值范围是解答此题的关键.27.(1)31x y =⎧⎨=⎩;(2)当A 坐标为()3 , 0时,AB 取得最小值为1. 【解析】【分析】(1)用加减消元法解二元一次方程组;(2)利用(1)确定出B 的坐标,进而得到AB 取得最小值时A的坐标,以及AB 的最小值.【详解】解:(1)31021x y x y +=⎧⎨-=⎩①② ①2⨯+②得:721x =解得:3x =把3x =代入②得1y =,则方程组的解为31x y =⎧⎨=⎩(2 )由题意得:()3, 1B ,当A 坐标为()3 , 0时,AB 取得最小值为1.【点睛】此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键.。
安徽省安庆四中2020年中考二模数学试卷(含答案)
安庆四中2020届中考二模试卷一、选择题 1、的相反数是( )A .-2B .21-C .2D . 21 2、下列计算正确的是( )A .2a a a =+-2B .632a a a =⋅C .()623a a =- 2 D . 257a a a =÷ 3、如图所示几何体的左视图正确的是( )A. B. C. D.4、2019新型冠状病毒(2019-nCoV )是目前已知的第7种可以感染人的冠状病毒,病毒颗粒的平均直径约为100纳米.已知1纳米=10-9米,则100纳米用科学记数法表示为( )米. A. 1×102 B. 0.1×103 C. 1×10-7 D. 0.1×10-85、某校九年级月份中考模拟总分分以上有人,同学们在老师们的高效复习指导下,复习效果显著,在月份中考模拟总分分以上人数比月份增长,且月份的分以上的人数按相同的百分率继续上升,则月份该校分以上的学生人数( ).A .人B .人C .人D .人6、某校九年级模拟考试中,2班的五名学生的数学成绩如下:85,95,110,100,110.下列说法不正确的是( ) A. 众数是110 B. 中位数是110 C. 平均数是100 D. 中位数是1007、若将直线y=−4x+10向下平移m 个单位长度与双曲线y=4x 恰好只有一个公共点,则m 的值为( )8、如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM =DN ,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A. BD ⊥ACB. MB =MOC. OM =21AC D. ∠AMB =∠CND 9、如图,在平面直角坐标系中,Rt △ABC 的顶点A. C 的坐标分别是(0,3)、(4,0).∠ACB =90∘,AC =2BC ,则函数y =x k(k >0,x >0)的图象经过点B ,则k 的值为( )A. 10B. 11C. 12D. 1310、如图,在△ABC 中,AB =10,AC =8,BC =6,直线l 垂直于AB ,从点A 出发,沿AB 方向以1cm /s 的速度向点B 运动,与AB 交于点M ,与AC −CB 交于点N .当直线l 经过点B 时停止运动,若运动过程中△AMN 的面积是y (cm 2),直线l 的运动时间是x (s ),则y 与x 之间函数关系的图象大致是( )A. B.C.D.二、填空题11、⎪⎩⎪⎨⎧->+≥251233-2xxx的解集是12、因式分解234mnm-的结果是13、如图,△ABC内接于O,∠BAC=120∘,AB=AC,BD为O的直径,AD=6,则DC=_ __.14、如图,矩形ABCD的对角线AC与BD交于点O,点E在AD上,且DE=CD,连接OE,∠ABE=21∠ACB,若AE=2,则OE的长为_ _.15、12)21()3(60sin620----+-π16、中国古代算书《算法统宗》中有这样一道题:甲赶群羊逐草茂,乙拽肥羊随其后,戏问甲及一百否?甲云所说无差谬,若得这般一群凑,再添半群小半(注:四分之一的意思)群,得你一只来方凑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.cos43°>cos16°>sin30°
B.cos16°>sin30°>cos43°
C.cos16°>cos43°>sin30°
D.cos43°>sin30°>cos16°
7 .如图,在半径为
的圆形铁片上切下一块高为 的弓形铁片,则弓形弦 的长为( )
A.
B.
C.
D.
第 8 题图
第 9 题图
1
第 10 题图
AC AD
∵DE=EC,∴
AE CE
AC AD
,∴ AE2 CE 2
AC 2 AD2
,
∵∠DAC=∠BAC,∠ACD=∠B,∴△ACD∽△ABC,
∴AC2=AD•AB,∴
AE 2 EC 2
AD • AB AD 2
AB AD
....................................10
分
四、(本大题共 2 小题,每小题 8 分,满分 16 分)
17.(1)如图所示:△A1B1C1,即为所求,点 B1 坐标为(2,4);................4 分
(2)如图所示:点 P 的坐标为:(1,-2),
△A′B′C′即为所求.
..............................................................................8 分
(1)求 k 的值;
(2)求点 D 的坐标.
四、(本大题共 2 小题,每小题 8 分,满分 16 分)
第 16 题图
17. 在如图所示的直角坐标系中,每个小方格都是边长为 1 的小正方形,△ABC 的顶点均在格点上,
点 A 点坐标是(-3,-1)
(1)以 O 为中心作出△ABC 的中心对称图形△A1B1C1,并写出点 B1 的坐标; (2)以格点 P 为旋转中心,将△ABC 按顺时针方向旋转 90°得到△A´B´C´.且使点 A 点对应点 A
(1)请计算第几天该商品单价为 25 元/件? (2)求网店销售该商品 30 天里所获利润 y(元)关于 x(天)的函数关系式; (3)这 30 天中第几天获得的利润最大?最大利润是多少?
八、(本大题满分 14 分) 23. 如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE= CE 的交点. (1)求证:BD=CE; (2)若 AB=2,AD=1,把△ADE 绕点 A 旋转, ①当∠EAC= °时,求 PB 的长; ②直接写出旋转过程中线段 PB 长的最小值与最大值.
14.___________________
三、(本大题共 2 小题,每小题 8 分,满分 16 分)
3 15. 2
.........................................................................8 分
16.解
(1) OA 2 2 , AOC 45 , A2, 2 ,
k 4 , y 4 ; x
..............................................4 分
(2)四边形 OABC 是平行四边形 OABC ,
AB x 轴, B 的横纵标为 2 , 点 D 是 BC 的中点, D 点的横坐标为1,
D 1, 4 ;
.....................................................8 分
∵AB=BF,∴∠ABD=30°,∴BD= 2 3 ,
∴⊙O 的直径长为 2 3 .
................................12 分
七、(本大题满分 12 分) 22
..................................................................................4 分
14.如图,A 点的坐标为(2,2),点 C 在线段 OA 上运动(点 C 不与 O、A 重合),过点 C 作 CD⊥ x 轴于 D,再以 CD 为一边在 CD 右侧画正方形 CDEF.连接 AF 并延长交 x 轴于 B,连接 OF.若△BEF 与△OEF 相似,则点 B 的坐标是 ______________
三、(本大题共 2 小题,每小题 8 分,满分 16 分)
15. 计算: 2 cos2 45 tan 60 tan 30 cos 60
2
16.如图,在 OABC 中,OA= 2 2 ,∠AOC=45°,点 C 在 y 轴上,点 D 是 BC 的中点,反
比例函数
yk x
(x>0)的图象经过点 A、D.
2 .已知 b 5 ,则 a b 的值是( ) a 13 a b
2 A.
3
3
B.
2
C. 9 4
D. 4 9
3. 如图,在 RtABC 中, C 90 , BC 4 , AC 3 ,则 sin B ( )
A. 3 5
B. 4 5
C. 3 7
D. 3 4
第 3 题图
第 4 题图
第 5 题图
20(1)、过点 B 作 BE⊥AC 于点 E, 在 Rt△AEB 中,AB=60m,sinA= ,BE=ABsinA=60× =30m,.....5 分 (2)、cosA= , ∴AE=60× =30 m 在 Rt△CEB 中,∠ACB=∠CBD﹣∠A=75°﹣30°=45°, ∴BE=CE=30m, ∴AC=AE+CE=(30+30 )m 在 Rt△ADC 中,sinA= , 则 CD=(30+30 )× =(15+15 )m.
第 7 题图
S S 4.如图,在△ABC 中,DE∥BC,若 S△ADE:S△BDE=1:2, △ADE=3,则 △ABC 为( )
A.9
B.12
C.24
D.27
5. 如图,点 B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是( )
A.50°
B.60° C.80° D.100°
6. 三角函数 sin30°、cos16°、cos43°之间的大小关系是( )
∴BD∥EG,∴BD⊥AF,
∵∠BAC=90°,∴BD 是⊙O 的直径,
∴BD 垂直平分 AF,∴AB=BF;
(2)∵当 F 为 BC 的中点,
∴BF=
1 2
BC,∵AB=BF,∴AB=
1 2
BC,
∵∠BAC=90°,∴∠C=30°,
.................6 分
∴∠ABC=60°,AB= 3 AC=3, 3
19.(1)∵∠ACD=∠B=∠BAE,∠BAC=∠BAE+∠CAE,
∠AED=∠ACD+∠CAE,∴∠AED=△BAC, ∵∠DAE=∠B,∴△AED∽△BAC,∴ AD = DE ........................5 分
BC AC (2)∵∠ADE=∠CDA,∠DAE=∠ACD, ∴△DAE∽△DCA,∴ AE DE ,
9 .如图,直线 l1∥l2∥l3,一等腰直角三角形 ABC 的三个顶点 A,B,C 分别在 l1,l2,l3 上,∠
ACB=90°,AC 交 l2 于点 D,已知 l1 与 l2 的距离为 1,l2 与 l3 的距离为 3,则 的值为( )
A.
B.
C.
D.
10.如图,已知二次函数 y ax 2 bx c a 0 的图象如图所示,有下列 5 个结论 ①abc 0 ;
...............................................................................................10 分
六、(本大题满分 12 分) 21.解:(1)连接 AF,
2
∵AE 是⊙O 的直径,∴AF⊥EG,
∵四边形 BDGE 是平行四边形,
12.如图,AB 是⊙O 的直径,BD,CD 分别是过⊙O 上点 B,C 的切线,且∠BDC=110°.连接 AC, 则∠A 的度数是_____°.
第 12 题图
第 13 题图
第 14 题图
13
如图,延长
RtABC
的斜边
AB
至点
D
,使
BD
AB
,连接
CD
,若
tanBCD
1 3
,则
tanA
的值是__________
安庆四中 2019~2020 学年第二学期
九年级开学检测数学试卷
(考试时间:120 分钟 满分:150 分)
一、选择题(本大题共 10 小题,每小题 4 分,满分 40 分)
1 .抛物线 y 2 x+32 1 的顶点坐标是( )
命题教师:刘家红
A.(3,1)
B.(3,﹣1)
C.(﹣3,1)
D.(﹣3,﹣1)
五、(本大题共 2 小题,每小题 10 分,满分 20 分)
19. 已知:如图,在△ABC 中,点 D 在边 AB 上,点 E 在线段 CD 上,且∠ACD=∠B=∠BAE.
(1)求证: AD = DE ; BC AC
(2)当点
E
为
CD
中点时,求证:
AE 2 CE 2
=
AB . AD
第 19 题图 20. 如图 1 是“东方之星”救援打捞现场图,小红据此构造出一个如图 2 所示的数学模型,已知: A、B、D 三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.
8.
如图,在同一平面直角坐标系中,一次函数
y1=kx+b(k、b
是常数,且
k≠0)与反比例函数