轴的设计计算
轴的设计计算
![轴的设计计算](https://img.taocdn.com/s3/m/87af76e6d1f34693daef3e8b.png)
第四章:轴的设计计算第一节:输入轴的设计:输入轴的设计::选取轴的材料和热处理方法:选取轴的材料为45钢,经过调质处理,硬度240=HB 。
:初步估算轴的直径:30min nP A d ≥ 根据选用材料为45钢,0A 的范围为103~126,选取0A 值为120,高速轴功率kW P 81.7=,min /500r n =,代入数据:mm d .85.4150081.71203min =⨯≥ 考虑到轴的外伸端上开有键槽,将计算轴颈增大3%~7%后,取标准直径为45mm 。
输入轴的结构设计:输入轴系的主要零部件包括一对深沟球轴承,考虑到轴的最小直径为45mm ,而差速器的输入齿轮分度圆为70mm ,设计输入轴为齿轮轴,且外为了便于轴上零件的装卸,采用阶梯轴结构。
(1)外伸段:输入轴的外伸段与带轮的从动齿轮键连接,开有键槽,选取直径为mm 45,长为mm 78。
(2)密封段:密封段与油封毡圈5019974406/-ZQ JB 配合,选取密封段长度为mm 60,直径为mm 50。
(3)齿轮段:此段加工出轴上齿轮,根据主动轮mm B 70=,选取此段的长度为mm 100,齿轮两端的轴颈为mm 5.12,轴颈直径为mm 63。
(4)左右两端轴颈段:左右两端轴颈跟深沟球轴承6309配合,采用过度配合k6,实现径向定位,根据轴承,25mm B =端轴颈直径为mm 60,长度左端为mm 30和右端为mm 28。
(5)退刀槽:为保证加工到位,和保证装配时相邻零件的端面靠紧,在齿轮段两端轴颈处加工退刀槽,选取槽宽为mm 5,槽深为mm 2。
(7)倒角:根据推介值(mm ):50~30>d ,6.15.1或取C 。
80~50>d ,2取C 。
输入轴的基本尺寸如下表:输入轴的结构图::输入轴的受力分析::画出受力简图::计算支座反力:(1)作用于齿轮上的圆周力:N d T F I t 85.4589065.017.149222=⨯== (2)作用于齿轮上的径向力:N F F o t r 33.149120tan 85.458920tan ===ο(3)计算在水平面上的反力:N .F F F r NV NV 67.7452331491221====(4)计算在垂直面上的反力:N F F F t NH NH 93.2294285.4389221====:计算弯矩: (1)计算水平面上的弯矩:m N .L F M NV V ⋅=⨯=⨯=33.50356767.745111m N .L F M NV V ⋅=⨯=⨯=33.50356767.74522221V V V M M M ==(2)计算垂直面上的弯矩:m N L F M NH H ⋅=⨯=⨯=08.15495.6793.2294111m N .L F M NH H ⋅=⨯=⨯=08.154956703.229422221H H H M M M ==(3)计算合成弯矩:m N M M M H V ⋅=+=+=80.162808.154933.5032221211 m N M M M H V ⋅=+=+=80.162808.154933.503222222221M M M ==(4)计算转矩:m N n P T I I ⋅=⨯==17.14950081.795509550 (5)计算截面当量弯矩: ()()m N ..αT M M ⋅=⨯+=+=89.163217.149608016282222 取应力校正系数6.0=α。
轴的设计、计算、校核
![轴的设计、计算、校核](https://img.taocdn.com/s3/m/ca0cdc61910ef12d2bf9e72b.png)
轴得设计、计算、校核以转轴为例,轴得强度计算得步骤为:一、轴得强度计算1、按扭转强度条件初步估算轴得直径机器得运动简图确定后,各轴传递得P与n为已知,在轴得结构具体化之前,只能计算出轴所传递得扭矩,而所受得弯矩就是未知得。
这时只能按扭矩初步估算轴得直径,作为轴受转矩作用段最细处得直径dmin,一般就是轴端直径。
根据扭转强度条件确定得最小直径为:(mm)式中:P为轴所传递得功率(KW)n为轴得转速(r/min)Ao为计算系数,查表3若计算得轴段有键槽,则会削弱轴得强度,此时应将计算所得得直径适当增大,若有一个键槽,将d min增大5%,若同一剖面有两个键槽,则增大10%。
以dmin为基础,考虑轴上零件得装拆、定位、轴得加工、整体布局、作出轴得结构设计。
在轴得结构具体化之后进行以下计算。
2、按弯扭合成强度计算轴得直径l)绘出轴得结构图2)绘出轴得空间受力图3)绘出轴得水平面得弯矩图4)绘出轴得垂直面得弯矩图5)绘出轴得合成弯矩图6)绘出轴得扭矩图7)绘出轴得计算弯矩图8)按第三强度理论计算当量弯矩:式中:α为将扭矩折合为当量弯矩得折合系数,按扭切应力得循环特性取值:a)扭切应力理论上为静应力时,取α=0、3。
b)考虑到运转不均匀、振动、启动、停车等影响因素,假定为脉动循环应力,取α=0、59。
c)对于经常正、反转得轴,把扭剪应力视为对称循环应力,取α=1(因为在弯矩作用下,转轴产生得弯曲应力属于对称循环应力)。
9)校核危险断面得当量弯曲应力(计算应力):式中:W为抗扭截面摸量(mm3),查表4。
为对称循环变应力时轴得许用弯曲应力,查表1。
如计算应力超出许用值,应增大轴危险断面得直径。
如计算应力比许用值小很多,一般不改小轴得直径。
因为轴得直径还受结构因素得影响。
一般得转轴,强度计算到此为止。
对于重要得转轴还应按疲劳强度进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重得轴,还应按峰尖载荷校核其静强度,以免产生过量得塑性变形。
轴的设计计算
![轴的设计计算](https://img.taocdn.com/s3/m/3ec4b7f1ba0d4a7302763a37.png)
轴的设计计算2)根据轴向定位的要求确定轴的各段直径和长度如上图 从左到右依次为1d 2d 3d 4d 5d 6d 7d 与大带轮配合的轴 mm d 381= mm d d d 08.4408.63808.02112=+=⨯+= 取mm d 452= mm d d 4523=≥ 且此处为基孔制配合(其中孔为轴承内孔) 取mm d 503=mm d d 5034=≥ 取mm d 554= mmd d d 8.638.85508.02445=+=⨯+=取mm d 645=mm d d d 5885008.02336=+=⨯+= mm d d 5037== mm l 831=mm l 502252=⨯=∆++=s b l 3由于使用的轴承为深沟球轴承6010(GB/T276-1993)查《机械设计手册》P64表6-1得b=16mm主动轴如左图的装配方案mm d 381=mm d 452=mm d 503=mm d 554=mm d 645=mm d 586=对于从动轴:1)拟定轴上零件的装配方案现选用如图所示的装配方案从动轴如左图所示的装配方案mm mm h b 1422⨯=⨯,键槽用键槽铣刀加工,长为80mm ,选择齿轮轴毂与轴的配合为67k H ;同样半联轴器与轴的连接,选用平键为mm mm mm l h b 901118⨯⨯=⨯⨯,半联轴器与轴的配合为67k H 。
滚动轴承与轴的周向定位是通过过渡配合来保证的,此处选轴的直径尺寸公差为m64)确定轴上圆角和倒角尺寸 参考《机械设计》教材P365表15-2 mm d 601= mm d 757= 取轴端倒角为0452⨯,各轴肩处的圆角半径见轴的俯视图上标注(3) 按弯扭合成应力校核轴的强度 1)主动轴的强度校核圆周力 1t F =112000d T =2000×255.86/93=5502.37N 径向力1r F =1t F tan α=5502.37×tan20°=5502.37×0.36=1980.85N 由于为直齿圆柱齿轮,轴向力1a F =0带传动作用在轴上的压力齿轮轴毂与轴的配合为67k H半联轴器与轴的配合为67k H 。
轴的设计计算
![轴的设计计算](https://img.taocdn.com/s3/m/8897e66beff9aef8951e0608.png)
轴的设计计算【一】能力目标1.了解轴的功用、分类、常用材料及热处理。
2.能合理地进行轴的结构设计。
【二】知识目标1.了解轴的分类,掌握轴结构设计。
2.掌握轴的强度计算方法。
3.了解轴的疲劳强度计算和振动。
【三】教学的重点与难点重点:轴的结构设计难点:弯扭合成法计算轴的强度【四】教学方法与手段采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。
【五】教学任务及内容任务 知识点轴的设计计算 1. 轴的分类、材料及热处理2. 轴的结构设计3. 轴的设计计算一、轴的分类(一)根据承受载荷的情况,轴可分为三类1、心轴 工作时只受弯矩的轴,称为心轴。
心轴又分为转动心轴(a )和固定心轴(b)。
2、传动轴 工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。
3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。
(二)按轴线形状分:1、直轴(1)光轴作传动轴(应力集中小)(2)阶梯轴优点:1)便于轴上零件定位;2)便于实现等强度2、曲轴另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。
如牙铝的传动轴。
二、轴的结构设计轴的结构设计就是确定轴的外形和全部结构尺寸。
但轴的结构设计原则上应满足如下要求:1)轴上零件有准确的位置和可靠的相对固定;2)良好的制造和安装工艺性;3)形状、尺寸应有利于减少应力集中;4)尺寸要求。
(一)轴上零件的定位和固定轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。
作为轴的具体结构,既起定位作用又起固定作用。
1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。
2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。
(二)轴的结构工艺性轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。
为此,常采用以下措施:1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。
轴的设计计算
![轴的设计计算](https://img.taocdn.com/s3/m/a2822aeb76c66137ef061950.png)
第七章 轴的设计计算一、初步确定轴的尺寸1、高速轴的设计及计算:高速轴功率kw p 11.21=,转速min /7101r n =。
选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取1000=A ,得mm 377.14mm 71011.210033110min ≈⨯==n p A d 考虑轴上开有一个键槽对轴强度的削弱,轴径增大%7~%5,并圆整后mm d 15=,轴承选用角接触球轴承7205C ,B=15mm ,综合减速器其他零件的布置和减速器箱体的轮廓,高速轴初步设计如下:2、中间轴的设计及计算:中间轴功率kw p 03.22=,转速min /4.1612r n =。
选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取1050=A ,得mm 419.24mm 4.16103.210533220min ≈⨯==n p A d 考虑轴上开有两个键槽对轴强度的削弱,轴径增大%15~%10,并圆整后mm d 25=,轴承选用角接触球轴承7205C ,B=15mm ,综合减速器其他零件的布置和减速器箱体的轮廓,中间轴初步设计如下:安装大齿轮处的键型号为:键10⨯36GB1096-79 安装小齿轮处的键型号为:键10⨯70GB1096-79 3、低速轴的设计及计算:低速轴功率kw p 95.13=,转速min /4.433r n =。
选取轴的材料为40Cr 、调质处理、由《机械设计》教材表15-3,取970=A ,得mm 484.34mm 4.4395.19733330min ≈⨯==n p A d 考虑轴上开有两个键槽对轴强度的削弱,轴径增大%15~%10,并圆整后mm d 35=,轴承选用角接触球轴承7209C ,B=19mm ,综合减速器其他零件的布置和减速器箱体的轮廓,低速轴初步设计如下:安装大齿轮的键型号为:键18⨯65GB1096-97 安装联轴器处的键为:键16⨯125GB1096-97二、轴的校核以中间轴的校核为代表,中间轴的功率为kw p 03.22=,转速为min /4.1612r n =,转矩11.1202=T N ·m 。
轴的设计计算
![轴的设计计算](https://img.taocdn.com/s3/m/1633b1530a4e767f5acfa1c7aa00b52acfc79c95.png)
轴的设计计算
轴的设计计算主要包括以下步骤:
1.确定轴上零件的布局:根据工作要求确定轴上零件的位置和装配关系,为后续计算提供依据。
2.确定各轴段的直径:根据轴上零件的布局和载荷情况,确定各轴段的直径。
通常情况下,轴段直径与轴上零件的尺寸有关,需要考虑轴的弯曲刚度和疲劳强度等因素。
3.确定轴的结构细节:根据轴上零件的布局和装配要求,确定轴的结构细节,如轴承盖、密封件、联轴器等。
这些细节对轴的设计计算和制造都有重要影响。
4.计算轴的载荷:根据轴的工作要求和载荷情况,计算轴的载荷。
需要考虑径向载荷、轴向载荷和扭矩等,为后续的强度校核提供依据。
5.强度校核:根据轴的载荷和材料特性,进行强度校核。
通常需要进行弯扭合成校核和剪切校核等,以确保轴的强度满足工作要求。
6.确定支承方式:根据轴的工作要求和载荷情况,确定合适的支承方式。
支承方式的选择对轴的稳定性和疲劳寿命有很大影响。
7.确定润滑方式:根据轴的工作要求和润滑剂特性,选择合适的润滑方式。
润滑方式的选择对轴的摩擦磨损性能和寿命有很大影响。
以上是轴的设计计算的主要步骤,具体计算过程需要根据实际情况进行调整和完善。
机械设计轴的设计计算
![机械设计轴的设计计算](https://img.taocdn.com/s3/m/5c8f54b08662caaedd3383c4bb4cf7ec4afeb66f.png)
机械设计轴的设计计算
机械设计轴的设计计算主要包括以下几个方面:
1. 轴的尺寸计算:根据所需的扭矩及转速计算轴的直径及轴长,选择合适的轴材料及表面加工方式。
2. 轴的强度计算:根据轴材料的抗拉强度、抗压强度、弹性模量等参数,计算轴的最大等效应力及安全系数。
3. 轴的转动稳定性计算:根据轴的几何形状、转动速度、转动方向等参数,计算轴的临界转速及转动稳定性。
4. 轴的支撑方式计算:根据轴的重量及受力情况,计算轴的支撑方式以及所需的轴承类型、尺寸及数量。
5. 轴的动态平衡设计:根据轴的转动速度、质量分布情况等参数,计算轴的动态不平衡力,并设计相应的平衡装置。
6. 轴的表面处理设计:根据轴的使用环境及要求,选择适当的表面处理方式,如镀铬、喷涂、硬化等,以提高轴的耐磨性及抗腐蚀性。
以上是机械设计轴的设计计算的主要内容,要根据具体情况进行细致的计算与设
计。
机械设计 轴的计算
![机械设计 轴的计算](https://img.taocdn.com/s3/m/9cbaa5b265ce0508763213cd.png)
e k m ω
2
ω m
Fc
− 1
k mω
2
⇒ 1 时,y ⇒ ∞ 共振
k mω
2
⇒ 1 时,y ⇒ ∞,共振 ω c =
k g = y0 m
产生共振时的角速度(或转速) 产生共振时的角速度(或转速)称临界角速 度
ω (或临界转速 c
y0
nc =
30ωc
π
)
避免共振, 工作转速 避免共振,
n 不能接近临界转速。 不能接近临界转速。
[σ − 1 ]b
σ −1 = S
对于心轴, 对于心轴,T=0,
σ ca
M = ≤ [σ −1 ]b W
3、按安全系数法的精确校核计算 、按安全系数法的精确校核计算 Sσ Sτ S ca = ≥ S S σ2 + S τ2 σ −1 Sσ = kσ有效应力集中系数 Kσσ a +ψ σσ m ε σ 尺寸系数
m 3z3 n csin β3 = ar m z sinβ2 n2 2
n1
F1 a
3
nⅡ
F3 a
nⅢ
F4 r
4
F3 r
F2 t
· F
t3
F4 t
1
F1 r
F4 a
F2 r
· F1 t
注意: 注意:
F2 a
2
Ⅱ
1、力画在啮合线 、力画在啮合线 附近; 附近; 2、标明各力符号; 、标明各力符号;
= 9 . 4 kW
n1 n3 = = 93 . 6 r / min i 6 P3 T3 = 9.55 × 10 = 959100 N ⋅ mm n3 2、求齿轮受力 Ft = 5000 N
机械课程设计轴的计算
![机械课程设计轴的计算](https://img.taocdn.com/s3/m/6abc2746f11dc281e53a580216fc700abb68522d.png)
五 轴的设计计算一、高速轴的设计1、求作用在齿轮上的力高速级齿轮的分度圆直径为d 151.761d mm =112287542339851.761te T F N d ⨯=== tan tan 2033981275cos cos1421'41"n re te F F N αβ=⋅=⨯=tan 3398tan13.7846ae te F F N β==⨯=。
2、选取材料可选轴的材料为45钢,调质处理。
3、计算轴的最小直径,查表可取0112A =331min 015.2811223.44576P d A mm n ==⨯=应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使与带轮d Ⅰ-Ⅱ 相配合,且对于直径100d mm ≤的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。
故取25d mm =Ⅰ-Ⅱ 。
4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)根据前面设计知大带轮的毂长为93mm,故取90L mm I-II =,为满足大带轮的定位要求,则其右侧有一轴肩,故取32d mm II-III =,根据装配关系,定35L mm II-III =(2)初选流动轴承7307A C ,则其尺寸为358021d D B mm mm mm ⨯⨯=⨯⨯,故35d mm d III-∨I ∨III-IX ==,III -I∨段挡油环取其长为19.5mm,则40.5L mm III-I∨=。
(3)III -I∨段右边有一定位轴肩,故取42d mm III-II =,根据装配关系可定100L mmIII-II =,为了使齿轮轴上的齿面便于加工,取5,44L L mm d mm II-∨I ∨II-∨III II-∨III ===。
(4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s =8mm,故右侧挡油环的长度为19mm,则42L mm ∨III-IX =(5)计算可得123104.5,151,50.5L mm L mm L mm ===、(6)大带轮与轴的周向定位采用普通平键C 型连接,其尺寸为10880b h L mm mm mm ⨯⨯=⨯⨯,大带轮与轴的配合为76H r ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6. 求两轴承所受的径向载荷1r F 和2r F带传动有压轴力P F (过轴线,水平方向),1614P F N =。
轴的设计计算
![轴的设计计算](https://img.taocdn.com/s3/m/bc29a4ee998fcc22bcd10d0a.png)
轴的设计计算轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:按扭转强度条件计算。
1、按扭转强度估算轴的直径对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:[]式中:为轴危险截面的最大扭剪应力(MPa);为轴所传递的转矩(N.mm);为轴危险截面的抗扭截面模量();P为轴所传递的功率(kW);n为轴的转速(r/min);[]为轴的许用扭剪应力(MPa);对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值[]2、按弯扭合成强度条件校核计算对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
计算时,先根据结构设计所确定的轴的几何结构和轴上零件的位置,画出轴的受力简图,然后,绘制弯矩图、转矩图,按第三强度理论条件建立轴的弯扭合成强度约束条件:考虑到弯矩所产生的弯曲应力和转矩所产生的扭剪应力的性质不同,对上式中的转矩乘以折合系数,则强度约束条件一般公式为:式中:称为当量弯矩;为根据转矩性质而定的折合系数。
轴的设计计算(主动轴)
![轴的设计计算(主动轴)](https://img.taocdn.com/s3/m/34cb8b97dd88d0d233d46a21.png)
d1 =25 (mm ) , d 2 = d1 +2h=25+2×1.5=28 (mm )
考虑到该轴段上的密封件尺寸,取 d 2 =28 (mm )
轴承初选 6306 深沟球轴承。轴承宽度 B=19 (mm )
d 3 =30mm
d 4 =32mm
d 7 =30mm
d 6 =37mm
d 5 = d 4 +2h=32+2×(0.07~0.1)×37
联轴器处
4T = 22.64 <[ σ p ]=(100~120)MPa dhl
L=40mm
l=40- =36 h=7 l=40-4=36 h=7mm
σp =
4 × 43500 = 27.62 <[ σ p ]=(100~120)MPa 25 × 7 × 36
故所选键连接合适
3
则 从动轴 d ≥ c
P =(118~107) n
3
2.23 =19.55~17.73 490
考虑键槽 d×1.05≥18.62~20.53
该轴外端安装有联轴器,选用弹性套柱销联轴器
T
C
=KT=1.5×9550 2.23 =261.84
122
孔径为 25 (mm )
3 轴的结构设计 根据轴上零件的定位、装拆方便的需要,同时考虑到强度的原则,主动轴和从 动轴均设计为阶梯轴。 (1) 轴径确定
R VA = RVB =0.5 Ft =836.5N
M HC = 49.5 × 304.5 = 15073 ( N ⋅ mm)
M VC =49.5×836.5=41407 ( N ⋅ mm) 转矩 T=43500 ( N ⋅ m)
M C = M HC + M VC = 15073 2 + 41407 2 =44065 ( N ⋅ mm)
轴的设计计算及校核实例
![轴的设计计算及校核实例](https://img.taocdn.com/s3/m/9be92c64182e453610661ed9ad51f01dc3815745.png)
轴的设计计算及校核实例
轴是用来支撑旋转的机械零件,如齿轮、带轮、链轮、凸轮等。
轴的设计计算主要包括选材、结构设计和工作能力计算。
以下是一个轴的设计计算及校核实例:
1. 按扭矩初算轴径:选用45#调质,硬度217-255HBS。
根据()2表14-1、P245(14-2)式,并查表14-2,取c=115,得d≥115×(5.07/113.423)1/3mm=40.813mm。
考虑有键槽,将直径增大5%,则d=40.813×(1+5%)=4
2.854mm。
初选d=50mm。
2. 选择轴承:因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承。
参照工作要求并根据,根据d=50mm,选取单列角接触球轴承7208AC型。
在进行轴的设计时,需要考虑多方面的因素,并进行详细的计算和校核。
如果你需要进行轴的设计计算,建议咨询专业的工程师或查阅相关设计手册。
轴的设计计算
![轴的设计计算](https://img.taocdn.com/s3/m/505833103069a45177232f60ddccda38376be113.png)
轴的设计和计算需要考虑到以下因素:
1. 轴的材料及其特性,如弹性模量、屈服强度、硬度、疲劳极限等;
2. 轴的几何形状,如直径、长度、转角等;
3. 轴所承受的载荷类型、大小和方向,如弯曲载荷、剪切载荷、轴向载荷等;
4. 轴所处的工作环境,如温度、湿度、腐蚀等因素的影响。
轴的计算公式主要有以下几个:
1. 轴的直径计算公式:d=K*P^(1/3),其中d为轴的直径,K为系数,P为功率。
2. 轴的弯曲应力计算公式:σ=M*y/I,其中σ为弯曲应力,M为弯矩,y为轴截面上的距离,I为轴截面的惯性矩。
3. 轴的扭转应力计算公式:τ=T*r/J,其中τ为扭转应力,T为扭矩,r为轴半径,J为极限扭转惯性矩。
4. 轴的疲劳强度计算公式:S=Kf*S0,其中S为轴的疲劳强度,Kf为系数,S0为基本疲劳强度。
以上公式仅为轴的设计和计算中的一部分,实际应用中需要根据具体情况进行综合考虑和计算。
五 轴的设计计算
![五 轴的设计计算](https://img.taocdn.com/s3/m/f28d1f0bf12d2af90242e67c.png)
五 轴的设计计算1、高速轴的设计所用参数:轴的转速min /963r n =,传递功率kW p 84.3=,轴上齿轮参数:法面模数mm m 2=,分度圆螺旋角︒=16β,齿数27=z ,齿宽mm b 70=(1)选择轴的材料减速器功率不大,又无特殊要求,故选最常用的45钢并作正火处理。
由表10-1查得MPa B 600=σ。
(2)按转矩估算轴的最小直径由表10-3取A=107~118(因轴上受较大弯矩),于是得mm n P A d )71.18~98.16(159.0)118~107(96384.3)118~107(33=⨯=⨯=≥考虑键槽对轴强度的影响(轴径增大4%~7%)和联轴器标准,取d=20mm (3)轴的结构设计根据轴的结构设计要求,轴的结构草图设计如图(1)所示。
轴1、2之间应有定位轴肩;轴段2、3及3、4之间应设置台阶以利于装配;轴4、5及5、6之间应有定位轴肩。
各轴段得具体设计如下。
轴的结构设计图(1)轴段1:考虑轴的输出端有联轴器,取mm l mm d 86,2011==轴段2:取轴肩高2.5mm,坐定位作用,故mm d 252=,该尺寸还应满足密封件的直径系列要求。
该段长度可根据结构和安装要求最后确定。
轴段3:齿轮两端对称安装一轴承,选择6206(深沟球轴承),宽度为16mm,取mm d 303=。
左轴承用套筒定位,根据轴承对安装的要求,轴肩高度取2.5mm 。
该轴段的长度3l 的确定:齿轮两侧端面至箱体内壁的距离取10mm (箱体铸造精度的要求)。
根据润滑方式中和考虑取mm l 353=。
轴段2 的长度2l :根据箱体箱盖的加工和安装要求,取箱体轴承孔的长度为35mm ,轴端盖和箱体之间应有调整垫片,取其厚度为2mm ,轴承端盖厚度10mm ,端盖和联轴器之间应有一定的间隙,取10mm 。
中和考虑,取mm l 302=。
轴段4、5:考虑设置装配轴肩,取mm d 354=,该长度应小于齿轮轮毂宽度,取mm l 684=。
轴的设计计算
![轴的设计计算](https://img.taocdn.com/s3/m/f41b4320bcd126fff7050b93.png)
轴的设计计算 (一)、I 轴的设计1.轴上的功率1P ,转速1n 和转矩1T ,由修正的动力参数可得 17.128P = KW 1970n = r/min417.01810T =⨯ N mm •2.求作用在齿轮上的力已知齿轮1的直径151.389d = mm而 411227.01810273151.389t T F d ⨯⨯=== N'"tan tan 2027311022cos cos13214n r tF F αβ==⨯= N '"tan 2731tan13214648a t F F β==⨯= N3.初步确定轴的最小直径先按式(15-2)初步估算轴的最小直径。
选取轴的材料为45钢,调质处理。
根据表15-3,取112A=,于是得 13min 111221.8P d An === mm 轴的最小直径显然是安在联轴器处的直径d I-II 。
为了使所选的直径与联轴器的孔径相适应,故需同时选取联轴器型号。
联轴器的计算扭矩ca T ,查表14-1,考虑到扭矩变化很小,故 1.3A K =,则41 1.37.0181091234ca A T K T =•=⨯⨯= N mm •按照ca T 应小于联轴器的公称转矩的条件,查手册选用LT5型弹性套柱销联轴器,其公称转矩为125000 N mm •。
半联轴器的孔径125d = mm ,故取25d I-II = mm ,半联轴器长度62L = mm ,半联轴器与轴配合的孔长度144L = mm 。
4.轴的结构设计(1)拟定轴上零件的装配方案如图。
(2)根据轴向定位的要求确定轴的各段直径和长度。
1)为了满足半联轴器的轴向定位要求,I -II 轴段右端需制一个轴肩,故取32d II-III = mm ,左端用轴端挡圈定位,按轴端直径取挡圈直径D=35 mm 。
半联轴器与轴配合的孔长度144L =mm ,为了保证轴端挡圈只压在半联轴器上,故取42l I-II = mm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴的设计计算
轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。
一、轴的强度计算
进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。
对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算;
对于只承受弯矩的轴(心轴),应按弯曲强度条件计算;
对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。
此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。
下面介绍几种常用的计算方法:
按扭转强度条件计算。
1、按扭转强度估算轴的直径
对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。
若有弯矩作用,可用降低许用应力的方法来考虑其影响。
扭转强度约束条件为:
[]
式中:为轴危险截面的最大扭剪应力(MPa);
为轴所传递的转矩(N.mm);
为轴危险截面的抗扭截面模量();
P为轴所传递的功率(kW);
n为轴的转速(r/min);
[]为轴的许用扭剪应力(MPa);
对实心圆轴,,以此代入上式,可得扭转强度条件的设计式:
式中:C为由轴的材料和受载情况决定的系数。
当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。
应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。
若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。
此外,也可采用经验公式来估算轴的直径。
如在一般减速器中,高速输入轴的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。
几种轴的材料的[]和C值
轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52
160~135148~125135~118118~107107~98
2、按弯扭合成强度条件校核计算
对于同时承受弯矩和转矩的轴,可根据转矩和弯矩的合成强度进行计算。
计算时,先根据结构设计所确定的轴的几何结构和轴上零件的位置,画出轴的受力简图,然后,绘制弯矩图、转矩图,按第三强度理论条件建立轴的弯扭合成强度约束条件:
考虑到弯矩所产生的弯曲应力和转矩所产生的扭剪应力的性质不同,对上式中的转矩乘以折合系数,则强度约束条件一般公式为:
式中:称为当量弯矩;为根据转矩性质而定的折合系数。
转矩不变时,;
转矩按脉动循环变化时,;
转矩按对称循环变化时,。
若转矩的变化规律不清楚,一般也按脉动循环处理。
、、分别为对称循环、脉动循环及静应力状态下的许用应力。
为轴的抗弯截面模量()。
对实心轴,也可写为设计式:
若计算的剖面有键槽,则应将计算所得的轴径增大,方法同扭转强度计算。
轴的许用应力(MPa)
材料
碳钢400
500
600
700
130
170
200
230
70
75
95
110
40
45
55
65
合金钢800
900
1000
1200
270
300
330
400
130
140
150
180
75
80
90
110
铸钢400
500
100
120
50
70
30
40
例:设计带式运输机减速器的主动轴. 已知传递功率=10kW, 转速=200
r/min, 齿轮齿宽B=100mm, 齿数=40, 模数=5mm, 螺旋角=,轴端装有联轴器。
解:
1、计算轴上转矩和齿轮作用力
轴传递的转矩:
N.mm 齿轮的圆周力:
N 齿轮的径向力:
N 齿轮的轴向力:
N
2、选择轴的材料和热处理方式
选择轴的材料为45钢,经调质处理, 其机械性能由表查得:
=650MPa,=360MPa,=300MPa,=155MPa;
查得,=60MPa。
3、初算轴的最小轴径
选=110,则轴的最小直径为:mm
轴的最小直径显然是安装联轴器处轴的直径,需开键槽,故将最小轴径增加5%,变为42.525mm。
查《机械设计手册》,取标准直径45mm。
4、选择联轴器
取载荷系数=1.3,则联轴器的计算转矩为:
==1.3×477500=620750N.mm
根据计算转矩、最小轴径、轴的转速,查标准GB5014-85或手册,选用弹性柱销联轴器,其型号为:。
5、初选轴承
因轴承同时受有径向力和轴向力的作用。
故选用角接触球轴承。
根据工作要求及输入端的直径(为45mm),由轴承产品目录中选取型号为7211C的滚动轴承,
其尺寸(内径×外径×宽度)为d×D×b=55×100×21。
6、轴的结构设计
(1)拟定轴上零件的装配方案
据轴上零件定位、加工要求以及不同的零件装配方案,参考轴的结构设计的基本要求,得出如图7-20所示的两种不同轴结构。
图a中,齿轮从非输入端装入,齿轮、套筒、右端轴承和端盖从轴的右端
5
为55mm。
考虑拆卸的方便,轴段3的直径只要比轴段4的直径大1~2mm就行了,这里取为58mm。
轴段2是一轴环,右侧用来定位齿轮,左侧用来定位滚动轴承,查滚动轴承的手册,可得该型号的滚动轴承内圈安装尺寸最小为64mm,同时轴环的直
径还要满足比轴段3的直径(为58mm)大5~10mm的要求,故这段直径最终取为66mm。
(3)确定轴的各段长度
轴段6的长度比半联轴器的毂孔长度要(为84mm)短2~3mm,这样可保证轴端挡圈只压在半联轴器上而不压在轴的端面上,故该段轴长取为82mm。
,
80mm(标准键长见GB1096-79),同时为了保证齿轮轮毂与轴的配合为H7/n6;同样,半联轴器与轴的联接,选用平键为14×9×63,半联轴器与轴的配合为
H7/k6。
滚动轴承与轴的周向定位是借过渡配合来保证的,此处选轴的直径尺寸公差为k6。
(5)确定轴上圆角和倒角尺寸。
取轴端倒角为2×45°
7、按弯扭合成校核
(1)画受力简图
画轴空间受力简图c,将轴上作用力分解为垂直面受力图d和水平受力图e。
分别求出垂直面上的支反力和水平面上支反力。
对于零件作用于轴上的分布载荷或转矩(因轴上零件如齿轮、联轴器等均有宽度)可当作集中力作用于轴上零件的宽度中点。
对于支反力的位置,随轴承类型和布置方式不同而异,一般可按取定,其中a值参见滚动轴承样本,跨距较大时可近似认为支反力位于轴承宽度的中点。
(2)计算作用于轴上的支反力
水平面内支反力
N
垂直面内支反力
N
N
(3)计算轴的弯矩,并画弯、转矩图
分别作出垂直面和水平面上的弯矩图f、g,并按计算合成弯矩。
画转矩图h。
(4)计算并画当量弯矩图
转矩按脉动循环变化计算, 取, 则
N.mm
(5)校核轴的强度
一般而言,轴的强度是否满足要求只需对危险截面进行校核即可,而轴的危险截面多发生在当量弯矩最大或当量弯矩较大且轴的直径较小处。
根据轴的结构尺寸和当量弯矩图可知,a-a截面处弯矩最大, 且截面尺寸也非最大, 属于危险截面;b-b截面处当量弯矩不大但轴径较小,也属于危险截面。
而对于c-c、d-d截面尺寸,仅受纯转矩作用,虽d-d 截面尺寸最小,但由于轴最小直径是按扭转强度较为宽裕地确定的,故强度肯定满足,无需校核弯扭合成强度。
a-a 截面处当量弯矩为:
N.mm
b-b截面处当量弯矩为
N.mm
强度校核: 考虑键槽的影响,查附表7-8计算,
MPa
MPa
显然:
,
故安全。
二、轴的刚度校核计算
轴在载荷作用下,将产生弯曲或扭转变形。
若变形量超过允许的限度,就会影响轴上零件的正常工作,甚至会丧失机器应有的工作性能。
例如:安装齿轮的轴,若弯曲刚度不足而导致挠度过大时,将影响齿轮的正确啮合,使齿轮沿齿宽和齿高方向接触不良,造成载荷在齿面上严重分布不均。
又如采用滑动轴承的轴,若挠度过大而导致轴颈偏斜过大时,将使轴颈和滑动轴承发生边沿接触,造成不均匀磨损和过度发热。
因此,在设计有刚度要求的轴时,必须进行刚度的校核计算。
轴的弯曲刚度以挠度或偏转角来度量;扭转刚度以扭转角来度量。
轴的刚度校核计算通常是计算出轴在受载时的变形量,并控制其不大于允许值。