等腰三角形的性质练习(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形的性质

一、基础能力平台

1.选择题:

(1)等腰三角形的底角与相邻外角的关系是()

A.底角大于相邻外角B.底角小于相邻外角

C.底角大于或等于相邻外角D.底角小于或等于相邻外角

(2)等腰三角形的一个内角等于100°,则另两个内角的度数分别为()

A.40°,40°B.100°,20°

C.50°,50°D.40°,40°或100°,20°

(3)等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A.50°,50°,80°B.80°,80°,20°

C.100°,100°,20°D.50°,50°,80°或80°,80°,20°

(4)如果一个等腰三角形的一个底角比顶角大15°,那么顶角为()

A.45°B.40°C.55°D.50°

(5)等腰三角形一腰上的高与底边所成的角等于()

A.顶角B.顶角的一半

C.顶角的2倍D.底角的一半

(6)已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A 的度数为()

A.30°B.45°C.36°D.72°

(1)(2)(3)2.填空题:

(1)如图2所示,在△ABC中,①因为AB=AC,所以∠________=∠______;

②因为AB=AC,∠1=∠2,所以BD=_____,_____⊥______.

(2)若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为______.

(3)已知等腰三角形的一个角是80°,则顶角为______.

(4)在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是450,则△ABC 的面积为________.

(5)如图3所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=______.

3.等腰三角形两个内角的度数比为4:1,求其各个角的度数.

4.如图,已知线段a和c,用圆规和直尺作等腰三角形ABC,使等腰三角形△ABC•以a和c为两边,这样的三角形能作几个?

a

c

5.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.

6.如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.

(1)AF与CD垂直吗?请说明理由;

(2)在你接连BE后,还能得出什么新的结论?请写出三个.(不要求说明理由)

7.如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE.AH与2BD•相等吗?请说明理由.

二、拓展延伸训练

右下图是人字型层架的设计图,由AB、AC、BC、AD四根钢条焊接而成,其中A、B、C、D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D.如果焊接工身边只有可检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接的点是()

A.AC和BC,焊接点B B.AB和AC,焊接点A

C.AD和BC,焊接点D D.AB和AD,焊接点A

三、自主探究提高

如图,在△ABC中,CD是边AB上的中线,且DA=DB=DC.

(1)已知∠A=30°,求∠ACB的度数;

(2)已知∠A=40°,求∠ACB的度数;

(3)试改变∠A的度数,计算∠ACB的度数,你有什么发现吗?

答案:

【基础能力平台】

1.(1)B(2)A(3)D(4)D(5)B(6)C 2.(1)①B C•②DC(或BC)AD⊥BC(2)40°

(3)80°或20°(4)1

2

cm2(5)40°

3.80°80•° 20°或120°30°30°

4.略

5.108°

6.(1)略(2)①BE∥CD②AF•⊥BE③△ACF≌△ADF④∠BCF=∠EDF等7.说明△BCE≌△AHE,得AH=BC,由等腰三角形的“三线合一”性质得BC=2BD,所以AH=2BD

【拓展延伸训练】C

【自主探究提高】

(1)∠ACB=90°(2)∠ACB=90°

(3)猜想:不论∠A•等于多少度(小于90°),∠ACB总等于90°

相关文档
最新文档