电磁场与电磁波习题集
电磁场与电磁波试题
![电磁场与电磁波试题](https://img.taocdn.com/s3/m/8929804ee97101f69e3143323968011ca300f7e4.png)
电磁场与电磁波试题一、选择题1.物体自带的静电荷可以产生()电场。
A. 近距离的 B. 远距离的 C. 高速的 D. 恒定的2.下列哪个物理量是电场强度的定义? A. 电荷的大小 B. 电势差的变化C. 电场线的形状D. 电场力的大小3.两个相同电量的电荷之间的力为F,若电荷1的电量变为原来的4倍,电荷2的电量变为原来的2倍,则两个电荷之间的力变为原来的()倍。
A. 1/8B. 1/4C. 1/2D. 24.以下哪个物理量在电路中是守恒的? A. 电流 B. 电荷 C. 电压 D. 电功5.电流方向由正极流动到负极。
这是因为电流是由()极到()极流动的。
A. 正极,负极 B. 负极,正极 C. 高电势,低电势 D. 低电势,高电势二、填空题1.电场强度的单位是()。
2.在均匀介质中,电位与电势之间的关系是:()。
3.电容的单位是()。
4.电容和电容器的关系是:()。
三、解答题1.简述电场的概念及其性质。
答:电场是由电荷周围的空间所产生的物理现象。
当电荷存在时,它会在其周围产生一个电场。
电场有以下性质:–电场是矢量量,具有大小和方向。
–电场的强度随着距离的增加而减弱,遵循反比例关系。
–电场由正电荷指向负电荷,或由高电势指向低电势。
–电场相互叠加,遵循矢量相加原则。
–电场线表示了电场的方向和强度,线的密度表示电场强度的大小。
2.简述电流的概念及其特性。
答:电流是指单位时间内通过导体截面的电荷量,用符号I表示,单位是安培(A)。
电流具有以下特性:–电流的方向由正极流向负极,与电子的运动方向相反。
–电流是守恒量,即在封闭电路中,电流的大小不会改变。
–电流的大小与导体电阻、电势差和电阻之间的关系符合欧姆定律:I = U/R,其中I为电流,U为电势差,R为电阻。
3.电容器与电场之间有怎样的关系?答:电容器是一种用于储存电荷和电能的元件。
当电容器充电时,电荷会从一极板移动到另一极板,形成了电场。
电容器的电容决定了电容器储存电荷和电能的能力。
电磁场与电磁波习题及答案
![电磁场与电磁波习题及答案](https://img.taocdn.com/s3/m/72e020e433d4b14e8524689a.png)
1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂,BE t ∂∇⨯=-∂,0B ∇=,D ρ∇=2静电场的基本方程积分形式为:CE dl =⎰SD d s ρ=⎰3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:4线性且各向同性媒质的本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界 。
7应用镜像法和其它间接方法解静态场边值问题的理论依据是。
8.电场强度E的单位是,电位移D的单位是 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯= ρ∇=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H 4.D E ε=,B H μ=,J E σ=5.J t ρ∂∇=-∂ 6.2ρϕε∇=- 12ϕϕ= 1212n n εεεε∂∂=∂∂ 7.唯一性定理 8.V/m C/m21.在分析恒定磁场时,引入矢量磁位A ,并令B A =∇⨯的依据是(c.0B ∇= )2. “某处的电位0=ϕ,则该处的电场强度0=E”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )l n (01aa D C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为( 1/r2 )。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。
8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。
电磁场与电磁波练习题
![电磁场与电磁波练习题](https://img.taocdn.com/s3/m/f65ec4a70875f46527d3240c844769eae109a346.png)
电磁场与电磁波练习题一、单项选择题(每小题1分,共15分)1、电位不相等的两个等位面()A. 可以相交B. 可以重合C. 可以相切D. 不能相交或相切2、从宏观效应看,物质对电磁场的响应包括三种现象,下列选项中错误的是()A.磁化B.极化C.色散D.传导3、电荷Q 均匀分布在半径为a 的导体球面上,当导体球以角速度ω绕通过球心的Z 轴旋转时,导体球面上的面电流密度为()A.sin 4q e a ?ωθπB.cos 4q e a ?ωθπC.2sin 4q e a ?ωθπD.33sin 4q e r aωθπ 4、下面说法错误的是()A.梯度是矢量, 其大小为最大方向导数,方向为最大方向导数所在的方向。
B.矢量场的散度是标量,若有一个矢量场的散度恒为零,则总可以把该矢量场表示为另一个矢量场的旋度。
C.梯度的散度恒为零。
D.一个标量场的性质可由其梯度来描述。
5、已知一均匀平面波以相位系数30rad/m 在空气中沿x 轴方向传播,则该平面波的频率为()A.81510π?HzB.8910?HzC.84510π?Hz D.9910?Hz6、坡印廷矢量表示()A.穿过与能量流动方向相垂直的单位面积的能量B.能流密度矢量C.时变电磁场中空间各点的电磁场能量密度D.时变电磁场中单位体积内的功率损耗7、在给定尺寸的矩形波导中,传输模式的阶数越高,相应的截止波长()A.越小B.越大C.与阶数无关D.与波的频率有关8、已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为()A. 左旋圆极化波B. 右旋圆极化波C. 椭圆极化波D.直线极化波9、以下矢量函数中,可能表示磁感应强度的是()A. 3x y B e xy e y =+B.x y B e x e y =+C.22x y B e x e y =+D. x y B e y e x =+10、对于自由空间,其本征阻抗为()A. 0η=B.0η=C. 0η=D. 0η=11、自感和互感与回路的()无关。
电磁场与电磁波综合练习题1
![电磁场与电磁波综合练习题1](https://img.taocdn.com/s3/m/7897017ff242336c1eb95ece.png)
电磁场与电磁波 综合练习题 一、选择题1. 真空中静电场满足高斯定理,其微分式为0/ερ=⋅∇E,则下列诠释正确的有( )A . 空间中任意点电场的散度只与当地的电荷分布,即电荷密度有关。
B . 静电荷是静电场的散度源,即凡是有电荷存在的地方就会扩散出(或汇集起)电力线,激发起呈扩散状的静电场。
C . 电场的散度与电场本身是不同的物理量,电场的散度是标量,是散度源的强度,而电场则是矢量。
D . 没有电荷的地方,源的强度为零,即电场的散度为零,但电场强度不一定为零。
2. 关于静磁场的描述正确的有( )A . 静磁场的散度在空间中处处为零,空间不存在磁力线的扩散源和汇集源。
B . 静磁场的散度是标量,而磁感应强度本身是矢量,二者是不同的两个物理量。
C . 虽然磁场的散度处处为零,但空间的磁场不一定处处为零。
D . 以上描述都不正确。
3. 非导电媒质中的均匀平面波满足E a H n⨯=η1,则下列描述哪三个是正确的( )A . 电场与磁场的振幅之比等于媒质的本征阻抗。
B . 电场方向与磁场方向垂直且都垂直于传播方向。
C . 电场相位与磁场相位相同。
D . 电场相位落后于磁场相位。
二、填空题1. 能量守恒定律的积分式是-⎰⋅σd s =⎰⋅dV f ν +dV w dtd ⎰,它的物理意义是____________________2. 反射波电场与入射波电场反相,这现象称为反射过程中的3. 传播常熟βαγj +=,其中相位常数是 ,衰减常数是 4.电容率ε'=ε+iωσ,其中实数部分ε代表______电流的贡献,它不能引起电磁波功率的耗散,而虚数部分是______电流的贡献,它引起能量耗散。
5.金属内电磁波的能量主要是电场能量还是磁场能量?答:6.唯一性定理:设区域V 内给定自由电荷分布)(x ρ,在V 的边界S 上给定⑴________________或⑵________________________,则V 内的电场唯一确定 7.良导体条件是________________8. 在同一媒质中,不同频率的电磁波的传播速度及波长是不同的,它们是频率的函数,这种现象称为 。
(完整版)电磁场与电磁波试题及答案.
![(完整版)电磁场与电磁波试题及答案.](https://img.taocdn.com/s3/m/7938c48cc281e53a5802fffe.png)
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
电磁场与电磁波考试试题
![电磁场与电磁波考试试题](https://img.taocdn.com/s3/m/7c14b5a459f5f61fb7360b4c2e3f5727a4e92430.png)
电磁场与电磁波考试试题一、选择题(每题 3 分,共 30 分)1、真空中的介电常数为()。
A 885×10^(-12) F/mB 4π×10^(-7) H/mC 0D 无穷大2、静电场中,电场强度的环流恒等于()。
A 电荷的代数和B 零C 电场强度的大小D 不确定3、磁场强度的单位是()。
A 安培/米B 伏特/米C 牛顿/库仑D 特斯拉4、对于时变电磁场,以下说法正确的是()。
A 电场和磁场相互独立B 电场是无旋场C 磁场是无散场D 电场和磁场没有关系5、电磁波在真空中的传播速度为()。
A 光速B 声速C 无限大D 不确定6、以下哪种波不是电磁波()。
A 可见光B 超声波C 无线电波D X 射线7、均匀平面波在理想介质中传播时,电场和磁场的相位()。
A 相同B 相反C 相差 90 度D 不确定8、电位移矢量 D 与电场强度 E 的关系为()。
A D =εEB D =ε0ECD =μH D D =μ0H9、坡印廷矢量的方向表示()。
A 电场的方向B 磁场的方向C 能量的传播方向D 电荷的运动方向10、电磁波的极化方式不包括()。
A 线极化B 圆极化C 椭圆极化D 方极化二、填空题(每题 3 分,共 30 分)1、库仑定律的表达式为________。
2、静电场的高斯定理表明,通过任意闭合曲面的电通量等于该闭合曲面所包围的________。
3、安培环路定理表明,磁场强度沿任意闭合回路的线积分等于穿过该回路所包围面积的________。
4、位移电流的定义式为________。
5、麦克斯韦方程组的四个方程分别是________、________、________、________。
6、电磁波的波长、频率和波速之间的关系为________。
7、理想导体表面的电场强度________,磁场强度________。
8、均匀平面波的电场强度和磁场强度的比值称为________。
9、线极化波可以分解为两个________极化波的合成。
电磁场与电磁波期末考试题库
![电磁场与电磁波期末考试题库](https://img.taocdn.com/s3/m/6b8502fdf021dd36a32d7375a417866fb84ac0b5.png)
电磁场与电磁波期末考试题库一、选择题1.静电场是指:– A. 电荷在电场中不断运动的状态– B. 电荷在电场中静止的状态– C. 电场中没有电荷存在的状态– D. 电场中电势为零的状态2.电场强度的定义式是:– A. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r^2}$– B. $E = \\varepsilon_0\\frac{q}{r^2}$– C. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r}$– D. $E = \\varepsilon_0\\frac{q}{r}$3.电场线的特点是:– A. 线的密度表示电场强度的大小– B. 线的颜色表示电场强度的大小– C. 线的方向表示电场强度的方向– D. 线上的点表示电场强度的大小4.关于电场线的说法正确的是:– A. 电场线一定是直线– B. 电场线一定是曲线– C. 电场线既可以是直线也可以是曲线– D. 电场线没有特定的形状5.电场中的带电粒子受到的力是由以下哪些因素决定的?– A. 粒子的电荷大小– B. 粒子所处位置的电场强度– C. 粒子的质量– D. 粒子的电荷大小和所处位置的电场强度二、填空题1.电场强度的单位是\\\\。
2.静电势能的单位是\\\\。
3.感应电场的方向与引起它的磁场的变化方式\\\\。
4.麦克斯韦方程组包括\\\_\_个方程。
三、计算题1.一根长为10cm的直导线通有1A的电流,求导线周围某点的磁场强度。
2.一个带电粒子在电场中受到的力为5N,电荷大小为2C,求电场强度的大小。
3.两个带电粒子相距1m,电荷分别为1C和-2C,求它们之间的电势能。
四、问答题1.什么是电磁场?2.什么是电磁波?3.静电场和感应电场有什么区别?4.麦克斯韦方程组描述了什么?五、实验题设计一个实验,验证库仑定律。
以上是《电磁场与电磁波期末考试题库》的题目内容,包括选择题、填空题、计算题、问答题和实验题。
《电磁场与电磁波第四版》考试试题及答案
![《电磁场与电磁波第四版》考试试题及答案](https://img.taocdn.com/s3/m/1f2fdd7afbd6195f312b3169a45177232e60e411.png)
《电磁场与电磁波第四版》考试试题及答案一、选择题(每题2分,共20分)1. 下列哪个物理量是描述电磁场能量密度的?A. 磁感应强度B. 介电常数C. 电场强度D. 电位移矢量答案:C2. 在真空中,电磁波的传播速度为:A. 3×10^5 km/sB. 3×10^8 m/sC. 3×10^5 m/sD.3×10^6 m/s答案:B3. 在电磁波传播过程中,哪个物理量始终保持不变?A. 电磁波的频率B. 电磁波的波长C. 电磁波的振幅D. 电磁波的相位答案:A4. 下列哪个条件是电磁波传播的必要条件?A. 介电常数大于1B. 磁导率大于1C. 介电常数等于1D. 磁导率等于1答案:B5. 下列哪个现象可以用电磁波理论解释?A. 麦克斯韦方程组B. 法拉第电磁感应定律C. 光的折射D. 光的衍射答案:D二、填空题(每题2分,共20分)6. 电磁波在传播过程中,电场强度与磁场强度之间的关系为______。
答案:垂直7. 电磁波的能量密度与电场强度和磁场强度的平方成正比,表达式为______。
答案:u = 1/2 εE^2 + 1/2 μH^28. 电磁波在介质中的传播速度v与介质的介电常数ε和磁导率μ之间的关系为______。
答案:v = 1/√(με)9. 在电磁波传播过程中,能流密度矢量的方向与电磁波的传播方向______。
答案:相同10. 麦克斯韦方程组中,描述电场与磁场之间关系的方程是______。
答案:法拉第电磁感应定律三、计算题(每题20分,共60分)11. 已知某电磁波在空气中的波长为λ=2cm,求该电磁波在空气中的传播速度v和频率f。
解:由c=λf,得f=c/λ=3×10^8 m/s / 0.02 m =1.5×10^9 Hz再由v=c/f,得v=3×10^8 m/s / 1.5×10^9 Hz = 0.2m/s答案:v=0.2 m/s,f=1.5×10^9 Hz12. 有一均匀平面电磁波在无损耗介质中传播,已知电场强度E=50 V/m,磁场强度H=10 A/m,求该电磁波的能量密度u和能流密度S。
《电磁场与电磁波》(第四版)习题集:第8章 电磁辐射
![《电磁场与电磁波》(第四版)习题集:第8章 电磁辐射](https://img.taocdn.com/s3/m/c4d267bb866fb84ae55c8d51.png)
第8章 电磁辐射前面讨论了电磁波的传播问题,本章讨论电磁波的辐射问题。
时变的电荷和电流是激发电磁波的源。
为了有效地使电磁波能量按所要求的方向辐射出去,时变的电荷和电流必须按某种特殊的方式分布,天线就是设计成按规定方式有效地辐射电磁波能量的装置。
本章先讨论电磁辐射原理,再介绍一些常见的基本天线的辐射特性。
8.1滞后位在洛仑兹条件下,电磁矢量位A 和标量位ϕ满足的方程具有相同的形式222t ϕρϕμεε∂∇-=-∂ (8.1.1)J A A μμε-=∂∂-∇222t(8.1.2)我们先来求标量位ϕ满足的方程式(8.1.1)。
该式为线性方程,其解满足叠加原理。
设标量位ϕ是由体积元'V ∆内的电荷元'q V ρ∆=∆产生的,'V ∆之外不存在电荷,则由式(8.1.1)'V ∆之外的标量位ϕ满足的方程2220tϕϕμε∂∇-=∂ (8.1.3)可将q ∆视为点电荷,它所产生的场具有球对称性,此时标量位ϕ仅与r 、t 有关,与θ和φ无关,故在球坐标下,上式可简化为222210r r r r tϕϕμε∂∂∂⎛⎫-= ⎪∂∂∂⎝⎭ (8.1.4) 设其解()(),,U r t r t rϕ=,代入式(8.1.4)可得 0122222=∂∂-∂∂tUv r U (8.1.5) 其中,με1=v 。
该方程的通解为(),()()r rU r t f t g t v v=-++ (8.1.6)式中的()r f t v -和()r g t v +分别表示以()r t v -和()rt v+为变量的任意函数。
所以q ∆周围的场为()11,()()r rr t f t g t r v r vϕ=-++ (8.1.7) 式(8.1.7)中第一项代表向外辐射出去的波,第二项代表向内汇聚的波。
在讨论发射天线的电磁波辐射问题时,第二项没有实际意义,取0=g ,而f 的具体函数形式需由定解条件来确定。
《电磁场与电磁波》试题含答案
![《电磁场与电磁波》试题含答案](https://img.taocdn.com/s3/m/e7238803ccbff121dd3683a8.png)
图1
20.如图 2 所示的导体槽,底部保持电位为 (1) 写出电位满足的方程; (2) 求槽内的电位分布
U 0 ,其余两面电位为零,
无穷远
图2
五、综合题(10 分)
21.设沿 + z 方向传播的均匀平面电磁波垂直入射到理想导体,如图 3 所示,该电磁波电场
ˆ x E 0 e − j βz E=e 只有 x 分量即
图1 20.设时变电磁场的电场强度和磁场强度分别为:
� � E = E 0 cos(ωt − φ e )
� � H = H 0 cos(ωt − φ m )
(1) 写出电场强度和磁场强度的复数表达式
� � 1 � S av = E 0 × H 0 cos(φ e − φ m ) 2 (2) 证明其坡印廷矢量的平均值为:
5.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以 播出去,即电磁波。 6.随时间变化的电磁场称为 场。 。
的形式传
7.从场角度来讲,电流是电流密度矢量场的
8.一个微小电流环,设其半径为 a 、电流为 I ,则磁偶极矩矢量的大小为 9.电介质中的束缚电荷在外加
。
作用下,完全脱离分子的内部束缚力时,我们把这种
ρ V ,电位
3.时变电磁场中,坡印廷矢量的数学表达式为 4.在理想导体的表面,电场强度的
5.表达式
� � � ( ) A r ⋅ d S ∫
S
� � A 称为矢量场 ( r ) 穿过闭合曲面 S 的
。 。 。 。 。 场,因此,它可用磁矢
6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 位函数的旋度来表示。
《电磁场与电磁波》(第四版)习题集:第7章 导行电磁波
![《电磁场与电磁波》(第四版)习题集:第7章 导行电磁波](https://img.taocdn.com/s3/m/935cdb1eb307e87101f696dc.png)
第7章 导行电磁波前面我们讨论了电磁波在无界空间的传播以及电磁波对平面分界面的反射与透射现象。
在这一章中我们将讨论电磁波在有界空间的传播,即导波系统中的电磁波。
所谓导波系统是指引导电磁波沿一定方向传播的装置,被引导的电磁波称为导行波。
常见的导波系统有规则金属波导(如矩形波导、圆波导)、传输线(如平行双线、同轴线)和表面波波导(如微带线),图7.0.1给出了一些常见的导波系统。
导波系统中电磁波的传输问题属于电磁场边值问题,即在给定边界条件下解电磁波动方程,这时我们可以得到导波系统中的电磁场分布和电磁波的传播特性。
在这一章中,将用该方法讨论矩形波导、圆波导和同轴线中的电磁波传播问题以及谐振腔中的场分布及相关参数。
然而,当边界比较复杂时,用这种方法得到解析解就很困难,这时如果是双导体(或多导体)导波系统且传播的电磁波频率不太高,就可以引入分布参数,用“电路”中的电压和电流等效前面波导中的电场和磁场,这种方法称为“等效传输线”法。
这一章我们还将用该方法讨论平行双线和同轴线中波的传播特性。
7.1导行电磁波概论任意截面的均匀导波系统如图7.1.1所示。
为讨论简单又不失一般性,可作如下假设: (1)波导的横截面沿z 方向是均匀的,即导波内的电场和磁场分布只与坐标x ,y 有关,与坐标z 无关。
(2)构成波导壁的导体是理想导体,即σ=∞。
(3)波导内填充的媒质为理想介质,即0σ=,且各向同性。
(4)所讨论的区域内没有源分布,即0ρ=0=J 。
a 矩形波导b 圆柱形波导c 同轴线传输线d 双线传输线e 微带线图7.0.1 常见的几种导波系统(5)波导内的电磁场是时谐场,角频率为ω。
设波导中电磁波沿+z 方向传播,对于角频率为ω的时谐场,由假设条件(1)和(2)可将其电磁场量表示为()()()(),,,,,,,z z x y z x y e x y z x y e γγ--==E E H H (7.1.1)式中γ称为传播常数,表征导波系统中电磁场的传播特性。
电磁场与电磁波习题及答案
![电磁场与电磁波习题及答案](https://img.taocdn.com/s3/m/f9ef977fa5e9856a5712602c.png)
1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂,B E t ∂∇⨯=-∂,0B ∇=,D ρ∇=2静电场的基本方程积分形式为:CE dl =⎰SD d s ρ=⎰3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:4线性且各向同性媒质的本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界 。
7应用镜像法和其它间接方法解静态场边值问题的理论依据是。
8.电场强度E的单位是,电位移D的单位是 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯= ρ∇=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H 4.D E ε=,B H μ=,J E σ=5.J t ρ∂∇=-∂ 6.2ρϕε∇=-12ϕϕ= 1212n n εεεε∂∂=∂∂7.唯一性定理 8.V/m C/m21.在分析恒定磁场时,引入矢量磁位A ,并令B A =∇⨯的依据是(c.0B ∇= )2. “某处的电位0=ϕ,则该处的电场强度0=E”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )l n (01aa D C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。
8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。
电磁场与电磁波自测题集(8套)
![电磁场与电磁波自测题集(8套)](https://img.taocdn.com/s3/m/84e49bfc80eb6294dc886c23.png)
自测题八一、填空题(每题2分,共10分)1、已知真空中有恒定电流J(r),则空间任意点磁感应强度B的旋度为。
2、极化方向既不平行也不垂直于入射面的线极化波斜入射在一个无限大介质平面上,__________________时反射波只有平行极化分量。
3、自由空间中原点处的源(ρ或J)在t时刻发生变化,此变化将在时刻影响到r处的位函数(ψ或A)。
4、在球坐标系中,电偶极子辐射场(远场)的空间分布与坐标的关系是_______。
5、已知体积为V的介质的介电常数为ε,其中的静电荷(体密度为ρ)在空间形成电位分布ψ和电场分布E和D,则空间的静电能量密度为。
空间的总静电能量为________________。
二、选择填空题(每题2分,共10分,每题只能选择一个答案,否则判为错)1、以下关于时变电磁场的叙述中,不正确的是()。
A.电场是有旋场B.电场和磁场相互激发C.电荷可以激发电场D.磁场是有源场2、以下关于在导电媒质中传播的电磁波的叙述中,正确的是()。
A.不再是平面波B.电场和磁场不同相C.振幅不变D.以TE波形式传播3、两个载流线圈之间存在互感,对互感没有影响的是()。
A.线圈的尺寸B.两个线圈的相对位置C.线圈上的电流D.空间介质4、用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据是()。
A.镜像电荷是否对称B.电位ψ所满足的方程是否改变C.边界条件是否改变D.同时选择B和C5、区域V全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是()。
A.能量流出了区域B.能量在区域中被损耗C.电磁场做了功D.同时选择A和C三、简要回答以下问题(每题6分,共18分)1、两个同频,同向传播,极化方向相互垂直的线极化波将产生叠加,它们的合成波的极化状态如何?如两波不同频,但频率相差不大,极化方向相同,合成波又将有什么特点?2、静电场边值问题的惟一性定理说明了什么?它的意义何在?3、介质在外电场的作用下发生极化的物理机理是什么?受到极化的介质一般具有什么样的宏观特征?四、(10分)题图8-1 所示为某雷达天线的极化扭转板。
电磁场与电磁波试题及答案
![电磁场与电磁波试题及答案](https://img.taocdn.com/s3/m/f9cf969bf605cc1755270722192e453610665bd3.png)
电磁场与电磁波试题及答案一、选择题1. 以下哪个物理量描述了电场线的密度?A. 电场强度B. 电势C. 电通量D. 电荷密度答案:A. 电场强度2. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的传播速度与频率成正比B. 电磁波的传播速度与波长成正比C. 电磁波的传播速度与频率无关D. 电磁波的传播速度与波长成反比答案:C. 电磁波的传播速度与频率无关3. 在真空中,以下哪个物理量与磁感应强度成正比?A. 磁场强度B. 磁通量C. 磁导率D. 磁化强度答案:A. 磁场强度二、填空题4. 在电场中,某点的电场强度大小为200 V/m,方向向东,则该点的电场强度可以表示为______。
答案:200 V/m,方向向东5. 一个电磁波在空气中的波长为3 m,频率为100 MHz,则在空气中的传播速度为______。
答案:300,000,000 m/s6. 一个长直导线通过交流电流,其周围产生的磁场是______。
答案:圆形磁场三、计算题7. 一个平面电磁波在真空中的电场强度为50 V/m,磁场强度为0.2 A/m。
求该电磁波的波长和频率。
解题过程:根据电磁波的基本关系,电场强度和磁场强度满足以下关系:\[ E = c \times B \]其中,\( c \) 为光速,\( E \) 为电场强度,\( B \) 为磁场强度。
代入数据:\[ 50 = 3 \times 10^8 \times 0.2 \]解得:\[ c = 1.25 \times 10^7 m/s \]根据电磁波的波长和频率关系:\[ c = \lambda \times f \]代入光速和波长关系:\[ 1.25 \times 10^7 = \lambda \times f \]假设频率为 \( f \),则波长为:\[ \lambda = \frac{1.25 \times 10^7}{f} \]由于波长和频率的乘积为光速,可以求出频率:\[ f = \frac{1.25 \times 10^7}{3 \times 10^8} = 0.0417 \text{ GHz} \]将频率代入波长公式,求出波长:\[ \lambda = \frac{1.25 \times 10^7}{0.0417\times 10^9} = 3 m \]答案:波长为3 m,频率为0.0417 GHz8. 一个半径为10 cm的圆形线圈,通过频率为10 MHz的正弦交流电流,求线圈中心处的磁场强度。
(完整word)电磁场与电磁波考试题
![(完整word)电磁场与电磁波考试题](https://img.taocdn.com/s3/m/b2601afd76c66137ef061980.png)
电磁场与电磁波试题一、填空:1。
对于某一标量u 和某一矢量A :∇×(∇u )=0;∇•(∇×A)=02。
对于某一标量 ψ,它的梯度用哈密顿算子表示为∇ψ,在直角坐标系下表示为x y z e e e x y zψψψ∂∂∂++∂∂∂ 3.自由空间中静态电场的两个基本方程的积分形式为0lE dl ⋅=⎰(sqE d S ε⋅=⎰)和sD d S q ⋅=⎰.4.静电场中的电位ϕ满足泊松方程,该方程表达式为2()ργϕγε-∇=(),如果求解空间没有电荷分布。
则该方程变为2()0r ϕ∇=,叫拉普拉斯方程。
5.分析静电矢量场时对于各向同性的线性介质,两个基本场变量之间的关系为D E ε=。
6。
真空中的静电场是有散场和无旋场,真空中的恒定磁场是无散场和有旋场。
7。
传导中的电流密度J E σ=位移电流密度d DJ t∂=∂电场能量密度212eW E ε=磁场能量密度212n W H μ=。
8。
在理想介质中,沿z二、判断1.电磁场是电场和磁场形成的一个统一的整体,对于任何形式的电磁场问题。
电场和磁场总是同时存在的。
(√)2。
矢量场在闭合路径上的环流和在闭合面上的之间都是标量。
()3。
按统一规则绘制出的力线可以确定矢量场中各点矢量的方向,还可以根据力线的疏密判别出各处矢量的大小及变化趋势.(×)4.从任意闭合面穿出的恒定电流为零。
(×)5。
麦克斯韦方程有四个基本矢量场方程,它们并不独立,由两个旋度方程可导出两个相应的散度方程,因此(×)6.位移电流是麦克斯韦假说所提出的电流,它是真实电流一样可以产生磁效应。
()7。
在均匀无耗各向同性媒质中,电磁波的波速(即想速)与波长均为常数,但在导电媒质中则不一样,其波速和波长不再是常数。
(√)8.均匀平面电磁波的极化是用电场强度矢量E 的端点在空间描绘出的轨迹来表示,若该轨迹是圆侧称为圆极化波。
(√)9。
介质极化后会同时产生极化体电荷和极化面电荷.(√) 10。
《电磁场与电磁波》(第四版)习题集:第4章时变电磁场
![《电磁场与电磁波》(第四版)习题集:第4章时变电磁场](https://img.taocdn.com/s3/m/c5ac65591611cc7931b765ce050876323112748b.png)
《电磁场与电磁波》(第四版)习题集:第4章时变电磁场第4章时变电磁场在时变的情况下,电场和磁场相互激励,在空间形成电磁波,时变电磁场的能量以电磁波的形式进行传播。
电磁场的波动方程描述了电磁场的波动性,本章首先对电磁场的波动方程进行讨论。
在时变电磁场的情况下,也可以引入辅助位函数来描述电磁场,使一些复杂问题的分析求解过程得以简化。
本章对时变电磁场的位函数及其微分方程进行了讨论。
电磁能量一如其它能量服从能量守恒原理,本章将讨论电磁场的能流和表征电磁场能量守恒关系的坡印廷定理。
本章在最后讨论了随时间按正弦函数变化的时变电磁场,这种时变电磁场称为时谐电磁场或正弦电磁场。
4. 1 波动方程由麦克斯韦方程可以建立电磁场的波动方程,揭示了时变电磁场的运动规律,即电磁场的波动性。
下面建立无源空间中电磁场的波动方程。
在无源空间中,电流密度和电荷密度处处为零,即0ρ=、0=J 。
在线性、各向同性的均匀媒质中,E 和H 满足的麦克斯韦方程为t ε=?EH (4.1.1) tμ=-?HE (4.1.2) 0?=H (4.1.3) 0?=E (4.1.4)对式(4.1.2)两边取旋度,有()()tμ=-E H 将式(4.1.1)代入上式,得到22()0t με+=?EE利用矢量恒等式2()()=??-?E E E 和式(4.1.4),可得到2220tμε??-=?EE (4.1.5)此式即为无源区域中电场强度矢量E 满足的波动方程。
同理可得到无源区域中磁场强度矢量H 满足的波动方程为2220tμε??-=?H H (4.1.6)无源区域中的E 或H 可以通过求解式(4.1.5)或式(4.1.6)的波动方程得到。
在直角坐标系中,波动方程可以分解为三个标量方程,每个方程中只含有一个场分量。
例如,式(4.1.5)可以分解为222222220x x x xE E E E x y z tμε++-= (4.1.7) 222222220yyyyE E E E x y z t με++-= (4.1.8)222222220z z z zE E E E x y z t με++-= (4.1.9)在其它坐标系中分解得到的三个标量方程都具有复杂的形式。
电磁场与电磁波:练习题参考答案
![电磁场与电磁波:练习题参考答案](https://img.taocdn.com/s3/m/ea401bc25f0e7cd185253623.png)
一、填空题1、电荷守恒定律的微分形式是,其物理意义是[任何一点电流密度矢量的散度等于该点电荷体密度随时间的减少率];2、麦克斯韦第一方程=⨯∇HDJ t ∂+∂,它的物理意义是[电流与时变电场产生磁场];对于静态场,=⨯∇H[J ]];3、麦克斯韦第二方程E⨯∇B ∂,它表明[时变磁场产生电场];对于静态场,E⨯∇=[0],它表明静态场是[无旋场];4、坡印廷矢量S 是描述时变电磁场中电磁功率传输的一个重要的物理量,S=[E H ⨯],它表示[通过垂直于功率传输方向单位面积]的电磁功率;5、在两种不同物质的分界面上,[电场强度,(或E )]矢量的切向分量总是连续的, [磁感应强度,(或B )]矢量的法向分量总是连续的;6、平面波在非导电媒质中传播时,相速度仅与[媒质参数,(或μ、ε)]有关,但在导电媒质中传播时,相速度还与[频率,(或f ,或ω)],这种现象称为色散;7、两个同频率,同方向传播,极化方向互相垂直的线极化波合成为圆极化波时,它们的振幅[相等],相位差为[2π,(或-2π,或90)];8.均匀平面波在良导体中传播时,电场振幅从表面值E 0下降到E 0/e 时 所传播的距离称为[趋肤深度],它的值与[频率以及媒质参数]有关。
二、选择题1、能激发时变电磁场的源是[c]a.随时间变化的电荷与电流 b 随时间变化的电场与磁场c.同时选a 和b2、在介电常数为ε的均匀媒质中,电荷体密度为ρ的电荷产生的电场为),,(z y x E E =,若E Dε=成立,下面的表达式中正确的是[a]a. ρ=⋅∇Db. 0/ερ=⋅∇Ec. 0=⋅∇D3、已知矢量)()23(3mz y e z y e x e B z y x +--+=,要用矢量B 描述磁感应强度,式中 必须取[c(0=⋅∇B )] a. 2 b. 4 c. 64、导电媒质中,位移电流密度d J 的相位与传导电流密度J的相位[a]a.相差2πb.相同或相反c.相差4π5、某均匀平面波在空气中传播时,波长m 30=λ,当它进入介电常数为04ε=ε的介质中传播时,波长[b] a.仍为3m b.缩短为1.5m c. 增长为6m6、空气的本征阻抗π=η1200,则相对介电常数4=εr ,相对磁导率1=μr ,电导率0=σ的媒质的本征阻抗为[c].a.仍为)(120Ωπb. )(30Ωπc. )(60Ωπ 7、z j y z j x e j e e e E π-π-+=2242,表示的平面波是 [b] a.圆极化波 b.椭圆极化波 c.直线极化波8、区域1(参数为0,,10101===σμμεε)和区域2(参数为0,20,520202===σμμεε)的分界面为0=z 的平面。
电磁场与电磁波习题集
![电磁场与电磁波习题集](https://img.taocdn.com/s3/m/e6e9488e84868762caaed592.png)
r π r r E(z, t) = ex Exm cos(ωt − kz + φx ) + ey Eym cos(ωt − kz + φy − ) 2
磁场为平行平面场,且具有轴对称性,应用安培环路定理, 解 磁场为平行平面场,且具有轴对称性,应用安培环路定理, r r 得 ∫C H ⋅ dl = 2πρHφ = I r r I H = eφ 0< ρ <∞ 磁场强度 2πρ r µI eφ 2πρ 0 < ρ < a r 磁感应强度 B = r e µ0 I a < ρ < ∞ φ 2πρ r r µ − µ0 I r B r eφ ⋅ ρ <a µ0 2πρ 磁化强度 M = − H = µ0 0 a< ρ <∞
则得
E1x = 2 y, E1y = 5x
湖南人文科技学院通信与控制工程系 刘宗良主讲
电磁场与电磁波
习题
10
D1x = ε1E1x = 10ε 0 y, D1y = ε1E1y = 25ε 0 x
r r r 又由 en ⋅ (D − D2 ) = 0 ,有 1
r r r r r r r ez ⋅[ex D1x + ey D1y + ez D1z − (ex D2 x + ey D2 y + ez D2 z ]z=0 = 0
在磁场中运动产生的, 在磁场中运动产生的,故得
r ∂B r r r r εin = ∫ (v × B) ⋅ dl − ∫ ⋅ dS C S ∂t r ∂B r r r r r = ∫ [exv × ez B0 cos(ωt)] ⋅ eydl − ∫ [ez B0 cos(ωt)] ⋅ ez dS C S ∂t = vtωbB0 sin(ωt ) − vbB0 cos(ωt)
电磁场与电磁波(必考题)
![电磁场与电磁波(必考题)](https://img.taocdn.com/s3/m/d68e9d96be1e650e53ea9966.png)
1 / 91.已知自由空间中均匀平面波磁场强度瞬时值为:())]43(cos[31,,z x t-e t z x H +=πωπy A/m ,求①该平面波角频率ω、频率f 、波长λ ②电场、磁场强度复矢量③瞬时坡印廷矢量、平均坡印廷矢量。
解:① z x z k y k x k z y x ππ43+=++;π3=x k ,0=yk ,π4=z k ;)/(5)4()3(22222m rad k k k k z y x πππ=+=++=;λπ2=k ,)(4.02m k ==πλ c v f ==λ(因是自由空间),)(105.74.010388Hz c f ⨯=⨯==λ;)/(101528s rad f ⨯==ππω②)/(31),()43(m A e e z x H z x j y +-=ππ; )/()243254331120),(),(),()43()43(m V e e e e e e e k k z x H e z x H z x E z x j z x z x z x j y n +-+--=+⨯⨯=⨯=⨯=πππππππηη(③ ()[])/()43(cos 2432),,(m V z x t e e t z x E z x +--=πω())]43(cos[31,,z x t-e t z x H +=πωπy (A/m ) ()[]()[])/()43(cos 322431)]43(cos[31)43(cos 243222m W z x t e e z x t-e z x t e e H E S z x z x +-+=+⨯+--=⨯=πωππωππωy ())43(2432),(z x j z x e e e z x E +--=π,)43(31),(z x j y e e z x H +-=ππ()())/(322461312432Re 21Re 212*)43()43(*m W e e e e e e e H E S z x z x j y z x j z x av +=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⨯-=⎪⎭⎫ ⎝⎛⨯=+-+-ππππ2.横截面为矩形的无限长接地金属导体槽,上部有电位为 的金属盖板;导体槽的侧壁与盖板间有非常小的间隙以保证相互绝缘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波
补充习题
1 若z y x a a a A -+=23,z y x a a a B
32+-=,求: 1 B A +;2 B A ∙;3 B A ⨯;4 A 和B 所构成平面的单位法线;5 A 和B 之间较
小的夹角;6 B 在A 上的标投影和矢投影
2 证明矢量场z y x a xy a xz a yz E
++=是无散的,也是无旋的。
3 若z y x f 23=,求f ∇,求在)5,3,2(P 的f 2∇。
5 假设0<x 的区域为空气,0>x 的区域为电介质,介电常数为03ε,如果空气中的电场强度z y x a a a E 5431++=(V/m ),求电介质中的电场强度。
7 同轴电缆内半径为a ,电压为0V ,外导体半径b 且接地,求导体间的电位分布,内导体的表面电荷密度,单位长度的电容。
10 在一个无源电介质中的电场强度x a z t C E )cos(βω-=V/m ,其中C 为场的幅度,ω为
角频率,β为常数。
在什么条件下此场能够存在?其它的场量是什么?
11 已知无源电介质中的电场强度x a kz t E E
)cos(-=ωV/m ,此处E 为峰值,k 为常数,求此区域内的磁场强度,功率流的方向,平均功率密度。
12 自由空间的电场表示式为x a z t E )cos(10βω+=V/m ,若时间周期为100ns ,求常数k ,
磁场强度,功率流方向,平均功率密度,电场中的能量密度,磁场中的能量密度。
13 已知无源区的电场强度为y a kz t x C E
)cos(sin -=ωαV/m ,用相量求磁场强度,场存在的必要条件,每单位面积的时间平均功率流。
14 若自由空间中均匀平面波的磁场强度为x a z t H )30000cos(100β+= A/m ,
求相位常数,波长,传播速度,电场强度,单位面积时间平均功率流。
16 决定下面波的极化类型
m
a y t a y t E m a e e a e e E m
a e a e E z x y z j j x z j j z x j y x j /V )5.0s i n (4)5.0c o s (3/V 916/V 10010010041004300300 ---=-=+=-----ππ 17 电场强度为y x a z t a z t
)sin(5)cos(12βωβω--- V/m 的均匀平面波以200M rad/s 在无耗媒质中(1,5.2==r r με)传播,求相应的磁场强度,相位常数,波长,本征阻抗,相
速,波的极化。
2
8 已知真空中半径为a 的圆环上均匀分布的线电荷密度为l ρ,求通过圆心的轴线上任一点的电位与电场强度。
9 已知空间电场强度z y x a a a E 543-+=,求(0,0,0)与(1,1,2)两点间的电位差。
11 已经电流环半径为a ,电流为I ,电流环位于z=0平面,求),0,0(h P 处的磁通密度。
12 若在a y -=处放置一根无限长线电流I ,电流的流动方向为z 轴正方向;在a y =处放置另一根无限长线电流I ,该电流的流动方向为x 轴正方向,求坐标原点处的磁通密度。
13 已知边长为a 的等边三角形回路电流为I ,周围介质为真空,求回路中心点的磁通密度。
14若无限长的半径为a 的圆柱体中电流密度分布函数为:)4(2r r e J x += ,a r ≤,求圆柱
体内外的磁通密度。
15 若无限长直导线与半径为a 的圆环导线平行放置,计算直导线与圆环之间的互感。
16 设真空中的磁通密度为y a kz t B )106sin(1083-⨯=-π,试求空间位移电流密度的瞬时值。
19 证明:一个线极化平面波可以分解为两个旋转方向相反的圆极化波。
21 设真空中圆极化平面电磁波的电场强度为:x j z y e a j a x E π2)(100)(-+= V/m
求该平面波的频率、波长、极化旋转方向、磁场强度及能流密度。
3 已知标量场1),,(22++=Φz y y x z y x ,求(2,1,3)处方向导数的最大值。
4 求空间任一点(x ,y ,z )的位置矢量r 的散度。
6 计算点电荷的电场强度。
7 计算电偶极子的电场强度。
8 设半径为a ,电荷体密度为ρ的无限长圆柱带电体位于真空,计算该带电体内外的电场强度。
10 计算无限长的电流为I 的线电流产生的磁通密度。
11 计算半径为a ,电流为I 的小电流圆环在其中心产生的磁通密度。
12 计算无限长直导线与矩形线圈之间的互感。
设线圈与导线平行,周围介质为真空。
13 计算载有直流电流的同轴线单位长度内的电感。
设同轴线内导体的半径为a ;外导体的内半径为b ,外半径为c 。
16 已知均匀平面波在真空中沿+z 方向传播,其电场强度的瞬时值为:x a z t t z E )2106sin(20),(8ππ-⨯= V/m,求:1 频率及波长 2 电场强度及磁场强度的相量表示 3 复能流密度矢量 4 相速度
1. 两个相互垂直的线极化波叠加,说明在什么条件下将分别形成:1 新的线极化波 2园
极化波 3 椭圆极化波
2. 写出麦克斯韦方程组的微分形式,说明每个方程物理意义,并说明位移电流和传导电
流的区别。
3. 写出时变场的边界条件。
1. 频率为300MHz 的均匀平面波在各向同性的均匀理想介质中沿+Z 方向传播,介质的
特性参数为4=r ε,1=r μ,0=σ。
设电场沿X 方向,即x x E e E =。
已知,当t
=0,81=z m 时,电场等于其振幅值10-
3V/m 。
试求:(1)波的传播速度、波数和波长。
(2)电场和磁场的瞬时表达式。
2. 电场强度为y x e z t e z t
)sin(5)cos(12βωβω--- V/m 的均匀平面波以100M rad/s 在
无耗媒质中(1,5.2==r r με)传播,求相应的磁场强度,相位常数,波长,本征阻抗,相速,波的极化。
3. 已知无界理想介质(ε=9ε0, μ=μ0,σ=0)中正弦均匀平面电磁波的频率f=108Hz , 电场强度为y j jkz x jkz e e e e E 3--34π++=V/m 。
试求: (1) 均匀平面电磁波的相速度v p 、波长λ、波数k 和波阻抗η;
(2) 电场强度和磁场强度的瞬时值表达式;
(3) 与电磁波传播方向垂直的单位面积上通过的平均功率。
4. y 方向线性极化的均匀平面电磁波在ε=9ε0的理想介质中沿x 方向传播,在x=0处垂直
入射到ε=2ε0的理想介质表面。
若入射波的角频率ω=200rad/s ,在介质分界面处电场强度的最大值为0.3V/m 。
求:
(1)反射系数和透射系数;
(2)两种介质中电场、磁场的瞬时表达式;
(3)两种介质中坡印亭矢量的平均值。
5. 均匀平面波从理想介质(μr =1,εr =10)垂直入射到理想导体表面上,测得理想介质中
电场强度最大值为500V/m ,第一个最大电场强度值与理想导体表面的距离为2m ,求:
(1)该平面波的频率和相位常数;
(2)试写出介质中电场和磁场的瞬时表达式。
6. 一圆极化平面电磁波的电场0j e (j )V/m z m x y E β-=+E e e 从空气垂直入射到1r μ=,
4r ε=的理想介质表面上。
(1) 求反射波和透射波的电场;
(2) 它们分别属于什么极化波?
以下是书本习题:
1 设标量3
2yz xy +=Φ,矢量z y x a a a A -+=22,求标量函数Φ在点)1,1,2(-处沿矢量A 的方向上的方向导数。
2 已知标量函数。
求该标量函数在点P (1,2,3)处的最大变化率及
其方向。
3 若标量函数为。
求在点P(1,-2,1)处的梯度。
4 证明:,,,其中是位置矢量。
5 已知在圆柱坐标系中某点的位置为,求该点在相应的直角坐标系及圆坐标中的位置。
6。