流体流动的基本方程

合集下载

流体流动基本规律

流体流动基本规律

ρ
We

gZ2+
ρ u22 2
+
p2
+
ρ
∑h
f
( Pa )
1.3 流体流动旳基本方程
1牛顿流体所具有旳能量称为压头head,单位为m。 Z-----位压头Potential head; u2/2g----动压头dynamic head; p/ρg-----静压头hydrostatic head。 He = We /g -----由泵对单位重量流体提供旳能量, 外加压头或泵旳扬程 Hf=∑hf / g——损失旳能量或称损失压头Hf
1.3 流体流动旳基本方程
∵ Vs = u A=
π 4
d2u
√ ∴ d= 4 Vs =0.0997m=99.7mm πu
查表选择:外径=108 mm,壁厚=4 mm旳管子 d=108-4×2=100 mm
将内径d=100 mm代入上式得到实际流速u=1.49 m/s。
1.3 流体流动旳基本方程
1.3.2 稳定流动与非稳定流动 steady flow and unsteady flow
1.3 流体流动旳基本方程
√ u2 =
2Rg ( ρ -ρ ) 0
ρ[1(- dd21 )4 ]
则体积流量
Vs =
π d22 4
u2 =
π 4
2
d2
质量流量ws =ρ Vs
2R g
(
ρ
0
-
ρ)
ρ [1-
(
d2 d1
)4
]
=
π 4
ρ
2
d2
2R g (ρ - ρ )
0
ρ
[1 -
(

流体流动的基本方程

流体流动的基本方程

4)运动粘度
v

单位: SI制:m2/s; 物理单位制:cm2/s,用St表示。
1St 100cSt 104 m 2 / s
关于黏度的讨论
① 黏度是流体的重要物理性质之一,可由实验测定 ② 常见流体的黏度值可由相关手册中查取;当缺乏实验数据 时,还可由经验公式计算 ③ 一般气体的黏度值远小于液体的黏度值 ④ 流体的黏度是温度T的函数 气体:T↑,黏度↑ 液体:T↑,黏度↓
运动流体的流速、压强、密度等有关物理量 稳态流动: 仅随位置而改变,而不随时间而改变 上述物理量不仅随位置而且随时间变化的流 非稳态流动: 动。
三、牛顿粘性定律与流体的粘度
1. 牛顿粘性定律
流体的内摩擦力:运动着的流体内部相邻两流体层间的作 用力。又称为粘滞力或粘性摩擦力。 ——流体阻力产生的来源
一、流量与流速
1、流量
单位时间内流过管道任一截面的流体量,称为流量。 若流量用体积来计量,称为体积流量VS;单位为:m3/s。 若流量用质量来计量,称为质量流量mS;单位:kg/s。 体积流量和质量流量的关系是: mS VS
2、流速
单位时间内流体在流动方向上流过的距离,称为流速u。
VS 单位为:m/s。数学表达式为: u A
mS u1 A11 u2 A2 2
若流体为不可压缩流体
uA 常数
VS
mS

u1 A1 u2 A2
uA 常数
——一维稳态流动的连续性方程
对于圆形管道,
2 2 u1 d1 u2 d 2 4 4
u1 d 2 u2 d 1
?
⑤ 流体的黏度值一般不随压力而变化
流体的分类: 按流体流动时应力与速度梯度之间的关系,流体可分为 牛顿型流体: 服从牛顿粘性定律的流体, 应力与速度梯度成正比例关 系 非牛顿型流体:不服从牛顿粘性定律的流体 , 应力与速度梯度不满足正 比例关系

1.3.1流体流动及其基本方程

1.3.1流体流动及其基本方程
黏度
二、流体流动的基本方程
流体动力学主要研究流体流动过程中流速、压力等物理量的变化规 律,研究所采用的基本方法是通过守恒原理(包括质量守恒、能量守恒 及动量守恒)进行质量、能量及动量衡算,获得物理量之间的内在联系 和变化规律。
作衡算时,需要预先指定衡算的空间范围,称之为控制体,而包围 此控制体的封闭边界称为控制面。
(2)流动系统的机械能衡算方程
⒈机械能的转换与损失 流动系统中所包括的能量
动能
机械能
位能 压力能(流动功)
外功
内能和热
流体输送过程中各种机械能相互转换。 由于流体的黏性作用,流体输送过程中还消耗部分机械能,将其转化为流体的内能。
(2)流动系统的机械能衡算方程
⒉流体定态流动的机械能衡算式
假设流动为定态过程,由热力学第一定律可知
一、流体流动概述
流体流动体系分类
(3)绕流与封闭管道内的流动
流体流动的方式
流体的绕流流动
流体绕过一个浸没物体的流动称 为绕流,也称外部流动。例如,填充 床内流动,颗粒在流体中的沉降运动, 流体在管道中绕过障碍物的流动等。
在封闭管道内的流动
如果流体是在封闭管道内的流动, 且没有绕过障碍物,则将流体的流动 称之为封闭管道内的流动。
hf
适用条件: 不可压缩流体
对于理想流体,Σhf =0,若再无外功加入,则有:
gZ1
u12 2
p1
=
gZ2
u22 2
p2
工程伯努利 (Bernoulli)方程
二、流体流动的基本方程
伯努利方程的讨论
(1)伯努利方程的物理意义
由公式
gZ1
u12 2
p1
=
gZ2

第二节 流体流动的基本方程式

第二节  流体流动的基本方程式

第二节 流体流动的基本方程式化工厂中流体大多是沿密闭的管道流动,液体从低位流到高位或从低压流到高压,需要输送设备对液体提供能量;从高位槽向设备输送一定量的料液时,高位槽所需的安装高度等问题,都是在流体输送过程中经常遇到的。

要解决这些问题,必须找出流体在管内的流动规律。

反映流体流动规律的有连续性方程式与柏努利方程式。

1-2-1 流量与流速一、流量单位时间内流过管道任一截面的流体量称为流量。

若流体量用体积来计量,称为体积流量,以V s 表示,其单位为m 3/s ;若流体量用质量来计量,则称为质量流量,以w s 表示,其单位为kg/s 。

体积流量与质量流量的关系为:w s =V s ·ρ (1-16) 式中 ρ——流体的密度,kg/m 3。

二、流速单位时间内流体在流动方向上所流经的距离称为流速。

以u 表示,其单位为m/s 。

实验表明,流体流经管道任一截面上各点的流速沿管径而变化,即在管截面中心处为最大,越靠近管壁流速将越小,在管壁处的流速为零。

流体在管截面上的速度分布规律较为复杂,在工程计算中为简便起见,流体的流速通常指整个管截面上的平均流速,其表达式为: A V u s = (1-17)式中 A ——与流动方向相垂直的管道截面积,m 2。

流量与流速的关系为:w s =V s ρ=uA ρ (1-18) 由于气体的体积流量随温度和压强而变化,因而气体的流速亦随之而变。

因此采用质量流速就较为方便。

质量流速,单位时间内流体流过管路截面积的质量,以G 表示,其表达式为:ρρu A V A w G s s === (1-19)式中 G ——质量流速,亦称质量通量;kg/(m 2·s )。

必须指出,任何一个平均值都不能全面代表一个物理量的分布。

式1-17所表示的平均流速在流量方面与实际的速度分布是等效的,但在其它方面则并不等效。

一般管道的截面均为圆形,若以d 表示管道内径,则 24d V u s π= 于是 uV d sπ4=(1-20) 流体输送管路的直径可根据流量及流速进行计算。

第三节流体流动的基本方程

第三节流体流动的基本方程

gZ1 u12
2

P1

We
gZ 2 u22 2
P2

hf
1) 柏努利方程的物理意义:在任一垂直流动方向的截面上,单位质 量流体的总机械能守恒,而每一种形式的机械能不一定相等,可以 相互转换;
2) 当流体静止时,u=0,Σhf=0,We=0,则柏努利方程变为静力学 方程,可见静力学方程式是柏努利方程的特例;
总费用
操作费
设备费
u适宜
u
u ↑→ d ↓ →设备费用↓ 流动阻力↑ →动力消耗↑ →操作费↑
均衡 考虑
一般,液体经济流速取0.5―3.0m/s,气体经济流速取10―30m/s
1.3.2 稳态流动与非稳态流动
稳态流动:流动系统中,各截面上的流体流速、压强、密度 等只是位置的函数,而不随时间变化的流动;
20%
P1
上式仍可用于计算。但此时式中ρ = ρm = ( ρ1+ ρ2 )/ 2,由此产生 误差≤5%。属工程所允许的误差范围。
1.3.5 柏努利方程的应用
1、应用柏努利方程解题要点 1)作图并确定衡算范围
根据题意画出流动系统的示意图,并指明流体的流动方向, 定出上下截面,以明确流动系统的衡算范围。
H

g
Z

u2 2

qe
We
注:在发生焓变的流动过程中: 由于
H gZ u2 2
及 H We
则:上式右简化为 △H = qe 或 H2 = H1 + qe
对于方程
U


P




u2 2


gZ

流体力学的基本方程式

流体力学的基本方程式

流体力学的基本方程式流体力学是研究流体力学原理和现象的一门学科。

它主要研究流体的运动和变形规律,包括速度、压力、密度和温度等参数的分布及其相互关系。

流体力学的基本方程式包括连续性方程、动量方程和能量方程。

这些方程式用来描述流体的性质和运动,对于解决流体力学问题至关重要。

下面将逐一介绍这些方程式及其应用。

1. 连续性方程连续性方程描述了流体的质量守恒规律。

它基于质量守恒原理,即在流体中任意一点的质量净流入/流出率等于该点区域内质量的减少率。

连续性方程的数学表达式是:∂ρ/∂t + ∇•(ρV) = 0。

其中,ρ是流体的密度,t是时间,V是流体的流速矢量,∇•表示散度运算符。

连续性方程的应用范围广泛,例如用于描述气象学中的气流动力学、河流的水量和水质传输等。

2. 动量方程动量方程描述了流体的运动规律。

它基于牛顿第二定律,即流体的运动是由外力和内力共同作用的结果。

动量方程的数学表达式是:ρ(∂V/∂t + V•∇V) = -∇P + ∇•τ + ρg。

其中,P是压力,τ是应力张量,g是重力加速度。

动量方程是解决流体流动问题的关键方程,可以用于模拟气象学中的风场、水力学中的水流、航空航天中的气体流动等。

3. 能量方程能量方程描述了流体的能量转换和传递规律。

它基于能量守恒原理,即在流体中任意一点的能量净流入/流出率等于该点区域内能量的减少率。

能量方程的数学表达式是:ρCv(∂T/∂t + V•∇T) = ∇•(k∇T) + Q - P(∇•V) + ρg•V。

其中,Cv是比热容,T是温度,k是热传导系数,Q是体积热源项。

能量方程可用于模拟热传导、对流和辐射现象,例如地下水温场、燃烧室的工作原理等。

流体力学的基本方程式是解决各种流体流动问题的基础,通过对这些方程式的应用,可以揭示流体的行为和性质,为实际工程和科学研究提供指导。

在实际应用中,还可以结合数值模拟和试验数据,进一步分析和预测流体力学问题的解,为工程决策和科学研究提供依据。

第二节流体流动的基本方程式

第二节流体流动的基本方程式

第二节 流体流动的基本方程式化工厂中流体大多是沿密闭的管道流动,液体从低位流到高位或从低压流到高压,需要输送设备对液体提供能量;从高位槽向设备输送一定量的料液时,高位槽所需的安装高度等问题,都是在流体输送过程中经常遇到的。

要解决这些问题,必须找出流体在管内的流动规律。

反映流体流动规律的有连续性方程式与柏努利方程式。

1-2-1 流量与流速一、流量单位时间内流过管道任一截面的流体量称为流量。

若流体量用体积来计量,称为体积流量,以V s 表示,其单位为m 3/s ;若流体量用质量来计量,则称为质量流量,以w s 表示,其单位为kg/s 。

体积流量与质量流量的关系为:w s =V s ·ρ (1-16) 式中 ρ——流体的密度,kg/m 3。

二、流速单位时间内流体在流动方向上所流经的距离称为流速。

以u 表示,其单位为m/s 。

实验表明,流体流经管道任一截面上各点的流速沿管径而变化,即在管截面中心处为最大,越靠近管壁流速将越小,在管壁处的流速为零。

流体在管截面上的速度分布规律较为复杂,在工程计算中为简便起见,流体的流速通常指整个管截面上的平均流速,其表达式为: A V u s = (1-17)式中 A ——与流动方向相垂直的管道截面积,m 2。

流量与流速的关系为:w s =V s ρ=uA ρ (1-18) 由于气体的体积流量随温度和压强而变化,因而气体的流速亦随之而变。

因此采用质量流速就较为方便。

质量流速,单位时间内流体流过管路截面积的质量,以G 表示,其表达式为:ρρu A V A w G s s === (1-19)式中 G ——质量流速,亦称质量通量;kg/(m 2·s )。

必须指出,任何一个平均值都不能全面代表一个物理量的分布。

式1-17所表示的平均流速在流量方面与实际的速度分布是等效的,但在其它方面则并不等效。

一般管道的截面均为圆形,若以d 表示管道内径,则 24d V u s π= 于是 uV d sπ4=(1-20) 流体输送管路的直径可根据流量及流速进行计算。

流体力学最基本的三个方程

流体力学最基本的三个方程

流体力学最基本的三个方程流体力学是研究流体运动及其相关物理现象的学科。

它的基础有三个最基本的方程,即连续性方程、动量守恒方程和能量守恒方程。

本文将详细介绍这三个方程的含义和应用。

一、连续性方程:连续性方程,也称为质量守恒方程,描述了流体运动中质量守恒的原理。

它的数学表达式为:∂ρ/∂t+∇·(ρv)=0其中,ρ是流体的密度,v是流体的速度矢量,∂/∂t表示对时间的偏导数,∇·表示向量的散度。

连续性方程的物理意义是说,质量在流体中是守恒的,即单位体积内的质量永远不会改变。

这是由于流体是连续的,无法出现质量的增减。

这个方程告诉我们,流体在流动过程中的速度变化与流体密度变化是相关的。

当流体流动速度较大时,密度通常会变小,反之亦然。

连续性方程的应用十分广泛。

在管道流动中,我们可以利用连续性方程来推导流速和截面积之间的关系。

在天气预报中,连续性方程被用来描述气象现象,如大气的上升和下沉运动,以及风的生成和消散等。

二、动量守恒方程:动量守恒方程描述了流体运动中动量守恒的原理。

它的数学表达式为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·(μ∇v) + ρg其中,p是流体的压强,μ是流体的黏度,g是重力加速度。

动量守恒方程可以理解为牛顿第二定律在流体力学中的推广。

它表示流体在外力作用下的加速度与压力梯度、黏性力、重力的平衡关系。

动量守恒方程的物理意义是说,流体的运动与施加在流体上的各种力密切相关。

当外力作用于流体时,会引起流体的加速度,也即速度的变化。

这个方程告诉我们,流体的加速度是与外力、黏性力和重力共同作用而产生的。

动量守恒方程的应用十分广泛。

在飞行器设计中,我们可以利用动量守恒方程来研究气动力的产生和改变。

在水力学中,动量守恒方程可以用来分析水流的运动、喷流和冲击等。

三、能量守恒方程:能量守恒方程描述了流体运动中能量守恒的原理。

它的数学表达式为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(κ∇T) + ρg·v +q其中,E是单位质量流体的比总能量(包括内能、动能和位能),T是流体的温度,κ是流体的热传导系数,q是单位质量流体的热源项。

流体力学三大基本方程公式

流体力学三大基本方程公式

流体力学三大基本方程公式流体力学是研究流体(液体和气体)行为的一门学科,而其中的三大基本方程就像是流体世界里的三位“大神”,每一个都有自己的风格和特点。

今天我们就来轻松聊聊这三大基本方程,看看它们是如何影响我们日常生活的。

1. 连续方程1.1 理论基础连续方程说的就是流体在流动时质量是守恒的,也就是说流体不会凭空消失或者出现。

这就好比你在喝饮料,吸管里的液体不管你怎么吸,它的总量始终不变。

你想,假如你吸得太快,吸管里液体都没了,那饮料可就喝不到了,真是要命!1.2 实际应用在现实生活中,这个方程的应用可广泛了。

比如,水管里流动的水,流量是一定的。

如果管道变窄,水速就会变快,简直就像是高速公路上的汽车,车道窄了,车速得加快才能不堵车。

你可以想象一下,如果这条“水路”被堵了,后果可就不堪设想,真是“水深火热”啊。

2. 纳维斯托克斯方程2.1 理论基础说到纳维斯托克斯方程,这可是流体力学里的“超级英雄”。

它描述了流体的运动,考虑了粘性、压力、速度等多个因素,就像一位全能运动员,无论是短跑、游泳,还是足球,样样精通!这个方程让我们能够预测流体的流动,简直就像是给流体穿上了“预测未来”的眼镜。

2.2 实际应用说到实际应用,纳维斯托克斯方程可是在天气预报、飞机设计等领域大显身手。

在气象学中,气象学家利用这个方程来模拟风暴、降雨等自然现象,真的是“未雨绸缪”,让我们提前做好准备。

想象一下,若是没有它,我们可能在大雨来临时还在悠哉悠哉地喝着茶,结果被“浇”了个透心凉。

3. 伯努利方程3.1 理论基础最后我们得提提伯努利方程,它可是流体动力学的明星。

简单来说,伯努利方程告诉我们,流体的压力和速度之间有着“爱恨交织”的关系。

流速快的地方,压力就低;流速慢的地方,压力就高。

这就像是你在一个热闹的派对上,越往外挤,周围的人越少,反而显得格外“安静”。

3.2 实际应用伯努利方程的应用那可是多得数不胜数,尤其是在飞行器设计上。

第2节 流体流动的基本方程PPT课件

第2节 流体流动的基本方程PPT课件
单位质量流体在流动过程中所吸的热为:qe(J/kg); 质量为m的流体所吸的热=mqe[J]。 当流体吸热时qe为正,流体放热时qe为负。
宾汉塑性流体剪应力与速度梯度的关系
四、连续性方程
在稳态流动系统中,对直径不同的管段做物料衡算
衡算范围:取管内壁截面1-1’与截面2-2’间的管段。对于
稳态流动:
ms1 ms2
m sVsuA
u1A 1 1u2A 2 2
如果把这一关系推广到管路系统的任一截面,有:
m S u 1 A 1 1 u 2 A 2 2 u A 常 数
AA
对于圆形管道, A d 2
4
u VS d2
4
d 4VS
u
——管道直径的计算式
二、稳态流动与非稳态流动
稳态流动:运动流体的流速、压强、密度等有关物理量 仅随位置而改变,而不随时间而改变
非稳态流动:上述物理量不仅随位置而且随时间变化的流 动。
三、牛顿粘性定律与流体的粘度
1. 牛顿粘性定律
粘流指数: n>1
涨塑性流体包括玉米粉、糖溶
液、含细粉浓度很高的水浆等
0
d u /d y
胀塑性流体剪应力与速度梯度的关系
3. 宾汉塑性流体
流体的应力与应变成线性关系,但存在一屈服应力 表观粘度值为一常数
τ
0
K
du dy
粘流指数:n=1
常见的宾汉塑性流体如牙 膏、肥皂、纸浆等。
0
d u /d y
③ 一般气体的粘度值远小于液体的粘度值
④ 流体的粘度是温度T的函数
气体:T↑,粘度↑ 液体:T↑,粘度↓
?
⑤ 流体的粘度值一般不随压力而变化
流体的分类:

流体力学流速计算公式

流体力学流速计算公式

流体力学流速计算公式一、伯努利方程推导流速公式(理想不可压缩流体定常流动)1. 伯努利方程。

- 对于理想不可压缩流体作定常流动时,在同一条流线上有p+(1)/(2)ρ v^2+ρ gh = C(p是流体压强,ρ是流体密度,v是流速,h是高度,C是常量)。

- 假设水平流动(h_1 = h_2),则方程变为p_1+(1)/(2)ρ v_1^2=p_2+(1)/(2)ρ v_2^2。

- 由此可推导出流速公式v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ)。

2. 适用条件。

- 理想流体(无粘性),实际流体在粘性较小时可近似使用。

- 不可压缩流体,像水在大多数情况下可视为不可压缩流体,气体在低速流动时也可近似为不可压缩流体。

- 定常流动,即流场中各点的流速等物理量不随时间变化。

3. 示例。

- 已知水管中某点1处的压强p_1 = 2×10^5Pa,流速v_1 = 1m/s,另一点2处的压强p_2 = 1.5×10^5Pa,水的密度ρ = 1000kg/m^3。

- 根据v_2=√(v_1^2)+(2(p_1 - p_2))/(ρ),将数值代入可得:- v_2=√(1^2)+frac{2×(2×10^{5-1.5×10^5)}{1000}}- 先计算括号内的值:2×(2×10^5-1.5×10^5)=2×5×10^4=10^5。

- 则v_2=√(1 + 100)= √(101)≈10.05m/s。

二、连续性方程推导流速公式(不可压缩流体定常流动)1. 连续性方程。

- 对于不可压缩流体的定常流动,有S_1v_1 = S_2v_2(S_1、S_2分别是流管中两个截面的面积,v_1、v_2是相应截面处的流速)。

- 由此可推导出流速公式v_2=(S_1)/(S_2)v_1。

2. 适用条件。

- 不可压缩流体,如液体或低速流动的气体。

工程流体力学 第3章 流体流动的基本方程

工程流体力学 第3章 流体流动的基本方程
注意: 空间点本身不具有密度、速度等物理参数,某一时刻占 据该空间点的流体质点具有这些物理参数。 流体的任意物理量可以表示为:
B F ( x, y, z, t )
比如,流体质点的速度场:
u F ( x, y, z, t )
第3章 流体流动的基本方程
速度分布的分量可表示为:
u x F1 ( x, y , z , t ) u y F2 ( x, y , z , t ) u z F3 ( x, y , z , t )
u x 2 x 2 F1 (a, b, c, t ) ax 2 t t t 2 u y 2 y 2 F2 (a, b, c, t ) ay 2 t t t 2 u z 2 z 2 F3 (a, b, c, t ) az 2 t t t 2
教学内容
第0章 绪论
第1章 流体的主要物理性质
第2章 流体静力学
第3章 流体流动的基本方程
第4章 势流理论
第5章 相似理论与量纲分析
第6章 粘性流体管内流动
第7章 粘性流体绕物体的流动
第3章 流体流动的基本方程
流体运动——满足质量守恒、牛顿第二定律、能量守恒… 推导——连续方程,动量方程,动量矩方程,能量方程…
第3章 流体流动的基本方程
流体质点的速度和加速度
u ux i uy j uz k
x F1 (a, b, c, t ) ux t t y F2 (a, b, c, t ) uy t t z F3 (a, b, c, t ) uz t t
a ax i ay j az k
两边积分 ln x 2t C ,故 x c1e
' 1

流体力学中的三大基本方程

流体力学中的三大基本方程

向量形式:
d 1 f g r a d p d t
——理想流体欧拉运动微分方程
式中:
p p p g r a d p i j k x y Z
适用条件:理想流体,不可压缩流体和可压缩流体
(5)连续性微分方程和运动方程在求解速度场中的应用 这里以不可压缩粘性流体稳定等温流动为例: 连续性方程:
a在三个坐标轴上的分量表示成:
⑷代入牛顿第二定律求得运动方程: 得x方向上的运动微分方程:
d p x d x d y d z d x d y d z f d x d y d z x d t x
单位体积流体的运动微分方程:
d p x fx d t x
div ( ) 0
⑷二维平面流动: x
x

y y
0
2.理想流体的运动方程
3.4.1---欧拉运动微分方程

理 论 依 据 : 是牛顿第二定律在流体力学上的具体应用,它建 立了理想流体的密度、速度、压力与外力之间的关系。 1775年由欧拉推出流体力学中心问题是流速问题,流体流速 与其所受到外力间的关系式即是运动方程。
X方向上所受质量力为: ② 表面力: 理想流体,没有粘性,所以表面力只有压力 X方向上作用于垂直x轴方向两个面的压力分别为:
p d x p d x p p p p M N x 2 x 2
X方向上质点所受表面力合力:
p ( p p ) d y d z d x d y d z M N x
于是,单位时间内在x方向流出与流入控制体的质量差为
v v v 1 1 x x x v dx dydz v dx dydz dx x x x x x 2 2

化工原理-连续性方程

化工原理-连续性方程
称为流速。以u表示,单位m/s。
实验表明,流体流经一段管路时,由于流体 存在黏性,使得管截面上各点的速度不同。在工 程计算上为了方便起见,流体的流速通常指整个 管截面上的平均流速。
3
二、流速
平均速度 平均速度指体积流量与流通截面面积之比,
以u 表示,其单位为m/s。
u Vs A
ws Vs uA
25
二、流动系统的机械能衡算式与伯努利(Bernoulli)方程式
1kg流体在截面1-1′与2-2′之间所获得的总热量
因此
Qe Qe hf
U Qe hf
v2 pdv
v1
克服流动阻 力而消耗的
机械能
26
二、流动系统的机械能衡算式与伯努利(Bernoulli)方程式
代入
u2 U gz
实际上,Q ′应当由两部分组成:一部分是 e
流体与环境所交换的热,即图1-14中换热器所提
供的热量Q ;另一部分是由于液体在截面1-1′至 e
2-2′间流动时,为克服流动阻力而消耗的一部 分机械能,这部分机械能转变成热,致使流体的 温度略微升高,从实用上说,这部分机械能是损 失掉了,因此常称为能量损失。
适用条件:不 可压缩理想流

29
伯努利 (Bernoulli)方程
三、伯努利方程的讨论
1.伯努利方程
gz1
u12 2
p1
gz2
u22 2
p2
该方程表示理想流体在管道内作稳态流动而 又没有外功加入时,在任一截面上单位质量流体 所具有的位能、动能、静压能之和为一常数,称
为总机械能,以E表示,单位为J/kg。换言之,各
2
( pv) Qe We
中,可得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u
2 A
2g 9.63mH2O
pA 9.63 g 9.44 104 pa pB g h zB uB2 2g 9.13mH2O
pB 9.13 g 8.95104 pa
pC g h zC uC2 2g 9.63mH2O
pC 9.44 104 pa
例2、已知如图示输水系统,输水量为15m3/h,管径53mm, 总机械能损失为40J/kg,泵的效率0.6,求泵的轴功率。
对于理想流体 (hf=0),且无外功 (he=0),加入,则有
gz1
u12 2
p1
gz 2
u
2 2
2
p2
——柏努利方程
讨 论:
(1) 伯努利方程适用于不可压缩的理想流体、稳定流动。
gz1
u12 2
p1
gz2
u22 2
p2
(2) 输送设备所作功
Pe qm .he qV he
Pe
kg s
J kg
A
〈5〉热mqe [mqe]=kgJ/kg=J
规定流体吸热为正,放热为负。
〈6〉功mhe [mhe]=kgJ/kg=J
规定流体接受外功为正,向外界作功为负。
总能量衡算
从1-1截面输入的能量+流体所获得的能量 = 从2-2截面输出的能量
mU1
mgz1
m. u12 2
p1V1
mqe
mhe
mU 2
u
qv A
qv 4d2
qv 0.785d 2
d qV 0.785u
流量取决于生产需要,合理的流速应根据经济衡算确定。
一般液体流速为0.5~3m/s, 气体流速为10~30m/s
1.2.1、黏性和黏度
流体内部存在内摩擦力或粘滞力
气体内摩擦力产生的原因还 可以从动量传递角度加以理解:
液体的内摩擦力则是由分子间的 吸引力所产生。
2. 两截面之 间的流体必须是连续不间断的,截面应与流动方 向垂直。
3. 基准水平面可以任意选取,一般取基准水平面通过两截面 中的某一截面。若所选截面与基准水平面不呈平行,则 Z 值可取为该截面中心点至基准水平面的垂直 距离。
4. 注意使用一致的单位(特别是两截面上要统一压力和高度 的单位,要统一使用表压或绝对压力等)
应用Bernoulli方程式解题的步骤
1、 画出研究体系的流程示意简图,在图中选出上下游截面以确
定机械能衡算范围;确定基准水平面并标注流体流动方向。 2、 将已知的及求解的物理量转化为直接表示流体性质的物理量。
如:A、qm、qv → u; A → d; 表压 →绝对压力, 有效功率Pe → qm、he或qv、ρ、he
J s
W
(3) 对于无外功加入的静止流体,he=0,u=0,hf=0, 则有
p
p
z 1 z 2
1 g 2 g
流体静力学的基本方程
(4)伯努利方程的其它形式
gz1
u12 2
p1
he
gz2
u22 2
p2
hf
单位为:J/kg 表示单位质量流 体具有的能量
z1
u12 2g
p1
g
He
z2
u
2 2
若流体不可压缩, =常数,则有 u1A1 u2 A2 qV 常数
以上称为一维稳定流动的连续性方程
对于圆形管路,有:
u1( 4
d12
)
u2
(
4
d
2 2
)
( ) u1
流体在管内的流速与管径的平方成反比 u2
d2 2 d1
1.2.5 总能量衡算
(以质量为m千克的流体为基准)
〈1〉内能mU [mU]=kg J/kg=J
mgz2
m.
u
2 2
2
p2V2
上式除以m, 并令V/m=v(比容),则有
U1
gz1
u12 2
p1v1
qe
he
U2
gz2
u22 2
p2v2
U+gz
u 2 2
pv
qe
he
式中各项单位为: J/kg
1.2.6 机械能衡算—柏努利方程
假设: 〈1〉流体是不可压缩的 即
1
2
1
〈2〉无热交换,即qe=0
3、 列出上下游截面处各已知、未知物理量的数值,对两截面之 间的各参数进行确定。
4、 列出Bernoulli方程式。 5、 求解未知量。
例1:如图示水的虹吸,忽略阻力损失,求水的流速及A,B,C各
处压力。 解:〈1〉求管内水的流速
单位重量流体 的柏努力方程
B
.
∵he=0, hf=0
z1 u12
2g p1
g
z2
u
2 2
2g p2
g
u1=0, p1=p2=1.013105Pa, z1=0.7m, z2=0
将已知数据代入上式得:u2=3.71m/s 总压头h z1 u12 2g p1 g 11.03 mH 2O
〈2〉求各截面上的压力
0.5m
.A
.C
1
1
0.7m
2 -2
pA
g
h
zA
影响因素: 主要有体系、温度、浓度
T , L , G
牛顿型流体:符合牛顿粘性定律的流体
非牛顿型流体: 不符合牛顿粘性定律的流体,如绝大多数高分子量的
如人身上的血液、淋巴液、囊液等多种体液以及像细 胞质那样的“半流体”都属于非牛顿流体。如聚乙烯, 聚丙烯酰氨,聚氯乙烯,尼龙6,PVS,涤纶,橡胶溶 液,各种工程塑料,化纤的熔体等。
〈2〉位能mgz [mgz]=kg(m/s2)m=J
〈3〉动能mu2/2 [mu2/2 ]=kg(m/s)2= J
〈4〉压力能pV J
推力为:F p A
N m2 m2 N
流体走过距离为:l
V A
m A
[
(
kg
/
kg m3
)2
]
[
m]
所以做功为:F l pA m mp pV N m [J ]
2g
p2
g
Hf
即:Δ z Δ u 2 2g
Δp
g
He
Hf
单位为:m(J/N) 表示单位重量流 体具有的能量
z m J 单位重量流体所具有的位能, 称为位压头
N
u2 2g
单位重量流体所具有的动能,
称为动压头
p
g
静压头
单位为:Pa (J/m3) 表示单位体积流 体具有的能量
gz1
he
z2g
u
2 2
2 p2
hf
P1=0(表压)
代入数值,得he=738 J/kg 质量流量: qm=(15/3600)(1000) =4.17 kg/s 有效功率:Pe= qmhe=4.17×738
单位质量流 体的柏努力
=3080J/s=3.08 kw 泵的轴功率: P Pe 3.08 0.6 5.13kW
1.2 流体流动的基本方程
主要研究流体在管路中的流动,
质量守恒

遵循着三大守恒定律 动量守恒
不讲
能量守恒

1.2.1、流量与流速
1、定义 体积流量qv: 单位时间流过管路任一截面的流体体积。 质量流量qm: 单位时间流过管路任一截面的流体质量。 流 速u: 体积流量除以管截面积所得之商。(平均流速) 质量流速G: 质量流量除以管截面积所得之商。
〈3〉流体温度不变,则 U1=U2
〈4〉流体克服流动阻力而消耗的机械能为 hf
U1
gz1
u12 2
p1v1
qe
he
U2
gz2
u22 2
p2v2
hf
将总能量衡算式简化为机械能衡算式:
gz1
u12 2
p1
he
gz 2
u
2 2
2
p2
hf
Δ(u 2 ) Δ p
gΔ z 2 he h f
v大
分子
v小
单位面积上的的内摩擦力,N/m2
牛顿粘性定律发 表在 1687年
dυx ----------------牛顿粘性定律
dy
动力黏度 简称黏度
黏度:
物理意义:衡量流体黏性大小的一个物理量
单位:
dv
dy
N m2 ms
N s m2
Pa s
获取方法:属物性之一,
m
由实验测定、查有关手册或资料、用经验公式计算。
解:取池内水面为截面1,作为基准面;输水管出口为截 面2,则有z1=0, z2=20m, p1=0, p2=500×103Pa,u1=0
P2=500 kN/m2 (表压)
u2
15 3600
( 4)(0.053)2
1.89m / s
hf 40J / kg, 0.6
20m
z1g u12
2 p1
2、表达式及单位
(1)体积流量: qv =V/ (2)质量流量: qm=m/ = ρV / =qVρ.
(3)流 速: u= qv /A (4)质量流速: G= qm /A= qv /A=u
(m3/s) (kg/s) (m/s) (kg/㎡s)
在管内同 一横截面 上流体的 流速是不
同的
3. 管路直径的初步确定
gz 2
u
2 2
2
p2
hf
位动 能能
静 压
外 功
能 量 损


u12 2
p1
e
u22 2
p2
hf
实际液体------上游截面处的机械 能大于下游截面处的机械能
相关文档
最新文档