DS18B20温控实验报告 - 副本

合集下载

DS18B20温控电动机实验

DS18B20温控电动机实验

单片机课程设计论文DS18B20温控电动机实验学院:**********专业:************班级********姓名:*******8学号:*********8DS18B20温控电动机实验一、设计简介本实验首先通过18B20测量温度,温度用数码管显示。

然后通过温度的高低控制电动机的转度。

本设计可用于温度的测控、室温的控制、温度调节、温度报警等方面。

二、18B20、数码管和电动机的简介1.18B20 单线数字温度传感器,即“一线器件”,其具有独特的优点:(1 )采用单总线的接口方式与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20 的双向通讯。

单总线具有经济性好,抗干扰能力强,适合于恶劣环境的现场温度测量,使用方便等优点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

(2 )测量温度范围宽,测量精度高DS18B20 的测量范围为-55 ℃ ~+ 125 ℃;在-10~+ 85°C 范围内,精度为±0.5°C 。

(3 )在使用中不需要任何外围元件。

(4 )持多点组网功能多个DS18B20 可以并联在惟一的单线上,实现多点测温。

(5 )供电方式灵活DS18B20 可以通过内部寄生电路从数据线上获取电源。

因此,当数据线上的时序满足一定的要求时,可以不接外部电源,从而使系统结构更趋简单,可靠性更高。

(7 )负压特性电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

(8 )掉电保护功能DS18B20 内部含有EEPROM ,在系统掉电以后,它仍可保存分辨率及报警温度的设定值。

18B20 具有体积更小、适用电压更宽、更经济、可选更小的封装方式,更宽的电压适用范围,适合于构建自己的经济的测温系统,因此也就被设计者们所青睐。

2.数码管数码管是一种半导体发光器件,其基本单元是发光二极管,是单片机系统中最常用的一种显示输出,主要用于单片机控制中的数据输出和状态信息显示。

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告温度传感器DS18B20实验报告引言温度传感器在现代生活中扮演着重要的角色,它们被广泛应用于各种领域,包括工业、医疗、农业等。

DS18B20是一种数字温度传感器,具有精准的测量能力和数字输出,因此备受青睐。

本实验旨在通过对DS18B20温度传感器的测试和分析,探讨其性能和应用。

实验目的1. 了解DS18B20温度传感器的工作原理和特性。

2. 测试DS18B20温度传感器的测量精度和响应速度。

3. 探讨DS18B20温度传感器在实际应用中的优缺点。

实验器材1. DS18B20温度传感器2. Arduino开发板3. 4.7kΩ电阻4. 连接线5. 电脑实验步骤1. 将DS18B20温度传感器连接到Arduino开发板上,并接入4.7kΩ电阻。

2. 编写Arduino程序,通过串口监视器输出DS18B20传感器的温度数据。

3. 将DS18B20传感器置于不同的温度环境中,记录其输出的温度数据。

4. 分析DS18B20传感器的测量精度和响应速度。

5. 探讨DS18B20传感器在实际应用中的优缺点。

实验结果经过实验测试,DS18B20温度传感器表现出了较高的测量精度和响应速度。

在不同温度环境下,其输出的温度数据与实际温度基本吻合,误差较小。

此外,DS18B20传感器具有数字输出,易于与各种微控制器和单片机进行连接,应用范围广泛。

然而,DS18B20传感器在极端温度环境下可能出现测量误差,且价格较高,需要根据实际需求进行选择。

结论DS18B20温度传感器具有较高的测量精度和响应速度,适用于各种温度测量场景。

然而,在选择和应用时需要考虑其价格和适用范围,以确保满足实际需求。

希望本实验能够为DS18B20温度传感器的应用提供参考和借鉴,推动其在各个领域的发展和应用。

基于DS18B20的温度显示仪实习报告

基于DS18B20的温度显示仪实习报告

基于DS18B20的温度显示仪实习报告实习题目实习时间年月日至年月日共周实习单位或实习地点实习单位评语:(分散实习填)签字:公章:年月日指导教师评语:成绩指导教师签字:年月日注:后附实习总结。

其内容应包括:实习目的、实习内容、实习结果及实习心得等项目目录第一章绪论 (4)第二章系统整体设计 (5)第三章系统的硬件选择及设计 (6)第四章系统的软件设计 (13)第五章系统调试 (18)结论 (19)致谢 (20)参考文献 (21)附录A (22)附录B (23)附录C (24)第一章绪论1.1选题的背景、目的及意义温度控制在工业自动化控制中占有非常重要的地位。

单片机系统的开发给现代工业测控领域带来了一次新的技术革命,自动化、智能化均离不开单片机的应用。

将单片机控制方法运用到温度控制系统中,可以克服温度控制系统存在的严重滞后现象,同时在提高采样频率的基础上可以很大程度的提高控制效果和精度。

现代自动控制越来越朝着智能化发展,在很多自动控制系统中都用到了主控机,小型机,甚至是巨型机处理机等,当然这些处理机有一个很大的特点,那就是很高的运行速度,很大的内存,大量的数据存储器。

但是随之而来的是巨额的成本。

在很多小型系统中,处理机的成本占系统成本的比例高达20%,而对于这些小型系统来说,配置一个如此高速的处理机没有任何必要,因为这些小系统追求经济效益,而不是在乎系统的快速性,所以用成本低廉的单片机控制小型的,而不是很复杂,不需要大量复杂运算的系统中是非常合适的。

随着电子技术以及应用需求的发展,单片机技术得到了迅速发展,在高集成度,高速度,低功耗以及高性能方面取得了很大的进展。

1.2国内外研究状况和相关领域中已有的研究成果已经研究出了SNB1000T总线式温度显示仪。

SNB1000系列智能显示仪,配合各种传感器构成各种状态显示仪表,本身自带工业通用的MODBUS-RTU通讯协议,是在线监测仓库、机房等环境状态的实用型仪器,也可广泛应用于需要实时温度、湿度、压力、水位等数据采集监测的各种应用场合。

DS18B20的报告(附带程序)..

DS18B20的报告(附带程序)..

DS18B20温度传感器数字温度传感器DS18B20是由Dallas半导体公司生产的,它具有耐磨耐碰,体积小,使用方便,封装形式多样(如图1.1.1),适用于各种狭小空间设备数字测温和控制领域。

图1.1.1引脚说明:GND为接地引脚;DQ为数据输入输出脚。

用于单线操作,漏极开路;VCC接电源正;单总线通常要求接一个约4.7K左右的上拉电阻,这样,当总线空闲时,其状态为高电平。

如图1.1.2是温度传感器DS18B20的接线图图1.1.2温度传感器DS18B20的参数:●适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电●温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃●可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温●在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快●被测温度用符号扩展的16位数字量方式串行输出●有两种供电方式既可以直接加 3.0~5.5V的电源,也可以采用寄生电源方式由数据线供电DS18B20内部结构及功能:DS18B20的内部结构如图1.1.3所示。

主要包括:寄生电源,温度传感器,64位ROM和单总线接口,存放中间数据的高速暂存器RAM,用于存储用户设定温度上下限值的TH和TL触发器,存储与控制逻辑,8位循环冗余校验码(CRC)发生器等7部分。

开始8位是产品类型的编号,接着共有48 位是DS18B20 唯一的序列号。

最后8位是前面56 位的CRC 检验码,这也是多个DS18B20 可以采用一线进行通信的原因。

高速暂存存储器:高速暂存存储器由9个字节组成,其分配如图所示。

高速暂存存储器字节0~1 温度寄存器当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。

大三上课设实验(DS18B20)报告

大三上课设实验(DS18B20)报告

简易温度测量仪班级:0120902队员:指导老师:摘要温度测量仪主要有以DS18B20为核心的温度采集电路,以蜂鸣器为核心的报警电路以及学习板电路三部分电路构成。

软件实现方面包括三个模块:温度采集模块、报警模块、按键与显示模块。

本温度测试仪采用数码管显示温度测试范围0~+125℃,可实现两点温度测量、摄氏温度华氏温度相互转换、设置温度显示精度、设置报警温度上下限、蜂鸣器报警等五个功能。

关键词:温度测量仪 DS18B20 蜂鸣器分辨率多点测量目录目录……………………………………………………1第一章设计目的 (3)第二章方案的选取 (3)第三章DS18B20测温电路系统设计要求 (4)第四章DS18B20测温电路系统设计 (5)1.DS18B20测温电路的组成框图 (5)2. DS18B20的简介 (5)2.1 DS18B20的内部结构 (6)2.2 DS18B20的工作过程及时序 (7)3. 系统硬件电路 (10)3.1 DS18B20温度传感器与单片机的接口电路 (10)3.2 蜂鸣器电路 (11)4. 系统软件设计 (11)4.1系统主程序流程图 (11)4.2重点模块程序分析 (12)第五章系统测试和结论 (14)6.1测试条件及方案 (14)6.2测试结果和分析 (15)第六章设计体会 (15)一、设计目的1.进一步熟悉和掌握DS18B20芯片的结构及工作原理。

2.掌握单片机的接口技术及相关外围芯片的外特性,控制方法。

3.通过课程设计,掌握以单片机核心的电路设计的基本方法和技术,了解有关电路参数的计算方法。

4.通过实际程序设计和调试,逐步掌握模块化程序设计方法和调试技术。

5.通过完成一个包括电路设计和程序开发的完整过程,使学生了解开发单片机应用系统的全过程,为今后从事相应打下基础。

6.了解 DS1820数字温度传感器特性7. 掌握单片机基本功能的运用、简单接口电路如键盘、数码管显示电路设计及其相应驱动软件的编制软、硬件系统的调试二、方案的选取方案一由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

温度监测系统实验报告

温度监测系统实验报告

一、实验目的1. 熟悉温度监测系统的基本组成和原理。

2. 掌握温度传感器的应用和数据处理方法。

3. 学会搭建简单的温度监测系统,并验证其功能。

二、实验原理温度监测系统主要由温度传感器、数据采集器、控制器、显示屏和报警装置等组成。

温度传感器将温度信号转换为电信号,数据采集器对电信号进行采集和处理,控制器根据设定的温度范围进行控制,显示屏显示温度信息,报警装置在温度超出设定范围时发出警报。

本实验采用DS18B20数字温度传感器,该传感器具有体积小、精度高、抗干扰能力强等特点。

数据采集器采用单片机(如STC89C52)作为核心控制器,通过并行接口读取温度传感器输出的数字信号,并进行相应的处理。

三、实验器材1. DS18B20数字温度传感器2. STC89C52单片机3. LCD显示屏4. 电阻、电容等电子元件5. 电源模块6. 连接线四、实验步骤1. 搭建温度监测系统电路,包括温度传感器、单片机、显示屏、报警装置等。

2. 编写程序,实现以下功能:(1)初始化单片机系统;(2)读取温度传感器数据;(3)将温度数据转换为摄氏度;(4)显示温度数据;(5)判断温度是否超出设定范围,若超出则触发报警。

3. 连接电源,启动系统,观察温度数据变化和报警情况。

五、实验结果与分析1. 系统搭建成功,能够稳定运行,实时显示温度数据。

2. 温度数据转换准确,显示清晰。

3. 当温度超出设定范围时,系统能够及时触发报警。

六、实验总结1. 本实验成功地搭建了一个简单的温度监测系统,实现了温度数据的采集、处理和显示。

2. 通过实验,加深了对温度传感器、单片机、显示屏等电子元件的理解和应用。

3. 实验过程中,学会了如何编写程序,实现温度数据的处理和显示。

七、实验建议1. 在实验过程中,注意电路连接的准确性,避免因连接错误导致实验失败。

2. 在编写程序时,注意代码的简洁性和可读性,便于后续修改和维护。

3. 可以尝试将温度监测系统与其他功能结合,如数据存储、远程传输等,提高系统的实用性和功能。

DS18B20数字温度计设计实验报告(1)【范本模板】

DS18B20数字温度计设计实验报告(1)【范本模板】

单片机原理及应用课程设计报告书题目:DS18B20数字温度计姓名: 李成学号:133010220指导老师:周灵彬设计时间: 2015年1月目录1. 引言 (3)1。

1.设计意义31.2。

系统功能要求32。

方案设计 (4)3. 硬件设计 (4)4. 软件设计 (8)5。

系统调试106. 设计总结 (11)7. 附录 (12)8. 参考文献 (15)DS18B20数字温度计设计1.引言1.1. 设计意义在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。

而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。

其缺点如下:●硬件电路复杂;●软件调试复杂;●制作成本高.本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为—55~125℃,最高分辨率可达0。

0625℃。

DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。

1.2. 系统功能要求设计出的DS18B20数字温度计测温范围在0~125℃,误差在±1℃以内,采用LED数码管直接读显示.2. 方案设计按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路.数字温度计总体电路结构框图如4。

1图所示:图4.13。

硬件设计温度计电路设计原理图如下图所示,控制器使用单片机AT89C2051,温度传感器使用DS18B20,使用四位共阳LED 数码管以动态扫描法实现温度显示。

AT89C51 主 控制器 DS18B20 显示电路 扫描驱动主控制器单片机AT89C51具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需要,很适合便携手持式产品的设计使用.系统可用两节电池供电。

AT89C51的引脚图如右图所示:VCC:供电电压。

DS18B20温度测量与控制实验报告

DS18B20温度测量与控制实验报告

课程实训报告《单片机技术开发》专业:机电一体化技术班级: 104201学号: 10420134姓名:杨泽润浙江交通职业技术学院机电学院2012年5月29日目录一、DS18B20温度测量与控制实验目的……………………二、DS18B20温度测量与控制实验说明……………………三、DS18B20温度测量与控制实验框图与步骤……………………四、DS18B20温度测量与控制实验清单……………………五、DS18B20温度测量与控制实验原理图…………………六、DS18B20温度测量与控制实验实训小结………………一、实验目的1.了解单总线器件的编程方法。

2.了解温度测量的原理,掌握 DS18B20 的使用。

二、实验说明本实验系统采用的温度传感器DS18B20是美国DALLAS公司推出的增强型单总线数字温度传感器。

Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

DS18B20测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20 内部结构DS18B20 内部结构主要由四部分组成:64 位光刻 ROM、温度传感器、非挥发的温度报警触发器 TH 和 TL、配置寄存器。

DS18B20 的管脚排列如下: DQ 为数字信号输入/输出端;GND 为电源地;VDD 为外接供电电源输入端(在寄生电源接线方式时接地)。

光刻 ROM 中的 64 位序列号是出厂前被光刻好的,它可以看作是该DS18B20 的地址序列码。

温度计报告 - 副本

温度计报告 - 副本

涉及思路:软件与硬件的功能划分,选方案软件与硬件的原理流程
DS18B20测温原理:如图:图中低温度系数振荡器的震荡频率受温度的影响而变小,用于产生固定频率的脉冲信号传送给减法计数器1,高温系数振荡器随温度变化其振荡频率明显变化,所产生的信号作为减法计数器2的脉冲输入。

软件原理流程:
系统程序的设计:
系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序和显示数据刷新子程序等。

主程序
主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量温度值。

温度测量没1秒进行一次。

主程序流程图:
读出温度子程序
读出温度子程序的主要功能是读出RAM中的9字节。

在读出时须进行CRC校验,校验有错时不进行温度数据的改写。

温度转换命令子程序
温度转换命令子程序主要是发温度转换开始指令。

在采用12位分辨率时,转换时间约为750ms。

在本程序设计中,采用1s显示程序延时等待转换的完成。

温度转换命令子程序流程图如图
计算温度子程序:
计算温度子程序将RAM中读取值进行BCD码的转换运算,并运行温度值正负的判断。

显示数据刷新子程序
显示数据刷新子程序主要是对显示缓冲器中的显示数据进行刷新操作,当最高数据显示位为0 时,将符号显示位移入下一位。

硬件:
DS18B20的内部结构图。

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告

温度传感器ds18b20实验报告温度传感器DS18B20实验报告引言:温度传感器是一种用于测量环境温度的设备,它在许多领域都有广泛的应用,如气象学、工业控制、冷链物流等。

本实验报告将介绍DS18B20温度传感器的原理、实验装置和实验结果,并对其性能进行评估。

一、实验原理DS18B20温度传感器是一种数字温度传感器,采用单总线接口进行通信。

它采用了最新的数字温度传感器技术,具有高精度、低功耗、抗干扰等特点。

其工作原理是利用温度对半导体材料电阻值的影响,通过测量电阻值的变化来确定温度。

二、实验装置本实验使用的实验装置包括DS18B20温度传感器、Arduino开发板、杜邦线和计算机。

Arduino开发板用于读取传感器的温度数据,并通过串口将数据传输到计算机上进行处理和显示。

三、实验步骤1. 连接电路:将DS18B20温度传感器的VCC引脚连接到Arduino开发板的5V 引脚,GND引脚连接到GND引脚,DQ引脚连接到Arduino开发板的数字引脚2。

2. 编写代码:使用Arduino开发环境编写代码,通过OneWire库和DallasTemperature库读取DS18B20传感器的温度数据。

3. 上传代码:将编写好的代码上传到Arduino开发板上。

4. 监测温度:打开串口监视器,可以看到DS18B20传感器实时的温度数据。

四、实验结果在实验过程中,我们将DS18B20温度传感器放置在不同的环境中,记录了其测得的温度数据。

实验结果显示,DS18B20温度传感器具有较高的精度和稳定性,能够准确地测量环境温度。

五、实验评估本实验评估了DS18B20温度传感器的性能,包括精度、响应时间和抗干扰能力。

实验结果表明,DS18B20温度传感器具有较高的精度,能够在0.5℃的误差范围内测量温度。

响应时间较快,能够在毫秒级别内完成温度测量。

同时,DS18B20温度传感器具有较好的抗干扰能力,能够在干扰环境下保持稳定的测量结果。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告
一、实验目的
本实验旨在通过使用温度传感器来检测不同环境下的温度变化,并通过实验数据分析温度传感器的性能和准确度。

二、实验仪器
1. Arduino Uno控制板
2. DS18B20数字温度传感器
3. 杜邦线
4. 电脑
三、实验步骤
1. 连接DS18B20温度传感器到Arduino Uno控制板上。

2. 使用Arduino软件编写读取温度传感器数据的程序。

3. 通过串口监视器读取传感器采集到的温度数据。

4. 将温度传感器放置在不同环境温度下,记录数据并进行分析。

四、实验数据
在室内环境下,温度传感器读取的数据平均值为25摄氏度;在户外阳光下,温度传感器读取的数据平均值为35摄氏度。

五、实验结果分析
通过实验数据分析可知,DS18B20温度传感器对环境温度有较高的
敏感度和准确性,能够较精准地反映环境温度的变化。

在不同环境温
度下,传感器能够稳定地输出准确的温度数据。

六、实验结论
本实验通过对DS18B20温度传感器的测试和分析,验证了其在温
度检测方面的可靠性和准确性。

温度传感器可以广泛应用于各种领域,如气象监测、工业控制等。

通过本次实验,我们对温度传感器的性能
有了更深入的了解。

七、参考文献
1. DS18B20温度传感器数据手册
2. Arduino Uno官方网站
以上为实验报告内容,谢谢!。

DS18B20温度测控-电子系统设计实践报告范文-图文

DS18B20温度测控-电子系统设计实践报告范文-图文

DS18B20温度测控-电子系统设计实践报告范文-图文电子系统设计实践报告所用仪器、仪表目录实践设计任务实践内容:1、基本功能:1)系统可以读取DS18B20的温度值;2)当测得的温度值超过预设的温度值时,会进行报警显示,蜂鸣器发出声音,1个红色LED 灯以1秒的间隔闪烁。

2、扩展功能:1)可以同时读取2个DS18B20的温度值;2)采用液晶显示屏显示温度值;3)可以分别手动设定2个DS18B20的报警温度值,当实际测得的温度超过报警温度时,会对超限的传感器进行报警显示;1、报警时采用播放音乐的方式。

目的通过基于AT89S51芯片和DS18B20温度传感器控制温度,熟悉芯片的使用,温度传感器的功能,实验电路板的焊接,LCD显示的使用,C51语言的设计。

方案设计与论证单片机具有处理能强、运行速度快、功耗低等优点,应用在温度测量与控制方面,控制简单方便,测量范围广,精度较高。

DS18b20温度传感器温度的精确度高达0.1度,可以满足从-55摄氏度到+125摄氏度测量范围,在一秒内把温度转化成数字,测得的温度值的存储在两个八位的RAM中,单片机可以直接从中读出数据转换成十进制就是温度,使用方便。

单片机从温度传感器读取温度后,把数据进行处理,转换成LCD显示的数据和控制信息,然后传送到LCD上面显示。

整体模块设整体模块设计各模块的设计:电路图设计文件软件设计软件设计流程图程序附在最后测试方法与数据分析(1)时间:10年8月31日20:20地点:18号楼320宿舍测试对象:室内温度设定警报温度:33℃室内温度一直都保持在31℃,这时显示器准确的显示了当前的室内温度,然后自己用手捂热传感器,温度便会慢慢上升,当温度超过33摄氏度时,蜂鸣器会发出报警声,LED灯也会开始一闪一闪。

(2)时间10年9月1日9:20地点:物信楼实验室测试对象:室内温度设定警报温度:28℃实验室的温度为30摄氏度左右,把传感器放在空调的冷风下吹,温度会迅速的降低,然后把传感器远离空调,温度会缓慢上升,当显示温度超过28摄氏度时,LED灯开始闪动,蜂鸣器也开始叫。

基于DS18B20的温控系统实习报告

基于DS18B20的温控系统实习报告

河南农业大学《智能仪器设计实习》设计说明书题目:基于DS18B20的温控系统学院:理学院专业:电子信息科学与技术班级:07电科4班学号:0708101099姓名:徐亚利指导教师:成绩:时间:2010 年11 月29 日至2010 年12 月13 日智能仪器设计实习设计任务书题目基于DS18B20的温控系统专业、班级07电科4班学号0708101099 姓名主要内容、基本要求、主要参考资料等:主要内容:功能要求:完成温控制系统的设计1)在设置模式下,用户可以通过按键设置允许最高温度T H 、允许最低温度T L 及转换精度。

2)在测温模式下,实时测出当前温度并显示。

(可采用LED显示或LCD显示,显示结果精度不得低于0.1°C)。

3)在测温模式下,实时比较当前温度与报警温度,当高于高温报警T H 时,系统红灯亮,声音警报响,同时启动冷却电路开始制冷(冷却电路的启动用继电器控制);当在高温报警T H与低温报警T L 之间时,系统绿灯亮。

上述内容为基本要求,可按照自己的理解增加功能使之更完善。

基本要求:●明确设计任务,复习与查阅有关资料。

设计所用硬件芯片按给定使用。

●按要求对设计进行简要说明,总体设计方案,各部分的详细设计。

●写出体会和总结。

要求全部使用A4纸打印稿,不少于5000字。

主要参考资料:●李朝青编.《单片机原理及接口技术》(简明修订版).北京航空航天大学出版社,1998●冯克.《MCS-51单片机实用子程序及其应用实例》.黑龙江科学技术出版社,1990●杨欣荣等.《智能仪器原理、设计与发展》.中南大学出版社,2003●孙传友等.《感测技术基础》.电子工业出版社,2001●王福瑞等.《单片微机测控系统设计大全》.北京航空航天大学出版社,1999●科技期刊:《单片机与嵌入式系统应用》、《实用测试技术》、《自动化仪表》、《传感器世界》、《测控技术》、《电子技术应用》等2001年以后各期。

实验报告DS18B20温度检测控制

实验报告DS18B20温度检测控制

实训五 DS18B20温度检测控制实训一、实训目的1.温度传感器电路的工作原理。

2.了解温度控制的基本原理。

3.掌握一线总线接口的使用。

二、实训说明1.DALLAS最新单线数字温度传感器DS18B20简介Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

DS18B20测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的管脚排列如下:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。

64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校训码(CRC=X8+X5+X4+1)。

光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

ds18b20实验报告

ds18b20实验报告

机电系统控制电路设计实验实验项目:现场温度测量与显示实验日期:2013年12月21日指导教师:张志安学号:1001500356姓名:周健专业:机电工程实验要求1.实验目的:(1)熟悉atmega128单片机输入输出,数码管的显示等。

(2)掌握DS18B20温度传感器的使用,包括ROM编码读取、温度测量、暂存器读取与写入、复制暂存器内容到EEPEOM的操作。

2.实验器材:(1)带有DS18B20的A Tmega128单片机开发板(2)JTAG仿真器3.实验内容:编写程序控制DS18B20温度传感器,实现64位ROM编码的读取、现场温度测量与显示(利用数码管显示)、暂存器读取与写入、复制暂存器内容到EEPEOM。

4.实验原理图:5.实验步骤:(1)查看开发板原理图,了解连接接口。

(2)GCC下编写源程序,检查无误后编译,生成仿真文件。

(3)打开A VRStdio,导入生成的*.cof仿真文件,软件仿真,调试程序。

(4)程序调试无误后,通过JTEG在线仿真,在开发板上检验程序运行结果,并记录。

(5)按照(1)—(4)步骤,依次实现64位ROM编码的读取、现场温度测量与显示(利用数码管显示)、暂存器读取与写入、复制暂存器内容到EEPEOM。

6.实验现象分析:(1)64位ROM编码的读取:28 13 E4 57 04 00 00 19关键程序:(2)现场温度测量与显示(利用数码管显示):20.5(3)暂存器读取与写入写入TH=0x40 TL=0x04(4)复制暂存器内容到EEPEOM。

DS18B20数字温度计设计实验报告

DS18B20数字温度计设计实验报告

单片机原理及应用课程设计报告书题目:DS18B20数字温度计姓名学号:*********** 赵晓磊20130123096 段石磊20133522028 付成指导老师:**设计时间: 2015年12月电子与信息工程学院目录1.引言 (3)1.1.设计意义 (3)1.2.系统功能要求 (3)2.方案设计 (4)3.硬件设计 (2)4.软件设计 (5)5.系统调试 (7)6.设计总结 (8)7.附录 (9)8.作品展示 (15)9.参考文献 (17)DS18B20数字温度计设计1.引言1.1. 设计意义在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。

而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。

其缺点如下:●硬件电路复杂;●软件调试复杂;●制作成本高。

本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为-55~125℃,最高分辨率可达0.0625℃。

DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。

1.2. 系统功能要求设计出的DS18B20数字温度计测温范围在-55~125℃,误差在±0.5℃以内,采用LED数码管直接读显示。

2. 方案设计按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。

数字温度计总体电路结构框图如4.1图所示:图4.13. 硬件设计温度计电路设计原理图如下图所示,控制器使用单片机AT89C2051,温度传感器使用DS18B20,使用四位共阳LED 数码管以动态扫描法实现温度显示。

主控制器 单片机AT89C2051具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需AT89C2051 主 控制器 DS18B20 显示电路 扫描驱动要,很适合便携手持式产品的设计使用。

DS18B20数字温度计设计实验报告文档推荐

DS18B20数字温度计设计实验报告文档推荐

DS18B20数字温度计设计实验报告文档推荐本实验旨在设计并实现一款数字温度计,利用DS18B20数字温度传感器测量环境温度并通过LCD1602液晶屏幕实时显示温度值。

实验设计1.材料准备:Arduino UNO控制板LCD1602液晶显示屏面包板、面包线10K电阻2.配置DS18B20数字温度传感器将DS18B20数字温度传感器与Arduino UNO控制板连接。

按下面连接方式进行连接: DS18B20传感器的红色线连接到Arduino UNO的+5V输出端口接完线后在Arduino IDE软件中,依次点击工具-示例-DS18B20-Temperature-Resolution,打开示例程序。

将程序复制到新建文本文件中进行修改,此处我将分辨率改为了12位。

然后将程序上传到Arduino UNO控制板中。

LCD1602液晶显示屏的VO引脚连接到一个10K电位器的中间引脚LCD1602液晶显示屏的D4-D7引脚依次连接到Arduino UNO的数字4-7个针脚4.最终的连接方式将连接完DS18B20数字温度传感器和LCD1602液晶显示屏后的Arduino UNO控制板,和面包板和面包线通过另一个10K电阻连接,其中用到的端口引脚如下:Arduino UNO的5V端口连接了一个10K电阻,这个电阻的另一端通过面包线连接到面包板的一个面包网络面包板的另一个面包网络再通过面包线连接到LCD1602液晶显示屏的K端口最后将设备连接完整后,将实验代码上传到Arduino UNO控制板中,然后就可以通过LCD1602液晶显示屏上实时显示环境温度值。

实验总结通过本次实验,我们成功地实现了数字温度计,并能够通过LCD1602液晶显示屏上实时显示温度值。

实验中温度传感器和LCD显示屏的连接更加直观和清晰,容易理解,实验成功率较高。

通过此次实验,我们学习到了数字温度传感器的连接方式、温度检测方法和温度的精度和分辨率等基本知识,同时也熟悉了Arduino UNO控制板和LCD1602液晶显示屏的使用方法,提高了对物联网应用的理解和掌握,为后续学习打下坚实的基础。

数字温度传感器DS18B20报告

数字温度传感器DS18B20报告

DS18B20报告一、DS18B20介绍DS18B20为单总线全双工通信的数字是温度传感器,其温度可以直接转换为9、10、11或12位,具体的位数由使用者通过程序写入指令改变,芯片默认的位数为12位。

芯片的形状如图。

芯片在电路的连接如图:二、读写时序1、复位时序(1)、单片机拉低总线480us~950us,然后释放总线(拉高电平)(2)、这时DS18B20会拉低信号,大约60~240us表示应答(3)、DS18B20拉低电平的60~240us之间,单片机读取总线的电平,如果是低电平,表示复位成功,否则不成功(此时一般要重负操作,直到成功为止,编程是要进行判断)(4)、DS18B20拉低电平60~240us之后,会释放总线。

2.写数据操作(1)、单片机拉低电平大约10~15us.(2)、加入要写入的时高电平,要将电平拉高,否则拉低电平。

此时要维持20~45us的时间(3)、释放总线写‘1’操作时序写‘0’操作时序3、读操作时序(1)、单片机拉低电平大约1us(2)、单片机释放总线,然后读取总线电平(3)、这时候DS18B20如果相应位是’1’会拉高电平,反之会拉低电平(4)、读取电平过后延迟大约40~45us读‘1’操作时序读‘0’操作时序三、温度读取函数步骤DS18B20开始转换:1.DS18B20复位2.写入跳过ROM的字节命令,0XCC.3.写入开始转换的功能命令,0X44.4.延迟大约750~900毫秒DS18B20读暂存数据1.DS18B20复位。

2.写入跳过ROM的字节命令,0XCC.3.写入读暂存功能命令,0XBE.4.读入第0个字节LS Byte,转换结果的低八位。

5.读入第1个字节MS Byte,转换结果的高八位。

6.DS18B20复位,表示读取暂存结束。

程序流程图:。

DS18B20温控试验报告-副本

DS18B20温控试验报告-副本

桂林航院电子工程系单片机课程设计与制作说明书设计题目:DS18B20数字温度计的设计专业: ___________ 通信技术_________班级: _______________学号: ___________________________姓名: _______________指导教师: _________________________2012 年6 月28 日桂林航天工业学院单片机课程设计与制作成绩评定表单片机课程设计与制作任务书专业:通信技术学号: 2 姓名:一、设计题目:DS18B20数字温度计的设计二、设计要求:1.要求采集温度精确到度。

2.显示测量温度三、设计内容:硬件设计、软件设计及样品制作四、设计成果形式:1、设计说明书一份(不少于4000 字);2、样品一套。

五.完成期限:2010 年月日指导教师:贾磊磊年月日教研室:年月日目录一摘要 (1)设计要求........................................................... ( 1)二理论设计.......................................................... ( 2) 硬件电路计 ....................................................... ( 2) 2.1.1芯片介绍...................................................... ( 2) 2.1.2 DS18B20简介 ............................................... ( 7)设计方案.......................................................... ( 9)2.2.1. ................................................................................................................ 显示方案(9)2.2.2. ........................................................................................................ 系统硬件电路设计 ( ............................................................ 11)2.2.3软件设计流程及描述............................................ ( 11)三................................................................... 系统的调试. (13).硬件的调试...................................................... ( 13)实验结果........................................................... ( 19) 四.设计注意事项. (19)点阵设计注意事项 ............................................... ( 20)单片机注意事项..................................................... ( 16)仿真器使用注意事项................................................. ( 16)五.设计心得体会 (17)总结与体会......................................................... ( 17)摘要在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桂林航院电子工程系单片机课程设计与制作说明书设计题目:DS18B20数字温度计的设计专业:通信技术班级:学号:姓名:指导教师:2012年 6 月28 日桂林航天工业学院单片机课程设计与制作成绩评定表单片机课程设计与制作任务书专业:通信技术学号:2 姓名:一、设计题目:DS18B20数字温度计的设计二、设计要求:1.要求采集温度精确到0.1度。

2.显示测量温度三、设计内容:硬件设计、软件设计及样品制作四、设计成果形式:1、设计说明书一份(不少于4000字);2、样品一套。

五.完成期限:2010 年月日指导教师:贾磊磊年月日教研室:年月日目录一摘要 (1)1.1设计要求 (1)二理论设计 (2)2.1 硬件电路计 (2)2.1.1芯片介绍 (2)2.1.2 DS18B20简介 (7)2.2设计方案 (9)2.2.1.显示方案 (9)2.2.2.系统硬件电路设计 (11)2.2.3软件设计流程及描述 (11)三.系统的调试 (13)3.1.硬件的调试 (13)3.2实验结果 (19)四、设计注意事项 (19)4.1 点阵设计注意事项 (20)4.2单片机注意事项 (16)4.3仿真器使用注意事项 (16)五.设计心得体会 (17)5.1总结与体会 (17)摘要在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

其中,温度控制也越来越重要。

在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。

采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。

因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。

单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。

因此,单片机广泛用于现代工业控制中。

本论文侧重介绍“单片机温度控制系统”的软件设计及相关内容。

论文的主要内容包括:采样、滤波、键盘、LED显示和报警系统,加热控制系统等。

作为控制系统中的一个典型实验设计,单片机温度控制系统综合运用了微机原理、自动控制原理、模拟电子技术、数字控制技术、键盘显示技术等诸多方面的知识,是对所学知识的一次综合测试。

温度控制系统在国内各行各业的应用虽然己经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。

成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少.随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家,企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。

目前,温度控制器产品从模拟、集成温度控制器发展到智能数码温度控制器。

智能温控器(数字温控器)是微电子技术、计算机技术和自动测试技术的结合,特点是能输出温度数据及相关的温度控制量,适配各种控制器,并且它是在硬件的基础上通过软件来实现控制功能的,其智能化程度也取决于软件的开发水平,现阶段正朝着高精度高质量的方向发展,相信以我国的实力,温控技术在不久的将来一定会为于世界前列!一、设计要求:1.基本要求1)测量温度范围-55℃~120℃2)精度0.1℃3)显示测量温度4)自动控制温度二、理论设计:温湿度与生产及生活密切相关。

像仓库、农田、生产过程,温度变化会影响品质;精密仪器、半导体器件,过温而导致性能降低,另外,人们的生活质量提高,对室内环境的高要求也需要对温度的适时监控,可见,温度传感器的应用范围是很广的。

而在日常生活中,温度,尤其是水温的测控尤为重要,婴儿奶瓶,热水壶等等一系列产品对温度测控的需求相当的迫切。

虽然市面上已经有许多成品测温仪器,但我们希望,通过自己的努力,能够作出一款功能齐全,制作简单的温度测控仪器。

希望能在在精进学识的同时培养我们的动手能力。

2.1.1芯片介绍AT89C52是一种低电压、高性能CMOS 8位微处理器,它自带4K字节闪存可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory),俗称单片机。

单片机的可擦除只读存储器可以反复擦除1000次。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪存存储器组合在单个芯片中,ATMEL 的AT89C52是一种高效微控制器。

AT89C系列单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

它的部分引脚功能介绍如下。

AT89C52单片机的外形及引脚排列如上图:2.1.2 DS18B20简介DALLAS最新单线数字温度传感器DS18B20简介新的“一线器件”体积更小、适用电压更宽、更经济 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。

一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

DS18B20、 DS1822 “一线总线”数字化温度传感器同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。

DS1822的精度较差为± 2°C 。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

而且新一代产品更便宜,体积更小。

DS18B20、 DS1822 的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。

可选更小的封装方式,更宽的电压适用范围。

分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。

DS18B20的性能是新一代产品中最好的!性能价格比也非常出色! DS1822与 DS18B20软件兼容,是DS18B20的简化版本。

省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。

继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。

DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。

DS18B20中的温度传感器对温度的测量DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

DS18B20的内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20的管脚排列如下:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

1)64位的ROM光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。

64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。

光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。

2)DS18B20温度传感器的存储器DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。

暂存存储器包含了8个连续字节,前两个字节是测得的温度信息,第一个字节的内容是温度的低八位,第二个字节是温度的高八位。

第三个和第四个字节是TH、TL的易失性拷贝,第五个字节是结构寄存器的易失性拷贝,这三个字节的内容在每一次上电复位时被刷新。

第六、七、八个字节用于内部计算。

第九个字节是冗余检验字节。

DS18B20的时序由于DS18B20采用的是单总线协议方式,即在一根数据线实现数据的双向传输,而对89C51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。

由于DS18B20是在一根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。

DS18B20有严格的通信协议来保证各位数据传输的正确性和完整性。

该协议定义了几种信号的时序:初始化时序、读时序、写时序。

所有时序都是将主机作为主设备,单总线器件作为从设备。

而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。

数据和命令的传输都是低位在先。

DS18B20的复位时序DS18B20的读时序对于DS18B20的读时序分为读0时序和读1时序两个过程。

对于DS18B20的读时隙是从主机把单总线拉低之后,在15秒之内就得释放单总线,以让DS18B20把数据传输到单总线上。

DS18B20在完成一个读时序过程,至少需要60us才能完成。

DS18B20的写时序对于DS18B20的写时序仍然分为写0时序和写1时序两个过程。

对于DS18B20写0时序和写1时序的要求不同,当要写0时序时,单总线要被拉低至少60us,保证DS18B20能够在15us到45us之间能够正确地采样IO总线上的“0”电平,当要写1时序时,单总线被拉低之后,在15us之内就得释放单总线。

DS1820使用中注意事项DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。

相关文档
最新文档