南京大学2009年高等代数考研试题(2)
南京大学会计学2009年考研真题及答案
2009年答案概念辨析题1、母公司理论、实体理论、所有者权益理论母公司理论是从母公司的角度考虑,强调母公司的法定控制和母公司股东的权益,认为企业集团内的股东之包括母公司的股东,将子公司的少数股东排除在外,主题理论认为:母子公司从经济实质上说是一个但一个体,合并会计报表应从整个企业集团出发,并未全体股东(包括控股股东和少数股东)的利益服务;所有权理论也称为业主权理论,改理论认为母子公司之间的关系是拥有与备拥有的关系,编制合并报表的目的是想母公司股东报告其所拥有的资源2、CPA与CFACPA是注册会计师certified public accountant 的缩写,是只依法取得注册会计师证书并接受委托从事审计和会计咨询、会计服务业务的职业人员:CFA chartered financial analyst 特许金融分析师的简称,是证券投资与管理界最具权威的一种职业资格,由美国注册金融分析师学院ICFA发起设立。
3、衍生工具、嵌入式衍生工具与权益工具金融衍生工具,又称金融衍生产品。
是与基础金融产品想对应的一个概念,指建立在基础产品或基础变量之上,其价格随基础金融产品的价格(或指数)变动的派生金融产品,嵌入衍生工具,是指嵌入到非衍生工具(即主合同)中,使混合工具的全部或部分现金流量所特定利率、金融工具价格、商品价格、汇率、价格指数、费率指数、信用等级、信用指数或其他类似变量的变动而变动股东衍生工具;权益工具:是指能证明拥有某个企业在扣除所有负债后的资产中的剩余权益的合同。
比如,企业发行的普通股,以及企业发行的,使持有者有权以固定价格购入固定数量本企业普通股的认沽权证等。
4、潜在普通股与稀释性潜在性普通股潜在普通股,是指赋予其持有者在报告期或以后期间享有却普通股全了的一种金融工具或其他合同,包括可转换公司债券、认股权证、股份期权等;稀释性潜在普通股,是指假设当期转为普通股会减少每股收益的潜在普通股。
5、机会成本与差量成本机会成本又称为择一成本、替代性成本。
南京大学2000-2009年考研真题(社会学)
南京大学2000年-2009年硕士生入学考试真题答案一、社会学理论部分:(一)名词解释(数字代表出题的次数)1、社会(2):2、“白领阶层”3、社会结构4、模式变项5、功能替代6、后工业社会7、社会资本8、社会吸引(3):是指与别人交往的倾向性,如果一个人期望与别人的交往带来报酬,那么不论这些报酬是内在的还是外在的,他们都会受到能提供这些报酬的人吸引。
9、有机团结(2)10、区隔分化:是当代德国社会学家卢曼提出的一种社会分化类型,卢曼认为,区隔分化将整体社会系统切割为结构相似的次系统。
简单的原始社会是区隔分化的典型。
11、结构限制12、失范(3):迪尔凯姆引进“失范”概念是描述社会规范不得力、不存在或互相矛盾时,在个人和社会中都会出现的混乱状态。
默顿从功能主义的角度,认为失范是社会系统不平衡的产物,失范状态的出现是由于在被社会认可的目标与人们通过被社会认可的手段来达到这些目标的可能性这间存在的不一致性,因此基本上可以认为,失范就是指个体或群体因为自身或群体的原因实质上或被定义为违反了社会规范的行为。
13、差序格局(2):这是我国著名社会学家费孝通提出的用以描述中国人群体行为人人际关系模式的概念。
在这种独特的格局中,“已”是中心,就像一枚投入水中的石子;而“已”与他人形成的社会关系就像石子泛出的水的波纹一样,依亲疏程度一圈一圈往外推,愈推愈远,也愈推愈薄。
差序格局形成了“自我中心主义”,而不是个体主义。
14、社会控制15、社会事实:是法国社会学家涂尔干提出的一个概念。
涂尔干认为,一切行为方式,不论它是固定的还是不固定的,凡是能从外部给予个人以约束的,或者换句话说,普遍存在于该社会各处并具有其固有存在的,不管其在个人身上的表现如何,都是社会事实。
(3分)其显著性特征是:客观性、强制性和普遍性。
(2分)16、突生性质17、敏感化概念18、参照群体(2):人们对自己本身的价值、目标、理想、行为进行评价时能够提供规范性指导的比较框架的群体,参照群体既可以是个体所在的群体,也可以是外群体。
2009年考研数学一真题及答案解析
2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.(1) 当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则 ( )(A) 11,6a b ==-. (B) 11,6a b ==. (C) 11,6a b =-=-. (D) 11,6a b =-=.(2) 如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤= ( )(A) 1I .(B) 2I .(C) 3I .(D) 4I .(3) 设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为 ( )(A) (B)(C)(D)(4) 设有两个数列{}{},n n a b ,若lim 0n n a →∞=,则 ( )(A) 当1nn b∞=∑收敛时,1n nn a b∞=∑收敛. (B) 当1nn b∞=∑发散时,1n nn a b∞=∑发散.(C) 当1n n b ∞=∑收敛时,221n nn a b ∞=∑收敛.(D) 当1n n b ∞=∑发散时,221n n n a b ∞=∑发散. (5) 设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基122331,,αααααα+++的过渡矩阵为 ( )(A) 101220033⎛⎫ ⎪ ⎪ ⎪⎝⎭.(B) 120023103⎛⎫⎪⎪ ⎪⎝⎭.(C)111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭.(D) 111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. (6) 设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3A B ==,则分块矩阵O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为 ( ) (A) **32O B A O ⎛⎫⎪⎝⎭. (B) **23O B A O ⎛⎫⎪⎝⎭.(C) **32O A BO ⎛⎫⎪⎝⎭.(D) **23OA BO ⎛⎫⎪⎝⎭.(7) 设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ⎪⎝⎭,其中()x Φ为标准正态分布的分布函数,则EX = ( ) (A) 0.(B) 0.3.(C) 0.7.(D) 1.(8) 设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====.记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为 ( ) (A) 0.(B) 1. (C) 2.(D) 3.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9) 设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y∂=∂∂ .(10) 若二阶常系数线性齐次微分方程0y ay by '''++=的通解为()12xy C C x e =+,则非齐次方程y ay by x '''++=满足条件()()02,00y y '==的解为y = .(11) 已知曲线(2:0L y x x =≤≤,则Lxds =⎰ .(12) 设(){}222,,1x y z xy z Ω=++≤,则2z dxdydz Ω=⎰⎰⎰ .(13) 若3维列向量,αβ满足2T αβ=,其中Tα为α的转置,则矩阵T βα的非零特征值为.(14) 设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值.(16)(本题满分9分)设n a 为曲线n y x =与()11,2,n y xn +== 所围成区域的面积,记11,n n S a ∞==∑2211n n S a ∞-==∑,求1S 与2S 的值.(17)(本题满分11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是由过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成. (Ⅰ)求1S 及2S 的方程; (Ⅱ)求1S 与2S 之间的立体体积. (18)(本题满分11分)(Ⅰ)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-.(Ⅱ)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(19)(本题满分10分)计算曲面积分()32222xdydz ydzdx zdxdyI xy z∑++=++⎰⎰,其中∑是曲面222224x y z ++=的外侧.(20)(本题满分11分) 设111111042A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,1112ξ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭(Ⅰ)求满足22131,A A ξξξξ==的所有向量23,ξξ; (Ⅱ)对(Ⅰ)中的任意向量23,ξξ,证明:123,,ξξξ线性无关. (21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-(Ⅰ)求二次型f 的矩阵的所有特征值; (Ⅱ)若二次型f 的规范形为2212y y +,求a 的值. (22)(本题满分11分)袋中有1个红球,2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求{}10P X Z ==;(Ⅱ)求二维随机变量(),X Y 的概率分布. (23)(本题满分11 分) 设总体X 的概率密度为2,0,()0,x xe x f x λλ-⎧>=⎨⎩其他, 其中参数(0)λλ>未知,12,,,n X X X 是来自总体X 的简单随机样本.(Ⅰ) 求参数λ的矩估计量;(Ⅱ )求参数λ的最大似然估计量.2009年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分. (1) 【答案】(A)【解析】()sin f x x ax =-与()()2ln 1g x x bx =-是0x →时的等价无穷小,则2200232000330()sin sin limlim lim ()ln(1)()sin 1cos sin lim lim lim 36sin lim 1,66x x x x x x x f x x ax x axg x x bx x bx x ax a ax a axbx bx bxa ax ab axb →→→→→→→--=-⋅---=---⎛⎫=-=-= ⎪⎝⎭等洛洛 即36a b =-,故排除B,C.另外,201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →,故1,a =排除D. 所以本题选A. (2) 【答案】(A)【解析】本题利用二重积分区域的对称性及被积函数的奇偶性.令(,)cos f x y y x =,24,D D 两区域关于x 轴对称,(,)cos (,)f x y y x f x y -=-=-,即被积函数是关于y 的奇函数,所以240I I ==;13,D D 两区域关于y 轴对称,(,)cos()cos (,)f x y y x y x f x y -=-==,即被积函数是关于x 的偶函数,所以{}{}1(,),013(,),012cos 0,2cos 0.x y y x x x y y x x I y xdxdy I y xdxdy ≥≤≤≤-≤≤=>=<⎰⎰⎰⎰所以正确答案为(A).(3) 【答案】(D)【解析】此题为定积分的应用知识考核,由()y f x =的图形可以看出,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出下面几个方面的特征:① []1,0x ∈-时,()0F x ≤为线性函数,单调递增; ② []0,1x ∈时,()0F x ≤,且单调递减;③ []1,2x ∈时,()F x 单调递增; ④ []2,3x ∈时,()F x 为常函数; ⑤ ()F x 为连续函数. 结合这些特点,可见正确选项为(D). (4) 【答案】C【解析】解法1 举反例:取(1)nn n a b ==-,则lim 0n n a →∞=,1n n b ∞=∑是收敛的,但111n n n n a b n ∞∞===∑∑发散,排除(A);取1n n a b n ==,则lim 0n n a →∞=,1n n b ∞=∑是发散的,但2111n n n n a b n ∞∞===∑∑收敛,排除(B);取1n n a b n ==,则lim 0n n a →∞=,1n n b ∞=∑是发散的,但224111n n n n a b n∞∞===∑∑收敛,排除(D),故答案为(C).解法2 因为lim 0,n n a →∞=则由定义可知1,N ∃使得1n N >时,有1n a <;又因为1nn b∞=∑收敛,可得lim 0,n n b →∞=则由定义可知2,N ∃使得2n N >时,有1n b <,从而,当12n N N >+时,有22n nn a b b <,则由正项级数的比较判别法可知221n nn a b∞=∑收敛.(5) 【答案】(A)【解析】根据过渡矩阵的定义,知由基12311,,23ααα到122331,,αααααα+++的过渡矩阵M 满足:()12233112312311,,,,2310111,,220,23033M αααααααααααα⎛⎫+++= ⎪⎝⎭⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭所以此题选(A). (6) 【答案】(B)【解析】分块矩阵O A B O ⎛⎫⎪⎝⎭的行列式221236O A A B B O⨯=-=⨯=(),即分块矩阵可逆,且1116112366.1132O A O A O A O B B O B O B O A O O B O B B O B A O A O A O A *---******⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭故答案为(B). (7) 【答案】(C)【解析】因为()()10.30.72x F x x -⎛⎫=Φ+Φ⎪⎝⎭,所以 ()()0.710.322x F x x -⎛⎫'''=Φ+Φ ⎪⎝⎭, 因此, ()()10.30.352x EX xF x dx x x dx +∞+∞-∞-∞⎡-⎤⎛⎫'''==Φ+Φ ⎪⎢⎥⎝⎭⎣⎦⎰⎰()10.30.352x x x dx x dx +∞+∞-∞-∞-⎛⎫''=Φ+Φ ⎪⎝⎭⎰⎰.由于()x Φ为标准正态分布的分布函数,所以()0x x dx +∞-∞'Φ=⎰,()()()()11221222222,x x x dx u u u du u u du u du +∞+∞-∞-∞+∞+∞-∞-∞--⎛⎫''Φ=+Φ ⎪⎝⎭''=Φ+Φ=⎰⎰⎰⎰()10.30.3500.3520.72x EX x x dx x dx +∞+∞-∞-∞-⎛⎫''=Φ+Φ=+⨯= ⎪⎝⎭⎰⎰.(8) 【答案】(B) 【解析】(){}{0}{0}{1}{1}11{0}{1}2211{00}{1},22Z F z P XY z P XY z Y P Y P XY z Y P Y P XY z Y P XY z Y P X z Y P X z Y =≤=≤==+≤===≤=+≤==⋅≤=+≤=由于,X Y 相互独立,所以11(){0}{}22Z F z P X z P X z =⋅≤+≤. (1) 当0z <时,1()()2Z F z z =Φ;(2) 当0z ≥时,11()()22Z F z z =+Φ,因此,0z =为间断点,故选(B).二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9) 【答案】12222xf f xyf '''''++ 【解析】12zf f y x∂''=+⋅∂, 21222212222zxf f yx f xf f xyf x y∂''''''''''=++⋅=++∂∂. (10) 【答案】(1)2x x e -+【解析】由常系数线性齐次微分方程0y ay by '''++=的通解为()12xy C C x e =+可知1x y e =,2x y xe =为其两个线性无关的解,代入齐次方程,有111222(1)010,[2(1)]020,x xy ay by a b e a b y ay by a a b x e a '''++=++=⇒++='''++=++++=⇒+=从而可见2,1a b =-=,非齐次微分方程为2y y y x '''-+=.设特解*y Ax B =+,代入非齐次微分方程,得2A Ax B x -++=,即11(2)202A A Ax A B x A B B ==⎧⎧+-+=⇒⇒⎨⎨-+==⎩⎩所以特解*2y x =+,通解()122xy C C x e x =+++.把()()02,00y y '==代入通解,得120,1C C ==-.所以所求解为2(1)2x x y xe x x e =-++=-+.(11)【答案】136【解析】由题意可知,2,0y x x =≤≤,则ds ==,所以()21148Lxds x ==+⎰11386==. (12) 【答案】415π 【解析】解法1:()212222002124013500sin cos cos cos cos 42.3515z dxdydz d d d d d d πππππθϕρϕρϕρθϕϕρρϕρππΩ==-⎛⎫=⋅-⋅= ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰解法2:由轮换对称性可知2z dxdydz Ω=⎰⎰⎰2x dxdydz Ω=⎰⎰⎰2y dxdydz Ω⎰⎰⎰ 所以,()212222400011sin 33z dxdydz x y z dxdydz d d r dr ππϕθϕΩΩ=++=⎰⎰⎰⎰⎰⎰⎰⎰⎰ 14002214sin sin 33515d r dr d ππππϕϕϕϕπ==⋅⋅=⎰⎰⎰. (13) 【答案】2【解析】2T αβ=,()2T T βαββαββ∴==⋅,又由于0β≠,T βα∴的非零特征值为2. (14) 【答案】1-【解析】由于2X kS +为2np 的无偏估计量,所以22()E X kS np +=,即2222()()()E X kS np E X E kS np +=⇒+=2(1)1(1)(1)1 1.np knp p np k p pk p p k ⇒+-=⇒+-=⇒-=-⇒=-三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)【解析】 2(,)2(2)x f x y x y '=+,2(,)2ln 1y f x y x y y '=++.令(,)0,(,)0,x y f x y f x y ⎧'=⎪⎨'=⎪⎩解得唯一驻点1(0,)e .由于212(0,)1(0,)21(0,)11(0,)2(2)2(2),1(0,)40,11(0,)(2),xxexye yy eA f y e eB f xy eC f x e e y ''==+=+''===''==+= 所以 2212(2)0,B AC e e-=-+<且0A >. 从而1(0,)f e是(,)f x y 的极小值,极小值为11(0,)f e e =-.(16)(本题满分9分)【解析】曲线n y x =与1n y x +=的交点为(0,0)和(1,1),所围区域的面积112111111()()001212n n n n n a x x dx x x n n n n +++=-=-=-++++⎰, 111lim 1111111lim()lim(),2312222Nn nN n n N N S a a N N N ∞→∞==→∞→∞===-++-=-=+++∑∑22111211111111(1)22123456n n n n n S a n n n ∞∞∞-=====-=-+-++=-+∑∑∑ ().考查幂级数1(1)n nn x n ∞=-∑,知其收敛域为(1,1]-,和函数为ln(1)x -+.因为2(1)()ln(1)n nn S x x x x n ∞=-==-+∑,令1x =,得2211(1)1ln 2n n S a S ∞-====-∑.(17)(本题满分11分)【解析】(I)椭球面1S 的方程为222143x y z ++=.设切点为00(,)x y ,则22143x y +=在00(,)x y 处的切线方程为00143x x y y +=.将4,0x y ==代入切线方程得01x =,从而032y ==±. 所以切线方程为142x y ±=,从而圆锥面2S 的方程为222(1)44x y z +-=,即222(4)440x y z ---=.(II)1S 与2S 之间的体积等于一个底面半径为32、高为3的锥体体积94π与部分椭球体体积V 之差,其中22135(4)44V x dx ππ=-=⎰. 故所求体积为9544πππ-=.(18)(本题满分11分) 【解析】(Ⅰ)取()()()()()f b f a F x f x x a b a-=---,由题意知()F x 在[],a b 上连续,在(),a b 内可导,且 ()()()()()(),()()()()()().f b f a F a f a a a f a b af b f a F b f b b a f a b a -=--=--=--=-根据罗尔定理,存在(),a b ξ∈,使得()()()()0f b f a F f b aξξ-''=-=-,即()()()()f b f a f b a ξ'-=-.(Ⅱ)对于任意的(0,)t δ∈,函数()f x 在[]0,t 上连续,在()0,t 内可导,由右导数定义及拉格朗日中值定理()()000()0()0lim lim lim ()0t t t f t f f tf f t tξξ++++→→→-'''===-,其中()0,t ξ∈. 由于()0lim t f t A +→'=,且当0t +→时,0ξ+→,所以0lim ()t f A ξ+→'=,故(0)f +'存在,且(0)f A +'=.(19)(本题满分10分)【解析】取2221:1x y z ∑++=的外侧,Ω为∑与1∑之间的部分.()()()11322223322222222.xdydz ydzdx zdxdyI xy zxdydz ydzdx zdxdyxdydz ydzdx zdxdyxy zxy z∑∑-∑∑++=++++++=+++++⎰⎰⎰⎰⎰⎰根据高斯公式()13222200xdydz ydzdx zdxdydxdydz x y z∑-∑Ω++==++⎰⎰⎰⎰⎰ .()1122232222134.x y z xdydz ydzdx zdxdyxdydz ydzdx zdxdyxy zdxdydz π∑∑++≤++=++++==⎰⎰⎰⎰⎰⎰⎰所以4I π=.(20)(本题满分11分)【解析】(Ⅰ)对矩阵1()A ξ 施以初等行变换()11110221111111111012204220000A ξ⎛⎫-- ⎪---⎛⎫ ⎪⎪ ⎪=-→ ⎪ ⎪ ⎪--- ⎪⎝⎭ ⎪ ⎪⎝⎭可求得 2122122k k k ξ⎛⎫-+ ⎪ ⎪ ⎪=- ⎪⎪⎪ ⎪⎝⎭,其中k 为任意常数.又2220220440A ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,对矩阵21()A ξ 施以初等行变换()211110220122201000044020000A ξ⎛⎫-⎪-⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭,可求得 312a a b ξ⎛⎫-- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,其中,a b 为任意常数.(Ⅱ)解法1 由(Ⅰ)知12311122211,,102222ka ka kbξξξ--+--=-=-≠-, 所以123,,ξξξ线性无关.解法2 由题设可得10A ξ=.设存在数123,,k k k ,使得1122330k k k ξξξ++=, ①等式两端左乘A ,得22330k A k A ξξ+=,即21330k k A ξξ+=, ②等式两端再左乘A ,得2330k A ξ=,即310k ξ=.由于10ξ≠,于是30k =,代入②式,得210k ξ=,故20k =.将230k k ==代入①式,可得10k =,从而1,ξ23,ξξ线性无关.(21)(本题满分11分) 【解析】(Ⅰ)二次型f 的矩阵101111a A a a ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭.由于01||01()((1))((2))111aE A aa a a a λλλλλλλ---=-=--+----+, 所以A 的特征值为123,1,2a a a λλλ==+=-.(Ⅱ)解法1 由于f 的规范形为2212y y +,所以A 合同于100010000⎛⎫ ⎪ ⎪ ⎪⎝⎭,其秩为2,故 1230A λλλ==,于是0a =或1a =-或2a =.当0a =时,1230,1,2λλλ===-,此时f 的规范形为2212y y -,不合题意. 当1a =-时,1231,0,3λλλ=-==-,此时f 的规范形为2212y y --,不合题意. 当2a =时,1232,3,0λλλ===,此时f 的规范形为2212y y +. 综上可知,2a =.解法2 由于f 的规范形为2212y y +,所以A 的特征值有2个为正数,1个为零. 又21a a a -<<+,所以2a =.(22)(本题满分11分)【解析】(Ⅰ) 12211{1,0}463(10)1{0}9()2C P X Z P X Z P Z ⋅========. (Ⅱ)由题意知X 与Y 的所有可能取值均为0,1,2.()()()()()()()()()1111332311116666111223111166661122116611221166110,0,1,0,461112,0,0,1,36311,1,2,10,910,2,91,20,2,20,C C C C P X Y P X Y C C C C C C C P X Y P X Y C C C C C C P X Y P X Y C C C C P X Y C C P X Y P X Y ⋅⋅========⋅⋅⋅⋅========⋅⋅⋅=======⋅⋅====⋅======故(,)X Y 的概率分布为(23)(本题满分11 分) 【解析】(Ⅰ)2202().x EX xf x dx x e dx λλλ+∞+∞--∞===⎰⎰令X EX =,即2X λ=,得λ的矩估计量为 12Xλ=. (Ⅱ)设12,,,(0,1,2,,)n i x x x x i n >= 为样本观测值,则似然函数为()12121,,,;,nii nx nn i i L x x x ex λλλ=-=∑=⋅∏11ln 2ln ln n ni i i i L n x x λλ===-+∑∑,由1ln 20n i i d L n x d λλ==-=∑,得λ的最大似然估计量为 22X λ=.。
研究生高等代数复习题完整版
32.设 的两个子空间为: ,
.求 与 的基与维数.
33.设 是3维线性空间, 为它的一个基.线性变换 ,
求(1) 在基 下的矩阵; (2)求核 和值域 .
34.设 是实数域上所有 阶对称阵所构成的线性空间,对任意 ,定义 ,其中 表示 的迹.(1)证明: 构成一欧氏空间;(2)求使 的子空间 的维数;(3)求 的正交补 的维数.
17.设 是5维的欧几里得空间 的一组标准正交基, ,其中 ,求 的一组标准正交基.
18.设 是 矩阵,其中
(1)求 的值;(2)设 ,求W的维数及W的一组基.
19.设?是线性空间 上的线性变换,满足 ,求?在基 下的矩阵.
20.设?是 维线性空间 上的线性变换, 是 的一组基.
如果?是单射,则 也是一组基.
研究生高等代数复习题
1.设?是数域 上线性空间 的线性变换且 ,证明:
(1)?的特征值为1或0;(2) ;(3) .
2.已知?是n维欧氏空间的正交变换,证明:?的不变子空间 的正交补 也是?的不变子空间.
3.已知复系数矩阵 , (1) 求矩阵 的行列式因子、不变因子和初等因子;(2)若当标准形.(15分)
35.试找出全体实2级矩阵 所构成的线性空间到 的一个线性同构.
36.求由向量 生成的子空间 与由向量 生成的子空间 的交的基和维数.
37.设 ,求(1) 的不变因子、行列式因子、初等因子.(2) 的 标准形.
38.设 是数域 上 矩阵关于矩阵加法和数乘作成的线性空间,
定义变换 , .(1)证明: 是 上的对合线性变换,即 是满足 (恒等变换)的线性变换;(2)求 的特征值和特征向量.
58.设 是4维空间 的一组基,已知线性变换 在这组基下的矩阵为
2009-数二真题、标准答案及解析
(6)设函数 y = f ( x) 在区间−1,3 上的图形为:
则函数 F ( x) = x f (t ) dt 的图形为 0
( A)
(B)
(C)
(D)
【答案】 D
【解析】此题为定积分的应用知识考核,由 y = f (x) 的图形可见,其图像与 x 轴及 y 轴、
x = x0 所围的图形的代数面积为所求函数 F (x) ,从而可得出几个方面的特征:
a
a3 = −6b ,故排除 B,C .
另外,
lim
x→0
1− a cos ax −3bx2
存在,蕴含了1−
a
cos
ax
→
0
(
x
→
0)
,故
a
=
1.
排除
D
.
所以本题选 A .
(3) 设函数 z = f ( x, y) 的全微分为 dz = xdx + ydy ,则点 (0, 0)
( A) 不是 f ( x, y) 的连续点 ( B) 不是 f ( x, y) 的极值点
【解析】1 =
+ ek x dx = 2 + ekxdx = 2 lim 1 ekx b
−
0
k b→+
0
【答案】 −2
因为极限存在所以 k 0 1=0− 2
k k = −2
(11) lim 1e−x sin nxdx = n→ 0
【答案】0
【解析】令 In = e−x sin nxdx = −e−x sin nx + n e−x cos nxdx
y = t2 ln(2 − t2 )
【答案】 y = 2x
【解析】
中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)
|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵
a21
a1a2 + 1 · · · a1an + 1
A
=
a2a1 + 1
a22
···
a2an + 1
,
···
··· ··· ···
ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.
2009年南京大学(生物化学二)考研真题
2009年南京大学(生物化学二)考研真题(总分:110.00,做题时间:90分钟)一、判断题请判断下列各题正误。
(总题数:20,分数:40.00)1.酶底物的类似物和过渡态的类似物通常都是酶的竞争性抑制剂。
(分数:2.00)A.正确√B.错误解析:2.如果有一种试剂只能与脱氧的血红蛋白结合,那么在血红蛋白溶液中加入该试剂以后,将会提高血红蛋白释放氧气的能力。
(分数:2.00)A.正确√B.错误解析:3.同一种激素有时可以产生完全相反的生理作用。
(分数:2.00)A.正确B.错误√解析:解析:同一种激素不可以产生完全相反的生理作用,有拮抗作用的激素可以产生完全相反昀生理作用。
4.限定一种别构酶具有正协同效应,那么此酶正别构效应物的存在将增强它的正协同效应。
(分数:2.00)A.正确B.错误√解析:解析:一分子配体与酶结合后促进另一分子配体与酶结合为正协同效应。
所以若限定一种别构酶具有正协同效应,那么此酶正别构效应物的存在将减弱它的正协同效应。
相反,此酶的正别构抑制物的存在将增强它的正协同效应。
5.甘二醇曾被作为牙膏的添加剂,后来发现它对人体有毒,因为它进入体内能够抑制乙醇脱氢酶的活性。
(分数:2.00)A.正确B.错误√解析:解析:甘二醇曾被作为牙膏的添加剂,后来发现它对人体有毒,因为它的毒性来自人体摄入后,会代谢为肾毒性极强的草酸,导致急性肾衰竭症状。
6.所有的丝氨酸蛋白酶都具有相同的催化三元体,所以它们都属于同源蛋白。
(分数:2.00)A.正确B.错误√解析:解析:同源蛋白是指在不同生物体内行使相同或相似功能的蛋白质。
虽然所有的丝氨酸蛋白酶都具有相同的催化三元体,但是它们各自可以在同一生物体内具有不同的作用。
7.辅酶Ⅰ、辅酶Ⅱ和FAD和CoA一样,其分子结构中都含有腺苷酸。
(分数:2.00)A.正确√B.错误解析:8.构成呼吸链的四种复合体均含有铁硫蛋白。
(分数:2.00)A.正确B.错误√解析:解析:构成呼吸链的四种复合物中只有复合物Ⅰ、Ⅱ、Ⅲ含有铁硫蛋白,复合物Ⅳ不含有铁硫蛋白。
2009考研数学二真题及答案
2009考研数学二真题及答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)函数()3sin x x f x nx-=的可去间断点的个数,则( )()A 1.()B 2. ()C 3.()D 无穷多个.【答案】C 【解析】()3sin x x f x xπ-=则当x 取任何整数时,()f x 均无意义故()f x 的间断点有无穷多个,但可去间断点为极限存在的点,故应是30x x -=的解1,2,30,1x =±320032113211131lim lim sin cos 132lim lim sin cos 132lim lim sin cos x x x x x x x x x x x x x x x x x x x x x ππππππππππππ→→→→→-→---==--==--== 故可去间断点为3个,即0,1±(2)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-是等价无穷小,则( )()A 11,6a b ==-. ()B 11,6a b ==.()C 11,6a b =-=-.()D 11,6a b =-=.【答案】 A【解析】2()sin ,()(1)f x x ax g x x ln bx =-=-为等价无穷小,则222200000()sin sin 1cos sin lim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a ax g x x bx x bx bx bx→→→→→---==-⋅---洛洛230sin lim 166x a ax a b b axa→==-=-⋅ 36a b ∴=- 故排除,B C 。
另外201cos lim3x a axbx→--存在,蕴含了1cos 0a ax -→()0x →故 1.a =排除D 。
2000-2009年南京大学研究生入学考试考研真题答案
2000-2009年南京大学研究生入学考试考研真题答案一、社会学理论部分:(一)名词解释(数字代表出题的次数)1、社会(2):2、“白领阶层”3、社会结构4、模式变项5、功能替代6、后工业社会7、社会资本8、社会吸引(3):是指与别人交往的倾向性,如果一个人期望与别人的交往带来报酬,那么不论这些报酬是内在的还是外在的,他们都会受到能提供这些报酬的人吸引。
9、有机团结(2)10、区隔分化:是当代德国社会学家卢曼提出的一种社会分化类型,卢曼认为,区隔分化将整体社会系统切割为结构相似的次系统。
简单的原始社会是区隔分化的典型。
11、结构限制12、失范(3):迪尔凯姆引进“失范”概念是描述社会规范不得力、不存在或互相矛盾时,在个人和社会中都会出现的混乱状态。
默顿从功能主义的角度,认为失范是社会系统不平衡的产物,失范状态的出现是由于在被社会认可的目标与人们通过被社会认可的手段来达到这些目标的可能性这间存在的不一致性,因此基本上可以认为,失范就是指个体或群体因为自身或群体的原因实质上或被定义为违反了社会规范的行为。
13、差序格局(2):这是我国著名社会学家费孝通提出的用以描述中国人群体行为人人际关系模式的概念。
在这种独特的格局中,“已”是中心,就像一枚投入水中的石子;而“已”与他人形成的社会关系就像石子泛出的水的波纹一样,依亲疏程度一圈一圈往外推,愈推愈远,也愈推愈薄。
差序格局形成了“自我中心主义”,而不是个体主义。
14、社会控制15、社会事实:是法国社会学家涂尔干提出的一个概念。
涂尔干认为,一切行为方式,不论它是固定的还是不固定的,凡是能从外部给予个人以约束的,或者换句话说,普遍存在于该社会各处并具有其固有存在的,不管其在个人身上的表现如何,都是社会事实。
(3分)其显著性特征是:客观性、强制性和普遍性。
(2分)16、突生性质17、敏感化概念18、参照群体(2):人们对自己本身的价值、目标、理想、行为进行评价时能够提供规范性指导的比较框架的群体,参照群体既可以是个体所在的群体,也可以是外群体。
南师大09年学位考试高等代数
南京师范大学2009年联办学士学位课程考试一、 判断题(每题2分,共12分)1.若在n 阶行列式中等于零的元素个数超过2n n -个,则这个行列式的值等于零. ( √ ) 2.如果2A A E +=,其中E 为单位矩阵,则A 为可逆阵. ( √ ) 3.若'12(,,,)n x x x 是n 元线性方程组AX b =的解,则它的任意线性组合也是AX b =的解. ( × ) 4.若A 为正定矩阵,则A 的主对角线上的元素皆大于零. ( √ ) 5.设σ 是线性空间V 的一个线性变换,12,,,s V ααα∈ 线性无关,则向量组12(),(),()s σασασα 也线性无关. ( × )6. 在实线性空间2R 中,对于向量12(,),x x α= 12(,),y y β= 定义1122(,)1x y x y αβ=++,那么2R 构成欧式空间. ( × )二、 填空题(每题3分,共18分)1.设3232235(2)(2)(2)x x x a x b x c x d -+-=-+-+-+,则a ,d 的值为 2,11,23,13a b c d ==== .(综合除法)2.在n 维欧氏空间V 中,向量ξ在标准正交基12,n ηηη 下的坐标是12(,,,)n x x x ,那么(,)i ξη=i x .(坐标定义及内积运算)3.设123,,εεε是线性空间V 的一组基,则有基123,,εεε到基321,,εεε的过度矩阵T = 001010100⎛⎫⎪⎪ ⎪⎝⎭.(过度矩阵定义)4.设2()32f x x x =++,102021010A ⎛⎫ ⎪= ⎪ ⎪⎝⎭()f A = . 5.二次型11212210(,)(,)23x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭的矩阵为 1113⎛⎫ ⎪⎝⎭ . 6.设n 阶矩阵A 的全部特征值为12,,n λλλ ,()f x 为任一多项式,则()f A 的行列式的值为 12()()()n f f f λλλ . 三、判断下列多项式1px px ++在有理数域上是否可约,其中p 为奇素数,并说明理由.令1xy =-(书上习题)四、设有线性方程组1241234123264133x x x x x x x x x x +-=-⎧⎪---=⎨⎪--=⎩.试用其一个特解与其导出方程组的基础解系表示一般解.*已知线性方程组⎪⎩⎪⎨⎧+=++++=+++=+++1)1(1)1(1)1(2321321321λλλλλx x x x x x x x x , 当λ为何值时, 线性方程组 (1)无解? (2)有唯一解? (3)有无穷多解?并就有无穷多解时求方程组的全部解.解:2)3(111111111λλλλλ+=+++=A 则当0,03A λλ≠≠≠-即且时,由克莱姆法则,方程组有唯一解; 当3-=λ时,1212121212120333033301110331200090001A ------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪→--→--→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭()23()R A R A =≠=,此时方程组无解;当0=λ时,⎪⎪⎪⎭⎫ ⎝⎛→000000001111A ,()()1R A R A ==,此时方程组有无穷多解;且一般解为:3211x x x --=(其中32,x x 为自由未知量),一特解:)0,0,1(, 其导出组的一般解为:321x x x --= (32,x x 为自由未知量),基础解系:)1,0,1(),0,1,1(--故全部解为:)1,0,1()0,1,1()0,0,1(21-+-+k k ,(21,k k 为任意常数)五、设A 为n n ⨯矩阵:(1)证明:{|,}n nW B BA AB B R ⨯==∈是n nR⨯的一个子空间;用子空间判定定理:加法封闭、数乘封闭(2)设100020003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求W 的维数和一组基.(学生自已做) 方法见下面例子*设矩阵⎪⎪⎪⎭⎫ ⎝⎛=213010001A ,令},|{)(33BA AB R B A C =∈=⨯ 即与A 乘法可交换的矩阵构成的集合,它是33⨯R 的一个子空间,求)(A C 的维数和一组基.解: 设 000000311A E E C ⎛⎫⎪=+=+ ⎪ ⎪⎝⎭()B C A ∀∈,有CB BC =,令111213212223313233b b b B b b b bb b ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 即 ⎪⎪⎪⎭⎫⎝⎛++++++332313322212312111333000000b b b b b b b b b = ⎪⎪⎪⎭⎫ ⎝⎛333333232323131313333b b b b b b b b b 所以,02313==b b , ⎩⎨⎧=++=++3332221233312111333b b b b b b b b ,即⎩⎨⎧--=--=2212333221113331333b b b b b b b b 这是含五个自由未知量的齐次线性方程组,所以)(A C 的维数是5,一组基为⎪⎪⎪⎭⎫ ⎝⎛-003000001, ⎪⎪⎪⎭⎫ ⎝⎛-030000010, ⎪⎪⎪⎭⎫⎝⎛-001001000, ⎪⎪⎪⎭⎫⎝⎛-010010000, ⎪⎪⎪⎭⎫ ⎝⎛113000000六、设121011101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122221111B ⎛⎫⎪=- ⎪ ⎪---⎝⎭,求X , 使AX B =. 这类矩阵方程解:1X A B -=(A 可逆)(看下面例子)* 设E X AX A =++22, 其中⎪⎪⎪⎭⎫ ⎝⎛-=001030501A ,求矩阵X .解: 由条件有 12(2)()X A E E A -=+-23055052010,080102104A E E A --⎛⎫⎛⎫⎪⎪+=--=- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭12055010(2)010,080103207A E X ---⎛⎫⎛⎫⎪⎪+=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭七、设V 是数域P 上的线性空间,A 是V 上的线性变换,i i i A αλα=,0i α≠, (1,2,)i r = ,其中12,,r λλλ 互不相同,证明12,,,rααα 线性无关.(书上定理)八、欧氏空间V 中的线性变换A 称为反对称的,如果对任意的,V αβ∈,有(,)(,)A A αβαβ=-.证明:如果1V 是反对称线性变换A 的不变子空间,则1V ⊥也是A 的不变子空间.证明:注意到 11{,(,)0,}V V V ααββ⊥=∈=∀∈, 由A 的不变子空间定义,要证11,V A V αα⊥⊥∀∈∈有,即证1(,)0,A V αββ=∀∈.由于1V 是反对称线性变换A 的不变子空间,所以1,V ββ∀∈∈1有A V ,且(,)(,)0A A αβαβ=-=.因而,1V ⊥也是A 的不变子空间.*设A 为线性空间V 的一个线性变换,且2A A =.证明: (1)A 的特征值只能是1或0;(2)若用1V 与0V 分别表示对应于特征值1与0的特征子空间, 则 01V V V ⊕=. (10分)证明:(1) 设λ是A 的特征值,α是相应的特征向量, 即 A αλα= ()0α≠ ()()()22A A A A A ααλαλαλα====又 2λαλα= ,()20λλα-=, ∴0λ=或1 (2) 1V ={}A ααα=,0V {}0A αα==V α∀∈,()A A αααα=+-,则A α∈1V ,α-A α∈0V ∴V =1V +0V 对12V V α∀∈ ,即A αα=,A α0=. ∴0α=∴{}120V V = , ∴01V V V ⊕=。
2009考研数学真题及答案详解
2009年全国硕士研究生入学统一考试数学一试题答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)当0x ®时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则()A 11,6a b ==-.()B 11,6a b ==.()C 11,6a b =-=-.()D 11,6a b =-=.【答案】 A【解析】2()sin ,()ln(1)f x x ax g x x bx =-=-为等价无穷小,则222200000()sin sin 1cos sinlim lim lim lim lim ()ln(1)()36x x x x x f x x ax x ax a ax a ax g x x bx x bx bx bx ®®®®®---==-×---洛洛230sin lim 166x aax a b b ax a®==-=-× 36a b \=- 故排除,B C 。
另外201cos lim 3x a axbx ®--存在,蕴含了1cos 0a ax -®()0x ®故 1.a =排D 。
所以本题选A 。
(2)如图,正方形(){},1,1x y x y ££被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =òò,则{}14max k k I ££=()A 1I .()B 2I . ()C 3I .()D 4I .【答案】A【解析】本题利用二重积分区域的对称性及被积函数的奇偶性。
24,D D 两区域关于x 轴对称,而(,)cos (,)f x y y x f x y -=-=-,即被积函数是关于y 的奇函数,所以240I I ==;13,D D 两区域关于y 轴对称,而(,)cos()cos (,)f x y y x y x f x y -=-==,即被积函数是-1 -1 1 1 xy 1D 2D3D4D关于x 的偶函数,所以{}1(,),012cos 0x y y x x I y xdxdy ³££=>òò;{}3(,),012cos 0x y y x x I y xdxdy £-££=<òò.所以正确答案为A. (3)设函数()y f x =在区间[]1,3-上的图形为:则函数()()0x F x f t dt =ò的图形为()A ()B()C ()D【答案】D【解析】此题为定积分的应用知识考核,由()y f x =的图形可见,其图像与x 轴及y 轴、0x x =所围的图形的代数面积为所求函数()F x ,从而可得出几个方面的特征:①[]0,1x Î时,()0F x £,且单调递减。
高等代数考研真题 第一章 多项式
第一章 多项式1、(清华2000—20分)试求7次多项式()f x ,使()1f x +能被4(1)X -整除,而()1f x -能被4(1)X +整除。
2、(南航2001—20分)(1)设x 2-2px+2∣x 4+3x 2+px+q ,求p,q 之值。
(2)设f(x),g(x),h(x)∈R[x],而满足以下等式(x 2+1)h(x)+(x -1) f(x)+ (x -2) g(x)=0(x 2+1)h(x)+(x+1) f(x)+ (x+2) g(x)=0证明:x 2+1∣f(x),x 2+1∣g(x)3、(北邮2002—12分)证明:x d -1∣x n-1的充分必要条件是d ∣n (这里里记号d ∣n 表示正整数d 整除正整数n )。
4、、(北邮2003—15分)设在数域P 上的多项式g 1(x),g 2(x),g 3(x),f(x),已知g 1(x)∣f(x),g 2(x)∣f(x), g 3(x)∣f(x),试问下列命题是否成立,并说明理由:(1)如果g 1(x),g 2(x), g 3(x)两两互素,则一定有g 1(x),g 2(x),g 3(x)∣f(x) (2)如果g 1(x),g 2(x), g 3(x)互素,则一定有g 1(x)g 2(x)g 3(x)∣f(x) 5、(北师大2003—25分)一个大于1的整数若和其因子只有1和本身,则称之为素数。
证明P 是素数当且仅当任取正整数a ,b 若p ∣ab 则p ∣a 或p ∣b 。
6、(大连理工2003—12分)证明:次数>0且首项系数为1的多项式f(x)是某一不可约多项式的方幂主充分必要条件是,对任意的多项式g(x),h(x) ,由f(x)∣g(x) h(x)可以推出f(x)∣g(x),或者对某一正整数m ,f(x)∣h m(x)。
7、(厦门2004—16分)设f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约。
09级高等代数(下)A
南昌大学 2010~2011学年第一学期期末考试试卷试卷编号: 6013 ( A )卷课程编号: Z5501B001 课程名称: 高等代数 考试形式: 闭卷 适用班级:09数学、信计 姓名: 学号: 班级: 学院: 理学院 专业: 考试日期:题号 一 二 三 四五六七八九十总分 累分人 签名题分 20 20 60 100 得分考生注意事项:1、本试卷共 6页,请查看试卷中是否有缺页或破损。
如有立即举手报告以便更换。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、 填空题(每小题4分,共20分)得分 评阅人1. 若二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=是正定的,则t 的取值范围是 。
2. 设V 和W 分别是n 元线性方程组AX =0和n 元线性方程组BX =0的解空间,若矩阵A 、B 的秩分别是r和s ,且方程组⎩⎨⎧==00BX AX 仅有零解,则线性空间V +W 的维数是 。
3. 设是n 维线性空间V 上一个退化的线性变换,在某组基下的矩阵是一个若当块,则的秩为 ,零度为 。
4.若二级矩阵A 的迹为2,A 的行列式为4-,则A 的特征多项式为 。
5.下列条件中是“n 级矩阵A 相似于对角矩阵”的充分必要条件有 。
①A 有n 个互异的特征值; ②A 是实对称矩阵; ③A 有n 个线性无关的特征向量; ④A 的初等因子全为一次的。
3.设V 是复数域上的n 维线性空间,,是V 的线性变换,且有=。
证明:(1)如果0λ是的一特征值,则0λV 是的不变子空间;(2) ,至少有一个公共的特征向量。
4.证明:如果是正交变换,则的不变子空间的正交补也是的不变子空间。
5.设是线性空间V的线性变换,证明:的行列式为零的充分必要条件是以零作为一个特征值。
6.设A为实对称矩阵,证明:(1)A半正定的充分必要条件是A的特征值全大于或等2。
南京大学社会学考研真题2009
2009年南京大学社会学研究生考试社会学理论试题一名词解释机械团结理想类型虚假意识社会学想象力镜中我后传统社会普遍主义与特殊主义反思性二简答题1 简述实证的主要涵义2 齐美尔关于个人与社会关系的论述3简述默顿的中层理论、4简述符号互动论的理论渊源5简述福柯对权力的论述三论述题1 用“范式”的概念分析西方社会学理论发展的历史 2为什么说现代社会是高风险社会3用社会学理论分析农民社会流动的制度性障碍2007年南京大学社会学理论试题一、名词解释(每题5分,共40分)1、剩余物2、陌生人3、理性化4、索引性表达5、生活世界6、参照群体7、差序格局8、范式二、简答(10分每题,共50分)1、比较腾尼斯和涂尔干有关社会形态划分的异同2、韦伯有关社会行动类型的论述3、帕森斯有关AGIL功能体系的论述4、过程互动论(芝加哥学派)与结构互动论(衣阿华学派)之间的异同5、布希亚有关消费社会的理论三、论述题(20分每题,共60分)1、论述经典社会学、现代社会学和后现代社会学三者之间的异同2、试论述全球化背景下,社会学本土化的需求3、论述社会学理论在和谐社会建设中的贡献2007年南京大学社会学方法试题一、名词解释(5分每题,共30分)1、操作化2、置信度3、相关关系4、指标5、自填问卷法6、抽样误差二、简答(15分每题,共45分)1、社会调查的基本特征2、问卷设计中,问题排列顺序原则、学术性社会调查报告中,方法部分的主要内容三、设计题(20分)某研究者要在全市200所中学中抽取500名学生进行调查。
这200所中学中,重点中学20所,一般中学140所,较差中学40所。
各学校规模大体相当,每班学生人数约50人左右。
请为该研究者设计抽样方案,并说明理由。
四、论述题(25分)请论述分层抽样及其特点,说明使用该抽样方法要考虑的两个问题。
五、计算题(第一题10分,第二题20分,共30分)1、据调查,南京居民住房的平均数为70平方米,标准差为18平方米;上海居民住房的平均数为60平方米,标准差为16平方米。
高等代数考研真题 第二章 行列式
第二章1.(北师大2003-25)1.计算行列式87162534的逆序数,并依次将上述排列变成12345678的所有对换2.设n 个数码的排列121n n i ,i ,...i ,i -的逆序数是k ,那么排列321n n n i ,i ,...i ,i i -的逆序数是多少?请说明理由。
2.计算下列行列式(每小题6分,共12分)D=2132301211432211---的值。
3.(成电科大,2003)计算下列行列式(每小题6分,共12分)1.32222322223222223n ......D ..................=D .= 2.2323231222111114441555D =4.(中科武汉2004-15)计算行列式1111111222221223331234111111n nn...b a a a ...a a b b a a ...a a D b b b a ...a a .....................b b b b ...b a =5(成电科大2004-10分)求证:1212341112321112321114311211n n n ...n n ...n n x ...n n D ()x x x ...n n .....................x x x (x)xx...x+------==---6.(北工大,2002-10分)计算行列式0121110001000100010n n na ...a x ...a x ...D ..................a ...x a ...x+-----的值。
7(东北大学,2001-10分)计算下列行列式11112n n nnna c a c D (n )db d b =8.(东北大学,2002-10分)11111n aa a D aa+--+=--+9.(北航,2001 10分)已知a>>0,证明n 阶行列式1000110001000000101a ...a ...a ...D (n ).....................a ...a --=≥--10.(复旦,2002)计算下列行列式的值:(7分)95000009500040950004000095400094.......................................11.(中大,2004 10分)计算下列n 阶行列式:000210001200012012......D n ........................=12.(东北大2003 25分)证明当αβ≠时,11000001000101n n ..............................αβαβαβαβαβαβαβαβ++++-=+-+13.(北工大 2001 10分)计算n 阶行列式的值111n a b ab a b ab D a b ab a b++=++其中a,b 为实数。
南京大学数学系《801高等代数》历年考研真题(含部分答案)专业课考试试题
2006年南京大学801高等代数考研真题
2005年南京大学高等代数考研真题及详解
参考答案:
目 录
2014年南京大学801高等代数考研真题 2011年南京大学801高等代数考研真题 2010年南京大学801高等代数考研真题 2009年南京大学801高等代数考研真题 2008年南京大学801高等代数考研真题 2007年南京大学801高等代数考研真题 2006年南京大学801高等代数考研真题 2005年南京大学高等代考研真题
科目代码:801 科目名称:高等代数
2011年南京大学801高等代数考研真题
2010年南京大学801高等代数考研真题
2009年南京大学801高等代数考研真题
2008年南京大学801高等代数考研真题
2007年南京大学801高等代数考研真题
名校高等代数历年考研试题(1-3章)
第一章 多项式例 1.1(华南理工大学, 2006年) 设 ( ) ( ) x g x f , 是数域F 上的多项式. 证明:( ) ( ) x g x f | 当且仅当对于任意的大于1的自然数n 有, ( ) ( ). | xg x f n n 证明 必要性显然成立,下证充分性. 设 ( ) g x 在数域F 上的不可约分解为( ) ( ) ( ) ( ) 12 12 k lllk g x cp x p x p x =××× ,其中 ( ) ,1,2,..., il i p x i k = 是互不相同的不可约多项式.若有 ( ) ( ) | nnf xg x ,则( ) ( ) ( ) ( ) 12 12 ,0,1,2,...,.k nf nf nfn k i i f x dp x p x p x f l i k =×××££= 其中d 是某个常数,因此有( ) ( ) x g x f | .例 1.2(大连理工大学,2007 年)设 ( ) ( ) ( ) x hx g x f , , 是实系数多项式,如果 ( ) ( ) ( ) x xhx xg x f 22 2 + = ,则 ( ) ( ) ( ) . 0 = = = x h x g x f 证明 由 ( ) ( ) ( ) ( ) 222 f x x g x h x =+ ,可知 ( ) 2 | x f x ,易推得 ( ) | x f x . 于是有 ( ) ( ) 2221 f x x f x= ,代入方程并在两边约去 x 有 () ( ) ( ) x h x g x xf 2 2 21 + = (*)于是有 ( ) ( ) ( ) 22 | x g x h x + ,若多项式 ( ) g x 或 ( ) h x 中的常数项不为零的话,都可 以推出( ) ( )( )x h x g x 2 2 | + 于是有( ) ( ) ( ) () ( )x h x g x x h x g 21 2 1 2 2 2 + = + 代入(*)式并约去 x 有( ) ( ) () ( )x h x g x x f 21 2 1 21 + = 这样又回到原来的方程,所不同的是 ( ) ( ) ( ) 111 ,, f x g x h x 比 ( ) ( ) ( ) ,, f x g x h x 的次数要小 1. 于是经过有限次后必可以使得方程的左边为零次多项式,即为某个常 数c ,使得( ) () ( )x h x g x c k k 22 + = 比较两边的次数易得 0 = c ,并代入方程有( ) () 0 22 = + x h x g k k 于是( ) () 0 = = x h x g k k 那么 ( ) ( ) ( ) ,, f x g x h x 都是某个多项式乘以数0. 由此可推得( ) ( ) ( ) 0 = = = x h x g xf . 例 1.3(大连理工大学,2007年)证明多项式 1 | 1 - - n d x x 的充分必要条件是n d | .证明 充分性显然,下证必要性.若 d r r dq n < < + = 0 ,,则 ( ) ( )11 1 1 - + - = - + - = - r dq r r r n n x x x x x x x 由于 1 - dq x 可被 1 - d x 整除, 而 1 - r x 不能被 1 - d x 整除, 于是 1 - n x 不能被 1 - dx 整除.由其逆否命题可知必要性成立.例 1.4 (北京科技大学,2004年)求一个三次多项式 ( ) x f ,使得 ( ) 1 + x f 能 被( ) 21 - x 整除,而 ( ) 1 - x f 能被( ) 21 + x 整除.解 由题知 ( ) 'f x 能被( ) 1 x - 和( ) 1 x + 整除,又由 ( ) f x 是一个三次多项式, 那么 ( ) 'f x 是一个二次多项式,于是可设( ) ( )( ) aax x x a x f - = - + = 2 ' 1 1 积分易得( ) 33a f x x axb =-+ (其中a, b 为常数) 由题设可知 ( ) 1 f x =- ,易解得3 2 0a b ì = ïí ï = î 那么显然有( ) xx x f 2 3 2 1 3 - = .例 1.5(兰州大学,2004)设 () f x 和 () g x 是数域F 上的两个不完全为零的多 项式,令{ [ ]}()()()()(),() I u x f x v x g x u x v x F x =+Î 证明:(1) I 关于多项式的加法和乘法封闭,并且对任意的 () h x I Î 和任意的 [ ] (), k x F x Î 有 ()() h x k x I Î .(2) I 中存在次数最小的首项系数为 1 的多项式 () d x , 并且()((),()) d x f x g x = .证明 (1) 容易证明,略.(2) 考虑{ [ ] 0 (()()()())(),() I u x f x v x g x u x v x F x =¶+Î 且 } ()()()()0 u x f x v x g x +¹ 则 0 I 是非负整数的一个子集,由最小数原理, 0 I 中存在最小数,也就是说,I 中存在次数最小的首项系数为1的多项式:11 ()()()()()d x u x f x v x g x =+ 设 () h x 是 I 中任意多项式,且 ()()()() h x d x q x r x =+ ,其中 ()0 r x = 或者(()) r x ¶< (()) d x ¶ .若 (()) r x ¶< (()) d x ¶ , 则 ()()()() r x h x d x q x =- .由(1)可知 () r x I Î , 与 () d x 是I 中次数最小的多项式矛盾. 故 ()0 r x = ,所以 ()() d x h x .显然 (),() f x g x I Î ,所以 ()() d x f x , ()() d x g x .如果 ()() p x f x , ()() p x g x ,则11 ()()()()()p x u x f x v x g x +即 ()() p x d x ,所以 ()((),()) d x f x g x = .例 1.6(上海交通大学,2004)假设 1 () f x 与 2 () f x 为次数不超过 3 的首项系数为1的互异多项式,若 42343 12 1()() x x f x x f x +++ ,试求 1 () f x 与 2 () f x 的最大公因式.解 由于42 1x x ++ = 22222 (1)(1)(1) x x x x x x +-=++-+ 设它的4个根分别为 1212 ,,, w w e e 其中1212 13131313 ,,, 2222i i i i w w e e -+--+- ==== 由于 4234312 1()() x x f x x f x +++ ,就有 343 12 ()() f x x f x + = 42 (1) x x ++ () g x . 于是有下面的方程组112 122 (1)(1)0 (1)(1)0 f f f f w w += ì í+= î 与 112 122 (1)(1)0 (1)(1)0f f f f e e ---= ì í ---= î 分别解这两个方程组得,12 (1)(1)0 f f == , 12 (1)(1)0f f -=-= 于是有,11 (1)(),(1)() x f x x f x +- , 22 (1)(),(1)() x f x x f x +- .进而有 1 (1)(1)() x x f x +- , 2 (1)(1)() x x f x +- .而 1 () f x , 2 ,() f x 是互异的次数不超过 3 的首系数为 1 的多项式,所以 2 12 ((),())1 f x f x x =- .例 1.7 (浙江大学,2006 年)设 P 为数域, ( ) [] i i f f x p x =Î , ( ) [],1,2 i i g g x p x i =Î= .证明:( )( ) ( )2 1 2 1 2 1 2 1 2 2 1 1 , , , , , g g f g g f f f g f g f = 证明 设 ( )( ), , , , 2 2 2 1 1 1 g f d g f d = = 有( ) ( ) ( ) ( ) ( ) ( ) ( )( )12121212 12121212 1212 1121122 ,,, ,,, , , ,,. f f f g g f g g f f f g g f g g f d g d f g d f g f g = = = = 例 1.8 (哈尔滨工业大学, 2005年) 设 ( ) ( ) x g x f , 都是实数R 上的多项式,R a Î (1) 证明: ( ) ( ) ( ) ( ) ( ) ( ).| a g f x g f a g x g - - (2) 问 ( )( ) a f x f a x - - 33 | 是否成立,为什么?解 (1) 令 ( ), y g x = 考虑多项式( ) ( ) ( ) ( ) a g f y f y h- = 由 ( ) ( ) ( ) ( ) ( ) ( ) 0= - = a g f a g f a g h 可知 ( ) ( ) ( )y h a g y | - 即( ) ( ) ( ) ( ) ( ) ( ) a g f x g f a g x g - - | .(2) 令 3 b a R =Î ,注意用到(1)的结论,将(1)中a 的换成这里的b ,将(1)的( ) g x 换成这里的 3 x ,可得( ) ( ) 33 | x a f x f a -- .例 1.9(上海大学,2005)设22 1231 1(1)()()()() n n n n n nn x x f x xf x x f x x f x - - éù --++++ ëûL ( 2 n ³ )求证: 1() i x f x - (1,2,,1) i n =- L . 证明 由题设易知1222 1231 1()()()()n n n n n n n n x x x f x xf x x f x x f x --- - ++++++++ L L 这里令e 是n 次本原单位根,那么22 1231 22222 1231 11212 1231 (1)(1)(1)(1)0(1)(1)()(1)()(1)0(1)(1)()(1)()(1)0n n n n n n n n n f f f f f f f f f f f f e e e e e e e e e - - - - ---- - ì ++++= ï ++++= ï íï ï ++++= î L L L LL于是关于 1231 (1),(1),(1),,(1) n f f f f - L 的齐次线性方程组的系数行列式为22 22222112121 1()() 0 1()()n n n n n n ee e e e e e e e - - ---- ¹ L L MMMML .故齐次线性方程组只有零解,于是 121 (1)(1)(1)0 n f f f - ==== L ,所以 1()i x f x - (1,2,,1) i n =- L .例 1.10(哈尔滨工业大学,2006 年)已知 ( ) ( ) x g x f , 是数域 P 上两个次数大 于零的多项式,且存在 ( ) ( ) 11 ,[], u x v x p x Î 使得 ( ) ( ) ( ) ( ) 1 1 1 = + x g x v x f x u ,问是否存 在 ( ) ( ) ,[] u x v x p x Î ,使得 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x f x v x g x u x g x v x f x u ¶ < ¶ ¶ < ¶ = + , , 1 . 如果存在,这样是唯一的吗?说明理由.解 由于 ( ) ( ) ( ) 11 ()1 u x f x v x g x += ,若 ( ) 1 u x 的次数大于 ( ) g x 的次数,则由 带余除法得( ) ( ) ( ) ( ) 1 u x g x q x u x =+ , ( ) ( ) ( ) ( )u x g x ¶<¶ 代入上式得( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1f xg x q x u x g x v x ++= 即( ) ( ) ( ) ( ) ( ) () ( ) 1 1 = + + x v x q x f x g x u x f 令 ( ) ( ) ( ) ( ) 1 v x f x q x v x =+ ,则有( ) ( ) ( ) ( )x f x v ¶ > ¶ 否则由比较次数可知上式将不可能成立.关于唯一性的证明,可以假设 ( ) 2 u x , ( ) 2 v x 也满足条件,那么有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1122 1f x u xg x v x f x u x g x v x +=+= 易得( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1221 f x u x u x g x v x v x -=- 由 ( ) f x 与 ( ) g x 互素,可知 ( ) ( ) ( ) ( ) 12 | g x u x u x - .又由 ( ) ( ) ( ) ( ) ( ) 12 u x u x g x ¶-<¶ ,可得 ( ) ( ) 12 0 u x u x -= ,即 ( ) ( ) 12 u x u x = ,这时有( ) ( ) 12 v x v x = .例 1.11(华南理工大学,2005年)证明:如果 ( ) ( )( ) 1 , = x g x f ,那么 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x f x g x g x +++= 证明 由已知条件有 ( ) ( ) ( ) ( ) ,1 f x f x g x += , ( ) ( ) ( ) ( ) ,1 g x f x g x += ,由多 项式互素的性质可得( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x += 于是有( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x ++= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1f xg x f x g x f x g x +++= 综合上述两个等式以及多项式互素的性质有( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 f x g x f x g x f x g x f x g x +++= .例 1.12(苏州大学,2005)设 () f x 是一个整系数多项式,证明:如果存在 一个偶数m 和一个奇数n ,使得 () f m 和 () f n 都是奇数,则 () f x 没有整数根.证明 (反证法) 假设 () f x 有整数根k ,则 ()()() f x x k g x =- ,因为x k - 是 本原多项式,故 () g x 是整系数多项式. 又由于()()() f m m k g m =- , ()()() f n n k g n =- .且 () f m 和 () f n 都是奇数,那么m k - ,n k - 都是奇数,与m 是偶数且n 是 奇数矛盾,所以 () f x 没有整数根.例1.13 (四川大学, 2004年) (1) 设多项式 ( ) ( )( ) ( ) ( ) 1 1 2 2 1 + - - × × × - - = n x x x x f , 其中n 为非负整数. 证明: ( ) x f 在有理数域上一定不可约.(2) 在有理数域上求多项式 ( ) 36 12 11 2 2 3 4 + - - + = x x x x x g 的标准分解式.(1) 证明 假设 ( ) f x 在有理数域上可约, 故 ( ) f x 可分解为两个整系数多项式 的积, 即存在两个整系数多项式 ( ) ( ) , h x k x 使得( ) ( ) ( )f x h x k x = 注意到 ( ) 1,1,2,,21 f i i n ==×××- ,于是( ) ( ) 1,1,2,,21h i k i i n ==×××- 令 ( ) ( ) ( ) l x h x k x =- ,由 ( ) h x 与 ( ) k x 的次数小于21 n - 知 ( ) l x 的次数也小于 21 n - ,但是 ( ) l x 有21 n - 个不同的根为 1,2,,21 x n =×××- ,那么有 ( ) 0 l x º ,于是 ( ) ( ) h x k x = ,推得( ) ( ) ( ) 2f x k x =³ 但是 ( ) 00 f = ,矛盾. 于是 ( ) f x 在有理数域上不可约.(2) 注意到 ( ) ( ) 230 g g =-= ,由综合除法可得( ) ( ) ( )2223 g x x x =-+ 上式为 ( ) g x 在有理数域上的标准分解式.例 1.14(上海大学,2005)设 1 ()2n nf x x x + =+- (1) n ³ ,求 () f x 在有理数域上的不可约因式并说明理由. 解11 ()2(1)(1)n n n nf x x x x x ++ =+-=-+- 112 12 (1)(1)(1)(1) (1)(2222)(1)()n n n n n n n x x x x x x x x x x x x g x --- -- =-++++-+++ =-+++++ =- L L L 对 () g x , 令 2 p = , 用Eisenstein 判别法容易证明 () g x 在有理数域上不可约, 因此 () f x 在有理数域的不可约因式是: 1 x - 及 12 2222 n n n x x x x -- +++++ L .例 1.15(大连理工大学,2004)设R Q 分别表示实数域和有理数域,(),()[] f x g x Q x Î . 证明:(1) 若在 [] R x 中有 ()() g x f x ,则在 [] Q x 中也有 ()() g x f x .(2) () f x 与 () g x 在 [] Q x 中互素,当且仅当 () f x 与 () g x 在 [] R x 中互素.(3) 设 () f x 是 [] Q x 中不可约多项式,则 () f x 的根都是单根.证明 (1)(反证)假设在 [] Q x 中 () g x 不能整除 () f x ,作带余除法有()()()(),(),()[]f x q xg x r x q x r x Q x =+Î 且 (()) r x ¶< (()) g x ¶ .以上带余除法的结果在 [] R x 中也成立,所以在 [] R x 中 () g x 不能整除 () f x , 与在 [] R x 中有 ()() g x f x 矛盾. 因此,结论成立.(2) 如果 () f x 与 () g x 在 [] Q x 中互素,那么存在 (),()[] u x v x Q x Î ,使得()()()()1 f x u x g x v x += .以上等式在 [] R x 中也成立,所以 () f x 与 () g x 在 [] R x 中互素.如果 () f x 与() g x 在 [] Q x 中不互素,那么 () f x 与 () g x 在 [] Q x 存在非零次公因式.即()[] d x Q x Î , (())1,d x ¶³ 1 ()()() f x d x f x = , 1 ()()() g x d x g x = ,11 (),()[]f xg x Q x Î 以上两个等式在 [] R x 中也成立. 因此, () f x 与 () g x 在 [] R x 中不互素. (3) () f x 是 [] Q x 中的不可约多项式 , 则 ' ((),())1 f x f x = , 否则 ' ((),())()1, f x f x d x =¹ 则 () f x 有重因式, 与 () f x 不可约矛盾. 于是 () f x 没有重 因式,所以 () f x 的根都是单根.例 1.16(南京理工大学,2005年)设 p 是奇素数,试证 1 + + px x p 在有理数 域上不可约.证明 令 1 x y =- ,代入 ( ) 1 p f x x px =++ 有( ) ( ) ( ) ( ) ( ) 1111 pg y f x f y y p y ==-=-+-+ .考查多项式 ( ) ( ) ( ) 1! h y p g y =- ,注意到 p 是一个奇素数,那么 ( ) h y 的常数项为 ! p - ,于是对于素数 p 有, |! p p - ,而 2p 不整除 ! p - ,对于 ( ) h y 的首项,显然有 ( ) |1! p p - .对于其他的项,利用二项式定理对( ) ( ) 1!1 pp y -- 展开可知 p 能整除除了首项和 常数项之外的所有项系数. 又 ( ) 1 p y - 中关于 y 的一次项的系数也为 p 的倍数, 于是 p 整除 ( ) h y 的除了首项和常数项之外的所有系数. 利用Eisenstein 判别法可 知 ( ) h y 在有理数域上不可约,即 ( ) g y 在有理数域上不可约,也即 ( ) f x 有理数 域上不可约.例 1.17(陕西师范大学, 2006年) 11 ()()(),()()(), f x af x bg x g x cf x dg x =+=+ 且0 a bc d¹ ,证明: 11 ((),())((),()) f x g x f x g x= . 证明 令 111 ()((),()) d x f x g x = , ()((),()) d x f x g x = .由1 ()()() f x af x bg x =+ (*) 1 ()()()g x cf x dg x =+ (**)于是 1 ()() d x f x , 1 ()() d x g x . 那么 1 ()() d x d x .由式(*)与式(**)可以看成是关于 (),() f x g x 的线性方程组,解得,( ) ( )11 11 1()()() 1()()() g x ag x cf x ad bc f x df x bg x ad bc=- - =- - 于是 11 ()() d x f x , 11 ()() d x g x . 那么 1 ()() d x d x . 显然 1 ()() d x d x .于是11 ((),())((),()) f x g x f x g x = .例 1.18(华南理工大学,2006年)设 ( ) 1 2 34 + + + + = x x x x x f .(1) 将 ( ) x f 在实数域上分解因式.(2) 证明: ( ) x f 在有理数域上不可约. 由此证明 ( ) 5/ 2 cos p 不是有理数. (1) 解 不妨设 2 2 5, i e pa b a == , 于是 ,,, a a b b 是1的四个非实数的 5次方根. 显然有( ) ( )( )( )( )( ) ( ) ( ) ( )2222 11 24 2cos 12cos 1 55 f x x x x x x x x x x x x x a ab b a a b b p p =---- =-++-++ æöæö =-+-+ ç÷ç÷èøèø上式为 ( ) f x 在实数域上的因式分解. (2) 证明 令 1 x y =+ ,代入 ( ) f x .有( ) ( )1 g y f y =+ ( ) ( ) 5432 11 11510105y y y y y y +- =+- =++++ 对素数5 用Eisenstein 判别法可得 ( ) g y 是有理数域上不可约的多项式, 于是 有 ( ) f x 在有理数域上不可约 . 若 ( ) cos 2/5 p 是有理数 , 由 ( ) ( ) 2 cos 4/52cos 2/51 p p =- 可知 ( ) cos 4/5 p 也是有理数.于是由(1)的结论可知( ) 22 24 2cos 12cos 1 55 f x x x x x p p æöæö=-+-+ ç÷ç÷ èøèø.上式为 ( ) f x 在有理数域上的分解,这将导致 ( ) f x 在有理数域上可约,矛盾. 故结论成立.例 1.19(华东师范大学,2005 年)试在有理数域、实数域及复数域上将 ( ) 1 7 8 9 + + × × × + + + = x x x x x f 分解为不可约因式的乘积(结果用根式表示),并简 述理由.解 由( ) ( ) 1011 x f x x -=- ( )( )( )( )1 1 1 1 23 4 2 3 4 + - + - + + + + + - = x x x x x x x x x x 可知它在有理数域上的不可约分解为( ) ( )( )( )432432 111 f x x x x x x x x x x =+++++-+-+ (这里设 ( ) 432 1 1 g x x x x x =++++ ,并取 1 x y =+ 代入,并对素数 5用 Eisenstein 判别法可知 ( ) 1 1 g y + 在有理数域上不可约. 同理设 ( ) 432 2 1 g x x x x x =-+-+ ,并取 1 x y =- 代入,可知 ( ) 2 1 g y - 在有理数域上不可约.)设 243 55551212 ,,, i iii eee e pp ppa ab b ==== ,显然 1 的五次方根为 1122 1,,,, a a a a ;‐1的五次方根为 1122 1,,,, b b b b - . 于是在实数域上 ( ) f x 可分解为( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2222 11221122 11111f x x x x x x x x x x a a a a b b b b =+-++-++-++-++ 显然在复数域上 ( ) f x 可分解为( ) ( )( )( )( )( )( )( )( )( ) 112211221 f x x x x x x x x x x a a a a b b b b =+-------- .第二章 行列式例 2.1(兰州大学,2004年) 计算下列行列式的值121 121 121 1231 n n n n n n n n xa a a a a x a a a D a a x a a a a a a x- - - - = L L L M M M M M L 解 将 n D 的第2列到第 1 n +列加到第1列,且提取公因子有 121 21 21 1231 1 1 ()1 1 n n n n nn i n n i n a a a a xa a a D x a a x a a a a a x- - - = - =+ å L L L M M M M M L 121 12121213212 1 00()000 0 n n ni i n n na a a a x a x a a a x a a a a a a a x a - = -- - =+-- ---- å L LL M M M M M L 11()() nni i i i x a x a = = =+- å Õ .例 2.2(中山大学,2009年) 计算n 阶行列式22 111122 2222 22 111122 1...1... ..................1... 1... n n n nn n nn n n n n nn n n nx x x x x x x x D x x x x x x x x - - - ---- - = 解 首先考虑 1 n + 阶范德蒙行列式221 1111 1 221 2222 2 221 1111 1 221 2211... 1... .................. ... () 1... 1 (1)... n n n n n n n n n n n n n n n n n n n n n nn n n x x x x x x x x x x g x x x x x x x x x x x x xx x x-- -- -- ---- - -- -- =213111 3222 ()()...()() .()...()()...()n n n x x x x x x x x x x x x x x x x =---- ---- 从上面 1 n + 阶范德蒙行列式知,多项式 () g x 的 1 n x - 的系数为 21(1) n D D + -=- ;但从上式右端看, 1 n x - 的系数为12 1 (...).()n ji i j nx x x xx £<£ -+++- Õ 二者应相等,故 12 1 (...).() n n ji i j nD x x x xx £<£ =+++- Õ .例 2.3(北京交通大学,2004年)计算n 阶行列式111 23 222341222123 111 122111...11... 1... ............1 (1)... nn n n n n n n n n n nn n C C C C C C D C C C C C C + --- -- --- +- =.解 从最后一行起将每一行减去前面一行便可将行列式降一阶, 再对降一阶的行列式做同样的处理,不断这样下去可得 1 D = .例 2.4(大连理工大学,2005年) n 阶行列式21...11 13 (11) (1)1...11n =+ .解 答案是 1 1!(1) ni n i= + å . 这是因为原式 21...1111...11 13 (1102)...11 (1)1...1101...11n n ==++ 将上述行列式的第二行到 1 n + 行分别减去第一行,可得原式 11...11 11...00 (1)...n- =- 然后依次将第二列乘以1,第三列乘以 1 2 ,........,第 1 n + 列乘以 1n都加到第一列可得1 11 11...1 (11)2 101...00 !(1) ............... 00...0 ni n n i n= ++++ =+ å .例 2.5(南开大学,2003年) 计算下列行列式的值1112121 1212222 1122 ... ... ............... n n n n n n n n n na b c a b c a b c a b c a b c a b c D a b c a b c a b c +++ +++ =+++ 解法 1 将 n D 按第一行拆成两个n 阶行列式相加,并由于 3 n ³ ,故得1211121 12122221212222 11221122 ...... ...... .............................. n n n n n nn n n n n nn n n n n a a a b c b c b c a b c a b c a b c a b c a b c a b c D a b c a b c a b c a b c a b c a b c++++++ =+++++++ 000=+= 解法 2 将原n 阶行列式加边成一个 1 n + 阶行列式11112121 21212222 112 100...0 ... ... ............... ... n nn n nnn n n n n x a b c a b c a b c D x a b c a b c a b c x a b c a b c a b c+++ =+++ +++由于 3 n ³ ,故对上面的 1 n + 阶行列式按第一行展开可知,其每个元素的余子式 都是一个至少有两列元素对应成比例的n 阶行列式,从而都等于零. 因此 0 D = .例 2.6(浙江大学,2004年) 计算n 阶行列式... ... .................. ... ... ... n b b b b a b b b a b D b b a b b b a b b b a b b b b=解 ......() ......0 .................................... ......0 ......0 ......0 n b b b b a b b b b a b b b b b a b b b b a b D b b a b b b b a b b b a b b b b a b b b abbbb a b b b b -+ + == + + + 11 ... ... .................. (1)() ... ... ...n n b b b b b b b b a b a b D b b a b b b a b b b a bbbb+ - =--+(3) 1121 (1)()(1)()n n n n n a b D b a b + +- - =--+-- 注意到 222 D b a=- 递推可得(3) 1 2(1)()((1)) n n n n D a b a n b + - =--+- .例 2.7(复旦大学,2005年) 设 12 ...,0,1,2,... k k kk n s x x x k =+++= , 计算 1 n + 阶行列式11 121122 121 ...1 ... .................. ... n nn n n n n nnn n s s s s s s xD s s s xs s s x- - -- -- = 解 根据 k s 的定义、行列式的乘法以及范德蒙行列式知,所给的 1 n + 阶行列 式D可表示成两个 1 n + 阶行列式相乘111112 221111 112 12 11...11 1...0 ...1...0 ................................ 1...0 ... 00 (01)n n nn n n n n n n n n nnnn n x x x x x x x x D x x x x x x x x x x - - ---- - = 2 11 ()(())nj ji i i j nx x xx =£<£ =-- ÕÕ 211 ()() ni ij i i j nx x xx =£<£ =-- ÕÕ .例 2.8(华东师范大学,2008年) 计算n 阶行列式1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 32 1 L L M M M M M L L L n n n n n n D n- - - - - = ∙ 解 将第2列,第 3列,…,第n 列都加到第 1 列上11 11 01 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 32 2 ) 1 ( L L M M M M M L LL nn nn n n n n D n - - - - - + =111 1 1 1 1 1 11 11 1 1 11 2) 1 ( LL M M MM L L n n n n n n - - - - + = 1111 1 1 1 1 11 11 1 1 1 1 2) 1 ( LL M M MM L L - - - - - - - + = n n n n n111 10 0 0 0 0 00 0 0 2) 1 ( L L M M M ML L - - - - + = n n n n n 2)1 ,2 , 2 , 1 ( ) ( ) 1 ( ) 1 ( 2) 1 ( - - - - × - - + =n n n n n n L t 21 2)2 )( 1 ( ) ( ) 1 ( )1 (2 ) 1 ( - - - - - × - - + = n n n n n n n 2)1 ( )1 ( 1 2)1 ( + ×- = - - n n n n n 1) 2 )]( 1 ( 2 [ - - - = = n x n x 例 2.9(大连理工大学, 2004年) 计算n 阶行列式1 1 1 12 1 2 1 1 12 1 1 1 1 L M M M M M L L nn n D n - - - =解 将第2行,第 3行,…,第n 行都加到第 1 行上1 1 1 12 1 2 1 1 11 1 1 1 1 L M M M M M L L n n D n - - =0 01 0 1 0 0 0 1 1 1 1 1 L M M M M M L L nn - - =1 2) 1 ( )1 ,2 , , 1 , ( 1 ) 1 ( ) 1 ( ) 1 ( ) 1 ( - - - - - - = - - = n n n n n n n n L t .例 2.10(北京航空航天大学, 2004年) 计算下列行列式的值.12 12 12... .................. n n n n a a a a a a D a a a l l l+ + =+ 解 将行列式的所有列加到第一列, 并提取公因子 12 (...) n a a a l ++++ 可得1212 1212 1 1212...... ......().............................. n n nn n i i n n a a a a a a a a a a a a a a a a a a a l l l l l l l= ++ ++ =+ ++ å 然后将第 2 列到第n 列依次减去第一列乘以 12 ,,..., n a a a 得到一个下三角的行列式, 易得12 12 1112... ...()............... n nn n i i n a a a a a a a a a a l l ll l- = + + =+ + å 例 2.11(上海交通大学,2004年)求下面多项式的所有根23 2 3 23 2 3 3 2 3 2 22 23 2 2 2 2 3 ) ( nn n n nnna x a a a a a a a a x a a a a a a a a x a a a a x x f - - - - - - - - - - - - - - - - - - - = L MM M M L L L 解 将第一列的 2 a - 倍,3 a - 倍,L , n a - 倍分别加到第 2 列,第3列, L ,第n 列2323 221 3333 100100 ()010(2)010 0101n n n nnx a a a x a a a a a f x a x a a a - ------- -- =-=-- -- L L L L L L M M M M M M M M LL第2列的 2 a 倍,第 3列的 3 a倍,L ,第n 列的 n a 倍都加到第一列 22223 13 0100 ()(2)0010 001n n n x a a a a a f x x - ------ =- L L L L M M M M L1222 (2)(3)n n x x a a - =---- L 所以, 2 x = 是 () f x 的 1 n - 重根, 222 3 n a a +++ L 是 () f x的单根. 例 2.12 (北京交通大学,2005年)计算 1 n + 阶行列式11111 (1)(2)...()(1)(2)...()............... 12... 111 (1)n n n nn n n n n x x x x n x x x x n D x x x x n ---- + +++ +++ = +++ 解 注意到依次把第一行和第 1 n + 行交换次序,第2行和第n 行交换次序, ...,可得2 1 1111111...1 12... (1) ............... (1)(2)...()(1)(2)...() nn n n n n n n n nx x x x n D x x x x n x x x x n + ---- +++ =-+++ +++ 21 (1)(()()) n i j n x j x i £<£ =-+-+ Õ 21 (1)()n i j nj i £<£ =-- Õ 第三章 线 性 方 程 组例 3.1(清华大学,2006 年)设 12 ,,, s a a a L 是一组线性无关的向量,则122311 ,,,, s s s a a a a a a a a - ++++ L 是否线性无关? 证明之.证明 若 112223111()()()()0 s s s s s k k k k a a a a a a a a -- ++++++++= L 将上式展开并利用 12 ,,, s a a a L 的线性无关,可得关于 121 ,,, s s k k k k - L 的线性方程 组为1 2 1 100...10 110...00 ... 011...0... ...............0 00...110 s s k k k k - æö æöæö ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ ç÷ç÷= ç÷ ç÷ç÷ ç÷ ç÷ç÷ ç÷ç÷ ç÷ èøèø èø 令其系数矩阵为 A ,显然有 1 1(1) s A + =+- .当 S 为偶数时 , 0 A = , 则方程组有非零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性相关.当 S 为奇数时 , 0 A ¹ , 则方程组仅有零解 , 这是122311 ,,,, s s s a a a a a a a a - ++++ L 线性无关.例3.2 (北京科技大学, 2005年) 设 0 h 是线性方程组的一个解, 而 12 th h h L , , , 是它的导出方程组的一个基础解系, 1021010 ,,..., t t g h g h h g h h + ==+=+ .证明:线性方程组的任一解g , 都可表成 112211 ... t t g m g m g m g ++ =+++ , 其中 121 (1)t m m m + +++= . 证明 设 0211 ... t t g h m h m h + =+++ ,令 121 1... t m m m - =--- , 即 121 ...1 t m m m - +++= ,则由于 1021010 ,,..., t t g h g h h g h h + ==+=+ ,1210211 (...)... t t tg m m m h m h m h ++ =++++++ 1021010 ()...() t t m h m h h m h h + =+++++ 112211... t t m g m g m g ++ =+++ 例 3.3(哈尔滨工业大学,2005 年)设 12 ,,, r a a a L 是一组线性无关的向量,1,1,2,..., ri ij j j k i r b a = == å ,证明: 12 ,,, r b b b L 线性相关的充要条件是矩阵11121 21222 12... ... ............ ... r r r r rr k k k k k k K k k k æöç÷ ç÷ = ç÷ ç÷ èø不可逆.证明 12 ,,, r b b b L 线性无关Û 10 ri i b = = å 仅有零解Û 10 rij i j j k x a = = å 仅有零解Û(由 12 ,,, r a a a L 线性无关性仅有零解)方程组 ' 0 K X = 仅有零解Û ' K 可逆Û矩阵 11121 21222 12... ... ............ ... r r r r rr k k k kk k K k k k æöç÷ ç÷ = ç÷ ç÷ èø是可逆的.例 3.4(上海大学,2005 年)设b 是非齐次线性方程组AX b = 的一个解,12 ,,, n r a a a - L 是其导出组的一个基础解系,证明:(1) 12 ,,,, n r a a a b - L 线性无关.(2) 12 ,,,, n r b a b a b a b - +++ L 线性无关.证明 (1) 假定 12 ,,,, n r a a a b - L 线性相关,而 12 ,,, n r a a a - L 线性无关,那么b 可由 12 ,,, n r a a a - L 线性表出,则b 是导出组的一个解与b 是AX b = 的一个解矛 盾.(2)令( ) ( ) ( ) 1122 0n r n r x x x x b a b a b a b -- +++++++= L 于是( ) 112212 0n r n r n r x x x x x x x a a a b --- ++++++++= L L 由 12 ,,,, n r a a a b - L 线性无关,则12 0n r x x x - ==== L 且12 0 n r x x x x - ++++= L ,于是 12 0 n r x x x x - ===== L ,故(2)成立.例 3.5(东北大学, 2003年) 设 1 2 ... r A a aa æö ç÷ ç÷ = ç÷ ç÷ èø是一个r n ´ 阶矩阵() r n < 且秩为r ,已知:b 是 0 AX = 的非零解,讨论 12 ,,, r a a a L 与b 的线性相关性.证明 由于对矩阵A , 有 () r A r = , 记 12 ,,, r U a a a =<> L . 显然有 12 ,,, ra a a L 为空间U 的一组基,由于b 是方程组 0 AX = 的一个非零解,所以有 T b 与12 ,,, r a a a L 相正交,于是有 U b ^^ Î ,对于 12 ,,, r a a a L 与 T b 的线性组合1122 0T r r l l l l a a a b ++++= L 两边同时与 T b 做内积,注意到 T U b ^ ,可得(,)0T T l b b = 由于 0 T b ¹ ,可得 0 l = ,于是1122 0r r l l l a a a +++= L 由 12 ,,, r a a a L 的线性无关性可得0(1,2,...,)i l i r == 即 12 ,,,, r a a a b L 的线性无关.例 3.6(浙江大学,2004 年) 令 12 ,,, s a a a L 是 n R 中s 个线性无关的向量, 证明:存在含n 个未知量的齐次线性方程组,使得 12 ,,, s a a a L 是它的一个基础解 系.证明 以列向量 12 ,,, s a a a L 的转置为行构成矩阵A1 2 TT T s A a a a æö ç÷ ç÷= ç÷ ç÷ ç÷ èøM 考虑以A 为系数矩阵的齐次线性方程组AX = 它的基础解系由 n s - 个 n 维列向量组成,设基础解系为 12 ,,, n s b b b - L 以12 ,,, T T T n s b b b - L 为行构成矩阵B ,则以B 为系数矩阵的齐次线性方程组 0 BX = 满足要求.因为 12 ,,, n s b b b - L 是 0 AX = 的解,则 0,1,,;1,, T j i s j n s a b ===- L L .它同 时说明,作为 n 维向量, 12 ,,, s a a a L 是齐次线性方程组 0 BX = 的解,而() r B n s =- .故 12 ,,, s a a a L 是 0 BX = 的一个基础解系.例 3.7(西安交通大学,2005年)讨论 , a b 为何值时,如下方程组有唯一解?无解?无穷多解? 当有无穷多解时,求出它的通解.1234 234 234 1234 0 221 (3)2 321 x x x x x x x x a x x b x x x ax +++= ì ï ++= ï í-+--= ï ï +++=- î解 将增广矩阵进行初等行变换化为行阶梯形矩阵,有1111011110 0122101221 01320132 321101231 A a b a b a a æöæö ç÷ç÷ ç÷ç÷ =® ç÷ç÷ ------ ç÷ç÷ ---- èøèø11110 01221 00101 00010 a b a æöç÷ ç÷ ® ç÷ -+ ç÷- èø.(1)当 1 a ¹ 时方程组有唯一解. (2)当 1 a = 且 1 b ¹- 时方程组无解. (3)当 1 a = 且 1 b =- 时方程组有无穷多解. 解方程组1234 234 0 221 x x x x x x x+++= ì í++= î 方程组的特解为 0 1 1 0 0 a - æöç÷ç÷ = ç÷ ç÷ èø,导出组的基础解系为 12 11 22 , 10 00 h h æöæö ç÷ç÷ -- ç÷ç÷ == ç÷ç÷ ç÷ç÷ èøèø, 于是通解为 01122 k k a a h h =++ .例 3.8(东南大学,2005年) 问:参数 , a b 取何值时,线性方程组1234 1234 234 1234 1 32 223 54(3)3 x x x x x x x x a x x xx x a x x b +++= ì ï+++= ï í++= ï ï ++++= î有解?当线性方程组有解时,求出其通解.解 将增广矩阵做初等行变换可化为10112 01223 0002 0000 a b a --- æöç÷ç÷ç÷ - ç÷èø. 显然若要方程组有解,必须有 0 a = 且 2 b = , 这时增广矩阵变为10112 01223 0002 0000 a b a --- æöç÷ç÷ ç÷- ç÷èø 方程组的一个特解为 ' (2,3,0,0) - ,基础解系为 ''(1,2,1,0),(1,2,0,1) -- ,于是通解为12 211 322 010 001 x C C - æöæöæöç÷ç÷ç÷ -- ç÷ç÷ç÷ =++ ç÷ç÷ç÷ ç÷ç÷ç÷ èøèøèø. 例 3.9(东南大学,2004年) 已知线性方程组1122 1122 1122 () 0()...0 ........................... ...()0 n n n n n na b x a x a x a x a b x a x a x a x a b x ++++= ì ï++++= ï íï ï ++++= î (*)其中 10 ni i a = ¹ å .试讨论 12 ,,, n a a a L 和b 满足什么条件时,(1)方程组仅有零解.(2)方程组有非零解,此时用基础解系表示所有解.解 由于方程组(*)的系数行列式为2 1 12 12 2 111 ............ ............... ... nin i n n n in i nn nin n i b a a a a b a a a a b a b a a b a a a a bb a a a b = = = + + + ++ =+ ++ å å å .2 2 1111 1100 1 10()()() ............ ............1 (1)0... n nnnn n i i i i i i nn a a a b a bb a b a b a ba a bb- === + =+=+=+ + ååå(1)当 0 b ¹ ,且 1()0 ni i b a = +¹ å 时,方程组(*)的系数行列式不等于零. 于是此方程组只有唯一零解.(2) 当 0 b ¹ ,且 1()0 ni i b a = += å 时,方程组(*)的系数行列式为零. 因此方程组(1)有非零解,它的基础解系为 '(1,1,...,1) ,此时方程组的一切解可表为' (1,1,...,1), k k R Î .(3) 当 0 b = 时,方程组的系数行列式为零. 此时方程组(*)有非零解,并且方 程组等价于1122 0n n a x a x a x +++= (**)由于 10 ni i a = ¹ å ,故在 12 ,,, n a a a L 中必有一个不为零,不妨设 0 ia ¹ ,则有 11 1111 ....... i i n i i i n i i i i a a a a x x x x x a a a a-+ -+ =------ 其中 111 ,...,,,..., i i n x x x x -+ 为自由未知量,因此原方程组的一个基础解系为' 1 1 (1,0,...,0,,0, 0i aah =- ..................................' 11 (0,0,...,1,,0,...,0) i i i a a h - - =-' 11 (0,0,...,0,,1,...,0) i i i a ah + + =-..................................' (0,0,...,0,,0,...,1) nn i a ah =-此时,方程组(*)的一切解可表为111111 ...() i i i i n n i X k k k k k Rh h h h --++ =+++++Î L . 例 3.10(大连理工大学,2004年)设 A 是n 阶矩阵,若 ()1 r A n =- ,且代数 余子式 11 0 A ¹ ,则齐次线性方程组 0 AX = 的通解是.。