高中数学竞赛解题策略几何分册勃罗卡定理
全国高中数学联赛竞赛大纲及全部定理内容
全国高中数学联赛竞赛大纲(修订稿)及全部定理内容(共4页)-本页仅作为预览文档封面,使用时请删除本页-全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
4、几何不等式。
5、简单的等周问题。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
6、几何中的运动:反射、平移、旋转。
7、复数方法、向量方法。
平面凸集、凸包及应用。
二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
2、第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
3、n个变元的平均不等式,柯西不等式,排序不等式及应用。
4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。
5、圆排列,有重复的排列与组合,简单的组合恒等式。
6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
三、立体几何1、多面角,多面角的性质。
三面角、直三面角的基本性质。
2、正多面体,欧拉定理。
3、体积证法。
4、截面,会作截面、表面展开图。
四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。
2、二元一次不等式表示的区域。
3、三角形的面积公式。
最新高中数学竞赛解题策略-几何分册第32章勃罗卡定理
第32章勃罗卡定理1 勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD2 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.3 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四4 边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆.5图321FOL G NEDCBA6 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-.7 22EG GN BG GD R OG ⋅=⋅=-.8 以上两式相减得()22222EG OE R R OG =---, 9 即22222OE EG R OG -=-. 10 同理,22222OF FG R OG -=-.11 又由上述两式,有2222OE EG OF FG -=-. 12 于是,由定差幂线定理,知OG EF ⊥.13 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 14 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点15 共线,从而EN OF ⊥.16同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 17 于是,知G 为OEF △的垂心,故OG EF ⊥.18 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 19 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .20 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 21 即有BME BCE DCF DMF ∠=∠=∠=∠, 22 从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠23 90(180)90BCD BCD =︒-︒-∠=∠-︒24 11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭,25 即知点M 在OBD △的外接圆上.26 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 27 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 28 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 29 该定理有如下推论30 推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 31 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 32 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 33 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,34 从而OM 与OM '重合,即M 与M '重合.35 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC36与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 37 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,38 AC 与BD 交于点G ,则G 为OEF △的垂心.39 事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,40 22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证.41 下面给出定理及推论的应用实例.42 例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,43 Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.44 事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心. 45 例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交46 于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠.47图322F48 证明由勃罗卡定理知,OP EF ⊥于点G .49 延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,50 GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠.51 延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得52 BGP DGP ∠=∠.53故AGB CGD ∠=∠.54 例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上55 一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与56 AB 交于点M .57 求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.58图32359 证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交60 于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,61 知OK PQ ⊥.62 由题设,OK MN ⊥,从而知PQ MN ∥. 63 即有AQ APQN PM=.① 64 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 65 有1NB DE AQBD EA QN⋅⋅= 66 及1MC DE APCD EA PM⋅⋅=. 67 由①,②得NB MCBD CD=. 68再应用分比定理,有ND MDBD DC=, 69 从而DMN DCB △∽△.70 于是,DMN DCB ∠=∠.即有BC MN ∥,从而OK BC ⊥,得到K 为BC 的中点,这与已知71 矛盾.故A ,B ,D ,C 四点共圆.72 例4(1997年CMO 试题)设四边形ABCD 内接于圆,边AB 与DC 的延长线交于点P ,AD 73 与BC 的延长线交于点Q .由点Q 作该圆的两条切线QE ,QF ,切点分别为E ,F .求 74 证:P ,E ,F 三点共线.75 证明如图324-,设ABCD 的圆心为O ,AC 与BD 交于点G ,联结PQ ,则由勃罗卡定76 理,知OG PQ ⊥.77A图32478 设直线OG 交PQ 于点M ,则由推论1,知M 为完全四边形ABPCQD 的密克尔点,即知M 、79 Q 、D 、C 四点共圆.80 又O 、E 、Q 、F 四点共圆,且OQ 为其直径,注意到OM MQ ⊥,知点M 也在OEQF 上.81 此时,MQ ,CD ,EF 分别为MQDC ,OEMQF ,ABCD 两两相交的三条公共弦.由82 根心定理,知MQ 、CD 、EF 三条直线共点于P .83故P ,E ,F 三点共线.84 例5(2006年瑞士国家队选拔赛题)在锐角ABC △中,AB AC ≠,H 为ABC △的垂心,M 85 为BC 的中点,D 、E 分别为AB ,AC 上的点,且AD AE =,D 、H 、E 三点共线.求证:86 ABC △的外接圆与ADE △的外接圆的公共弦垂直于HM .87 证明如图325-,分别延长BH ,CH 交AC 、AB 于点B '、C ',则知A 、C '、H 、B '及B 、88 C 、B '、C '分别四点共圆,且AH 为AC HB ''的直径,点M 为BCB C ''的圆心.89HB'QCEMNBC 'PA图32590 设直线BC 与直线C B ''交于点Q ,联结AQ ,则在完全四边形BCQB AC ''中,由勃罗卡定理,91 知MH AQ ⊥.92 设直线MH 交AQ 于点P ,则由推论1,2知HP AQ ⊥,且P 为完全四边形BCQB AC ''的密93 克尔点,由此,即知P 为ABC 与AC HB ''的另一个交点,亦即AP 为ABC 与AC HB ''的94 公共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥. 95 下证点P 在ADE △的外接圆上.96 延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上. 97 由DBH ECH △∽△, 98 有BD CEBH CH=. 99由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅, 100 并注意BN CN =,NC BH =, 101 于是由*,有BD BH NC BPCE CH BN CP===, 102 即BD CEBP CP=. 103 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠. 104 于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上. 105 故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM . 106 下面看定理的演变及应用107 将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有108 例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交109 于点F ,AC 与BD 交于点G .则OG EF ⊥.110图326AS DFRCG OM BEN111 证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、112 BD 、MR 、NS 四线共点于G .113 注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅.114同理,22FG FS SG GN =-⋅. 115 由上述两式相减,得116 2222EG FG EM FS MG GR SG GN -=--⋅+⋅.117 联结MO 、EO 、FO 、SO ,设O 的半径为r ,则由勾股定理,有222FM OE r =-,118 222FS OF r =-.又显然,有MG GR SG GN ⋅=⋅.119 于是,2222EG FG EO FO -=-. 120 由定差幂线定理,知OG EF ⊥.121 由此例及勃罗卡定理,则可简捷处理如下问题:122 例7(1989年IMO 预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四123 边形指既有外接圆,又有内切圆的四边形).124 证明如图327-,设O ,I 分别为四边形ABCD 的外接圆、内切圆圆心,AC 与BD 交于点125 G .当ABCD 为梯形时,结论显然成立,O ,I ,G 共线于上、下底中点的联线.126图327ADFCOI G BE127 当ABCD 不为梯形时,可设直线AD 与直线DC 交于点E ,直线BC 与直线AD 交于点F ,128 联结EF .129 由勃罗卡定理,知OG EF ⊥;由例6的结论,知IG EF ⊥. 130 故O ,I ,G 三点共线.131将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对132 角线交点在完全四边形另一条对角线上的射影,则有133 例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD 的两组对边所在直线134 分别交于E ,F 两点,两对角线的交点为P ,过P 作PO EF ⊥于点O .求证:BOC AOD ∠=∠.135图328A DFOEP CB136 事实上,可类似于前面例2的证法即证得结论成立.137 将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有138 例9(2001年全国高中联赛题)如图329-,ABC △中,O 为外心,三条高AD 、BE 、CF 139 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .140图329AE CNMDBF OH141 求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥. 142 证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠. 143 又()1180902OBC BOC BAC ∠=︒-∠=︒-∠,144即90OBD BDF ∠=︒-∠,故OB DF ⊥. 145 同理,OC DE ⊥.146 (2)要证OH MN ⊥,由定差幂线定理知,只要证明 147 有222MO MH NO NH -=-即可.148 注意到CH MA ⊥,有2222MC MH AC AH -=-,①149 BH NA ⊥,有2222NB NH AB AH -=-.② 150 DA BC ⊥,有2222BD CD BA AC -=-,③ 151 OB DN ⊥,有2222BN BD DN OD -=-,④152 OC DM ⊥,有2222CM CD DM OD -=-.⑤153 由①-②+③+④-⑤得2222NH MH ON OM -=-. 154 即有2222MO MH NO NH -=-. 155 故OH MN ⊥.156 将例9中的外心O 演变为一般的点,则有157 例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,158 交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥.15911 图3210AE C ND HO Q FB MP160证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 161注意到HN OB ⊥,HM OC ⊥,分别有 1622222OH ON BH BN -=-,2222OH OM CH CM -=-. 163从而得222222OM ON CM BN BH CH -=-+-.① 164由BH AN ⊥,有2222BA BN HA HN -=-, 165CH AM ⊥,有2222CA CM HA HM -=-, 166AH BC ⊥,有2222AB AC HB HC -=-. 167从而得222222HM HN CM BN BH CH -=-+-.② 168由①,②得2222OM ON HM HN -=-.故OH MN ⊥. 169170。
高中数学联赛平面几何常用定理
(高中)平面几何常用基本定理1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+;中线长:222222a c b m a -+=.4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥.高线长:C b B c A abc c p b p a p p ah a sin sin sin ))()((2===---=.5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则ACAB DCBD=;(外角平分线定理).角平分线长:2cos 2)(2Ac b bc a p bcp cb t a +=-+=(其中p 为周长一半). 6. 张角定理:ABDAC ACBAD ADBAC ∠+∠=∠sin sin sin .7. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .8. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?) 9. 弦切角定理:弦切角等于夹弧所对的圆周角. 10. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:) 11. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.12. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 13. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD . 14. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .15. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.16. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C1 、⊙A1 、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1 、⊙A1 、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C2 、⊙A2 、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2 、⊙A2 、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.17. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;18. (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.19. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.20. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d2=R2-2Rr .21. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.22. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(CB AC B A y y y x x x G ++++23. 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;24.(2)设G 为△ABC 的重心,则ABCAC G BC G ABG S S S S ∆∆∆∆===31;25. (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KHCA FP BC DE AB KH CA FP BC DE ;26. (4)设G 为△ABC 的重心,则27.①222222333GC AB GB CA GA BC +=+=+;28. ②)(31222222CA BC AB GC GB GA ++=++;29.③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);30.④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;31. ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).32. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (C cB b A a yC cy B b y A a C c B b A a x C c x B b x A a H CB AC B A ++++++++33.垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍; 34. (2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;35. (3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆; 36. (4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.37. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;38. ),(c b a cy by ay c b a cx bx ax I CB AC B A ++++++++39. 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然; 40.(2)设I 为△ABC 的内心,则CAIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190;41.(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;42.(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC外接圆于点K ,则a cb KD IK KI AK ID AI +===; 43.(5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.44. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; 45.)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O CB AC B A ++++++++46. 外心性质:(1)外心到三角形各顶点距离相等;47. (2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;48. (3)∆=S abcR 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.49.旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠;(3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R . 50. 三角形面积公式:C B A R R a b cC ab ah S a ABCsin sin sin 24sin 21212====∆)c o tc o t (c o t4222C B A c b a ++++=))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=.51.三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4CB A R rC B A R r C B A R r C B A R r c b a ====.1111;2tan2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++===52. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有1=⋅⋅RBARQA CQ PC BP .(逆定理也成立)53. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.54. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.55.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.56.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.57.塞瓦定理的逆定理:(略)58.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.59.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点.60.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).61.西摩松定理的逆定理:(略)62.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.63.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.64.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P 的西摩松线通过线段PH的中心.65.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P 关于△ABC的镜象线.66.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.67.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.68.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.69.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A 和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.70.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC 交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .71.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R 关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.72.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.73.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.74.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.75.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.76.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC 的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.77.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.78.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q两点关于圆O互为反点)79.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.80.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.81.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.82.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.83.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.84.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L 两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.85.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.86.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.87.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.88.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C 和F,则这三线共点.89. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和F A 的(或延长线的)交点共线.90. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆. 91. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.92. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.93. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.94. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF -=∆∆.斯特瓦尔特定理斯特瓦尔特(stewart)定理设已知△ABC 及其底边上B 、C 两点间的一点D ,则有 AB^2·DC+AC^2·BD-AD^2·BC =BC·DC·BD 。
高中数学竞赛解题策略组合分册
高中数学竞赛解题策略组合分册第一章:数学竞赛的意义与挑战1. 数学竞赛不仅仅是一项学科竞赛,更是思维训练的过程。
在参加数学竞赛的过程中,学生不仅仅是在解决问题,更是在培养逻辑思维、数学推理和数学建模的能力。
2. 数学竞赛的题目难度较高,需要学生具备扎实的数学基础、优秀的逻辑思维能力和丰富的解题经验。
参加数学竞赛对学生来说是一项挑战,也是一次提高自身数学能力的机会。
3. 通过参加数学竞赛,学生可以在解题过程中积累经验,提高解题速度和准确度,更好地理解数学知识,并培养良好的数学思维习惯。
第二章:数学竞赛解题的策略与方法1. 熟练掌握数学基础知识是参加数学竞赛的基础。
学生要熟练掌握数学基础知识,包括代数、几何、数论等各个方面的知识点,才能在竞赛题目中灵活运用。
2. 多做历年数学竞赛试题,尤其是一些经典的难题。
通过做历年试题,学生可以了解数学竞赛的出题规律和题型,积累解题经验,发现自身在某些知识点上的不足之处,及时进行补充和强化。
3. 注重解题过程中的思维方法和策略。
在解题过程中,学生要注意用多种方法进行思考和解决问题,可以尝试逆向思维、分析归纳、构造反证等不同的思维方法,找到问题的突破口。
4. 多与同学或老师讨论,参加数学竞赛的学生可以多与同学或老师讨论解题思路,交流解题经验,互相学习、互相提高。
5. 树立信心,面对数学竞赛中的难题,学生要树立信心,保持心态平和,不要惧怕困难,要相信自己的能力,努力克服困难。
第三章:高中数学竞赛解题策略的实例分析通过对一些经典的数学竞赛试题进行分析,我们可以看到一些解题的策略和方法在实际题目中是如何运用的。
1. 策略一:分类讨论法对于一些复杂的题目,可以采用分类讨论的方法进行解题。
对于一个几何问题,可以将几何图形进行分类讨论,找到不同情况下的规律,从而解决问题。
2. 策略二:构造法在数学竞赛中,应用构造法解题是比较常见的策略。
通过构造一些特殊的数据或图形,可以发现问题的规律,从而得到解题的线索。
高中数学联赛中常见的几何定理
高中数学联赛中常见的几何定理第一篇:高中数学联赛中常见的几何定理梅涅劳斯定理:梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。
他指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。
证明:过点A作AG‖BC交DF的延长线于GAF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。
利用这个逆定理,可以判断三点共线。
塞瓦定理:在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1证法简介(Ⅰ)本题可利用梅涅劳斯定理证明:∵△ADC被直线BOE所截,∴(CB/BD)*(DO/OA)*(AE/EC)=1 ①而由△ABD被直线COF所截,∴(BC/CD)*(DO/OA)*(AF/FB)=1②②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1(Ⅱ)也可以利用面积关系证明∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③同理CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤③×④×⑤得BD/DC*CE/EA*AF/FB=1利用塞瓦定理证明三角形三条高线必交于一点:设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]= 1,所以三条高CD、AE、BF交于一点。
高中数学竞赛中平面几何涉及的定理
1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
数学竞赛常用平面几何名定理
高中数学常用平面几何名定理定理1 Ptolemy定理托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
定理2 Ceva定理定理3 Menelaus定理定理4 蝴蝶定理定理内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ 于X,Y,则M为XY之中点。
定理5 张角定理在△ABC中,D是BC上的一点。
连结AD。
张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD定理6 Simon line西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
定理7 Eular line:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半定理8 到三角形三定点值和最小的点——费马点已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
定理9 三角形内到三边距离之积最大的点是三角形的重心定理10到三角形三顶点距离的平方和最小的点是三角形的重心在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。
这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。
1、欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半2、九点圆:任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
3、费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
高中数学竞赛解题策略-几何分册第32章勃罗卡定理
第32章勃罗卡定理勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆.图321MFOL G NEDCBA分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-. 22EG GN BG GD R OG ⋅=⋅=-.以上两式相减得()22222EG OE R R OG =---,即22222OE EG R OG -=-. 同理,22222OF FG R OG -=-.又由上述两式,有2222OE EG OF FG -=-. 于是,由定差幂线定理,知OG EF ⊥. 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥. 同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 于是,知G 为OEF △的垂心,故OG EF ⊥. 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠,从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠ 90(180)90BCD BCD =︒-︒-∠=∠-︒11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭,即知点M 在OBD △的外接圆上.同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 该定理有如下推论推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥.由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合.推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M .推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心.事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例.例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心.例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠.图322FA证明由勃罗卡定理知,OP EF ⊥于点G .延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠.延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得BGP DGP ∠=∠. 故AGB CGD ∠=∠.例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与AB 交于点M . 求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.图323证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,知OK PQ ⊥. 由题设,OK MN ⊥,从而知PQ MN ∥. 即有AQ APQN PM=.①对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 有1NB DE AQBD EA QN⋅⋅= 及1MC DE APCD EA PM⋅⋅=. 由①,②得NB MCBD CD=. 再应用分比定理,有ND MDBD DC=, 从而DMN DCB △∽△. 于是,DMN DCB ∠=∠.即有BC MN ∥,从而OK BC ⊥,得到K 为BC 的中点,这与已知矛盾.故A ,B ,D ,C 四点共圆.例4(1997年CMO 试题)设四边形ABCD 内接于圆,边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q .由点Q 作该圆的两条切线QE ,QF ,切点分别为E ,F .求 证:P ,E ,F 三点共线.证明如图324-,设ABCD 的圆心为O ,AC 与BD 交于点G ,联结PQ ,则由勃罗卡定理,知OG PQ ⊥.A图324设直线OG 交PQ 于点M ,则由推论1,知M 为完全四边形ABPCQD 的密克尔点,即知M 、Q 、D 、C 四点共圆.又O 、E 、Q 、F 四点共圆,且OQ 为其直径,注意到OM MQ ⊥,知点M 也在OEQF 上.此时,MQ ,CD ,EF 分别为MQDC ,OEMQF ,ABCD 两两相交的三条公共弦.由根心定理,知MQ 、CD 、EF 三条直线共点于P .故P ,E ,F 三点共线.例5(2006年瑞士国家队选拔赛题)在锐角ABC △中,AB AC ≠,H 为ABC △的垂心,M 为BC 的中点,D 、E 分别为AB ,AC 上的点,且AD AE =,D 、H 、E 三点共线.求证:ABC △的外接圆与ADE △的外接圆的公共弦垂直于HM .证明如图325-,分别延长BH ,CH 交AC 、AB 于点B '、C ',则知A 、C '、H 、B '及B 、C 、B '、C '分别四点共圆,且AH 为AC HB ''的直径,点M 为BCB C ''的圆心.HB'QCEMNBC 'P图325设直线BC 与直线C B ''交于点Q ,联结AQ ,则在完全四边形BCQB AC ''中,由勃罗卡定理,知MH AQ ⊥.设直线MH 交AQ 于点P ,则由推论1,2知HP AQ ⊥,且P 为完全四边形BCQB AC ''的密克尔点,由此,即知P 为ABC 与AC HB ''的另一个交点,亦即AP 为ABC 与AC HB ''的公共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥. 下证点P 在ADE △的外接圆上.延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上.由DBH ECH △∽△, 有BD CEBH CH=. 由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅, 并注意BN CN =,NC BH =, 于是由*,有BD BH NC BPCE CH BN CP===, 即BD CEBP CP=. 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠. 于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上.故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM . 下面看定理的演变及应用将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有 例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G .则OG EF ⊥.图326S DFRCG OM BEN证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、BD 、MR 、NS 四线共点于G .注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅. 同理,22FG FS SG GN =-⋅. 由上述两式相减,得2222EG FG EM FS MG GR SG GN -=--⋅+⋅. 联结MO 、EO 、FO 、SO ,设O 的半径为r ,则由勾股定理,有222FM OE r =-,222FS OF r =-.又显然,有MG GR SG GN ⋅=⋅.于是,2222EG FG EO FO -=-. 由定差幂线定理,知OG EF ⊥.由此例及勃罗卡定理,则可简捷处理如下问题:例7(1989年IMO 预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四边形指既有外接圆,又有内切圆的四边形). 证明如图327-,设O ,I 分别为四边形ABCD 的外接圆、内切圆圆心,AC 与BD 交于点G .当ABCD 为梯形时,结论显然成立,O ,I ,G 共线于上、下底中点的联线.图327ADFCO I G BE当ABCD 不为梯形时,可设直线AD 与直线DC 交于点E ,直线BC 与直线AD 交于点F ,联结EF . 由勃罗卡定理,知OG EF ⊥;由例6的结论,知IG EF ⊥. 故O ,I ,G 三点共线.将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对角线交点在完全四边形另一条对角线上的射影,则有例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD 的两组对边所在直线分别交于E ,F 两点,两对角线的交点为P ,过P 作PO EF ⊥于点O .求证:BOC AOD ∠=∠.图328DFOEP CB事实上,可类似于前面例2的证法即证得结论成立.将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有例9(2001年全国高中联赛题)如图329-,ABC △中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .图329AE CNMDBF OH求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥.证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠.又()1180902OBC BOC BAC ∠=︒-∠=︒-∠, 即90OBD BDF ∠=︒-∠,故OB DF ⊥. 同理,OC DE ⊥.(2)要证OH MN ⊥,由定差幂线定理知,只要证明 有222MO MH NO NH -=-即可.注意到CH MA ⊥,有2222MC MH AC AH -=-,① BH NA ⊥,有2222NB NH AB AH -=-.② DA BC ⊥,有2222BD CD BA AC -=-,③ OB DN ⊥,有2222BN BD DN OD -=-,④ OC DM ⊥,有2222CM CD DM OD -=-.⑤由①-②+③+④-⑤得2222NH MH ON OM -=-. 即有2222MO MH NO NH -=-. 故OH MN ⊥.将例9中的外心O 演变为一般的点,则有例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥.图3210E C ND H O QF BMP证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 注意到HN OB ⊥,HM OC ⊥,分别有2222OH ON BH BN -=-,2222OH OM CH CM -=-. 从而得222222OM ON CM BN BH CH -=-+-.① 由BH AN ⊥,有2222BA BN HA HN -=-, CH AM ⊥,有2222CA CM HA HM -=-, AH BC ⊥,有2222AB AC HB HC -=-.从而得222222HM HN CM BN BH CH -=-+-.②由①,②得2222OM ON HM HN -=-.故OH MN ⊥.。
2021年联赛几何题的十个思路和20种解法
2021年联赛几何题的十个思路和20种解法2021年高中数学联赛加试第二题为几何题,题目为:如图所示,在△ABC中,M是边BC的中点,D、E是△ABC的外接圆在点处的切线上的两点,满MD//AB,且A是线段DE的中点,过A、D、P三点的圆与边AC相交于另一点P,过A、D、P三点的圆与DM的延长线相交于点Q.证明:∠BCQ=∠BAC.先不增加其他点,适当连线,寻找图形的基本性质,容易得到:设△ABC边角为a,b,c;A,B,C.则等线段:AE=AD,MA=MC=0.5b,等角:∠A=∠AMD=∠QMP=∠BEP,∠B=∠DAC=∠DQP=∠EBP,∠C=∠EAB=∠ADM=∠APQ=∠EPB,∠BPC=∠BEA,∠PEA=∠PBA,平行;DQ//AB,PQ//BC,相似:△ABC∼△MAD∼△MQP∼△EBP,△BAE∼△BCP。
下面从结果入手分析,欲证∠BCQ=∠BAC,即确定点Q的位置,根据不同的确定方式,有以下几种思路:思路一:不添加其他点,直接证明△CMQ∼△CPQ。
设∠QCB=y,由分角定理则(CP/CM)=(PQsin∠CQP/(MQsin∠CQM),即(CP/AE)(AE/AM)=(AD/AM)(siny/sin(y+B)),即(sin(y+B)/siny)=(sin(A+B)/sinA),即coty=cotA,故∠QCB=∠A。
思路二:不添加其他点,计算确定△CMQ或△CPQ形状显然若∠BCQ=∠BAC,则上述结论成立。
下面只需说明满足上述条件的点Q是唯一的即可。
有5个方法的,解法3:用同一法若DM上Q'满足∠Q'CB=∠A,则MQ=MQ',由同一法Q,Q'重合,即∠QCB=∠A。
解法4:用单调性,(蕴秀斋)设∠MCQ=x,则f(x)=sin(x+A)/sinx=cosA+sinAcotx显然是单调的,从而x=C-A,即∠QCB=∠A。
解法5:用方程,设∠MCQ=x,则sin(x+A)/sinx=sinC/sin(C-A),即cosA+sinAcotx=cosA+sinAcot(C-A),cotx=cot(C-A),从而x=C-A,即∠QCB=∠A。
数学竞赛中解析几何问题的解法(一)-最新教育资料
数学竞赛中解析几何问题的解法(一)
解析几何是各种考试中的重点和难点内容,解析几何题的运算量往往较大,所以很多同学简易出错或者做着做着就做不下去了.所以减少运算量、降低难度常常是解析几何题能否顺利做出来的关键.本文就选了近年的部分考题,来说明解好解析几何题的一些方法.
一、抓住定义解题――要烂熟掌握圆锥曲线的两个定义,很多考题都是从定义出发求解的
二、用好韦达定理――韦达定理是解题的严重工具,圆锥曲线问题中恰当运用韦达定理可以减少不必要的运算
三、结合向量――近年解析几何题常常安一个向量的外壳,所以烂熟运用向量知识在解这类题中至关严重
例6对于两条互相垂直的直线和一个椭圆,已知椭圆无论如何滑动都与两条直线相切,求椭圆中心轨迹.(上海交大自主招生考试)
解以两条直线的交点为原点,两条直线为坐标轴建立直角坐标系.设椭圆的长轴长与短轴长分别为2a,2b(a>b>0).中心为P(x,y),两个焦点分别为F1,F2.
1/ 1。
高中数学竞赛解题策略代数分册
高中数学竞赛解题策略代数分册一、书籍简介《高中数学竞赛解题策略代数分册》是一本专门针对高中数学竞赛的辅导书籍,它针对代数部分提供了系统的解题策略和技巧。
本书的作者们都是经验丰富的数学教育专家,他们通过多年的教学实践,总结出了一套行之有效的解题方法。
二、书籍内容本书的内容涵盖了高中数学竞赛代数部分的各个方面,包括方程、函数、数列、不等式、几何等。
每个章节都由浅入深,逐步讲解解题方法和技巧,并通过大量的例题和练习题,帮助读者巩固所学知识。
本书的一大亮点是,作者们将代数知识巧妙地融合在一起,形成了一套完整的解题体系。
读者在阅读时,可以逐步掌握各种解题技巧,提高解题能力。
此外,本书还提供了许多实用的解题方法,如“换元法”、“待定系数法”等,这些方法在解决实际问题时非常有效。
三、个人体验作为一名数学竞赛爱好者,我曾经在解题过程中遇到过很多困难。
但是,自从我开始阅读《高中数学竞赛解题策略代数分册》之后,我的解题能力有了明显的提高。
这本书中的解题方法非常实用,通过阅读这本书,我学会了如何将复杂的题目化繁为简,如何从不同的角度思考问题,如何灵活运用所学知识。
四、建议对于想要提高数学竞赛水平的同学,我强烈推荐阅读《高中数学竞赛解题策略代数分册》。
这本书不仅可以帮助你掌握代数部分的解题技巧,还可以提高你的思维能力和解决问题的能力。
当然,在阅读这本书时,你也需要注意一些问题。
首先,你需要认真阅读每一章节,理解其中的概念和公式。
其次,你需要多做练习题,通过练习题来巩固所学知识。
最后,你需要学会灵活运用所学知识,尝试解决实际问题。
五、总结总的来说,《高中数学竞赛解题策略代数分册》是一本非常优秀的辅导书籍。
它不仅提供了系统的解题策略和技巧,还通过大量的例题和练习题,帮助读者巩固所学知识。
对于想要提高数学竞赛水平的同学来说,这本书是一本不可多得的佳作。
通过阅读这本书,你可以掌握代数部分的解题技巧,提高思维能力和解决问题的能力。
2021年全国高中数学联赛竞赛大纲(修订稿)及全部定理内容
全国高中数学联赛竞赛大纲及全部定理内容欧阳光明(2021.03.07)一、平面几何1、数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
4、几何不等式。
5、简单的等周问题。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
6、几何中的运动:反射、平移、旋转。
7、复数方法、向量方法。
平面凸集、凸包及应用。
二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
2、第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
3、n个变元的平均不等式,柯西不等式,排序不等式及应用。
4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。
5、圆排列,有重复的排列与组合,简单的组合恒等式。
6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
三、立体几何1、多面角,多面角的性质。
三面角、直三面角的基本性质。
2、正多面体,欧拉定理。
3、体积证法。
4、截面,会作截面、表面展开图。
四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。
2、二元一次不等式表示的区域。
3、三角形的面积公式。
4、圆锥曲线的切线和法线。
5、圆的幂和根轴。
五、其它抽屉原理。
高中数学竞赛平面几何基本定理
(高中)平面几何基础知识(基本定理、基本性质)勾股定理(毕达哥拉斯定理) (广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边 和另一边在这边上的射影乘积的两倍.(2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.射影定理(欧几里得定理)中线定理(巴布斯定理)设厶 ABC 的边BC 的中点为P ,则有AB 2 • AC 2 = 2( AP 2 ■ BP 2 );中线长:=:2b 2 +2c 2 _a 2 m a2垂线定理:2 2 2 2AB _ CD 二 AC -AD 二 BC - BD . 高线长: 2bch ap( p - a)( p -b)( p - c) sin A -c sin B - b sin C . a a角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 如厶ABC 中,AD 平分/ BAC ,_则 竺二竺;(外角平分线定理)DC _AC角平分线长:2■2bc A »亠 、,口 …t abcp(p —■a)cos (其中 p 为周长一半). b +cb +c 2正弦定理: ab c2R ,(其中R 为三角形外接圆半径).sin A sin B sin C余弦定理: 2 2 . 2ca 亠b —2ab cos C .张角定理: sin . BACsin . BAD sin . DACAD-ACAB斯特瓦尔特 (Stewart )定理:设已知△ ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 • DC+AC 2 • BD — AD 2 • BC BC • DC • BD .圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)弦切角定理:弦切角等于夹弧所对的圆周角.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理) :切线长定理:)布拉美古塔(Brahmagupta )定理: 在圆内接四边形 ABCD 中,AC 丄BD ,自对角线的交点 P 向一边作垂线,其延 长线必平分对边.点到圆的幂:设 P 为。
高中数学竞赛解题策略代数分册
高中数学竞赛解题策略代数分册摘要:一、引言1.高中数学竞赛的概述2.代数分册的重要性二、代数基础知识1.初等代数的基本概念2.代数运算及其法则三、解题策略1.理解题目要求和条件2.构建代数模型3.运用解题方法和技巧四、代数题型分类解析1.代数计算题2.代数应用题3.代数证明题五、竞赛题型特点与应对策略1.竞赛题目的难度和深度2.题目设计的创新性3.解题时间的把握六、代数分册的学习方法1.系统学习与重点突破2.理论与实践相结合3.及时复习与总结七、结论1.代数分册在数学竞赛中的关键作用2.培养解题能力和应试技巧的重要性正文:一、引言随着教育的发展和竞争的加剧,高中数学竞赛越来越受到广大师生的关注。
其中,高中数学竞赛代数分册作为竞赛的重要组成部分,不仅考验学生的基本知识掌握程度,还考察了解题策略和应试技巧。
本文将从以下几个方面展开讨论,旨在为广大考生提供实用的解题策略和指导。
二、代数基础知识1.初等代数的基本概念:初等代数主要包括数、式、方程、不等式等基本概念,是解决代数问题的基础。
2.代数运算及其法则:掌握加法、减法、乘法、除法等运算规则,以及运算过程中的符号规律,如乘法分配律、结合律等。
三、解题策略1.理解题目要求和条件:在解答代数题目时,首先要清晰地理解题目的要求和条件,确保自己对题目的理解无误。
2.构建代数模型:根据题目条件和问题,构建适当的代数模型,将实际问题转化为代数问题。
3.运用解题方法和技巧:在解答过程中,要灵活运用所学知识和解题方法,如公式法、代入法、消元法等。
四、代数题型分类解析1.代数计算题:主要考察学生的基本运算能力和计算技巧,如求解方程、不等式,计算代数式等。
2.代数应用题:将代数知识应用于实际问题,考察学生的应用能力和分析问题的能力。
3.代数证明题:要求学生熟练掌握代数证明的方法和技巧,如直接证明、反证法、数学归纳法等。
五、竞赛题型特点与应对策略1.竞赛题目的难度和深度:高中数学竞赛的题目往往具有一定的难度和深度,需要学生具备一定的数学素养。
山西省太原市高中数学竞赛解题策略几何分册第32章勃罗卡定理
第32章勃罗卡定理勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-. 22EG GN BG GD R OG ⋅=⋅=-.以上两式相减得()22222EG OE R R OG =---,即22222OE EG R OG -=-.同理,22222OF FG R OG -=-.又由上述两式,有2222OE EG OF FG -=-.于是,由定差幂线定理,知OG EF ⊥.证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥.同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 于是,知G 为OEF △的垂心,故OG EF ⊥.证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠,从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭, 即知点M 在OBD △的外接圆上.同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥.该定理有如下推论推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合.推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心.事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例.例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心. 例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠. 证明由勃罗卡定理知,OP EF ⊥于点G .延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠. 延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得BGP DGP ∠=∠.故AGB CGD ∠=∠.例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与AB 交于点M .求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,知OK PQ ⊥.由题设,OK MN ⊥,从而知PQ MN ∥. 即有AQ AP QN PM=.① 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 有1NB DE AQ BD EA QN ⋅⋅= 及1MC DE AP CD EA PM⋅⋅=. 由①,②得NB MC BD CD =. 再应用分比定理,有ND MD BD DC=, 从而DMN DCB △∽△.于是,DMN DCB ∠=∠.即有BC MN ∥,从而OK BC ⊥,得到K 为BC 的中点,这与已知矛盾.故A ,B ,D ,C 四点共圆.例4(1997年CMO 试题)设四边形ABCD 内接于圆,边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q .由点Q 作该圆的两条切线QE ,QF ,切点分别为E ,F .求 证:P ,E ,F 三点共线.证明如图324-,设ABCD 的圆心为O ,AC 与BD 交于点G ,联结PQ ,则由勃罗卡定理,知OG PQ ⊥.设直线OG 交PQ 于点M ,则由推论1,知M 为完全四边形ABPCQD 的密克尔点,即知M 、Q 、D 、C 四点共圆.又O 、E 、Q 、F 四点共圆,且OQ 为其直径,注意到OM MQ ⊥,知点M 也在OEQF 上. 此时,MQ ,CD ,EF 分别为MQDC ,OEMQF ,ABCD 两两相交的三条公共弦.由根心定理,知MQ 、CD 、EF 三条直线共点于P .故P ,E ,F 三点共线.例5(2006年瑞士国家队选拔赛题)在锐角ABC △中,AB AC ≠,H 为ABC △的垂心,M 为BC 的中点,D 、E 分别为AB ,AC 上的点,且AD AE =,D 、H 、E 三点共线.求证:ABC △的外接圆与ADE △的外接圆的公共弦垂直于HM . 证明如图325-,分别延长BH ,CH 交AC 、AB 于点B '、C ',则知A 、C '、H 、B '及B 、C 、B '、C '分别四点共圆,且AH 为AC HB ''的直径,点M 为BCB C ''的圆心. 设直线BC 与直线C B ''交于点Q ,联结AQ ,则在完全四边形BCQB AC ''中,由勃罗卡定理,知MH AQ ⊥.设直线MH 交AQ 于点P ,则由推论1,2知HP AQ ⊥,且P 为完全四边形BCQB AC ''的密克尔点,由此,即知P 为ABC 与AC HB ''的另一个交点,亦即AP 为ABC 与AC HB ''的公共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故A P H M ⊥. 下证点P 在ADE △的外接圆上.延长HM 至N ,使M N H M =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上. 由DBH ECH △∽△, 有BD CE BH CH=. 由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅,并注意BN CN =,NC BH =,于是由*,有BD BH NC BP CE CH BN CP ===, 即BD CE BP CP=. 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠. 于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上. 故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM . 下面看定理的演变及应用将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有 例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G .则OG EF ⊥.证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、BD 、MR 、NS 四线共点于G .注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅. 同理,22FG FS SG GN =-⋅.由上述两式相减,得2222EG FG EM FS MG GR SG GN -=--⋅+⋅.联结MO 、EO 、FO 、SO ,设O 的半径为r ,则由勾股定理,有222FM OE r =-,222FS OF r =-.又显然,有MG GR SG GN ⋅=⋅. 于是,2222EG FG EO FO -=-.由定差幂线定理,知OG EF ⊥.由此例及勃罗卡定理,则可简捷处理如下问题: 例7(1989年IMO 预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四边形指既有外接圆,又有内切圆的四边形).证明如图327-,设O ,I 分别为四边形ABCD 的外接圆、内切圆圆心,AC 与BD 交于点G .当ABCD 为梯形时,结论显然成立,O ,I ,G 共线于上、下底中点的联线.。
关于高级初中中学数学竞赛定理大全
欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。
九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
海伦(Heron)公式:塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。
密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。
葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。
西摩松(Simson)线:已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。
黄金分割:把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB)与较小线段(BC)的比例中项,这样的分割称为黄金分割。
帕普斯(Pappus)定理:已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2 B3于A3 B2交于点Z,则X、Y、Z三点共线。
笛沙格(Desargues)定理:已知在△ ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则△DEF是正三角形,这个正三角形称为摩莱三角形。
高中数学竞赛解题策略代数分册
高中数学竞赛解题策略代数分册
【原创实用版】
目录
1.高中数学竞赛解题策略代数分册的概述
2.代数分册的内容和结构
3.代数分册的特点和优势
4.高中数学竞赛解题策略的影响和应用
5.推荐阅读的类似书籍
正文
高中数学竞赛解题策略代数分册是针对高中生数学竞赛的辅导书籍,主要涵盖了代数方面的知识。
作为数学竞赛的一部分,代数分册对于提高学生的数学能力和解题技巧具有重要意义。
代数分册的内容和结构非常清晰,它以高中数学奥林匹克竞赛大纲为依据,构建了代数知识体系和框架结构。
详细论述了初等代数的基础知识、基本理论和基本的技能技巧,着重讲解了初等代数的解题思想和方法。
代数分册的特点和优势在于它的针对性和实用性。
书中的知识点和解题技巧都是针对高中数学竞赛的难点和重点,能够帮助学生在比赛中取得好成绩。
同时,代数分册的例题和习题也非常典型和实用,能够让学生在实践中掌握知识点和解题技巧。
除此之外,高中数学竞赛解题策略的影响和应用也非常广泛。
它不仅适用于高中数学竞赛,也能够帮助学生提高数学能力和解题技巧,适用于各种数学考试和数学学习。
对于喜欢阅读类似书籍的学生,我们推荐《奥赛经典。
组合卷》和《组合极值。
论证与构造》等书籍。
这些书籍都能够帮助学生更好地理解数学知识,提高数学能力和解题技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛解题策略几何分册勃罗卡定理 This model paper was revised by LINDA on December 15, 2012.第32章勃罗卡定理勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥.证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ⋅=⋅=-. 22EG GN BG GD R OG ⋅=⋅=-.以上两式相减得()22222EG OE R R OG =---,即22222OE EG R OG -=-.同理,22222OF FG R OG -=-.又由上述两式,有2222OE EG OF FG -=-.于是,由定差幂线定理,知OG EF ⊥.证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥.同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥.于是,知G 为OEF △的垂心,故OG EF ⊥.证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD .此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠,从而9090BMO DMO DMF DCF ∠-∠=︒-∠=︒-∠11180909022BOD BOD BOD ⎛⎫=︒-∠-︒=︒-∠=∠ ⎪⎝⎭, 即知点M 在OBD △的外接圆上.同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥.该定理有如下推论推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点.事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合.推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心.事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例.例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.事实上,由推论3知R 为OPQ △的垂心,再由垂心组的性质即知O 为PQR △的垂心.例2如图322-,凸四边形ABCD 内接于O ,延长AB ,DC 交于点E ,延长BC ,AD 交于点F ,AC 与BD 交于点P ,直线OP 交EF 于点G .求证:AGB CGD ∠=∠. 证明由勃罗卡定理知,OP EF ⊥于点G .延长AC 交EF 于点Q ,则在完全四边形ABECFD 中,点P ,Q 调和分割AC ,从而GA ,GC ,GP ,GQ 为调和线束,而GP GQ ⊥,于是GP 平分AGC ∠,即AGP CGP ∠=∠. 延长DB 交直线EF 于点L (或无穷远点L ),则知L ,P 调和分割BD ,同样可得BGP DGP ∠=∠.故AGB CGD ∠=∠.例3(2011年全国高中联赛题)如图323-,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于N ,直线CD 与AB 交于点M .求证:若OK MN ⊥,则A ,B ,D ,C 四点共圆.证明用反证法.若A ,B ,D ,C 四点不共圆,则可设ABC △的外接圆O 与直线AD 交于点E ,直线CE 交直线AB 于P .直线BE 交直线AC 于Q .联结PQ ,则由勃罗卡定理,知OK PQ ⊥.由题设,OK MN ⊥,从而知PQ MN ∥. 即有AQ AP QN PM=.① 对NDA △及截线BEQ ,对MDA △及截线CEP 分别应用梅涅劳斯定理 有1NB DE AQ BD EA QN ⋅⋅= 及1MC DE AP CD EA PM⋅⋅=. 由①,②得NB MC BD CD=. 再应用分比定理,有ND MD BD DC =, 从而DMN DCB △∽△.于是,DMN DCB⊥,得到K为BC的中点,这与已知矛∠=∠.即有BC MN∥,从而OK BC盾.故A,B,D,C四点共圆.例4(1997年CMO试题)设四边形ABCD内接于圆,边AB与DC的延长线交于点P,AD 与BC的延长线交于点Q.由点Q作该圆的两条切线QE,QF,切点分别为E,F.求证:P,E,F三点共线.证明如图324-,设ABCD的圆心为O,AC与BD交于点G,联结PQ,则由勃罗卡定理,知OG PQ⊥.设直线OG交PQ于点M,则由推论1,知M为完全四边形ABPCQD的密克尔点,即知M、Q、D、C四点共圆.又O、E、Q、F四点共圆,且OQ为其直径,注意到OM MQ⊥,知点M也在OEQF 上.此时,MQ,CD,EF分别为MQDC,OEMQF,ABCD两两相交的三条公共弦.由根心定理,知MQ、CD、EF三条直线共点于P.故P,E,F三点共线.例5(2006年瑞士国家队选拔赛题)在锐角ABC△的垂心,M△中,AB AC≠,H为ABC为BC的中点,D、E分别为AB,AC上的点,且AD AE=,D、H、E三点共线.求证:ABC△的外接圆与ADE△的外接圆的公共弦垂直于HM.证明如图325-,分别延长BH,CH交AC、AB于点B'、C',则知A、C'、H、B'及''的直径,点M为BCB C''的圆心.B、C、B'、C'分别四点共圆,且AH为AC HB设直线BC与直线C B''交于点Q,联结AQ,则在完全四边形BCQB AC''中,由勃罗卡定理,知MH AQ⊥.设直线MH交AQ于点P,则由推论1,2知HP AQ''的密克⊥,且P为完全四边形BCQB AC尔点,由此,即知P为ABC与AC HB''的公''的另一个交点,亦即AP为ABC与AC HB共弦,也可由根心定理,知三条公共弦BC ,C B '',AP 所在直线共点于Q .故AP HM ⊥.下证点P 在ADE △的外接圆上.延长HM 至N ,使MN HM =,则四边形BNCH 为平行四边形,由此亦推知N 在ABC 上. 由DBH ECH △∽△, 有BD CE BH CH=. 由BPN CPN S S =△△,有BP BN NC CP ⋅=⋅,并注意BN CN =,NC BH =,于是由*,有BD BH NC BP CE CH BN CP ===, 即BD CE BP CP=. 而DBP ECP ∠=∠,则DBP ECP △∽△,即有BDP CEP ∠=∠.于是,ADP AEP ∠=∠,即点P 在ADE △的外接圆上.故ABC △的外接圆与ADE △的外接圆的公共弦AP 垂直于HM .下面看定理的演变及应用将定理中的凸四边形ABCD 内接于圆,演变成凸四边形外切于圆,则有例6如图326-,凸四边形ABCD 外切于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G .则OG EF ⊥.证明设O 与边AB ,BC ,CD ,DA 分别切于点M 、N 、R 、S ,则由牛顿定理,知AC 、BD 、MR 、NS 四线共点于G .注意到EM ER =,在等腰ERM △中应用斯特瓦尔特定理,有22EG EM MG GR =-⋅. 同理,22FG FS SG GN =-⋅.由上述两式相减,得2222EG FG EM FS MG GR SG GN -=--⋅+⋅.联结MO、EO、FO、SO,设O的半径为r,则由勾股定理,有222=-,FM OE r 222FS OF r=-.又显然,有MG GR SG GN⋅=⋅.于是,2222-=-.EG FG EO FO由定差幂线定理,知OG EF⊥.由此例及勃罗卡定理,则可简捷处理如下问题:例7(1989年IMO预选题)证明:双心四边形的两个圆心与其对角线交点共线(双心四边形指既有外接圆,又有内切圆的四边形).证明如图327-,设O,I分别为四边形ABCD的外接圆、内切圆圆心,AC与BD交于点G.当ABCD为梯形时,结论显然成立,O,I,G共线于上、下底中点的联线.当ABCD不为梯形时,可设直线AD与直线DC交于点E,直线BC与直线AD交于点F,联结EF.由勃罗卡定理,知OG EF⊥;由例6的结论,知IG EF⊥.故O,I,G三点共线.将推论2中的凸四边形内接于圆演变为一般的完全四边形,其密克尔点变为凸四边形对角线交点在完全四边形另一条对角线上的射影,则有例8(2002年中国国家队选拔赛题)如图328-,设凸四边形ABCD的两组对边所在直线分别交于E,F两点,两对角线的交点为P,过P作PO EF⊥于点O.求证:∠=∠.BOC AOD事实上,可类似于前面例2的证法即证得结论成立.将勃罗卡定理中的凸四边形对角线的交点演变为三角形的垂心,则有例9(2001年全国高中联赛题)如图329△中,O为外心,三条高AD、BE、-,ABCCF交于点H,直线ED和AB交于点M,FD和AC交于点N.求证:(1)OB DF⊥.⊥;(2)OH MN⊥,OC DE证明(1)由A 、C 、D 、F 四点共圆,知BDF BAC ∠=∠. 又()1180902OBC BOC BAC ∠=︒-∠=︒-∠, 即90OBD BDF ∠=︒-∠,故OB DF ⊥. 同理,OC DE ⊥.(2)要证OH MN ⊥,由定差幂线定理知,只要证明 有222MO MH NO NH -=-即可.注意到CH MA ⊥,有2222MC MH AC AH -=-,① BH NA ⊥,有2222NB NH AB AH -=-.② DA BC ⊥,有2222BD CD BA AC -=-,③ OB DN ⊥,有2222BN BD DN OD -=-,④ OC DM ⊥,有2222CM CD DM OD -=-.⑤ 由①-②+③+④-⑤得2222NH MH ON OM -=-. 即有2222MO MH NO NH -=-.故OH MN ⊥.将例9中的外心O 演变为一般的点,则有 例10如图3210-,设H 是ABC △的垂心,O 是ABC △所在平面内一点,作HP OB ⊥于P ,交AC 的延长线于点N ,作HQ OC ⊥于Q 交AB 的延长线于点M .求证:OH MN ⊥. 证明要证OH MN ⊥,由定差幂线定理知,只要证明有2222OM HM HN ON -=-即可. 注意到HN OB ⊥,HM OC ⊥,分别有2222OH ON BH BN -=-,2222OH OM CH CM -=-. 从而得222222OM ON CM BN BH CH -=-+-.① 由BH AN ⊥,有2222BA BN HA HN -=-, CH AM ⊥,有2222CA CM HA HM -=-,AH BC ⊥,有2222AB AC HB HC -=-. 从而得222222HM HN CM BN BH CH -=-+-.② 由①,②得2222OM ON HM HN -=-.故OH MN ⊥.。