《经济数学基础--微积分》复习提纲

合集下载

经济数学基础-知识点归纳

经济数学基础-知识点归纳

第一章函数与极限1.理解函数概念。

(1)掌握求函数定义域的方法,会求初等函数的定义域和函数值。

函数的定义域就是使函数有意义的自变量的变化范围。

学生要掌握常见函数的自变量的变化范围,如分式的分母不为0,对数的真数大于0,偶次根式下表达式大于0,等等。

(2)理解函数的对应关系f 的含义:f 表示当自变量取值为x 时,因变量y 的取值为f (x )。

(3)会判断两函数是否相同。

(4)了解分段函数概念,掌握求分段函数定义域和函数值的方法。

2.掌握函数奇偶性的判别,知道它的几何特点。

判断函数是奇函数或是偶函数,可以用定义去判断,即(1)若)()(x f x f =-,则)(x f 为偶函数;(2)若)()(x f x f -=-,则)(x f 为奇函数。

也可以根据一些已知的函数的奇偶性,再利用“奇函数±奇函数、奇函数×偶函数仍为奇函数;偶函数±偶函数、偶函数×偶函数、奇函数×奇函数仍为偶函数”的性质来判断。

3.了解复合函数概念,会对复合函数进行分解。

4.知道初等函数的概念,牢记常数函数、幂函数、指数函数、对数函数和三角函数(正弦、余弦、正切和余切)的解析表达式、定义域、主要性质。

基本初等函数的解析表达式、定义域、主要性质在微积分中常要用到,一定要熟练掌握。

5.了解需求、供给、成本、平均成本、收入和利润函数的概念。

6.知道一些与极限有关的概念(1)知道函数在某点极限存在的充分必要条件是该点左右极限都存在且相等;(2)了解无穷小量的概念,知道无穷小量的性质;(3)了解函数在某点连续的概念,了解“初等函数在定义区间内连续”的结论;会判断函数在某点的连续性,会求函数的间断点。

第二章导数及其应用1.知道一些与导数有关的概念(1)会求曲线的切线方程(2)知道可导与连续的关系(可导的函数一定连续,连续的函数不一定可导)2.熟练掌握求导数或微分的方法。

(1)利用导数(或微分)的基本公式(2)利用导数(或微分)的四则运算(3)利用复合函数微分法3.会求函数的二阶导数。

经济数学基础--微积分第八章

经济数学基础--微积分第八章

(1
1 n
)n
,
因为
lim
n
un
lim
n
1
1
n
1
n
1 e
0, 所以级数发散.
例8.1.7 讨论级数 cos n 的敛散性.
n 1
2
解 因为数列{cos n }就是0, 1, 0,1, 0, 1,, 这个数列发散, 所以级数也发散.
2
第 12 页
经济应用数学基础——微积分
第八章 第二节 第 13 页
8 1
简记为 un , 称上式为数项无穷级数, 简称无穷级数.其中, 第n项un 称为级数的一般项, n 1
级数的前n项和
n
Sn uk u1 u2 un k 1
称为级数的前n项部分和, 简称部分和.
8 2
第4 页
经济应用数学基础——微积分

第八章 第一节




定义8.1.2
若数项级数的部分和数列{Sn
lim
n
Sn
1
S.由于an
Sn
Sn1 ,
所以
lim
n
an
lnim(Sn
Sn1 )
S
S
0.
注意 本性质说明如果级数 an收敛, 则通项的极限等于0.反之不成立, 如调和级数
1, 虽然 lim 1 0, 但此级数发散.另外, 如果通项的极限不等于0, 级数一定是发散的, 这
n1 n
n n
就是下面的推论.
n
1
n 2 3 1 5 1 2
n3/2
n 1
n3/2
n n2
n6
n
1

《经济数学基础》期末复习资料.doc

《经济数学基础》期末复习资料.doc

《经济数学基础》期末复习资料.doc经济数学基础期末复习指导—>复习要求和重点第1章函数1.理解函数概念,了解函数的两要素——定义域和对应关系,会判断两函数是否相同。

2.掌握求函数定义域的方法,会求函数值,会确定函数的值域。

3.掌握函数奇偶性的判别,知道它的几何特点。

4.了解复合函数概念,会对复合函数进行分解,知道初等函数的概念。

5.了解分段函数概念,掌握求分段函数定义域和函数值的方法。

6.理解常数函数、眼函数、指数函数、对数函数和三角函数(正弦、余弦、正切和余切)。

7.了解需求、供给、成木、平均成本、收入和利润等经济分析中常见的函数。

本章重点:函数概念,函数的奇偶性,几类基本初等函数。

第2章一?元函数微分学1.知道极限概念(数列极限、函数极限、左右极限),知道极限存在的充分必要条件:lim f (x) = A <=> lim /(x) = * 且lim /(x) = AA—>A0V;2.了解无穷小量概念,了解无穷小量与无穷大量的关系,知道有界变量乘无穷小量仍为无穷小量,即limxsin— = 0。

3.掌握极限的四则运算法则,掌握两个重要极限,掌握求极限的一般方?法。

两个重要极限的一般形式是:.. sina(x) ,lim ------- ---- = 1心T O 6Z(X)| —lim (1 + ——)机对=e, lim (l + a(x))°⑴=e(p(x) Q(X)~>04.了解函数在一点连续的概念,知道左连续和右连续的概念。

知道函数在一点间断的概念,会求函数的间断点。

5.理解导数定义,会求曲线的切线。

知道可导与连续的关系。

6.熟练掌握导数基本公式、导数的四则运算法则、复合函数求导法则,掌握求简单隐函数的导数。

7.了解微分概念,即dy = y f dx o会求函数的微分。

8.知道高阶导数概念,会求函数的二阶导数。

本章重点:极限概念,极限、导数和微分的计算。

大学微积分总复习提纲

大学微积分总复习提纲

2
微积分(一) calculus
第二章 极限与连续
极限的描述性定义与左右极限
极限四则运算
未定式求极限(因式分解/有理化/同除最高次项)
求极限
夹逼定理 两个重要极限
无穷小量X有界函数(注意无穷小量性质)
等价代换(加减不能代换,乘除可以代换)
洛必达法则(注意运用条件,与上述方法结合)
必考:先分清极限类型,选择相应方法
微积分(一) calculus
第一章 函数
初等函数 分段函数
定义域、值域 奇偶性 周期性 有界性 反函数
选择题或填空题:与换元法结合考察上述知识点
1
微积分(一) calculus
第一章 函数
经济学函数
需求与供给函数 成本函数 收益函数 利润函数 库存函数
边际与弹性 最优化问题
应用题必考:与求导、求极值、最值知识点结合
5
微积分(一) calculus
第三章 导数与微分
导数的定义与左右导数 (求分段点导数,判断可导性与连续性,求极限)
必考:判断分段函数分段点可导性,与连续性、可微 结合考察;与求极限及无穷小量基本性质结合考察。
6
微积分(一) calculus
第三章 导数与微分
基本公式
求导数
四则运算 链式法则 反函数求导
9
微积分(一) calculus
第五章 多元函数微分学
ห้องสมุดไป่ตู้
求极限
极限定义与不同方向的极限 极限四则运算 未定式求极限(因式分解/有理化) 夹逼定理 无穷小量X有界函数(注意无穷小量性质) 等价代换(加减不能代换,乘除可以代换) 换元法后,使用洛必达法则
必考:先分清极限类型,选择相应方法

高数高频易错点

高数高频易错点

经济数学――微积分复习提纲第一章函数1、函数的定义域及分段函数的求值。

2、基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。

初等函数:由基本初等函数和常数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数。

3、常用的经济函数(需求函数、供给函数、总成本函数、总收益函数、总利润函数、库存函数)第二章极限与连续1、无穷小的定义与性质。

1)极限为零的变量称为无穷小量。

注:(1)无穷小量是个变量而不是个很小的数.(2)零是常数中唯一的无穷小量。

2)无穷小的性质:有限个无穷小的代数和是无穷小、有界函数与无穷小的乘积是无穷小、常数与无穷小的乘积是无穷小、有限个无穷小的乘积也是无穷小。

3)函数极限与无穷小的关系:的充要条件是,其中A为常数,。

2、无穷大的定义。

在某一变化过程中,若f(x)的绝对值无限增大,则称函数f(x)为此变化过程中的无穷大量。

注:无穷大是变量,不是一个绝对值很大的数。

3、无穷大与无穷小互为倒数。

4、极限的运算法则。

见教材P48 定理1、2、3、4及推论1、25、两个重要极限。

会用重要极限求函数极限。

6、会用等价无穷小代替求极限7、连续的定义。

见教材P66函数f(x) 在点x0处连续,必须同时满足三个条件:1) 在点x0处有定义;2)存在;3)极限值等于函数值,即。

8、函数在点连续的充分必要条件是:既左连续又右连续。

9、函数在点处连续与该点处极限的关系:函数在点处连续则在该点处必有极限,但函数在点处有极限并不一定在该点连续。

10、如何求连续函数的极限连续函数极限必存在,且极限值等于函数值,即11、对于分段函数在分段点处的连续性,若函数在分段点两侧表达式不同时,需根据函数在一点连续的充要条件进行讨论。

12、如何求连续区间?基本初等函数在其定义域内是连续的;一切初等函数在其定义区间内都是连续的。

13、间断点的定义。

14、间断点的类型。

(一)第一类间断点1、可去间断点(1)在处无定义,但存在。

微积分复习及解题技巧

微积分复习及解题技巧

《微积分》复习及解题技巧第一章 函数一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0④反正(余)弦函数式:自变量 ≤1在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。

典型例题:《综合练习》第二大题之1补充:求y=xx 212-+的定义域。

(答案:212<≤-x )三、判断函数的奇偶性:典型例题:《综合练习》第一大题之3、4第二章 极限与连续求极限主要根据: 1、常见的极限:2、利用连续函数:初等函数在其定义域上都连续。

例:3、求极限的思路:可考虑以下9种可能:①00型不定式(用罗彼塔法则) ②20C =0 ③∞0=0④01C =∞ ⑤21C C ⑥∞1C =0⑦0∞=∞ ⑧2C ∞=∞ ⑨∞∞型不定式(用罗彼塔法则)1sin lim 0=→x xx e x xx =⎪⎭⎫⎝⎛+∞→11lim )0(01lim >=∞→ααxx )()(0lim 0xf x f x x =→11lim 1=→x x 1)()(lim =→x g x f x α⎪⎩⎪⎨⎧∞≠=→)0(0)(11lim 常数C C x f x α⎪⎩⎪⎨⎧∞≠=→)0(0)(22lim 常数C C x g x α特别注意:对于f (x )、g (x )都是多项式的分式求极限时,解法见教材P70下总结的“规律”。

以上解法都必须贯穿极限四则运算的法则!典型例题:《综合练习》第二大题之3、4;第三大题之1、3、5、7、8补充1:若1)1(sin 221lim =++-→bax x x x ,则a= -2 ,b= 1 . 补充2:21221211111lim lim e x x x x xx x xx =⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-∙-∞→∞→补充3:21121121121121...513131121)12)(12(1...751531311lim lim lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛+--++-+-=⎥⎦⎤⎢⎣⎡+-++⨯+⨯+⨯∞→∞→∞→n n n n n n n n 补充4:1ln lim 1-→x xx 111lim 1=→x x (此题用了“罗彼塔法则”)型0第三章 导数和微分一、根据导数定义验证函数可导性的问题: 典型例题:《综合练习》第一大题之12 二、求给定函数的导数或微分: 求导主要方法复习:1、求导的基本公式:教材P1232、求导的四则运算法则:教材P110—1113、复合函数求导法则(最重要的求导依据)4、隐函数求导法(包括对数函数求导法) 6、求高阶导数(最高为二阶) 7、求微分:dy=y / dx 即可典型例题:《综合练习》第四大题之1、2、7、9 补充:设y=22)(1arctgx x ++,求dy. 解:∵222212111221121x arctgxxx x arctgx x x y +++=+⋅+⋅+⋅=' ∴dy=)121(22xarctgx x x dx y +++=⋅'dx第四章中值定理,导数的应用一、关于罗尔定理及一些概念关系的识别问题:典型例题:《综合练习》第一大题之16、19二、利用导数的几何意义,求曲线的切、法线方程:典型例题:《综合练习》第二大题之5二、函数的单调性(增减性)及极值问题:典型例题:《综合练习》第一大题之18,第二大题之6,第六大题之2第五章 不定积分 第六章 定积分Ⅰ理论内容复习: 1、原函数:)()(x f x F ='则称F (x )为f (x )的一个原函数。

大一经济数学知识点总结归纳

大一经济数学知识点总结归纳

大一经济数学知识点总结归纳经济数学作为经济学专业中必修的一门基础课程,是为了培养学生运用数学工具解决经济问题的能力而设置的。

在大一的学习过程中,我们通过学习经济数学,逐渐掌握了一些基本的数学方法和技巧。

接下来,我将对大一经济数学的知识点进行总结和归纳。

一、微积分基础知识1. 函数及其图像:函数的定义及其性质,包括奇偶性、周期性等。

函数图像的性质和画法。

2. 极限与连续:极限的概念与性质,包括左极限、右极限及无穷大与无穷小的概念。

连续性的定义及其判定方法。

3. 导数与微分:导数的定义与计算方法,包括常用的求导法则、高阶导数、隐函数求导等。

微分的概念及其应用。

4. 积分与不定积分:不定积分的定义与性质,包括常用的积分法则、分部积分法、换元积分法等。

二、线性代数基础知识1. 行列式与矩阵:行列式的定义与计算方法,包括二阶、三阶行列式的求解。

矩阵的定义、性质及其运算法则。

2. 线性方程组:线性方程组的解的判定方法,包括齐次线性方程组与非齐次线性方程组的解法。

3. 向量与向量空间:向量的定义与性质,包括向量的线性组合与线性相关性的判定。

向量空间的定义与性质。

三、概率论与数理统计基础知识1. 随机事件与概率:随机事件的概念与性质,包括条件概率、独立事件、全概率公式和贝叶斯定理。

2. 随机变量与概率分布:随机变量的概念及其分类,包括离散型随机变量与连续型随机变量的概率分布。

3. 数理统计:样本与总体的概念,样本统计量与总体参数的估计方法,包括点估计与区间估计。

四、最优化理论基础知识1. 函数的极值:函数的极值的定义与判定方法,包括极大值点、极小值点及鞍点的判定。

2. 一元函数的优化:一元函数的最大值与最小值的求解方法,包括一元函数的一阶条件与二阶条件的判定。

3. 多元函数的优化:多元函数的最大值与最小值的求解方法,包括多元函数的一阶条件与二阶条件的判定。

五、微分方程基础知识1. 常微分方程:常微分方程的基本概念与解法,包括一阶常微分方程与二阶常微分方程的求解方法。

《微积分》考试大纲

《微积分》考试大纲

《微积分》考试大纲一、考试题型1、填空题2、选择题3、计算题4、综合题二、考试参考用书经济数学——《微积分》,吴传生编,高等教育出版社,2006年,第二版。

三、考试内容第一章函数1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;2、了解函数的有界性、单调性、周期性和奇偶性;3、理解复合函数及分段函数的概念,了解反函数的概念;4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

第二章极限与连续1、了解数列极限和函数极限(包括左极限与右极限)的概念;2、了解极限的性质;3、了解极限的四则运算法则;4、掌握极限存在的两个准则;5、掌握利用两个重要极限求极限的方法;6、理解无穷小量的概念和基本性质;7、掌握无穷小量的比较方法,会用等价无穷小求极限;8、了解无穷大量的概念及其与无穷小量的关系;9、理解函数连续性的概念(含左连续与右连续);10、会判别函数间断点的类型;11、了解连续函数的性质和初等函数的连续性;12、理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

第三章导数、微分、边际与弹性1、理解并掌握导数的概念,会用定义求点导数;2、掌握函数可导性与连续性之间的关系;3、了解导数的几何意义;4、会求平面曲线的切线方程和法线方程;5、掌握基本初等函数的导数公式;6、熟练掌握导数的四则运算法则及复合函数的求导法则;7、会求分段函数的导数;8、会求反函数与隐函数的一阶、二阶导数;9、了解高阶导数的概念,会求简单函数的高阶导数;10、了解微分的概念、掌握导数与微分之间的关系11、了解函数一阶微分形式的不变性,熟练地求函数的微分。

第四章中值定理及导数的应用1、理解罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理,了解费马引理,泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用;2、掌握洛必达法则的使用条件和使用方法,熟练地用洛必达法则求极限;3、掌握函数单调性的判别方法;4、了解函数极值的概念;5、掌握函数取到极值的必要条件和充分条件,会求函数的极值;6、会求函数的最大值和最小值,并会解决实际问题的最值;7、掌握凹凸性的定义,会用导数判断函数图形的凹凸性;8、会求函数图形的拐点和渐近线;9、了解泰勒公式,会写出简单函数的泰勒公式。

经济数学—微积分(函数的知识点及结论)

经济数学—微积分(函数的知识点及结论)

集合与简易逻辑一、集合:1、知识点归纳①定义:一组对象的全体形成一个集合②特征:确定性、互异性、无序性③表示法:列举法{1,2,3,…}、描述法{x|P}韦恩图④分类:有限集、无限集、空集φ⑤数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N *、空集φ⑥关系:属于∈、不属于∉、包含于⊆(或⊂)、真包含于、集合相等=⑦运算:交运算A∩B={x|x∈A且x∈B};并运算A∪B={x|x∈A或x∈B};补运算AC U={x|x∉A且x∈U},U为全集⑧性质:A⊆A;φ⊆A;若A⊆B,B⊆C,则A⊆C;A∩A=A∪A=A;A∩φ=φ;A∪φ=A;A∩B=A⇔A∪B=B⇔A⊆B;A∩C U A=φ;A∪C U A=I;C U( C U A)=A;C U(A⋃B)=(C U A)∩(C U B)方法:数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决2、注意:①区别∈与、与⊆、a与{a}、φ与{φ}、{(1,2)}与{1,2};②A⊆B时,A有两种情况:A=φ与A≠φ③若集合A中有n)(Nn∈个元素,则集合A的所有不同的子集个数为n2,所有真子集的个数是n2-1, 所有非空真子集的个数是22-n④空集是指不含任何元素的集合}0{、φ和}{φ的区别;0与三者间的关系空集是任何集合的子集,是任何非空集合的真子集条件为BA⊆,在讨论的时候不要遗忘了φ=A的情况⑤理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是函数值的取值?还是曲线上的点?可用列举法、数形结合等方法来理解集合中元素的意义海伦·凯勒:“当一个人感觉到有高飞的冲动时,他将再也不会满足于在地上爬。

”二、含绝对值的不等式及一元二次不等式知识点归纳1绝对值不等式①不等式)0(><aax的解集是{}axax<<-;②不等式)0(>>aax的解集是{}axaxx-<>或,③不等式|ax+b|<c, c>0的解集为{})0(|><+<-ccbaxcx;④不等式|ax+b|>c c>0的解集为{})0(,|>>+-<+ccbaxcbaxx或⑤两边都为非负数(或式)时,可两边平方⑥含有多个绝对值不等式时,可用零点分段法⑦含有两个绝对值的不等式可用几何意义解决。

大一经济数学基础复习知识点

大一经济数学基础复习知识点

大一经济数学基础复习知识点经济数学是经济学的一门重要辅助学科,它运用数学工具和方法来解决经济学中的问题。

在大一学期,经济数学基础是我们打下坚实经济学基础的重要一课。

下面是大一经济数学基础的复习知识点:1.微积分基础- 函数与极限:函数的定义和性质,极限的概念及计算方法。

- 导数与微分:导数的定义和性质,常用函数的导数和微分法则。

- 积分与不定积分:不定积分的定义和性质,常用函数的积分法则。

2.微分方程- 一阶微分方程:可分离变量、线性、齐次和非齐次一阶微分方程的求解方法。

- 高阶微分方程:常系数线性齐次和非齐次高阶微分方程的求解。

3.矩阵与行列式- 矩阵的基本概念:矩阵的定义,矩阵的运算(加法、数乘、乘法)。

- 行列式:行列式的定义和性质,行列式的计算方法。

4.最优化问题- 函数的极值:极大值和极小值的定义,求解函数极值的条件和方法。

- 线性规划:线性规划问题的基本概念和解法。

5.微分与一元函数的应用- 弹性:边际效应和弹性的概念,计算边际效应和弹性的方法。

- 最优化问题:求解边际收益等于边际成本的最优产量问题。

6.总体与样本统计- 统计量:样本均值、样本方差的概念和计算方法。

- 抽样分布:样本均值、样本方差的抽样分布。

7.相关与回归分析- 相关系数:相关系数的计算与解释,相关系数的性质。

- 简单线性回归:简单线性回归模型的建立与估计。

8.概率论基础- 概率的基本概念:事件、样本空间、概率的定义和性质。

- 随机变量:随机变量的定义,离散型和连续型随机变量的概率分布。

- 期望和方差:随机变量的期望和方差的计算方法。

以上是大一经济数学基础的复习知识点,通过对这些知识点的复习和理解,我们能够更好地应用数学工具和方法解决经济学中的实际问题,为我们的学习打下坚实的基础。

希望同学们能够认真复习,并在复习过程中加强对理论的理解与应用。

祝大家学业顺利!。

微积分内容总结

微积分内容总结

《微积分》考试大纲第一章:函数与Mathematica入门1.1 集合掌握集合运算,理解邻域的概念。

1.2 函数理解函数的概念,掌握函数的奇偶性、单调性、周期性、有界性。

理解复合函数和反函数的概念。

熟悉基本初等函数的性质及其图形。

1.3 经济学中常用的函数掌握常用的经济函数,会建立简单的经济问题的函数关系式。

第二章:极限与连续2.1 极限了解数列极限及函数极限的概念和性质,掌握极限的四则运算法则,会用变量代换求简单复合函数的极限,了解极限存在的两个准则(夹逼准则和单调有界准则),连续性掌握两个重要极限,并会用它们求相关的极限。

2.2 函数的连续性理解函数的连续性的概念,了解函数间断点的概念,会判断函数的连续性及间断点的类型。

了解初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和有界性理、零点定理和介值定理)。

2.3 无穷小的比较了解无穷大量和无穷小量的有关概念及性质,了解无穷小量的比较方法,会用等价无穷小求极限。

第三章:导数与微分3.1 导数的概念理解导数的概念及其几何意义,了解函数的可导性与连续性之间的关系。

3.2 求导法则和基本初等函数导数公式掌握基本初等函数的求导公式,掌握导数的四则运算法则和复合函数求导法则,了解反函数的求导法则,会求隐函数的导数。

了解高阶导数的概念,掌握初等函数的一阶,二阶导数的求法,了解几个常见的函数( )的n阶导数的一般表达式。

3.3 微分的概念理解微分的概念,理解函数的可微性,可导性及连续性的关系,了解微分四则运算法和一阶微分的形式不变性。

第四章:中值定理及导数应用4.1 中值定理了解罗尔(Rolle)中值定理,拉格朗日(Lagrange) 中值定理及柯西(Cauchy)中值定理。

4.2 导数的应用会用洛必达(L’Hospital)法则求不定式的极限,理解函数的极值的概念,掌握利用导数判断函数的单调性和求极值的方法。

4.3 泰勒公式了解泰勒(Taylor)定理及用多项式逼近函数的思想。

经济数学基础--微积分第一章

经济数学基础--微积分第一章

解 u , v 分别是中间变量,故 y u2 tan 2v tan 2x2 .
经济应用数学基础——微积分
第一章 第二节 第 12 页
极 限 的 概 念
极限的概念
• 1.2.1 数列的极限 • 1.2.2 函数的极限
经济应用数学基础——微积分
第一章 第二节


1 数列的极限
的 概

先给出数列的定义:在某一对应规则下,当 n(n N ) 依次取 1, 2, 3, , n, 时,对应的实
函数的自变量 x 是指 x 的绝对值无限增大,它包含以下两种情况: (1) x 取正值,无限增大,记作 x ; (2) x 取负值,它的绝对值无限增大(即 x 无限减小),记作 x .
定义1.2.3 : 如果当 x 无限增大(即 x )时,函数 f (x) 无限趋近于一个确定
的常数 A ,那么就称 f (x) 当 x 时存在极限 A ,称数 A为当 x 时函数 f (x) 的极限,
径.在上述领域中除去领域的中心点 a
称为点 a
的去心
领域,记为
0
U(a,
),
0
即 U(a,) x 0 x a , 如右图所示.
第 19 页
经济应用数学基础——微积分
第一章 第二节 极 限 的 概 念
注意:
在定义中,“设函数 f (x) 在点 x0 的某个去心领域内有定义”反映我们关心的 是函数 f (x) 在点 x0 附近的变化趋势,而不是 f (x) 在 x0 这一孤立点的情况.在定义 极限lim f (x) 时, f (x) 有没有极限,与f (x) 在点 x0 是否有定义并无关系.
例1.1.3 求函数 y 4x 1 的反函数. 解 由v 4x 1 ,可解得 x y 14 . 交换 x 和 y 的次序,得 y 14(x 1) ,

经济数学基础12

经济数学基础12

经济数学基础12一、微积分微积分是经济数学中最常用的工具之一,它涉及到函数、导数、微积分积分、微分方程等方面的知识。

首先,函数是经济学中的基本概念,因为大多数经济现象都可以使用数学函数来描述,例如需求函数、供应函数、收益函数等。

导数是微积分的核心,它表示函数在某一点的变化率。

对于一个经济问题而言,在坐标平面上构建函数之后,利用导数可以很容易地求出函数在某一点的切线斜率,该切线斜率可以帮助我们解决许多经济问题,例如最大化收益、利润以及最小化成本等。

其次,微积分积分是微积分的另一个重要方面,它可以帮助我们计算从一个特定值到另一个特定值之间函数的面积、体积、距离等。

例如,在经济学中,我们可以通过积分计算某种商品的总收益,以及某个企业的总成本。

最后,微分方程是经济学家经常使用的工具之一,它用于解决经济模型中的动态问题。

例如,在宏观经济学中,经济学家使用微分方程来解释经济体系变化的长期趋势,例如通货膨胀、失业率等。

二、统计学统计学是经济数学中另一个重要方面,它涉及概率、假设检验、回归分析等方面的知识。

首先,统计学中的概率概念对经济学研究有着广泛的应用,随机性和不确定性是经济学的重要特征。

而概率理论可以帮助我们分析和评估不确定性带来的风险和机遇。

其次,假设检验是经济统计学中常用的工具,用于检验一个假设的正确性。

例如,在经济学中,我们可以使用假设检验来检验两种经济政策的效果,或者检验两种商品价格的差异是否具有统计学意义。

除此之外,回归分析是一种统计学工具,用于确定某个变量对另一个变量的影响。

例如,在经济学中,我们可以通过回归分析来确定利率对货币供应量的影响程度,以及失业率对经济增长的影响程度。

三、优化理论优化理论是经济学中的另一个重要方面,它涉及线性规划、非线性规划等方面的知识。

在经济学中,我们经常需要解决最优化问题,例如最大化利润、最小化成本等。

这时,线性规划和非线性规划就可以成为我们的好帮手了。

总之,经济数学在经济学研究中起着重要的作用,它可以帮助我们更好地理解和解释经济现象,提供数学工具和方法,支持经济决策。

(完整版)微积分复习资料

(完整版)微积分复习资料

基本知识复习一、 不定积分1. 不定积分概念,第一换元积分法(1) 原函数与不定积分概念设函数()F x 与()f x 在区间(),a b 内有定义,对任意的(),x a b ∈,有()()'F x f x =或()()dF x f x dx =,就称()F x 是()f x 在(),a b 内的一个原函数。

如果()F x 是函数()f x 的一个原函数,称()f x 的原函数全体为()f x 的不定积分,记作()(),f x dx F x C =+⎰(2) 不定积分得基本性质1.()()df x dx f x dx=⎰2。

()()'F x dx F x C =+⎰ 3。

()()()().Af x Bg x dx A f x dx B g x dx +=+⎡⎤⎣⎦⎰⎰⎰(3)基本不定积分公式表一()()122222(1)2)1,13ln C,x (4)arctan ,1(5)arcsin ,(6)cos sin ,(7)sin cos ,(8)sec tan ,cos (9)csc cot ,sin (10)sec t kdx kx C k x x dx C dx x dx x C x x C xdx x C xdx x C dx xdx x C x dxxdx x C x x μμμμ+=+=+≠-+=+=++=+=+=-+==+==-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰是常数,(1()22an sec ,(11)csc cot csc ,(12),ln (13),(14),1(15),1(16).xxxdx x C x xdx x C a a dx C ashxdx chx C chxdx shx C dx thx C ch x dx cthx C sh x =+=-+=+=+=+=+=-+⎰⎰⎰⎰⎰⎰⎰(3) 第一换元积分法(凑微分法)设()f u 具有原函数, ()u x ϕ=可导,则有换元公式()()()()'.u x f x x dx f u du ϕϕϕ=⎡⎤=⎡⎤⎣⎦⎣⎦⎰⎰2. 第二换元积分法,分部积分法(1) 第二换元积分法设()x t ψ=是单调的、可导的函数,并且()'0t ψ≠.又设()()'f t t ψψ⎡⎤⎣⎦具有原函数,则有换元公式()()()()1',t x f x dx f t t dt ψψψ-=⎡⎤=⎡⎤⎣⎦⎣⎦⎰⎰其中()1x ψ-是()x t ψ=的反函数.(2) 分部积分法设函数()u u x =及()v v x =具有连续导数,那么,()''',uv u v uv =+移项,得 ()'''.uv uv u v =-对这个等式两边求不定积分,得''.uv dx uv u vdx =-⎰⎰这个公式称为分部积分公式.它也可以写成以下形式:.udv uv vdu =-⎰⎰(3) 基本积分公式表二(2222(17)tan ln cos )cot ln sin ,sec ln sec tan C,(20)csc ln csc cot ,1(21)arctan ,1(22)ln ,2(23)arcsin ,(24)ln ,(2xdx x C xdx x C xdx x xdx x x C dx x C a x a a dx x adx C x a a x a xC a x C =-+=+=++=-+=++-=+-+=+=++⎰⎰⎰⎰⎰⎰,(18(19)5)ln .x C =+ (3)有理函数的积分,三角函数有理式的积分,某些简单无理式的积分一、有理函数的积分 两个多项式的商()()P x Q x 称为有理函数,又称为有理分式.我们总假定分子多项式()P x 与分母多项式()Q x 之间是没有公因式的.当分子多项式()P x 的次数小于分母多项式()Q x 的次数时,称这有理函数为真分式,否则称为假分式.利用多项式的除法,总可以将一个假分式化成一个多项式与一个真分式之和的形式,由于多项式的积分容易求,故我们将重点讨论真分式的积分方法.对于真分式()()n m P x Q x ,首先将()m Q x 在实数范围内进行因式分解,分解的结果不外乎两种类型:一种是()kx a -,另外一种是()2lx px q ++,其中,k l 是正整数且240p q -<;其次,根据因式分解的结果,将真分式拆成若干个分式之和.具体的做法是:若()m Q x 分解后含有因式()kx a -,则和式中对应地含有以下k 个分式之和:()()()122,k kA A A x a x a x a +++---L 其中:1,,k A A L 为待定常数.若()m Q x 分解后含有因式()2lx px q ++,则和式中对应地含有以下l 个分式之和:()()()11222222,l l l M x N M x N M x N x px q x px q x px q ++++++++++++L 其中:(),1,2,,i i M N i l =L 为待定常数.以上这些常数可通过待定系数法来确定.上述步骤称为把真分式化为部分分式之和,所以,有理函数的积分最终归结为部分分式的积分.二、可化为有理函数的积分举例 例4 求()1sin .sin 1cos xdx x x ++⎰解 由三角函数知道,sin x 与cos x 都可以用tan2x的有理式表示,即 222222222tan 2tan22sin 2sin cos ,22sec 1tan 221tan 1tan 22cos cos sin .22sec 1tan 22x x x x x x xx xx x x x x ===+--=-==+如果作变换()tan2xu x ππ=-<<,那么 22221sin ,cos ,11u u x x u u -==++ 而2arctan ,x u =从而22.1dx du u =+ 于是()22222221sin sin 1cos 2211121111112212ln 2211tan tan ln tan .42222xdx x x u du u u u u u u u du u u u u C x x xC ++⎛⎫+ ⎪++⎝⎭=⎛⎫-+ ⎪++⎝⎭⎛⎫=++ ⎪⎝⎭⎛⎫=+++ ⎪⎝⎭=+++⎰⎰⎰例5求. 解u =,于是21,2,x u dx udu =+=从而所求积分为()222222111212arctan 12.u u dx udu dux u u du u u C u C =⋅=++⎛⎫=-=-+ ⎪+⎝⎭=+⎰⎰⎰⎰ 例6求解u =,于是322,3,x u dx u du =-=从而所求积分为223113113ln 13ln 1.2u duu u duu u u u C C =+⎛⎫=-+ ⎪+⎝⎭⎛⎫=-+++=+ ⎪⎝⎭⎰⎰例7 求解 设6x t =,于是56,dx t dt =从而所求积分为()()52223266111616arctan 16arctan .t t dt dt t t tdt t t C t C ==++⎛⎫=-=-+ ⎪+⎝⎭=+⎰⎰⎰例8求.解t =,于是()2222112,,,11x tdtt x dx x t t +===---从而所求积分为 ()()()22222222*********ln 1122ln 1ln 12ln 1ln .t t t t dt dtt t t dt t Ct t t t t C x C -=-⋅=----⎛⎫=-+=--+ ⎪-+⎝⎭=-++--+⎫=-++⎪⎪⎭⎰⎰⎰二、 定积分(1) 定积分概念,微积分基本定理,定积分得基本性质 (1) 定积分的概念1。

微积分所有知识点

微积分所有知识点

微积分所有知识点1. 极限啊,那可是微积分的基石呀!就好比盖房子得先有稳固的地基一样。

你想想,函数在某个点无限趋近的值,这多神奇呀!比如,当 x 趋近于0 时,1/x 会趋近于无穷大,是不是很有意思呢?2. 导数呢,简直就是微积分的秘密武器!它就像汽车的速度表,能告诉你函数变化的快慢。

比如一个物体运动的路程函数,它的导数就是速度呀,想象一下你在赛跑,能实时知道自己的速度,酷不酷?3. 积分呀,那是在积累“财富”呢!把小小的部分一点点加起来,最后得到一个大的结果。

就好比你每天存一点钱,时间长了就有一笔可观的存款了。

例如求曲线下的面积,通过积分就能算出来啦,神奇吧!4. 微分中值定理,听起来高大上吧?其实就像在一段路程中总能找到一个特别的点一样。

比如说,在一段曲线中,肯定有一个地方的切线斜率和两端连线的斜率相等,厉害吧!5. 泰勒公式,那可是近似的好帮手哟!它能把复杂的函数用简单的多项式来近似。

就好像有个难搞的家伙,突然变得很听话好接近了。

比如可以用泰勒公式来近似计算三角函数的值哦!6. 定积分的应用,那可多了去了。

像计算体积呀、弧长呀什么的。

就像是在生活中,你可以用它来计算各种实际问题,多有用呀!比如说计算一个圆柱的体积。

7. 无穷级数,哇,那是数不尽的奇妙呀!就如同天上的星星一样多而神秘。

可以用它来表示一些无法用常规式子表示的东西呢,很厉害吧!比如用无穷级数来表示某些特殊函数。

8. 多元函数微积分,那可复杂又有趣呢!就像在一个丰富多彩的世界里探索。

比如研究一个三维物体的性质,是不是感觉很有挑战性呀!我觉得呀,微积分就像一把神奇的钥匙,能打开好多知识的大门,让人深陷其中,不能自拔!。

《微积分》复习大纲1

《微积分》复习大纲1

《微积分》复习大纲第二章、极限与连续第一节、数列的极限教学目的和要求:1、通过割圆术和截杖问题的计算实例引入数列极限的概念,从中领会极限的基本思想。

2、使学生了解的极限定义和性质,并通过例题学会如何处理和解决相应的数学问题。

重点:数列极限的概念教学过程:一、问题的提出1、刘徽的割圆术2、截杖问题二、数列极限的定义注:1、数列是否有极限,与其前面的有限项无关•而与从某项以后的变化情况有关,因此改变一个数列的有限项的值或去掉或添加有限项,均不改变{ X n} 的收敛与发散性;2、在证明数列有极限时,不一定要找到最小的正整数N,只要证明其存在即可.显然,如果证明了存在符合要求的正整数N,那么这种就有无穷多个.3、数列极限的定义未给出求极限的方法.第二节、函数的极限教学目的和要求:1、理解函数极限的概念,了解;-X ,;定义。

2、使学生了解的函数极限性质重点:函数极限的概念教学过程:一、函数极限的定义1、自变量趋于无穷大时函数的极限注:讨论当自变量X的绝对值|X无限增大(X r ,X r 一,X))时,函数f (X)无限趋近于一个常数A的情形.2、自变量趋于有限值时函数的极限注:研究自变量x无限趋近于一个常数x o,(x— x0,x_. x0,x_. \7),函数f (x) 无限趋近于一个常数A的情形.三、例题分析例1证明lim叱=0.x注:1本题考察用定义验证函数极限的一般过程2、若|im f x =c,则直线y = c是函数y= f x的图形的水平渐近线。

例2:证明lim c =c ( c为常数).X—注:常数在任一点的极限是常数。

例3:证明lim x = x0.X—sxo例4:证明lim匸1 =2.一x—1注:函数在某一点是否有极限,与该点是否有定义无关。

\+1, x c0例5:设f (x)=彳0, x =0证验当X T0时,f (x )的极限不存在.x2 -1, x 0注:函数f X当x > X。

《经济数学》考试大纲

《经济数学》考试大纲

《经济数学》考试大纲类 别:公共基础必修课学 分:9 学分适用专业:经济与管理学科各专业教 材:《经济数学》(微积分分册,线性代数分册,概率论与数理统计分册)高等教育出版社,2008年02月参考书目:《经济数学基础》四川人民出版社,1996年。

一、考试的方式与题型考试方式:闭卷题 型:填空、选择、计算二、考试的目的和要求依据课程教学大纲要求,通过本课程的学习,要求考生比较系统地理解经济数学的基本概念和基本理论,掌握经济数学的基本方法,要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。

三、考试的内容和要求第一分册 微积分(一)函数考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数考试要求1.理解函数的概念,掌握函数的表示法.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数、反函数、隐函数和分段函数的概念.4.掌握基本初等函数的性质及其图形,理解初等函数的概念.5.会建立简单应用问题中的函数关系式.(二)极限、连续考试内容数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较 极限四则运算 极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限 1sin lim 0=→x x x ,e x xx =⎪⎭⎫ ⎝⎛+→11lim 0函数连续与间断的概念初等函数的连续性闭区间上连续函数的性质考试要求1.了解数列极限和函数极限(包括左极限与右极限)的概念.2.了解无穷小的概念和基本性质.掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系.3.了解极限的性质与极限存在的两个准则.掌握极限的性质及四则运算法则,会应用两个重要极限.4.理解函数连续性的概念(含左连续与右连续).5. 了解连续函数的性质和初等函数的连续性. 了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用.(三)一元函数微分学考试内容导数的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系导数的四则运算基本初等函数的导数复合函数、反函数和隐函数的导数高阶导数微分的概念和运算法则微分中值定理及其应用洛必达(L'Hospital)法则函数单调性函数的极值函数图形的凹凸性、拐点、浙近线简单函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念).2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法以及对数求导法.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、柯西(Cauchy)中值定理的条件和结论,掌握这三个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题).8.会用导数判断函数图形的凹凸性和拐点,会求函数图形的渐近线.9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形.(三)一元函数积分学考试内容原函数与不定积分的概念不定积分的基本性质基本积分公式不定积分的换元积分法和分部积分法定积分的概念和基本性质定积分中值定理变上限定积分定义的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式定积分的换元积分法和分部积分法广义积分的概念和计算定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.了解变上限定积分定义的函数并会求它的导数.3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题.4.了解广义积分的概念,会计算广义积分,了解广义积分(此处略)的收敛与发散的条件.(四)多元函数微积分学多元函数的概念二元函数的几何意义有界闭区域上二元连续函数的性质多元函数的偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,掌握求多元复合函数偏导数和全微分的方法,会用隐函数的求导法则.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《经济数学基础--微积分》复习提纲
一、第一章:函数
1、函数概念,表达式,初等函数,定义域等。

例如:(1)函数21)(x x x f -+=
的定义域是x=[0,1]; (2) f(x)=522-+x x ,得f(x -1)=5)1(2)1(2--+-x x =…;
(3)22)1(2+-=+x x x f ,即)(x f =2212)1(2+---+x x x =…=542+-x x ;
(4)设==))((,1)(x f f x x f 则)1(x f =…= 21x
; (5)在下列函数中与||)(x x f =表示相同函数的是( B ) A .2)(x B.2x C .33
x D .x x 2
(6) 设⎩⎨⎧>+≤+=0
5402)(2x x x x x f ,则9)1(=f ,2)0(=f ,17)3(=f ,3)1(=-f ; 二、第二章:极限与连续
1、概念理解,无穷大+∞,无穷小-∞,极限运算等。

能代即代……只看最高次……因式分解、分子分母有理化、公式化简等;2个重要极限中的=→x x x sin lim 01。

例如:(1)4
43222lim ++∞→x x x =(只看最高次)=1/2; (2)3923
lim --→x x x =(因式分解)=…=3; (3)102
7776664999888222lim 2323++-+-+∞→x x x x x x x =只看最高次= 1/4 (4)4
586224+-+-→x x x x im l x =(因式分解)=…=32 (5)x x im
l x 110
-+→=(分子有理化)=…=21 (6)但是=∞→x x x sin lim
0,=→x x x sin lim 01。

(7)已知122=+y x ,即y '=y
x -
(课本61页例题2.13) (8)课本35-37页有关例题。

三、第三章:导数与微分
导数概念、几何意义;导数常用基本公式(课本62-63页)以及v u v u uv '+'=')(等,符合函数求导,隐含数求导,高阶导数,微分等。

例如:1、,
x x y ln =dx x x xdx x dy '+'=ln ln =…=lnx dx +dx =… 2、x e y sin =, y '=x e
x 'sin sin =x xe sin cos ; 3、)12sin(21+x 是)12cos(+x 的一个原函数,也就是说)12sin(2
1+x 求导后等于)12cos(+x ; 4、y = sin2x ,d y =…=2cos2xdx
5、='=y e y x ,即4…=434x e x ,='=y e y x ,即3323x e x (课本61页例题2.12)
6、x y ln =,y ''=)(1'-x =2
1x - 7、x x x y cos sin +=,y '=(Sinx + xcosx )- sinx =…xcosx
8、y=e x cos x 则y , =(v u v u uv '+'=')()=…=e x cosx-e x sinx
四、第四章:导数的应用
函数增减性判断y '>0增,y '<0减…,极值求法:y ''>0极小值(下凸),y ''<0极大值(上凸);洛必达法则(课本84页)。

一元函数在经济数学上的应用(课本93页例题5.3)。

例如:1、x x x 103sin lim 0→=3/10,x x x 94sin lim 0
→=4/9 2、x
x x x sin lim 0-→=(洛必达法则)=0 3、函数x x x f 3)(3-= 当x =(-∞,-1)∪(1,+∞)时为增函数
4、曲线2
4x x y -=的凸向,y ''=-2<0,所以在X=(-∞,+∞)上凸; 5、x
x e x x --→2010lim =(洛必达法则)=-1 6、求81232)(23+-+=x x x x f 在区间[-3,4]的最大值和最小值。

(参看以前笔记:第一步。


二步。


01266)(2=-+='x x x x f ,求得极值点:6(x+2)(x-1)=0
x 1=-2,x 2=1;全部代入原方程得:f(-3)=8)3(12)3(3)3(223+---+-=17
f(-2)= ……=28; f(1)= ……=1; f(4)= ……=136
因此,最大值为136,最小值为1。

7、某厂生产某种产品x 单元的费用(成本)为2005)(+=x x C (元),得到的收入是:201.010)(x x x R -=(元),问生产多少台机床时,才能得到最大的利润?
利润=收入-成本,即:F(x)=R-C,)(x F ''=-0.02<0为最大值(最大利润),F ׳(x)=0求得X=250,即: 250单元,
五、第五、六章:不定积分和定积分
概念,积分基本公式(课本99页),定积分应用。

例如:1、若函数 f x ()可积,则 f x x f x x a
b c b ()()d d =+⎰⎰f x x a c ()d ⎰ 2、⎰xdx 3sin =c x +-3cos 3
1 3、直线x y =与曲线2x y =围成的面积是多少?(参看课本135页例题6.3)
先通过解方程x y ==2x y =求得2条曲线交点(0,0)和(1,1),然后积分dx x x ⎰-1
02=…=61。

4、=⎰3x dx 利用积分公式=c x
+-221(不能漏掉C ) 5、dx x ⎰212=7/3 ,dx x ⎰1
02=1/3。

6、课本125页有关例题。

结合课堂笔记,祝考试顺利!。

相关文档
最新文档