2017年四年级数学竞赛试题
小学四年级数学竞赛试卷(附答案)图文百度文库
![小学四年级数学竞赛试卷(附答案)图文百度文库](https://img.taocdn.com/s3/m/5a7714d516fc700aba68fc20.png)
小学四年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.用0、1、2、3、4这五个数字可以组成个没有重复数字的偶数.2.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b 最大是,a﹣b最小是,a﹣b最大是.3.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.4.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.5.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.6.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.7.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?8.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?9.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.10.两数相除,商是12,余数是3,被除数最小是.11.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D 再到A,走了31米,此问长方形ABCD的周长多少米?12.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.13.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..14.(8分)有10张卡片,上面分别写着1,2,3,…,9,10.那么至少取出6张卡片,才能保证取出的卡片中,有两张卡片上的数字之和为11.15.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.【参考答案】一、拓展提优试题1.解:一位偶数有:0,2和4,3个;两位偶数:10,20,30,40,12,32,42,14,24,34,一共有10个;三位偶数:位是0时,十位和百位从4个元素中选两个进行排列有A42=12种结果,当末位不是0时,只能从2和4中选一个,百位从3个元素中选一个,十位从三个中选一个共有A21A31A31=18种结果,根据分类计数原理知共有12+18=30种结果;四位偶数:当个位数字为0时,这样的四位数共有:=24个,当个位数字为2或者4时,这样的四位数共有:2×C41×=36个,一共是24+36=60(个)五位偶数:当个位数字为0时,这样的五位数共有:A44=24个,当个位数字为2或者4时,这样的五位数共有:2×C31A33=36个,所以组成没有重复数字的五位偶数共有24+36=60个.一共是:3+10+30+60+60=163(个);答:可以组成 163个没有重复数字的偶数.故答案为:163.2.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.3.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.4.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.5.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.6.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.7.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.8.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.9.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.10.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.11.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.12.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.13.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.14.解:10÷2=5(个)5+1=6(个)故填615.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.。
小学四年级数学竞赛题(三套)
![小学四年级数学竞赛题(三套)](https://img.taocdn.com/s3/m/3166a3657e21af45b307a82a.png)
小学四年级数学竞赛题(一)班级 姓名 得分一、填空1、在横线上埴上合适的数或单位我的体重为35 ;我的身高142 ; 我们教室的面积约为 平方米。
2、如图,一只蚂蚁从A 点沿阶梯爬到B 点,共要走 米。
3、在下面的数字中添上+-×÷运算符号或(),使算式成立5 5 5 5=24 5 3 3 3=244、3个小朋友轮换在一张乒乓球桌上打乒乓球。
他们打了1小时,平均每个小朋友打了 分钟。
5、如图所示,有4个小方块,6个面上都按同样顺序写着1,2,3,4,5,6六个数字。
请你根据下面的图说出1的对面是 。
6、赵萍在做计算题时,由于粗心大意,把被减数个位上的3错写成8,把十位上的7错写成1,这样得到的差是189,正确的差是 。
7、图书角共有48本书,小芳想使三层书架上的书本数相等,她先从第一层拿8本放入第二层,然后从第二层拿6本放入第三层,就完成了。
请问:原来第一层有 本,第二层有 本,第三层有 本。
二、计算125×27×8 31 ×55+68×55+55 三、操作题1、如图,张大爷家的农田,地里有3口井,张大爷要把这些地平均分给他的3个儿子,并且每个儿子分得的土地上都要有一口井,应怎样分?(画出分割线)2、下图表示的是小明一家吃饭时所用的饭桌,请根据如下要求,指出各人的座位:①小明和妹妹各坐在桌子的一端。
②妹妹坐在叔叔旁边。
③爷爷坐在叔叔和小明之间。
④爸爸坐在叔叔对面。
⑤妈妈坐在爸爸旁边。
四、问答题1、扬扬今年9岁,爸爸今年37岁,请问:再过多少年爸爸的年龄是扬扬的3倍?2、一架飞机往返相距1620千米的甲、乙两城,去时每小时行810千米,返回时每小时飞行540千米。
这架飞机往返平均每小时飞行多少千米?3、龟兔赛跑,比赛全程2000米,龟每分钟爬25米,兔每分钟跑400米,兔子觉得龟跑得太慢了,跑了一会儿就睡了一觉,当龟到达终点时,兔离终点还有800米。
2017年第十五届“走美杯”小数数学竞赛初赛试卷(四年级B卷)后附答案解析
![2017年第十五届“走美杯”小数数学竞赛初赛试卷(四年级B卷)后附答案解析](https://img.taocdn.com/s3/m/05aa72df04a1b0717fd5dd6d.png)
2017年第十五届“走美杯”小数数学竞赛初赛试卷(四年级B卷)一、填空题(共5小题,每小题8分,满分40分)1.(8分)计算:四十二亿九千四百九十六万七千二百九十七除以六百七十万零四百一十七等于(用数字作答).2.(8分)将一个周角平均分成6000份,其中的一份作为角的度量单位,则可以得到一种新的度量角的单位:密位.显然,360°=6000密位,那么45°=密位,1050密位= °.3.(8分)两个标准骰子一起投掷1次,点数之和恰好为10的可能性(概率)为(用分数表示).4.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,78的所有因数之和为.5.(8分)“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=l,J=11,Q=12,K=13)通过加减乘除四则运算得出24,先找到算法者获胜.游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q,则可以由算法(2×Q)×(4﹣3)得到 24.如果在一次游戏中恰好抽到了以下两组排,请分别写出你的算法:(1)5,5,9,9,你的算法是(2)4,5,8,K,你的算法是.二、填空题(共5小题,每小题10分,满分50分)6.(10分)用5个边长为单位长度的小正方形(单位正方形)可以构成如图所示的5﹣联方(在中国又称为伤脑筋十二块).在西方国家,人们用形象的拉丁字母来标记每一个5﹣联方.其中,既不是中心对称图形也不是轴对称图形的5﹣联方为:既是中心对称图形又是轴对称图形的5﹣联方为.7.(10分)将图中的圆圈染色,要求有连线的两个相邻的圆圈染不同的颜色,则最少需要种颜色.8.(10分)在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫作“十二地支,;十天干和十二地支进行循环组合:甲子、乙丑、丙寅.一直到癸亥,共得到60个组合,称为六十甲子.如此周而复始用来纪年的方法,称为甲子纪年法在甲子纪年中,以“丑”结尾的年份除了“乙丑”外,还有.9.(10分)在印度河畔的圣庙前,一块黄铜板上立着3根金针,针上穿着很多金盘.据说梵天创世时,在最左边的针上穿了由大到小的64片金盘,他要求人们按照“每次只能移动一片,而且小的金盘必须永远在大的金盘上面”的规则,将所有的64 片金盘移动到最右边的金盘上面.他预言,当所有64片金盘都从左边的针移动到右边的时候,宇宙就会湮(yan)灭.现在最左边金针(A)上只有6片金盘,如图(1)所示,要按照规则,移动成图(2)的状态,至少需要移动步.10.(10分)用3颗红色的珠子,2颗蓝色的珠子,1颗绿色的珠子串成圆形手链,一共可以串成种不同的手链.三、填空题(共5小题,每小题12分,满分60分)11.(12分)索玛立方体组块是丹麦物理学家皮特•海音(Piet Hein)发明的7个小立方体组块(如图所示,注意5号与6号组块,这是两个不同的组块).因为利用这7个组块可以恰好组成一个立方体,所以称为索玛立方体组块.一个索玛立方体组块如果能够被某个平面分割成形状完全相同的两部分,则称这个组块是可平面平分的.那么,这些组块中有而且只有1种分割方法的可平面平分组块为,不可平面平分组块为(填0表示没有).12.(12分)在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,图中的格点四边形的面积为,可以划分为个本原格点三角形.13.(12分)如果一个长方形能够被分割为若干个边长不等的小正方形,则这个长方形称为完美长方形.已知下面的长方形是一个完美长方形,分割方法如图所示,已知其中最小的三个正方形的边长分别为1,2,7,那么,图中没有标示边长的小正方形的边长按照从小到大的顺序分别为.14.(12分)如果两个不同自然数的积被5除余1,那么我们称这两个自然数互为“模5的倒数”.比如,3×7=21,被5除余1,则3和7互为“模5的倒数”.即3与7都是有“模5的倒数”的数.那么8,9,10,11,12中有“模5的倒数”的数为,最小的“模5的倒数”分别为.15.(12分)将自然数1到16排成4×4的方阵,每行每列以及对角线上数的和相等,这样的方阵称为4阶幻方.幻方起源于中国,在世界上很多地方也都有发现.下面的4阶幻方是在印度耆那神庙中发现的,请将其补充完整:2017年第十五届“走美杯”小数数学竞赛初赛试卷(四年级B卷)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)计算:四十二亿九千四百九十六万七千二百九十七除以六百七十万零四百一十七等于641 (用数字作答).【分析】首先要把数四十二亿九千四百九十六万七千二百九十七和六百七十万零四百一十七写出来,然后计算即可.【解答】解:四十二亿九千四百九十六万七千二百九十七写作:4294967297六百七十万零四百一十七写作:67004174294967297÷6700417=641【点评】本题考查的数的读写,正确写出数,进行计算即可.2.(8分)将一个周角平均分成6000份,其中的一份作为角的度量单位,则可以得到一种新的度量角的单位:密位.显然,360°=6000密位,那么45°= 750 密位,1050密位= 63 °.【分析】根据题意可知1°=密位,1密位=°,据此解答即可.【解答】解:1°=密位,1密位=°,45°=45×=750密位,1050密位=1050×=63°【点评】本题考查的是单位换算,根据题意算出1°=密位,1密位=°,是解答本题的关键.3.(8分)两个标准骰子一起投掷1次,点数之和恰好为10的可能性(概率)为(用分数表示).【分析】每个骰子的点数分别是1、2、3、4、5、6,所以投掷两个骰子的点数之和可能有:6×6=36种情况,其中相加等于10的有(4,6)、(6,4)、(5,5)这3种情况,据此解答即可.【解答】解:投掷两个骰子的点数之和可能有:6×6=36种情况,其中相加等于10的有(4,6)、(6,4)、(5,5)这3种情况.则点数之和恰好为10的可能性(概率)为:3÷36=【点评】本题考查的是概率问题,正确得出投掷两个骰子的点数之和可能情况一共有多少种是关键.4.(8分)大于0的自然数,如果满足所有因数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有因数为1,2,3,6,1+2+3+6=12,6是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有因数之和开始,78的所有因数之和为168 .【分析】要想求一个数的所有因数的和,首先要把这个数分解质因数,然后利用求一个数的所有的因数之和的公式解答即可.【解答】解:78=2×3×13所以78的所有的因数之和是:(1+2)×(1+3)×(1+13)=168【点评】本题考查的是如何求一个数的所有因数的和.把一个自然数M分解质因数,M=a b×c d×e f××…×m n,则自然数M的所有因数的和是(1+a1+a2+…+a b)×(1+c1+c2+…+c d)×()…×(1+m1+m2+…+m n),据此解答即可.5.(8分)“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(A=l,J=11,Q=12,K=13)通过加减乘除四则运算得出24,先找到算法者获胜.游戏规定4张牌扑克都要用到,而且每张牌只能用1次,比如2,3,4,Q,则可以由算法(2×Q)×(4﹣3)得到 24.如果在一次游戏中恰好抽到了以下两组排,请分别写出你的算法:(1)5,5,9,9,你的算法是5×5﹣9÷9=24(2)4,5,8,K,你的算法是4×8+5﹣K=24 .【分析】本题考查“24点游戏”,细心解答即可.【解答】解:(1)因为24=25﹣1,所以5×5﹣9÷9=24(2)4×8+5﹣K=24【点评】本题难度较低,细心解答即可.二、填空题(共5小题,每小题10分,满分50分)6.(10分)用5个边长为单位长度的小正方形(单位正方形)可以构成如图所示的5﹣联方(在中国又称为伤脑筋十二块).在西方国家,人们用形象的拉丁字母来标记每一个5﹣联方.其中,既不是中心对称图形也不是轴对称图形的5﹣联方为F、L、N、P、Y :既是中心对称图形又是轴对称图形的5﹣联方为I、X .【分析】按题意,可以根据图形的对称性不难看出来,只有F、L、N、P、Y既不是中心对称图形也不是轴对称的图形,I、X既是中心对称图形又是轴对称图形.【解答】解:根据分析,可以根据图形的对称性不难看出来,只有F、L、N、P、Y既不是中心对称图形也不是轴对称的图形,I、X既是中心对称图形又是轴对称图形.故答案是:FLNPY,IX【点评】本题考查了图形的变换和对称性,突破点是:利用图形的对称性,不难看出符合题意的图形.7.(10分)将图中的圆圈染色,要求有连线的两个相邻的圆圈染不同的颜色,则最少需要 4 种颜色.【分析】要保证使用的颜色最少,则两个相邻的圆圈的颜色要尽可能多的相同,尝试2种颜色和3种颜色都不行,需要4种颜色,据此解答即可.【解答】解:尝试2种颜色和3种颜色都不行,需要4种颜色,如下图:【点评】本题考查染色问题.8.(10分)在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、已、午、未、申、酉、戌、亥叫作“十二地支,;十天干和十二地支进行循环组合:甲子、乙丑、丙寅.一直到癸亥,共得到60个组合,称为六十甲子.如此周而复始用来纪年的方法,称为甲子纪年法在甲子纪年中,以“丑”结尾的年份除了“乙丑”外,还有丁丑,己丑,辛丑,癸丑.【分析】首先分析题中的丑经过12年出现一次,共60年出现5次.枚举法即可.【解答】解:依题意可知:第一个是乙丑,丑出现时经过12+2=14年.24+2=26年,36+2=38年,48+2=50年.经过14,26,38,50年对应的天干是丁,己,辛,癸.故答案为:丁丑,己丑,辛丑,癸丑【点评】本题考查对周期问题的理解和掌握,关键是找到对应的数字.问题解决.9.(10分)在印度河畔的圣庙前,一块黄铜板上立着3根金针,针上穿着很多金盘.据说梵天创世时,在最左边的针上穿了由大到小的64片金盘,他要求人们按照“每次只能移动一片,而且小的金盘必须永远在大的金盘上面”的规则,将所有的64 片金盘移动到最右边的金盘上面.他预言,当所有64片金盘都从左边的针移动到右边的时候,宇宙就会湮(yan)灭.现在最左边金针(A)上只有6片金盘,如图(1)所示,要按照规则,移动成图(2)的状态,至少需要移动24 步.【分析】这是一个汉诺塔的变形问题,根据汉诺塔的推理结果,把n个盘从一个柱子上全部转移到另一个柱子上需要的步数是2n﹣1,据此解答即可.【解答】解:设6片金盘从小到大的编号依次是①、②、③、④、⑤、⑥,由图可知,图(2)中A上是③和④号金盘,C上是①、②、⑤、⑥金盘.第一次:把①、②、③、④4个金盘全部转移到图(2)B上,需要24﹣1=15(步)第二次:把⑤、⑥2个金盘全部转移到图(2)C上,需要22﹣1=3(步)第三次:把图(2)B上的①、②2个金盘全部转移到图(2)C上,需要22﹣1=3(步)第四次:把图(2)B上的③、④2个金盘全部转移到图(2)A上,需要22﹣1=3(步)综上所述:需要的步数是:15+3×3=24(步)【点评】本题考查的汉诺塔问题,重点是要理解有关汉诺塔的公式:把n个盘从一个柱子上全部转移到另一个柱子上需要的步数是2n﹣110.(10分)用3颗红色的珠子,2颗蓝色的珠子,1颗绿色的珠子串成圆形手链,一共可以串成 5 种不同的手链.【分析】因为是圆形手链,所以旋转和翻转相同的只能算一种,因为红色的珠子有3颗,所以可以让3颗红色的珠子相邻,也可以让2个红色的珠子相邻,也可以让红色的珠子不相邻这三种情况考虑,据此解答即可.【解答】解:①3颗红色的珠子相邻,则只有2种;②只有2颗红色的珠子相邻,有2种;③3颗红色的珠子都不相邻,有1种;2+2+1=5(种)答:一共可以串成5种不同的手链.【点评】本题考查的排列组合问题.三、填空题(共5小题,每小题12分,满分60分)11.(12分)索玛立方体组块是丹麦物理学家皮特•海音(Piet Hein)发明的7个小立方体组块(如图所示,注意5号与6号组块,这是两个不同的组块).因为利用这7个组块可以恰好组成一个立方体,所以称为索玛立方体组块.一个索玛立方体组块如果能够被某个平面分割成形状完全相同的两部分,则称这个组块是可平面平分的.那么,这些组块中有而且只有1种分割方法的可平面平分组块为5、6 ,不可平面平分组块为7号(填0表示没有).【分析】对1~7号组块进行逐一分析,看每一个组块有几种方法分割成两个完全相同的部分.【解答】解:1号有如下两种分割方法:2号有如下两种分割方法:3号有如下两种分割方法:4号有如下两种分割方法:5号只有如下一种分割方法:6号只有如下一种分割方法:7号不能分割成完全相同的两部分.故答案为:5、6;7号.【点评】对各个组块进行分析,易错点是7号不能分割成两个完全相同的部分.12.(12分)在平面上,用边长为1的单位正方形构成正方形网格,顶点都落在单位正方形的顶点(又称为格点)上的简单多边形叫做格点多边形.最简单的格点多边形是格点三角形,而除去三个顶点之外,内部或边上不含格点的格点三角形称为本原格点三角形,如图所示的格点三角形MBN.每一个格点多边形都能够很容易地划分为若干个本原格点三角形.那么,图中的格点四边形的面积为7.5 ,可以划分为15 个本原格点三角形.【分析】根据皮克公式:设格点多边形的面积是S,该多边形各边上的格点个数为a个,内部格点个数为b个,则S=a+b﹣1,即可求出图中的格点四边形的面积.【解答】解:皮克公式:S=a+b﹣1图中的格点四边形中,各边上的格点数a=5,内部的格点数b=6,所以格点四边形的面积是:×5+6﹣1=7.5根据题意,本原格点三角形内部没有格点,那么S=×3+0﹣1=0.5,所以7.5÷0.5=15(个),故答案为7.5,15.【点评】本题考查皮克公式的灵活运用.13.(12分)如果一个长方形能够被分割为若干个边长不等的小正方形,则这个长方形称为完美长方形.已知下面的长方形是一个完美长方形,分割方法如图所示,已知其中最小的三个正方形的边长分别为1,2,7,那么,图中没有标示边长的小正方形的边长按照从小到大的顺序分别为9、11、13、21、22、24、36、37、44 .【分析】本题考察平面图形的计算.【解答】解:剩下的小正方形的编号分别是从①到⑨,如下图:正方形①的边长是:2+7=9正方形②的边长是:9+2=11正方形③的边长是:11+2=13正方形④的边长是:9+11+1=21正方形⑤的边长是:21+1=22正方形⑥的边长是:22+1=23正方形⑦的边长是:23+13=36正方形⑧的边长是:9+21+7=37正方形⑨的边长是:37+7=44.故填:9、11、13、21、22、24、36、37、44.【点评】本题较为繁琐,可操作性低,难度也低.14.(12分)如果两个不同自然数的积被5除余1,那么我们称这两个自然数互为“模5的倒数”.比如,3×7=21,被5除余1,则3和7互为“模5的倒数”.即3与7都是有“模5的倒数”的数.那么8,9,10,11,12中有“模5的倒数”的数为8和12 ,最小的“模5的倒数”分别为2和3或1和6 .【分析】因为5的倍数的末尾是0或5,所以被5除余1的数的末尾是1或6,据此解答即可.【解答】解:因为5的倍数的末尾是0或5,所以被5除余1的数的末尾是1或6在8,9,10,11,12这四个数中,只有8×12=96符合要求.因为1×6=6,2×3=6,所以最小的“模5的倒数”分别是2和3或1和6.【点评】本题关键要理解因为5的倍数的末尾是0或5,所以被5除余1的数的末尾是1或6,据此解答即可.15.(12分)将自然数1到16排成4×4的方阵,每行每列以及对角线上数的和相等,这样的方阵称为4阶幻方.幻方起源于中国,在世界上很多地方也都有发现.下面的4阶幻方是在印度耆那神庙中发现的,请将其补充完整:【分析】首先算出1+2+3+4+…+16的和,从而求出每行、每列以及对角线上4个数的和,然后再根据幻方的“模块特性”求出空缺的数,据此解答即可.【解答】解:(1+2+3+4+…+16)÷4=34幻方的“模块特性”取出任意一个2×2的小正方形,4个数之和也是34,则有:【点评】本题考查的是幻方以及幻方的一些性质.。
四年级数学智力竞赛试题答案
![四年级数学智力竞赛试题答案](https://img.taocdn.com/s3/m/f72c897ee418964bcf84b9d528ea81c759f52e53.png)
小学四年级数学智力竞赛试题必答题:(每小题4分,总计60分)1、两数的差是28,被减数减少3,减数增加5,它们的差是多少?(20)2、一座时钟,几点敲几下,每半点敲一下,一昼夜共敲多少下?(180下)3、小华从楼下走到二楼要跨18个台阶,走到四楼需要跨多少下?(54下)4、小明每天晚上八时三十分睡觉,早上五时三十分起床,他的睡眠时间是多少小时?(9小时)5、一年级有两个班,如果一班分3个同学到二班,两班人数相等。
一班比二班多几人?(6人)6、1至10这十个数中,两个不相同的数,相加和是10的有几对?(4对)7、一条路每隔5米有电线杆一根,连两端共20根,算一算这条路有多少米?(95米)8、1+3+5+7+9+11+13+15+17+19,和是多少?(100)9、木匠把一段木料锯成5小段,每锯一段要15分钟,他从早上8:10分开始锯,锯完是几时几分?(9时10分)10、1~100数中,0出现多少次?(11次)11、一筐梨,连筐共重48千克,取出一半后,连筐共25千克,这只筐原来有多重?(2千克)12、有两条绳,长绳114米,短绳14米,长绳应剪去多少才是短绳的5倍?(44米)13、小强期中考试,语数外平均94分,他数学考98分,语文87分,外语考多少分?(97分)14、时钟分针、秒针、时针一昼夜共转多少圈?(1466圈)15、用不同硬币组成8分钱,有几种组法?(7种)抢答题:(每小题4分,总计48分)1、2000年第一季度,每天生产机器10台,第一季度一共生产多少台?(910台)2、小明带一些钱上街,他买书用去所带钱的一半,买练习本又用去剩下钱的一半,结果还剩2元钱。
问小明上街带多少钱?(8元)3、一只闹钟,敲6下用5秒,敲12下用多少秒?(11秒)4、老张、阿明、小红三人共91岁,已知阿明22岁,是小红年龄的2倍,老张多少岁?(58岁)5、一个数除以11,商3余2,这个数是多少?(35)6、小明跑步上学来回共用18分,如果步行上学来回共有30分,如果跑步上学,步行回家用多少时间?(24分)7、五个连续自然数的和是25,这五个数分别是多少?(3、4、5、6、7)8、差及减数的和除以被减数商是多少?(1)9、用4、0、9、1组成最大的四位数和最小的四位数分别是多少?(9410、1049)10、1、2、3组成任意三位数有哪些?(123、321、213、231、132、312)11、在下列各数中,填上各种运算符号和括号,使等号两边相等:1 2 3 4 5=10(1+2+3-4)×5=10 (1+2)÷3+4+5=101+2+3×4-5=10 1×(2×3-4)×5=1012、1995年1月1日是星期日,1995年10月1日是星期几?(星期日)三年级数学奥赛题小学数学奥赛 2008-03-02 11:13:07 阅读54 评论0 字号:大中小1、1+2+3+ (100)2、从1到300一共用了()个0。
四年级数学竞赛经典试题
![四年级数学竞赛经典试题](https://img.taocdn.com/s3/m/22c5453ca200a6c30c22590102020740be1ecd9c.png)
四年级数学竞赛经典试题四年级数学竞赛经典试题在平平淡淡的日常中,我们都可能会接触到试题,试题可以帮助主办方了解考生某方面的知识或技能状况。
一份好的试题都是什么样子的呢?以下是小编为大家收集的四年级数学竞赛经典试题,欢迎阅读,希望大家能够喜欢。
四年级数学竞赛经典试题篇1一、填空(每空1分,共25分)1.把一根14厘米长的吸管剪成三段,用线串成一个三角形。
可剪成()厘米、()厘米、()厘米;还可以剪成()厘米、()厘米、()厘米。
2.一个等腰三角形,它的一个顶角是底角的4倍,顶角是()度,这是个()三角形。
3.在等腰三角形中,相等的两条边叫做三角形的(),另一条边叫做三角形的()。
4.一个三角形中,有一个角是120度,这个三角形肯定是()三角形;一个直角三角形,如果∠A=∠B,那么这个三角形也是()三角形,而且∠A=()度。
5.在一个三角形中,最多有()个钝角,最多有()直角,最多有()个锐角。
6.如果一个三角形按角的特征来分,那么可以分为()。
7.一个数,亿位上是6,百万位上是4,十万位上是5,千位上是8,其余各位上都是0,这个数写作(),读作(),最高位的计数单位是().8.3.45平方米=()平方米()平方分米9.150分=()时()分10.15吨60千克=()千克二、判断(正确的在括号里划“√”,错误的在括号里划“×”)(每题1分,共5分)1.小数加法的意义与整数加法的意义完全相同.()2.最大的四位数比最小的五位数多1.()3.有二个角是锐角的三角形叫锐角三角形.()4.a×b的积一定大于a.()5、134-75+25=134-(75+25)()三、选择(把正确答案的序号填入括号内)(每题1分,共5分)1、56+72+28=56+(72+28)运用了()A、加法交换律B、加法结合律C、乘法结合律D、加法交换律和结合律2、25×(8+4)=()A、25×8×25×4B、25×8+25×4C、25×4×8D、25×8+43、3×8×4×5=(3×4)×(8×5)运用了()A、乘法交换律B、乘法结合律C、乘法分配律D、乘法交换律和结合律4、101×125=()A、100×125+1B、125×100+125C、125×100×1D、100×125×1×125四、计算题(共33分)1、直接写得数(每题1分,共10分)32.8+19=0.51÷17=240÷30=1000×0.8=3.06+0.2=0.67+1.24=1.82-0.63=4.5+1.5=1-0.63=231-99=2.计算下面各题,能用简便算法的用简便算法(每题3分,共24分)①3871-(1080-740)×7②5175÷207+102×9③0.9+1.08+0.92+0.1④13.59-6.91-0.09⑤983×(3.8+2.2)+0.237×1000⑥0.8×(35+65)×5÷100⑦30-[17.8+(6.2+38÷10)]⑧(680+68×45)÷55五、列式计算(每题3分,共6分)1.10减去5.6与1.4的和,所得的差去除246,商是多少?2.357除以7的商,加上1000与0.875的积,和是多少?六、应用题(每题5分,共25分)1、某小学三年级和四年级要给620棵树浇水,三年级每天浇40棵,浇了8天;剩下的由四年级来浇,5天浇完,平均每天浇多少棵?2.小兰的妈妈带50元钱去买菜,买荤菜用去28.75元,买素菜用6.35元。
小学四年级数学竞赛试题(附答案)
![小学四年级数学竞赛试题(附答案)](https://img.taocdn.com/s3/m/503bbad49a89680203d8ce2f0066f5335a816787.png)
小学四年级数学竞赛试题(附答案)小学四年级数学竞赛试题一、填空。
(共20分,每小题2分)1.被除数是3320,商是150,余数是20,除数是()。
2.3998是4个连续自然数的和,其中最小的数是()。
3.有一个两位数,在它的某一位数字的前面加上一个小数点,再和这个两位数相加,得数是20.9。
这个两位数是()4.填一个最小的自然数,使225×525×()积的末尾四位数字都是0。
5.在下面的式子中填上括号,使等式成立。
5×8+16÷4-2=206.从1、2、3、4、5、6、7、8、9九个数中,任取3个数组成一组,使它的平均数是5,有()种取法。
7.某地的邮政编码可用ABCCDD表示,已知这六个数字的和是8,A与B的和等于2个D,A是最小的自然数。
这个邮政编码是()。
8.两个数之和是444,大数除以小数商11,且没有余数,大数是()9.把5、11、14、15、21、22六个数填入下面的括号内,使等式成立。
()×()×()=()×()×()10.正方体有6个面,每个面上分别写有1个数字,它们是1、2、3、4、5、6,而且每个相对面上两个数的和是7(1和6,2和5,3和4)。
下图是正方体六个面的展开图,请填出空格内的数。
二、判断。
(对的在括号内画“√”,错的画“×”,共10分,每小题2分)11.大于0.9997而小于0.9999的小数只有0.9998。
()12.一张长方形彩纸长21厘米,宽15厘米,先剪下一个的正方形,再从余下的纸上剪下一个的正方形。
这时纸的长是6厘米。
()13.一个箱子里放着几顶帽子,除2顶以外都是红的,除2顶以外都是蓝的,除2顶以外都是黄的。
箱子中一共有3顶帽子。
()14.一个占地1公顷的正方形苗圃,边长各加长100米,苗圃的面积增加3公顷。
()15.有铅笔180支,分成若干等份,每份不得少于7支,也不能多于25支,共有7种不同的分法。
【经典】小学四年级数学奥数竞赛试卷及答案
![【经典】小学四年级数学奥数竞赛试卷及答案](https://img.taocdn.com/s3/m/d1ad80b7b84ae45c3a358c97.png)
【经典】小学四年级数学奥数竞赛试卷及答案一、拓展提优试题1.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是.2.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有杯酒.3.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.4.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得颗巧克力.5.空心圆和实心圆排成一行如下图所示:○●○●●○●●●○●○●●○●●●○●○●●○●●●…在前200个圆中有个空心圆.6.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.7.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的倍.8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.9.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.10.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…11.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.12.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.13.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.14.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.15.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.【参考答案】一、拓展提优试题1.解:设最后一步之前运算的结果是a,a+20=180,那么:a=180﹣20=160;正确的计算结果是:a÷20=160÷20=8;故答案为:8.2.解:设李白壶中原有x杯酒,由题意得:{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[4x﹣6]×2﹣2}×2﹣2=2,{8x﹣14}×2﹣2=2,16x﹣30=2,16x=32,x=2;答:壶中原有2杯酒.故答案为:2.3.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.4.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,那么他最多可分得4+40=44颗,要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,由此可得出这时每个人的巧克力数为:11、12、13、14,答:分得最多的小朋友至少可以得14颗巧克力;故答案为:14.5.解:200÷9=22…2,所以22×3+1=67(个),答:前200个圆中有67个空心圆.故答案为:67.6.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.7.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,所以S△ABE =S△ABC,S△ACE=S△ABC,S△ADE=S△ACE=S△ABC=S△ABC,三角形ABC的面积是三角形ADE面积的2倍.故答案为:2.8.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.9.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.10.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.11.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.解:根据题意可知,原来甲筐比丙筐少(12+24)=36个苹果,且原来丙筐是甲筐个数的2倍,则原来甲筐有:36÷(2﹣1)=36个,原来丙筐有:36×2=72个,原来乙筐有:72+(6+12)=90(个)答:乙筐内原有苹果 90个.故答案为:90.【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.12.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.13.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.14.解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.故答案为:6.15.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天。
四年级数学竞赛试题 (2)
![四年级数学竞赛试题 (2)](https://img.taocdn.com/s3/m/e56eef8ab8f67c1cfad6b8ed.png)
=(111+189)×6=300×6=18004.小红爷爷今年的年龄加上17后,再缩小4倍,再减去15后,扩大10倍,恰好是100岁,小红爷爷今年()岁。
解析:可采用倒推法。
(100÷10+15)×4-17=83(岁)5.某校四年级有两个班,其中甲班有a人,乙班比甲班多3人,则该校四年级共有学生( 2 ×a+3 )人。
6.工人叔叔修一条路,原计划每天修120米,实际每天多修了30米,结果提前5天完成了任务。
原计划修的这条路有()米。
解析:可采用假设法。
想:如果按原计划天数,实际总共多修了多少米?又根据实际每天多修30米,可求出计划修的天数,最后求出这条路的长度。
(120+30)×5÷30=25(天)120×25=3000(米)7.一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了。
一班有()人两项比赛都没有参加。
解析:这是包含问题。
可先求出一班共有多少人参加了比赛,再求出多少人没参加。
45-(26+22-12)=9(人)8.一次口算比赛,规定:答对一题得8分,答错一题扣5分。
小华答了18道题,得92分,小华在此次比赛中答错了( 4 )道题。
解析:可采用假设法。
假设小华全部答对能得多少分,再与实际得分比较,再除以答错一题相差多)这1999100个1011. 24)12. 7 )15.相乘,37个试9除以7余2,(2,4,1)如此循环。
1999÷3=666……1,说明还剩下2个细胞。
16.用记号(a)表示a的整数部分,如(10.62)=10,(15÷4)=3,那么(120÷7)×(9.47-1.83)=( 119 )解析:属于新定义运算。
17.□□□□□+□□□□□=199998,则这10个□中的数字之和是( 90 )。
18.印刷厂要印刷数学口算册27万本,白班每天印刷2855本,夜班比白班每天多印刷290本。
四年级数学竞赛试卷
![四年级数学竞赛试卷](https://img.taocdn.com/s3/m/e0ce2d6a2cc58bd63086bd53.png)
四年级数学竞赛试卷(一)1、已知三位数的各个数字之和是25,这样的三位数一共有()个。
2、在一次足球比赛中,所有参赛队的每两个队比赛比一场,共比赛21场,那么有()队参赛。
3、小明从一楼上到四楼共走了72级台阶,那么相邻两层楼之间有()台阶。
4、两个数的和是250,其中大数除以小数的商为21,余数是8,那么大数是()5、把一张长16厘米,宽8厘米的长方形纸对折后裁成两半,再把其中的一张对折并裁成两半,……、这样继续裁下去,直到得到两个边长为1厘米的正方形为止,一共需要裁()次。
6、庆祝“六一”儿童节,5个同学做纸花,平均每人做5朵,乙知每个同学做的数量各不相同,其中一个人做得最快,他最多做()朵。
7、今年小林6岁,他父亲34岁,当两人年龄和是58岁时,小林年龄是()岁。
8、有一种钟每小时慢3分钟,早晨8时对准标准时间,当钟走到下午1时42分时,标准时间是()9、一张纸对折1次2层,对折2次是4层,……对折()次是512层。
10、甲、乙两个笼子里共有小鸡20只,甲笼子里新放4只,乙笼里取出1只,这时乙笼还比甲笼多1只,则甲笼原来有鸡()只。
11、一张面积是96000平方毫米的正方形纸,对折8次后得到一个小正方形,小正方形的面积是()平方毫米。
小学四年级数学竞赛(二)1、小明骑在牛背上要赶着四头水牛过河,这四头牛过河分别需要2分、3分、6分、8分钟,并且每次只能赶着两头牛过河。
那么小明至少需要多少分钟才能把牛全部赶过河去?怎样走?2、.海关大楼共有十二层,李苹的爸爸在十楼办公,有一天,李苹去找爸爸,她用40秒从一楼走到五楼,照此速度,她至少还要再走()秒才能到达她爸爸办公室。
3、一串数按一定规律排序:1,2,3,2,3,4,3,4,5,4,5,6……,第36个数是()。
4、沿海5个省:广东、福建、浙江、江苏和山东,在地图上,隐去省名,用5个字母代替,请五个学生来辨认:甲答:A是福建,B是浙江乙答:C是浙江,D是山东丙答:D是广东,C是福建丁答:A是福建,E是江苏戊答:B是广东,E是江苏老师发现每人说对一个,说错一个,那么五个不同的字母各代表哪个省?5、甲班和乙班共96人,乙班和丙班89人,丙班和丁班共86人,问甲班和丁班共多少人?6、小张比小王大2岁,小李比小张大2岁,小赵比小张小1岁,小杨比小李小3岁,这五人的年龄和是58岁,这五人各几岁?7、某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人,已知这些宿舍中共住了168人,那么其中有几间大宿舍?8、在下面各数字之间填上“+”、“-”、“×”、“÷”、“()”,使等式成立。
小学四年级数学计算能力竞赛试题(含答案)
![小学四年级数学计算能力竞赛试题(含答案)](https://img.taocdn.com/s3/m/0bf3b8e277232f60dccca148.png)
小学四年级数学计算能力竞赛试题(时间:40分钟总分100分)一、口算(每题0.5分,共20分)380+230= 650+350=560—240= 280000+320000= 38万+17万= 76万—28万= 630—190= 567+198=2800÷70= 52×200= 990÷30= 180万+360万=128+72= 30×45= 225-50= 137+42= 800÷50= 340×20= 25×40= 125×8=17×70= 440÷4= 73+127= 305+299=12×11= 120×30= 96÷4= 360÷30=540÷27= 710-640= 25×24= 570-78=310-99= 9000÷50= 80×25= 710-230=75+25×4= 63-63÷7=58×50÷10= 8×6÷8×6=二、计算下面各题。
(1-9题每题2分,10-13题每题3分,共30分)(1)90×12-800 (2)75+225÷45 (3)624÷24+185(4)145×28-107 (5)45×18÷15 (6)540÷45×130(7)(47+12) ×15 (8)195÷(150-85) (9)(220-185)×14 (10)60+70×3-110 (11)(253-195)×(72÷6) (12)(531-27×5)÷36 (13)900÷[(15+10)×3]三、用简便方法计算。
(完整版)四年级杯数学竞赛试题
![(完整版)四年级杯数学竞赛试题](https://img.taocdn.com/s3/m/08e23692a26925c52dc5bf48.png)
四年级数学竞赛题11.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
15.长方形被分成了4个小长方形,图4中的数字是它们每个的面积,阴影部分的面积是。
2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(四年级)后附答案解析
![2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(四年级)后附答案解析](https://img.taocdn.com/s3/m/311097c9856a561252d36f52.png)
2017年第十五届“走美杯”小数数学竞赛上海赛区初赛试卷(四年级)一、填空题(共5小题,每小题8分,满分40分)1.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,9,9这四个数组成一个算式,是结果等于24..2.(8分)每个月的周一、周二、周三、周四、周五、周六、周日都有4天或5天,某月,周三比其他日期恰好都多一天,这个月28日是星期.3.(8分)图中共有个长方形.4.(8分)一堆棋子有黑、白两色,黑棋子的个数是白棋子的2倍,现在从这堆棋子中每次取出黑子5个、白子3个,若干次后,白子恰好取完,而黑子还有11个,白棋子原有个.5.(8分)2017除以9余1,2017年的每一天都可以用一个八位数表示,比如2017年1月3日可以表示为20170108,这个数除以9余1,2017年全年365天都用八位数表示,其中能被9整除的八位数共有个.二、填空题(共5小题,每小题10分,满分50分)6.(10分)两个长方形如图摆放,M为AD的中点,三角形ACM是等腰直角三角形,阴影部分的面积是35,长方形AEFC的面积为.7.(10分)A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中的涂法较多,有种不同的涂法.8.(10分)甲、乙两人骑车分别从A、B两地同时出发,相向而行,相遇时,甲比乙多行了3千米,已知甲骑车从A到B需2小时,乙骑车从B到A需3小时,A,B两地相距千米.9.(10分)将2013拆成3个互不相同的整数,使这三个数的和为2013,且其中任意两个数的和除以3都余1,这三个数中,最大的数最小是.10.(10分)有一种五位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的五位数共有个.二、填空题11.(12分)圆上的50个点A1,A2,A3,…,A50将该圆分为50段等弧,以这50个点中的某些点为顶点,一共可以得到个不同的正多边形.12.(12分)将260个桃子分装到若干个相同的筐中,每个筐中最少放10个,最多放25个,放完后,每个框中的桃子数都不相同,有种放法,可能有个筐.13.(12分)一个宝库有16个藏宝室,成4×4状排列,但只有一个进口和一个出口,分别开在如图所示的藏宝室,每个藏宝室至多只能进去一次,相邻的两个藏宝室之间都有门想通,每个藏宝室中的宝贝价值已标在图中,大盗买通守护,夜间进入宝库,他能带走的宝物价值最多是.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):15.(12分)请在下面的每个箭头里填上适当的数字(图中已经填出两个数字),使得每个数字都表示该箭头所指方向的箭头里含有不同数字的个数,其中双向箭头表示箭头所指的两个的箭头里不同数字的个数,图中第三行从左到右所填数字组成的四位数是.2017年第十五届”走美杯“小数数学竞赛上海赛区初赛试卷(四年级)参考答案与试题解析一、填空题(共5小题,每小题8分,满分40分)1.(8分)24点游戏,用适当的运算符号(包括括号)把3,3,9,9这四个数组成一个算式,是结果等于24.3×9﹣9÷3=24 .【分析】结合4个数字和24之间的关系进行试运算,可以联想24相关的加减乘除运算,据此解答.【解答】解:3+3+9+9=24,3×9﹣9÷3=24.故答案为:3+3+9+9=24,3×9﹣9÷3=24等.【点评】本题考查24点游戏,重点在于有一定的联想能力,可以想到4个数字和24之间的关系,属于简单题.2.(8分)每个月的周一、周二、周三、周四、周五、周六、周日都有4天或5天,某月,周三比其他日期恰好都多一天,这个月28日是星期二.【分析】首先分析这个月一个有多少天,周三比其他都多一天说明这个月是4个星期多一天共29天,继续分析即可求解.【解答】解:依题意可知:周三比其他都多一天说明这个月是4个星期多一天共29天,最后一天是星期三,那么28日就是星期二.故答案为:二【点评】本题考查对周期问题的理解和运用,关键问题是找到这个月的天数,问题解决.3.(8分)图中共有7 个长方形.【分析】此题采用分类的方法解答.(1)由1个图形构成的有4个;(2)由2个图形构成的有1个;(3)由3个图形构成的有1个;(4)由4个图形构成的有1个;【解答】解:(1)由1个图形构成的有4个;(2)由2个图形构成的有1个;(3)由3个图形构成的有1个;(4)由4个图形构成的有1个;答:图中共有 7个长方形.故答案为:7.【点评】本题考查了对平面图形的认识,在数长方形的个数时,要有规律地进行分类.4.(8分)一堆棋子有黑、白两色,黑棋子的个数是白棋子的2倍,现在从这堆棋子中每次取出黑子5个、白子3个,若干次后,白子恰好取完,而黑子还有11个,白棋子原有33 个.【分析】根据题意,若每次取白子3个,黑子6个,白子取完时,黑子也恰好取完,但每次取5个黑子,最后剩下11个黑子,说明取了11次,所以白子原有3×11=33(个)【解答】解:根据分析,若每次取白子3个,黑子6个,白子取完时,黑子也恰好取完,但每次取5个黑子,最后剩下11个黑子,说明取了11次,所以白子原有3×11=33(个)故答案是:33个.方法二:设白棋子原有x个,取了n次,可列方程:解得:故答案是:33个.【点评】本题考查了等量关系与方程,突破点是:根据题意逻辑推理,可以分析出白子的数量.5.(8分)2017除以9余1,2017年的每一天都可以用一个八位数表示,比如2017年1月3日可以表示为20170108,这个数除以9余1,2017年全年365天都用八位数表示,其中能被9整除的八位数共有59 个.【分析】按题意,根据被9整除的特征,可知数字之和能被9整除,而2017年的年份2017的数字之和为10,被9除余1,八位数能被9整除,则只要满足月份日期的四位数除以9余8即可.【解答】解:根据分析,根据被9整除的特征,可知数字之和能被9整除,而2017年的年份2017的数字之和为10,被9除余1,八位数能被9整除,则只要满足月份日期的四位数除以9余8即可.满足这个条件的四位数有:0107、0116、0125、0206、0215、0224、0306、0314、0523、0404、0413、0422、0503、0512、0521、0530、0602、0611、0620、0629、0701、0710、0719、0728、0809、0827、0908、0917、0926、1007、1016、1025、1106、1115、1124、1205、1214、1223;综上,满足条件的八位数个数有:59个.故答案是:59.【点评】本题考查数的整除特征,突破点是:根据数的整除特征,求得能被9整除的八位数的个数.二、填空题(共5小题,每小题10分,满分50分)6.(10分)两个长方形如图摆放,M为AD的中点,三角形ACM是等腰直角三角形,阴影部分的面积是35,长方形AEFC的面积为42 .【分析】可以将阴影部分分割成5个与△ACM一样的等腰直角三角形,然后算得每个小等腰直角三角形的面积,再求长方形的面积.【解答】解:根据分析,将阴影部分分割成5个与△ACM一样的等腰直角三角形,如图所示:长方形AEFG的面积为:35÷5×6=42.故答案是:42.【点评】本题考查了三角形的面积,突破点是:将阴影部分分割成6个与△ACM 一样的等腰直角三角形,不难求得长方形AEFG的面积.7.(10分)A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中 B 的涂法较多,有12 种不同的涂法.【分析】A的涂色区域只能是最上方区域和左下方区域图同色,其排列数为;图B的涂色区域中涂同色的区域有2类,一是最上方区域和左下方区域;二是最上方区域和右下角区域,涂色种类数为+.【解答】解:图A的涂色方法有=3×2×1=6(种)图B的涂色方法有+=6+6=12(种)故:B的涂法多,有12种不同涂法.【点评】此题的解题关键是能否想到合并能涂同色的区域,而且要把这种情况找全.8.(10分)甲、乙两人骑车分别从A、B两地同时出发,相向而行,相遇时,甲比乙多行了3千米,已知甲骑车从A到B需2小时,乙骑车从B到A需3小时,A,B两地相距15ɛ千米.【分析】根据甲乙行相同的路程,所需时间之比为2:3,就是告诉:甲乙2人是速度之比为3:2(时间之比与速度之比互为倒数).甲乙2人是速度之比为3:2,也就是说在相同时间里,甲乙2人走的总路程中甲占3份,乙为2份,总路程是5份.即:在相同的时间里(他们相遇时),甲走了全程的3/5,乙走了全程的2/5.甲比乙多走了全程的1/5,就是那3千米.这样就可求出全程的长了.【解答】解:甲乙的时间比2:3,所以时间之比3:23÷(3/5﹣2/5 )=15(千米)答:A,B两地相距15千米.【点评】本题有点绕,必须弄懂时间比与速度比的关系.才能明白在相同的时间里(他们相遇时),甲走了全程的3/5,乙走了全程的2/5.甲比乙多走了全程的1/5,就是那3千米.9.(10分)将2013拆成3个互不相同的整数,使这三个数的和为2013,且其中任意两个数的和除以3都余1,这三个数中,最大的数最小是674 .【分析】根据题目条件“任意两个数的和除以3都余1”可知,三个数除以3的余数均为2,若要求最大的数最小,则三个数的差最小,结合题目情况可得答案.【解答】解:根据题目条件可知,三个数除以3的余数均为2,若要求最大的数最小,则三个数的差最小,2013÷3=671,即若三个数相等,则分别是671,671,671,而671÷3=223…2,即第二个数已经满足条件,因此只需将第一个数减去一个最小的整数给第三个数,从而使第一个数和第三个数除以3的余数均为2即可.易知需要减去的最小整数为3,因此这三个数分别为668,671,674,所以这三个数中,最大的数最小是674.故答案为:674.【点评】本题首先要理解最大的数最小时所对应的情况,然后在三数相等的情况稍作变化即可.10.(10分)有一种五位数,从左向右第三位数字开始,每一个数字都是它前面两个数字的和,这样的五位数共有8 个.【分析】按题意,可以利用每一个数字都是它前面两个数字的和,把这几个五位数分别列举出来,一共有8个.【解答】解:根据分析,从首位1开始算起,由1+0=1,故有10112;由1+1=2,有11235;由1+2=3,故有12358;由2+0=2,故有20224;由2+1=3,故有21347;由3+0=3,故有30336;由3+1=4,故有31459;由4+0=4,故有40448.综上,这样的五位数有:10112、11235、12358、20224、21347、30336、31459、40448共8个.故答案是:8.【点评】本题考查了数字问题,突破点是:列举符合题意的数,不难求得五位数的个数.填空题11.(12分)圆上的50个点A1,A2,A3,…,A50将该圆分为50段等弧,以这50个点中的某些点为顶点,一共可以得到18 个不同的正多边形.【分析】由于题目要求是正多边形,因此正多边形的边数必须是50的约数,根据50的约数情况进行分情况加和即可.【解答】解:50=2×5×5,因此大于3的50的约数有5、10、25、50.当多边形为五边形时,可以得到50÷5=10个;当多边形为正十边形时,可以得到50÷10=5个;当多边形为正二十五边形时,可以得到50÷25=2个;当多边形为正五十边形时,可以得到50÷50=1个.共10+5+2+1=18个.故答案为:18.【点评】本题的突破口在于能想到正多边形的边数必须为50的约数,难度中等.12.(12分)将260个桃子分装到若干个相同的筐中,每个筐中最少放10个,最多放25个,放完后,每个框中的桃子数都不相同,有 1 种放法,可能有15 个筐.【分析】首先可根据10﹣25的数据个数(16)按最小公差1计算最小的桃子个数,看是否在给定的桃子数量范围内,若不符合要求,则可减少筐的数量进一步讨论,据此解答.【解答】解:10+11+12+13+14+15+…+23+24+25=280>260,则不可能有16个筐,若为14个筐,则桃子最多可能有12+13+14+15+…+23+24+25=259,则不可能有14个筐,因此只能有15个筐,由于280﹣260=20,因此没有筐里放20个.故答案为:1;15.【点评】本题的突破口在于能根据最少个数和最大个数推断出筐的数量,难度中等.13.(12分)一个宝库有16个藏宝室,成4×4状排列,但只有一个进口和一个出口,分别开在如图所示的藏宝室,每个藏宝室至多只能进去一次,相邻的两个藏宝室之间都有门想通,每个藏宝室中的宝贝价值已标在图中,大盗买通守护,夜间进入宝库,他能带走的宝物价值最多是133 .【分析】本题首先能想到根据染色问题进行分析,可将房间黑白相间染色,根据进口和出口所染颜色相同可知大盗应该经过了奇数个房间,因此最多经过15个房间,且有一个白格无法走到,据此解答.【解答】解:借助染色解题,给3×3的方格黑白相同染色(如图),进口为黑格,若全部走完16个方格,出口应为白格,而图中出口为黑格,故至少有一个白格不能走到,标数最小的白为2,因此首先考虑2进行试走,发现若不走2,则无法到达12,因此舍去,接下来考虑3,进行试走,可行的路线为1﹣7﹣5﹣6﹣15﹣10﹣13﹣9﹣16﹣2﹣12﹣11﹣14﹣8﹣4.因此大盗最多能带走的宝物价值1+7+5+6+15+10+13+9+16+2+12+11+14+8+4=133故答案为:133.【点评】本题的突破口是能想到用染色方法确认大盗最多经过的房间数,确认后最小标数并不一定能走通,因此需要试走通过才可.14.(12分)现有1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)(如图),分别有6块、11块、10块,从这些积木中选出若干个,拼成3×3×3的实心正方体,至多可以拼出 3 个3×3×3的实心正方体,写出这几个正方体的拼法分别所用的A、B、C的个数(如1A+7B+1C):2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C【分析】首先计算出1×1×2的积木(A)、1×1×3的积木(B)、1×2×2的积木(C)能提供的总块数为85,3×3×3的实心正方体需要的积木块数为27,85÷27=3…4,因此首先可以判断至多能拼出3个3×3×3的实心正方体,然后根据奇偶性判断A、B、C各自所用的块数,据此解答.【解答】解:6块、11块、10块A、B、C积木总共能提供的块数是2×6+3×11+4×10=85,一个3×3×3的实心正方体需要的块数为27,因此最多拼成3个,且剩下块数为85﹣27×3=4,可以为2个A积木或1个C积木.27=2A+3B+4C,考虑27为奇数,因此B必须为奇数,因此B只能为1,3,5,7,B的总块数为11,因此3个实心正方体所用B的数目可以为1,5,5或1,3,7.①所用B的数目可以为1,5,5:拼法1:1B拼法2:4A+5B+1C拼法3:2A+5B+2C则拼法1中已经没有积木A可用,不符合题意;①所用B的数目可以为1,3,7:拼法1:2A+1B+5C(或4A+1B+4C)拼法2:1A+3B+4C拼法3:1A+7B+1C两种方法均符合题意.因此这几个正方形的拼法可以是 2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.故答案为:3;2A+1B+5C、1A+3B+4C、1A+7B+1C或4A+1B+4C、1A+3B+4C、1A+7B+1C.【点评】本题考查拼接方法,需要掌握这种题的答题技巧,难度较大.15.(12分)请在下面的每个箭头里填上适当的数字(图中已经填出两个数字),使得每个数字都表示该箭头所指方向的箭头里含有不同数字的个数,其中双向箭头表示箭头所指的两个的箭头里不同数字的个数,图中第三行从左到右所填数字组成的四位数是1212 .【分析】首先可以推断有已知数据所在行或列,然后根据已推断数据进一步推断未知数据.【解答】解:首先判断第一列,i箭头向下,向下只有一个数据,因此i填1,第一列第四行是3,则上面三个是不同数据,e是双向箭头,且上下共有3个数据,因此e填3,则a填2;然后判断第四行,n箭头向右,向右只有一个数据,则n填1,m填2;接着看第四列,h箭头向下,向下只有两个数据,l向上,向上只有两个数据,因此l为1或2,h填2,接着看第二行,f箭头向右,向右有两个数据,则f为1或2,g箭头向左,有两个数据,且不同,则g填2,则f填1,接着看第三列,k箭头向上,则k 为1或2,则c只能填2,k填1,接着看第一行,b只能为1或2,若b为1,则d为2,p为1,j为1,从而m 为1,而上面已推出m为2,矛盾,则b只能为2,则d为1,p为2,j为2,综上可得,第三行从左到右所填数字组成的四位数是1212.故答案为:1212.【点评】本题考查数据的推理,该题突破口在于已知数据和快速找出易推断数据.。
四年级数学竞赛试题
![四年级数学竞赛试题](https://img.taocdn.com/s3/m/c18fa4a2fad6195f302ba63d.png)
四年级数学竞赛试题1(上册)1、大卡车运4次,小卡车运5次,共运货44吨,大卡车2次的运货量等于小卡车3次的运货量,大卡车每次运货( )吨,小卡车( )吨。
2、某车间加工一批零件,计划每天加工48个,实际每天比计划多加工12个,结果提前5天完成任务。
这批零件共有()个。
3、抽屉里有若干个玻璃球,小军每次拿出其中的一半再放回一个,这样一共拿了五次,抽屉里还有3个玻璃球,那么,原来抽屉里有()个玻璃球。
4、一只母鸡生蛋很有规律,总是连着两天每天生一只蛋,以后就要空一天不生蛋,已知2011年元旦这一天没有生蛋,那么,2011年全年一共生了( )只蛋。
5、今年姐妹俩年龄的和是55岁,若干年前,当姐姐的年龄只有妹妹现在这么大时,妹妹的年龄恰好是姐姐年龄的一半,姐姐今年()岁。
6、五年级少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖,如果其中两人各挖4个,其余每人挖6个,就恰好挖完所有的树坑。
那么,五年级少先队员共挖了()个树坑。
7、甲、乙两人从底楼开始比赛爬楼梯,甲跑到第四层时,乙恰好到第三层,照这样计算,甲跑到第十六层,乙跑到第()层。
8、王雪读一本故事书,第一天读了8页,以后每天都比前一天多读3页,最后一天读了32页正好读完。
她一共读了()天。
9、一个三位数,个位上数字是5,如果将个位上数字移作百位上数字,百位上数字移作十位上数字,十位上数字移作个位上数字,那么所成的新数比原数大342。
原数是()。
10、某同学在计算两数相乘时,把一个因数87看成了81,结果少了48,另一个因数是()。
二、解决问题(7+7+7+7+8+9=45)。
1、规定:x★y=(x+y)×(x-y),求13★(5)2、长方形花圃长是30米,宽是22米,如果沿着花圃四周修一条2米宽的小路,小路的面积是多少平方米?3、做广播体操时,某年级的学生站成一个实心方阵时(正方形队列)还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人,求原来有多少人?4、李阿姨带一些钱去买糖果,如果买水果糖13kg,还差4元,如果买奶糖15kg,则剩2元,已知水果糖比奶糖每千克贵2元,阿姨带来多少钱?5、一座铁路桥长1200米,一列火车开过大桥需75秒;火车开过路旁一根信号杆需要15秒。
小学数学竞赛四年级试题及答案
![小学数学竞赛四年级试题及答案](https://img.taocdn.com/s3/m/cb51a70d68eae009581b6bd97f1922791688bef9.png)
添加标题
答案解析:首先将5个球分成3组,分别为2个球、2个球和1个球。先将两组各2个球的放在天平两端称重,如果天平平衡,则剩下的1个球就是重量不同的球;如果天平不平衡,则将较轻的2个球中的任意一个与另一个正常的球放在天平两端称重,如果天平平衡,那么剩下的那个球就是重量不同的球;如果天平不平衡,那么较轻的那个球就是重量不同的球。因此,最少称2次可以找出这2个重量不同的球。
解析:根据题意,3小时后还剩下全程的(2/5),可以求出3小时行驶的路程,进而求出全程的路程。
解析:根据题意,甲、乙两数的比是3:5,可以设甲数为3x,乙数为5x,再根据甲、乙两数的和是80,列出方程求解。
答案:180千米
答案:30
图形题解析
考察知识点:图形的形状、大小和位置关系
解题方法:利用图形性质和定理,进行推理和计算
心理调适和应试技巧
心理调适:保持冷静,增强自信,克服紧张情绪
应试技巧:认真审题,仔细计算,合理安排时间,先易后难
复习策略:系统复习,查漏补缺,注重数学思维和方法的训练
模拟考试:参加模拟考试,适应考试节奏和氛围,提高答题技巧
06
四年级数学竞赛对个人发展的影响
提高数学素养和能力
添加标题
添加标题
添加标题
竞赛背景和目的
竞赛背景:小学数学竞赛是一项旨在培养和提高学生数学能力的全国性赛事
竞赛目的:激发学生的数学兴趣,培养数学思维和创新能力,提高学生的数学素养和成绩
竞赛形式和规则
竞赛形式:个人或团队参赛,一般为笔试形式
竞赛规则:按照规定的答题方式和时间限制进行,不得作弊或违规行为
评分标准:根据答题的正确性和完整性进行评分,有时会有附加题或加分项
培养逻辑思维和创新能力
小学四年级数学竞赛题及答案
![小学四年级数学竞赛题及答案](https://img.taocdn.com/s3/m/3079c3b43c1ec5da51e27053.png)
小学四年级数学竞赛题及答案一、拓展提优试题1.当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年岁.2.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.3.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是.4.两数相除,商是12,余数是3,被除数最小是.5.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?6.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.7.甲、乙、丙三校合办画展,参展的画中,有41幅不是甲校的,有38幅不是乙校的,甲、乙两校参展的画共43幅,那么,丙校参展的画有幅.8.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.9.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为千克.10.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.11.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.12.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…13.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?14.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.15.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.16.若2台收割机3天可以收割小麦450亩,则用7台收割机收割2100亩小麦需要天.17.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.18.袋子中有黑白两种颜色的棋子,黑子的个数是白子的个数的2倍,每次从袋中同时取出3个黑子和2个白子,某次取完后,白子剩下1个,黑子剩下31个,则袋中原有黑子个.19.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.20.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.21.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S的正方形有个.22.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.23.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是cm.24.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.25.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.26.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得颗巧克力.27.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.28.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.29.如果,那么=.30.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.31.三个连续自然数的乘积是120,它们的和是.32.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.33.在□中填上适当的数,使竖式成立.34.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.35.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生人.36.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A 大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是岁.37.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.38.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…39.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.40.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b最大是,a﹣b最小是,a﹣b最大是.【参考答案】一、拓展提优试题1.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:78﹣x 岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.解:设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:x+3+x=78﹣x2x+3=78﹣x2x+x=78﹣33x=75x=2578﹣25=53(岁)答:妈妈今年53岁.故答案为:53.【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.2.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天3.解:23×4+34×3﹣27×6,=92+102﹣162,=194﹣162,=32.答:第4个数是32.故答案为:32.4.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.5.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..6.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.7.【分析】41幅不是甲校的,就是乙校和丙校的,38幅不是乙校的,就是甲校和丙校,其中丙校的数量同时包含在41与38中,所以41+38=79(幅)是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,得出丙校的2倍,再除以2就是丙校参展的画的数量.解:(41+38﹣43)÷2=(79﹣43)÷2=36÷2=18(幅)答:丙校参展的画有 18幅.故答案为:18.【点评】解决本题的关键是明确其丙校的数量同时包含在41与38中,所以,41与38的和是甲校、乙校和丙校的2倍的总和,减去甲乙两校一共展出的数量,再除以2就是丙校参展的画的数量.8.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.9.解:15+16+18+19+20+31=119(千克),食堂共买走的总量是:119﹣20=99(千克),99÷3=33(千克),第二次买走得重量是:15+18=33(千克),第一次买走得重量是:16+31+19=66(千克);答:剩下的一袋重量为20千克.故答案为:20.10.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.11.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.12.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.13.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.14.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.15.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.解:根据题意可知,原来甲筐比丙筐少(12+24)=36个苹果,且原来丙筐是甲筐个数的2倍,则原来甲筐有:36÷(2﹣1)=36个,原来丙筐有:36×2=72个,原来乙筐有:72+(6+12)=90(个)答:乙筐内原有苹果 90个.故答案为:90.【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.16.【分析】首先求出每台每天的工作效率,再求出7台1天的工作效率,因为工作量÷工作效率=工作时间,据此解答即可.解:2100÷(450÷3÷2×7)=2100÷(75×7)=2100÷525=4(天),答:用7台收割机收割2100亩小麦需要4天.故答案为:4.【点评】此题属于二次反归一问题,首先用连除求出单一量,再用除法求出部分量.17.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.18.【分析】因黑子个数是白子个数的2倍,可假设黑子每次取的个数也是白子的2倍,即黑子每次2×2=4个、白子每次取2个,则白子余1个时,黑子余2个.现每次黑子取少4﹣3=1个了,则黑子多出来的数量,除以应取和实取的差,就是取的次数.据此解答.解:假设黑子每次取的个数也是白子的2倍,即黑子每次2×3=6个、白子每次取3个,则:(31﹣1×2)÷(2×2﹣3)=29÷1=29(次)3×29+31=87+31=118(个)答:袋中原有黑子 118个.故答案为:118.【点评】本题的关键是根据黑子是白子个数的2倍,假设每次取黑子的个数是白子的2倍,与实际取黑子的差,及实际取与假设取应剩下黑子的差,进行解答.19.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.20.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.21.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.22.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).23.【分析】本题考察图形边长的平移.解:画出移动后的图,所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.24.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.25.解:9⊙3=9×2+3=21;故答案为:21.26.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,那么他最多可分得4+40=44颗,要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,由此可得出这时每个人的巧克力数为:11、12、13、14,答:分得最多的小朋友至少可以得14颗巧克力;故答案为:14.27.解:甲校比乙校多的人数:32×2+48=112人,甲校的人数:(864+112)÷2,=976÷2,=488(人).答:原来甲校有488人.故答案为:488.28.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.29.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.30.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.31.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.32.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.33.解:根据题干分析可得:34.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.35.解:船:(16+4)÷(5﹣3),=20÷2,=10(条);学生:3×10+16=46(人);答:学校共有学生46人.故答案为:46.36.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;答:由上述推理可以得出A是11岁.故答案为:11.37.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.38.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.39.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).40.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.。
四年级数学竞赛试卷(附答案)
![四年级数学竞赛试卷(附答案)](https://img.taocdn.com/s3/m/60cd9ad243323968001c921b.png)
四年级数学竞赛试卷(附答案)一、拓展提优试题1.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.2.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.3.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…4.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.5.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.6.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的倍.7.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.8.两数相除,商是12,余数是3,被除数最小是.9.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了分.10.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.11.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.12.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.13.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.14.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.15.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此16.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.17.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.18.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.19.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.20.喜羊羊等一群小羊割了一堆青草准备过冬吃.他们算了一下,平均每只小羊割了45千克.如果除了他们自己外,再分给慢羊羊村长一份,那么每只小羊可分得36千克.回到村里,懒羊羊走来,也要分一份.这样一来,每只小羊就只能分得千克草了.21.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.22.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.23.是三位数,若a是奇数,且是3的倍数,则最小是.24.已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.25.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.26.将一张长11厘米,宽7厘米的长方形纸沿直线剪开,每次必须剪出正方形,这样最多能剪出个正方形.27.空心圆和实心圆排成一行如下图所示:○●○●●○●●●○●○●●○●●●○●○●●○●●●…在前200个圆中有个空心圆.28.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.29.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.30.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.31.(8分)如图,已知正方形的面积是100m2,图中灰色部分的面积是m2.32.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.33.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.34.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子的个数不少于120,也不多于150,共有个.35.如图所示,长方形ABCD中,AB=14厘米,AD=12厘米,现沿其对角线BD将它对折,得一几何图形,则图中阴影部分周长是.36.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.37.在□中填上适当的数,使竖式成立.38.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.39.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.40.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.【参考答案】一、拓展提优试题1.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.2.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.3.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.4.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;共:1+2+4+8=15(种);答:一共可以拼成15种不同的含有64个小正方体的大正方体.故答案为:15.5.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.6.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,所以S△ABE =S△ABC,S△ACE=S△ABC,S△ADE=S△ACE=S△ABC=S△ABC,三角形ABC的面积是三角形ADE面积的2倍.故答案为:2.7.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.8.解:除数最小为:3+1=412×4+3=48+3=51故答案为:51.9.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③通过等量代换,解决问题.解:设最小的环为a分,中间环为b分,最外环为c分,得:第一个靶得分为:2b+c=29①第二个靶得分为:2a+c=43②第三个靶得分为:a+b+c③由①+②得:2a+2b+2c=29+43=72即a+b+c=36即第三个靶的得分为36分.答:他在第三个箭靶上得了36分故答案为:36.10.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.11.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.12.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.13.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.14.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.15.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.16.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.17.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.18.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.19.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.20.解:设割草的小羊有x只,则它们一共割草45x千克,45x=36(x+1)45x=36x+369x=36x=445×4÷(4+1+1)=180÷6=30(千克)答:这样一来,每只小羊就只能分得30千克草了.故答案为:30.21.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.22.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.23.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.24.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.30,60,90,120,15,45,75,105,135共9个数字满足条件.对应的数字就有9对.故答案为:9.【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.25.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.26.解:根据题干分析可得:答:一共可以剪出6个正方形.故答案为:6.27.解:200÷9=22…2,所以22×3+1=67(个),答:前200个圆中有67个空心圆.故答案为:67.28.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.29.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.30.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.解:8÷2=4(人),因为女生比男生多,所以男生的人数一定小于4人,所以男生可能是1人,2人或3人;故答案为:1人,2人或3人.【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.31.解:根据分析可得,100÷2=50(平方米)答:图中灰色部分的面积是 50m2.故答案为:50.32.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.33.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.34.【分析】可以看做4个4个地数,少2个;6个6个地数,少2个;8个8个地数,也是少2个.也就是4、6、8的公倍数减2.[4、6、8]=24.可以记作24x﹣2,120<24x﹣2<150.x是整数,x=6.这筐桃子共有24×6﹣2,计算即可.解:[4、6、8]=24.这筐桃子的数量可以记作24x﹣2,120<24x﹣2<150.x是整数,所以x=6,这筐桃子共有:24×6﹣2=142(个).答:这筐桃子共有142个.故答案为:142.【点评】关键是通过把原题转化,运用了求最小公倍数以及解不等式的方法解决问题.35.【分析】由图意得:BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽,代数计算即可.解:14×2+12×2,=28+24,=52(厘米).答:阴影部分的周长是52厘米.故答案为:52厘米.【点评】解决本题的关键是找到BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽.36.解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.37.解:根据题干分析可得:38.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.39.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.40.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.。
小学四年级上册数学竞赛经典试题附答案
![小学四年级上册数学竞赛经典试题附答案](https://img.taocdn.com/s3/m/8a050ce07d1cfad6195f312b3169a4517623e555.png)
1 小学四年级上册数学竞赛经典试题小学四年级上册数学竞赛经典试题1、小红在计算一道有余数的除法时,把被除数115错写成163163,结果商比原来,结果商比原来多4,但余数没变,则该题的除数是(,但余数没变,则该题的除数是( 12 12 12 ))。
2、如下图,里面小正方形的顶点都是它外面一个正方形上的中点。
已知最小的正方形面积是1平方厘米,图中画阴影的部分总面积是( 5 5 )平方厘米。
)平方厘米。
)平方厘米。
3、有一批图书平均借给若干个学生,最后剩下17本不够分,如果再添13本,那么每个学生正好得9本。
这批图书共有(本。
这批图书共有( 257 257 257 )本,共有学生()本,共有学生()本,共有学生( 13 13 13 )人。
)人。
4. 井底有只青蛙,白天向上跳5米,晚上又落下3米。
如果井深21米,这只青蛙第 9 天跳出井外。
5. 一个自然数各个数位上的数字之和是15,如果它的各个数位上的数字都不相同,那么符合条件的最大数是( 546210 ),最小数是( 69 )。
6.两个数相乘,如果一个因数增加3,积就增加54;如果另一个因数减少4,积就减少96,原来两个因数的积是 432 。
7. 一座大桥长3500米,一列火车以每分钟行900米和的速度通过大桥,从车头开上桥头到车尾离桥共需4分钟。
这列火车长多少米?1008. 某次数学竞赛有20道题,答对一题得5分;答错(或不答)的题,不给分还倒扣3分。
若小聪得52分,则小聪答对了几道题?149.一个三位数,个位上的数字是5,如果把原来个位上的数字移到百位上,原来的百位上的数字移到十位上,原来十位上的数字移到个位上,那么所得的数比原数大387。
原数是 125 。
10、小英在考数学时,把一个数除以15算成乘以15了,结果得900。
这道题的正确答案是多少?411、把一张长26厘米的长方形纸剪去一个最大的正方形,剩下的那个图形的周长是 52 。
12、5除以7的商用循环小数表示,这个小数的小数点后面第200位数字是1 。
小学四年级竞赛数学试题及答案_图文
![小学四年级竞赛数学试题及答案_图文](https://img.taocdn.com/s3/m/942525648762caaedc33d495.png)
小学四年级竞赛数学试题及答案_图文一、拓展提优试题1.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.2.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.3.如果,那么=.4.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的倍.5.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人名.6.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?7.喜羊羊等一群小羊割了一堆青草准备过冬吃.他们算了一下,平均每只小羊割了45千克.如果除了他们自己外,再分给慢羊羊村长一份,那么每只小羊可分得36千克.回到村里,懒羊羊走来,也要分一份.这样一来,每只小羊就只能分得千克草了.8.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.9.定义运算:A△B=2A+B,已知(3△2)△x=20,x=.10.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.11.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.12.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…13.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?14.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.15.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.16.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.17.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?18.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..19.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.20.如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分图形的周长是厘米.21.一次乐器比赛的规则规定:初赛分四轮依次进行,四轮得分的平均分不低于96分的才能进入决赛,小光前三轮的得分依次是95、97、94.那么,他要进入决赛,第四轮的得分至少是分.22.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.23.三个连续自然数的乘积是120,它们的和是.24.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.25.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.26.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得颗巧克力.27.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.28.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.29.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.30.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b最大是,a﹣b最小是,a﹣b最大是.31.(8分)如图,已知正方形的面积是100m2,图中灰色部分的面积是m2.32.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.33.有一筐桃子,4个4个地数,多2个;6个6个地数,多4个;8个8个地数,少2个.已知这筐桃子的个数不少于120,也不多于150,共有个.34.如图所示,长方形ABCD中,AB=14厘米,AD=12厘米,现沿其对角线BD将它对折,得一几何图形,则图中阴影部分周长是.35.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.36.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.37.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.38.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A 大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是岁.39.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?40.《好少年》上下两册书的页码共用了888个数码,且下册比上册多用8页,下册书有页.【参考答案】一、拓展提优试题1.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.2.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天3.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.4.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,所以S△ABE =S△ABC,S△ACE=S△ABC,S△ADE=S△ACE=S△ABC=S△ABC,三角形ABC的面积是三角形ADE面积的2倍.故答案为:2.5.解:504÷8÷(108÷3÷4)﹣4,=504÷8÷9﹣4,=63÷9﹣4,=7﹣4,=3(名),答:需增加3名,故应填:3.6.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..7.解:设割草的小羊有x只,则它们一共割草45x千克,45x=36(x+1)45x=36x+369x=36x=445×4÷(4+1+1)=180÷6=30(千克)答:这样一来,每只小羊就只能分得30千克草了.故答案为:30.8.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.9.解:(3△2)△x=20,(2×3+2)△x=20,8△x=20,2×8+x=20,16+x=20,x=20﹣16,x=4;故答案为:4.10.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.11.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.12.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.13.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.14.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.15.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.16.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.解:根据题意可知,原来甲筐比丙筐少(12+24)=36个苹果,且原来丙筐是甲筐个数的2倍,则原来甲筐有:36÷(2﹣1)=36个,原来丙筐有:36×2=72个,原来乙筐有:72+(6+12)=90(个)答:乙筐内原有苹果 90个.故答案为:90.【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.17.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.18.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.19.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.20.【分析】剩下部分的周长=原长方形的周长+2个(12+4)厘米,依此列出算式(50+20)×2+(12+4)×2计算即可求解.解:(50+20)×2+(12+4)×2=70×2+16×2=140+32=172(厘米)答:剩余部分图形的周长是172厘米.故答案为:172.【点评】本题主要考查了学生对长方形面积和周长公式的掌握情况,关键是让学生理解剩下部分的周长=原长方形的周长+2个(12+4)厘米.21.【分析】要想四轮得分的平均分不低于96分,总分应该达到96×4=384分,用这一分数减去小光前三轮的得分即可解答.解:96×4﹣95﹣97﹣94,=384﹣95﹣97﹣94,=98(分);答:第四轮的得分至少是98分.【点评】本题主要考查简单规划问题,熟练掌握平均数的定义与求法是解答本题的关键.22.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.23.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.24.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).25.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.26.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,那么他最多可分得4+40=44颗,要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,由此可得出这时每个人的巧克力数为:11、12、13、14,答:分得最多的小朋友至少可以得14颗巧克力;故答案为:14.27.解:甲校比乙校多的人数:32×2+48=112人,甲校的人数:(864+112)÷2,=976÷2,=488(人).答:原来甲校有488人.故答案为:488.28.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.29.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).30.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.31.解:根据分析可得,100÷2=50(平方米)答:图中灰色部分的面积是 50m2.故答案为:50.32.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.33.【分析】可以看做4个4个地数,少2个;6个6个地数,少2个;8个8个地数,也是少2个.也就是4、6、8的公倍数减2.[4、6、8]=24.可以记作24x﹣2,120<24x﹣2<150.x是整数,x=6.这筐桃子共有24×6﹣2,计算即可.解:[4、6、8]=24.这筐桃子的数量可以记作24x﹣2,120<24x﹣2<150.x是整数,所以x=6,这筐桃子共有:24×6﹣2=142(个).答:这筐桃子共有142个.故答案为:142.【点评】关键是通过把原题转化,运用了求最小公倍数以及解不等式的方法解决问题.34.【分析】由图意得:BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽,代数计算即可.解:14×2+12×2,=28+24,=52(厘米).答:阴影部分的周长是52厘米.故答案为:52厘米.【点评】解决本题的关键是找到BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽.35.解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.36.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.37.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.38.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√第一句第二句第三句A说我10岁×比B小2岁√比C大1岁√B说我不是最小的C和我差3岁C是13岁C说我比A年龄小×A是11岁√B比A大3岁√以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;答:由上述推理可以得出A是11岁.故答案为:11.39.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米, 4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.40.解:个位数1~9页共有9个数码;两位数10~99共用2×90=180个数码;此时还剩888﹣9﹣180=699个数码,699÷3=233,699个数码可组成233个三位数,所以上下册共有:233+100﹣1=332页,则下册书有:(332+8)÷2=340÷2,=170(页).即下册书有170页.故答案为:170.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年四年级数学竞赛试题
一、计算题(4分)
1、11×40+39×48+8×11 =
2、1996+1997+1998+........+2016+2017=
二、填空题(27分)
1、找规律填数: 21 26 19 24 ( ) ( ) 15 20
2、用0--4五个数字组成的最大的五位数与最小的五位数相差( )。
3、用0、5、8、7这四个数字,可以组成()个不同的四位数。
4、小明每天晚上9时30分睡觉,早晨6时30分起床,那么他的睡眠时间是()小时。
5、甲、乙、丙三人站成一排照相,有()种排法。
6、从午夜零时到中午12时,时针和分针共重叠()次。
7、环形运动场上正在进行长跑比赛。
在每位参加赛跑的运动员前面有7个人在跑着,在每位运动员的后面,也有7个人在跑着,现在运动场上一共有()名运动员。
8、一块豆腐,要想切成八块,最少的()刀就可以完成。
9、妈妈使用一个平底锅烙饼,这个平底锅每次只能放2张饼,1张饼要烙两面,烙熟一面要3分钟,烙熟3张饼至少需要()分钟。
三、选择题(21分)
1、公园要建一个正方形花坛,并在花坛四周铺上2米宽的草坪,草坪的面积是96平方米,花坛和草坪的面积总和是( )平方米.
(A)204 (B)190 (C)196 (D)100
2、小明每分钟走50米,小红每分钟走60 米,两人从相距660米的两村同时沿一条公路相对出发,8分钟后两人相距( )米.
(A)75 (B)200 (C)220(D)110
3、右图的周长是()分米.。
4分米5分米
(A)22 (B)20 (C)18 (D)28
4、500张白纸的厚度为50毫米,那么()张白纸的厚度是750毫米。
A.250
B.1250
C. 7500
5、6个男生的平均体重是40千克,4个女生的平均体重是30千克,这10个同学的平均体重是()千克。
A、35
B、38
C、36
6、百乐自选商场的一种矿泉水,进货4瓶5元钱,售出3瓶5元钱,要获利100元需要售出()瓶。
A、100
B、240
C、260
7、把一张长20分米宽15分米的长方形纸,剪成边长2分米的正方形,最多可剪()个。
A、75
B、70
C、150
D、35
四、解答题(48分,可任选四个题做,写出解答步骤)
1、小明走进教室看见教室里有36个人,小华也走进教室,看见教室里有37个人,现在教室里一共有多少个人?
2、一根木头长24分米,要锯成4分米长的木棍,每锯一次要3分钟,锯完一段休息2分钟,全部锯完需要几分钟?
3、小明有存款50元,小华有存款30元,小华想赶上小明。
小明每月存5元,小华每月存9元,几个月后,能赶上小明?
4、一只蜗牛想从枯井里爬出来看看天有多大。
它每天白天爬上3米,晚上又退下去2米。
整整爬到第8天才爬到井口。
这口枯井有多少米深。
?
5、李师傅上班时坐车,下班回家时步行,在路上一共花了90分钟;往返都坐车,只需40分钟;照这样计算,如果他往返都步行,需要多少时间?
6、甲乙二人同地同方向出发,甲每小时走6千米,乙每小时走4千米。
乙先走了2小时后,甲才开始走,甲追上乙需要几小时?
7、幼儿园老师给小朋友们分苹果,每人5个,多5
个,每人7个,少7个,幼儿园有多少小朋友?多少苹果?
五、发展题(共20分,可任选两个题做)
1、陈叔叔从家到单位去上班,如果每分钟走60米,就要迟到2分钟;如果每分钟走80米,就可以早到3分钟。
如果骑自行车每分钟行150米,从家到单位需要多少分钟?
2、一条大街上原有路灯201盏,相邻两盏路灯相距50米;现在换新路灯增加了50盏,相邻两盏路灯的距离是多少米?
3、甲、乙两个油罐,如果每分钟放油5千克,甲罐52分钟把油放尽,乙罐36分钟把油放完。
如果从甲罐向乙罐注油,需要过多少分钟两罐油相等?。