第四章流体动力学基础new资料重点
工程流体力学 第4章 粘性流体动力学基础
沿程损失水头 (hf):
hf
LV2 D 2g
达西(Darcy)公式
λ:为沿程损失系数,与流动状态、管壁的粗糙度等有关
hf不仅与管段长度成正比,还与管道直径成反比
2020年1月10日
FESTO气动中心
局部阻力水头损失 :当流体在运动中遇到局部障 碍(半开阀门、管道弯头、粗细管接口、滤网等)时, 流线会发生局部变形,并且由于流动分离、二次流等 原因产生漩涡运动,从而耗散一部分机械能,造成水 头损失。
2020年1月10日
FESTO气动中心
解 :(1)求管中心最大流速 umax 2V 2 6.35 12.7cm/s
(2)离管中心 r=20mm 处的流速
u
umax
p
4L
r2
当r=50mm时,管轴处u=0,则有
0 12.7 p 52
4L
p 0.51
4L
则r=20mm在处的流速 u 12.7 0.51 22 10.7cm/s
LV2
d 2g
64 / Re
2020年1月10日
FESTO气动中心
克服沿程阻力而消耗的功率
W
ghf Q
pQ
128 LQ 2 d 4
动能修正系数
1
R2
R u 32rdr 2
0 V
2020年1月10日
FESTO气动中心
例: 设有一恒定有压均匀管流,已知管径d=20mm,管长l=20m, 管 中 水 流 流 速 V=0.12m/s , 水 温 t=10℃ 时 水 的 运 动 粘 度 ν=1.306×10-6m2/s。求沿程阻力损失
4工程流体力学 第四章流体动力学基础
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
(完整版)流体力学重点概念总结
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体力学第四章
动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t
∫
CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS
流体动力学基础
t u zy x z y x X z d d d d d d d d ρρ=+d d d 1u u u p p p⎡⎤⎡⎤∂∂∂元流伯努利方程的物理意义和几何意义测压管测压管测压管测压管O A OA●均匀流与非均匀流、非均匀渐变流与急变流⏹均匀流与非均匀流——依流线形状及过水断面上的流速是否沿流程而变化进行分类。
①均匀流:迁移加速度为零。
所有流线是平行的直线。
②非均匀流:迁移加速度不为零。
流线不平行或虽然平行但不是直线。
渐变流与急变流——非均匀流流场中流线彼此呈近似平行直线的流动,称为渐变流。
流场中,流线彼此不平行,流线间夹角比较大或流线曲率比较大的流动为急变流。
g u3ρ总流能量方程的应用条件●应用条件(1)均质不可压缩流体的恒定流;(2)作用在流体上的质量力中只有重力;(3)均匀流或渐变流断面(4)在所取的两过水断面之间,流量保持不变。
●应用要点(1)过水断面取均匀流或渐变流断面(2)位置高度(3)计算点选取,明渠取水面点,管流取中心点(4)压强取绝对压强和相对压强均可,但两断面要统一z1221A A v v =211112=++g v g p z αρ⇒p p =-ρ(211z z =∆p文丘里流量计测流量23332111+++=+v p z vαα()应用要点β1.恒定流,不可压缩流体;2.过水断面为均匀流或渐变流,但两断面之间可为急变流;3. 是作用在控制体上的所有外力之和;力和流速都是矢量4.=1.0;∑F应用要点⎪⎭⎪⎬⎫=-+=-+=-+∑∑∑z z z z y y y y x x x x F v Q v Q v Q F v Q v Q v Q F v Q v Q v Q )()()(111333222111333222111333222βββρβββρβββρ5.有分流或汇流时,动量的变化量=变化后的动量-变化前的动量;6.计算压力时,只能采用相对压强;7.选择合适的计算用控制体,与连续性方程、能量方程联立求解弯管和分岔管内等水流对管壁的作用力坐标系列三大方程如图所示,将一平板放置在自由射流之中,并且垂直于射流的轴线,该平板截去射流流量的一部分Q1,射流的其余部分偏转一角度θ,已知:流速v=30m/s,流量Q=36L/s,流量Q1=12L/s,试求:(1)不计摩擦力射流对平板的作用力;(2)射流的偏转角θ值。
空气动力学第四章粘性流体动力学基础
v(x, y, z,t) (zx xz) xyx yyy zyz
w(x x, y y, z z,t) w(x, y, z,t) w x w y w z x y z
4.2、流体微团的运动形式与速度分解定理
以x方向速度分量为例,由泰勒级数展开,有
u(x x, y y, z z,t) u(x, y, z,t) u x u y u z
x y z 将上式分别加、减下列两项
1 v y , 1 w z
得到
2 x
2 x
u(x x, y y, z z,t)
1 0 0
0
2
0
0 0 3
I1 1 2 3 I2 1 2 23 13 I3 1 23
4.3、粘性流体的应力状态
1、理想流体和粘性流体作用面受力差别 流体处于静止状态,只能承受压力,几乎不能承受拉力和剪力,不具有 抵抗剪切变形的能力。理想流体在运动状态下,流体质点之间可以存在 相对运动,但不具有抵抗剪切变形的能力。因此,作用于流体内部任意 面上的力只有正向力,无切向力。 粘性流体在运动状态下,流体质点之间可以存在相对运动,流体具有 抵抗剪切变形的能力。因此,作用于流体内部任意面上力既有正向力, 也有切向力。
D ( ps cos )ds 0 2R
4.1、流体的粘性及其对流动的影响
对于粘性流体的绕流,与理想流体绕流存在很大的差别。由于流体 与固壁表面的粘附作用,在物面近区将产生边界层,受流体粘性的 阻滞作用,流体质点在由A点到B点的流程中,将消耗部分动能用之 克服摩擦阻力做功,以至使其无法满足由B点到D点压力升高的要求 ,导致流体质点在BD流程内,流经一段距离就会将全部动能消耗殆 尽(一部分转化为压能,一部分克服摩擦阻力做功),于是在壁面 某点速度变为零(S点),以后流来的流体质点将从这里离开物面进 入主流场中,这一点称为分离点。这种现象称为边界层分离。在分 离点之间的空腔内流体质点发生倒流,由下游高压区流向低压区, 从而在圆柱后面形成了旋涡区。这个旋涡涡区的出现,使得圆柱壁 面压强分布发生了变化,前后不对称(如前驻点的压强要明显大于 后驻点的压强),因此出现了阻力D。
第四章 流体动力学基础
总流的伯努利方程
推导:
元流的伯努利方程
z1
p1
g
u12 2g
z2
p2
g
u22 2g
hw '
两边同乘以ρgdQ,积分
z1
p1
g
u12 2g
g d Q
z2
p2
g
u22 2g
hw 'gdQ
(1)势能积分
z
p
g
gdQ
z
p
g
gdQ
z
p
g
gQ
(2)动能积分
u2 2g
gdQ
u2 2g
gudA
1 2g
作水头线
1 总水头线 H
测压管水头线 0
2 20
例 文丘里流量计
能量方程(忽略损失)
z1
p1
g
v12 2g
z2
p2
g
v22 2g
连续性方程
v1A2 v2 A2
v1
1
d1 d2 4 1
2g
z1
p1
g
z2
p2
g
Q v1A1
d12 4
d1 d2 4 1
2g
z1
p1
g
z
2
p2
g
K
h
仪器常数K
2
C B
总压线
p
势压线
B
40m
(b)管内为燃气时,取A、C断面列能量方程
pA
a
gz2
z1
v2 2
9
v2 2
12 9.8
1.2 0.8 9.8 40
0
v2 0.8
流体力学课件第四章 流体动力学基础 共131页
教学的目的和要求
了解从动量守恒原理导出的纳维—斯托克斯 方程及其各项的物理意义。
了解理想流体运动的欧拉方程及欧拉方程的 边界条件。
了解定常流动的欧拉方程积分──伯努利定理 的物理意义;掌握伯努利定理的应用实例;了解 不定常流动的欧拉方程积分──拉格朗日—柯西积 分。
uy z
pzz
p2uz
z
zxxzuxz
ux z
(3) 粘性流体运动微分方程
推导方法类似无粘性流体远动微分方程的推导。
§4.1 流体的运动微分方程
第四章 流体动力学基础
2、粘性流体运动微分方程: (2). 应力与变形速度(应变率)的关系
本构方 程
Bemoulli,D. (1700~1782)根据能
量原理给出了类似的 公式,为纪念他。
§4.2 元流的伯努利方程
第四章 流体动力学基础
2 v1g2 gp1 z1v22g2gp2 z2
物理意义和几何意义:
v12
b 总水头
2g c
p1
1
z1
a
v
2 2
b'
2g
c'
p2
H
2
z2
a'
单位重量流体的动能+压力势能+高度势能-----总机械能守恒 速度水头 压强水头 位置水头----------总水头沿流线相等。
x方向:
p p dx x 2
z y
O
x
dz p(x,y)
a
c
dy dx
p p dx x 2
流体动力学知识点
流体动力学知识点流体动力学是研究流体运动规律的科学,它在物理学、工程学和地球科学等领域中有着广泛的应用。
本文将主要介绍流体动力学中的一些重要知识点,帮助读者更好地理解和应用这一领域的知识。
1. 流体的定义在流体动力学中,流体是一种连续的物质,它没有固定的形状和体积,能够流动。
流体可以分为液体和气体两种状态,液体是一种近似不可压缩的流体,而气体则是一种高度可压缩的流体。
2. 流体的性质流体具有一些特殊的性质,包括粘性、密度、压力、流速等。
其中,粘性是流体的一种内在性质,它决定了流体的黏滞阻力。
流体的密度是流体在单位体积内所含物质的质量,而压力则是流体在单位面积上的作用力。
流速是流体通过单位面积的速度。
3. 流体的流动流体的流动是流体动力学中的核心概念,它描述了流体在空间中的运动规律。
流体的流动可以分为层流和湍流两种状态,层流是指流体在管道或河道中以层状、有序的方式流动,而湍流则是指流体在空间中以不规则、混乱的方式流动。
4. 流体的流量在流体动力学中,流体的流量是指单位时间内通过某个截面的流体体积。
流体的流量受到流体密度、流速和截面积的影响,可以用公式Q=Av来表示,其中Q表示流量,A表示截面积,v表示流速。
5. 流体的动量流体的动量是描述流体运动的一个重要物理量,它表示流体在单位时间内通过某个截面的动量。
根据动量守恒定律,流体在运动过程中动量守恒,可以用公式ρAv=常数来表示,其中ρ表示流体密度,A表示截面积,v表示流速。
6. 流体的能量流体的能量是流体动力学中的另一个重要物理量,它表示流体在运动过程中所具有的能量。
流体的能量可以分为动能、势能和压力能三种形式,动能是流体由于运动而具有的能量,势能是流体由于位置而具有的能量,压力能是流体由于受到压力而具有的能量。
7. 流体的控制方程流体的控制方程是描述流体运动规律的数学方程,包括连续性方程、动量方程和能量方程。
连续性方程描述了流体在流动过程中质量的守恒,动量方程描述了流体在流动过程中动量的守恒,能量方程描述了流体在流动过程中能量的守恒。
流体动力学基础
流体动力学基础流体动力学是一个操作系统的一部分,主要研究流体运动规律和流体力学的原理。
无论是研究天气变化的气象学家,还是设计飞机、火箭的工程师,都离不开流体动力学的科学知识。
下面让我们从基础知识开始,深入了解流体动力学。
一、概述流体动力学分为静止流体动力学和运动流体动力学两大类。
前者研究的是静止流体的压力、浮力等问题,后者则是研究运动流体的物理过程和原理,包括涡旋、流动阻力、热输运等问题。
二、基础概念在流体动力学中,我们需了解几个基本概念。
首先,流体。
流体是一种液体和气体通称,其特点是无法保持固定的形状,而且会随外力作用发生变形。
其次,继原理。
继原理是流体动力学中极其重要的一项原则,用以研究保质量、能量以及动量。
又如雷诺数,这是判断流体的流动方式是层流还是湍流的无量纲数。
三、基础原理流体动力学原理中,最核心的就是质点和控制体系。
质点是流体动力学假设中的一个理论模型,它具有质量,但没有体积和形状和能够省去在实际研究中的空间集中和温度等因素。
控制体系则是流体动力学中控制流体流动的体积元素,包括控制面和控制体。
四、基础公式在流体动力学中,有许多重要的公式。
例如伯努利方程,它是流体动力学中的一个重要原理,告诉我们流速快的地方,流体的压力就小。
再例如动量定理,它告诉我们流体动力学中系统的总动量是守恒的。
五、应用领域流体动力学的应用领域极其广泛,如航天飞机设计,气象学研究,地球物理探测,海洋动力发电等。
能够说,生活中的许多领域都离不开流体动力学的应用。
流体动力学,作为物理学的一个重要分支,旨在研究流体运动的规律,及其与周围物体的相互作用。
同时,它也是如火箭、飞机等依托的科学理论基础,因此其理论研究和应用价值不可忽视。
流体力学第四章
1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。
流体力学-第四章 流体动力学基础
Dt t CV
CS
单位质量流体的能量 e (u V 2 gz) 流体系统的总能量
2
DE ed eV ndS
Dt t CV
CS
E ed
初始时刻系统与控制体重合
Q WSYS Q WCV
ed eV ndS Q W
t CV
CS
§4.2 对控制体的流体力学积分方程
§4.1 系统和控制体,雷诺输运定理
雷诺输运定理:
举例:动量定理运用于流体系统
F Dk Dt
F 是外界作用系统的合力,K 是系统的动量,
k Vd
由于系统不断改变位置、形状大小,组成系统的流体质点的密度和速度随
时间也是变化的,所以系统的动量也是变化的,求其对时间的变化率,即
求该流体系统体积分的物质导数。
取 N M 单位体积的质量
DM 0 Dt
d V ndS 0
t CV
CS
d V ndS 0
t CV
CS
积分形式的连续性方程
§4.2 对控制体的流体力学积分方程
非定常流动情况下:
d V ndS 0
t CV
CS
即单位时间内控制体内流体质量的增加或减少等于同时间内通过控制面流入 或流出的净流体质量。如果控制体内的流体质量不变,则必然同一时间内流 入与流出控制体的流体质量相等。
左端第一项——是控制体内流体动量随时间变化而产生的力,它反映流体运动的非定常性
左端第二项——是单位时间内流体流入和流出控制体的动量之差,它表示流入动量与流出动量
不等所产生的力。
§4.2 对控制体的流体力学积分方程
定常流动条件:
F
FB FS
VV ndS
CS
VV ndS
流体动力学基础
(4-7) )
r ur 1 r ∂u r r 2 f − ∇p + ν ∇ u = + (u ∇)u (4-8) ) ρ ∂t 粘性流体运动微分方程,又称纳维 斯托克斯方程( 纳维-斯托克斯方程 方程) 粘性流体运动微分方程,又称纳维 斯托克斯方程(N-S方程) 方程
用矢量表示
§4.2
4.2.1
元流的伯努利方程
1 ∂p du z Z− = ρ ∂z dt
(1)物理意义:作用在单位质量流体上的质量力与 物理意义: 表面力之代数和等于其加速度。 表面力之代数和等于其加速度。 (2)适用条件:理想流体。 适用条件:理想流体。
4.1.2
粘性流体运动微分方程
∂u x ∂u x ∂u x ∂u x 1 ∂p 2 X− + ν∇ u x = + ux + uy + uz ρ ∂x ∂t ∂x ∂y ∂z ∂u y ∂u y ∂u y ∂u y 1 ∂p 2 Y− + ν∇ u y = + ux + uy + uz ρ ∂y ∂t ∂x ∂y ∂z ∂u z ∂u z ∂u z ∂u z 1 ∂p 2 Z− + ν∇ u z = + ux + uy + uz ∂t ∂x ∂y ∂z ρ ∂z
理想流体运动微分方程的伯努利积分 理想流体运动微分方程的伯努利积分
Euler方程三式分别乘以流线上两邻点坐标增量 、dy、 方程三式分别乘以流线上两邻点坐标增量dx、 、 方程三式分别乘以流线上两邻点坐标增量 dz,然后相加得: ,然后相加得:
1 ∂p ∂p ∂p ( Xdx + Ydy + Zdz ) − ( dx + dy + dz ) ρ ∂x ∂y ∂z du y du x du z = dx + dy + dz dt dt dt 引入限定条件: 引入限定条件:
第四章 流体运动学和流体动力学基础
V
r
f dV
A
r
pndA
t
CV
r
vdV
CS
r
v vn dA
CV
r
f dV
CS
r
pndA
积分形 式动量 矩方程
第七节 动量方程 动量矩方程
• 定常流动
r
v
vn
dA
dN d dV
dV dV
V
tt
V
t
lim dt dt V
t 0
t
dV dV
dV dV
• 连续性方程、动量方程以及能量方程
第一节 流体运动的描述
• 1、欧拉法( Euler法 )
基本思想:考察空间每一点上的物理量及
其变化。所谓空间一点上的物理量是指占 据该空间点的流体质点的物理量。着眼于
某瞬时,整个流场各空间点处的状态。
独立变量:空间点坐标和时间的函数
vx vx x, y,z,t vy vy x, y,z,t
0 t
是否定常与所选取的参考系有关。
第二节 流动的分类
一维流动 —— 二维流动 —— 三维流动 ——
B Bx, t 0
y z
B Bx, y, t Br, , t 0
z
B Bx, y, z, t
第三节 迹线 流线
(1)迹线—— 是流体质点在空间运动时描绘的 轨迹。它给出了同一流体质点在不同时刻的空间 位置。
流体力学资料复习整理
流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。
2.流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。
4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。
流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6.牛顿内摩擦定律: 单位面积上的摩擦力为:3/g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=h U μτ=内摩擦力为: 此式即为牛顿内摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。
流体动力学基础 _流体力学资料
1 dp ab(xdx ydy)
积分,得
p ab x2 y 2 c'
2
令p=常数 即得等压面方程
x2 y2 c
等压面是以坐标原点为中心的圆。
第二节 元流的伯努利方程
一、理想流体运动微分方程的伯努利积分 理想流体运动微分方程式是非线性偏微分方程组,只有
特 定 条 件 下 的 积 分 , 其 中 最 为 著 名 的 是 伯 努 利 (Daniel Bernoull,1700~1782,瑞士科学家)积分。
yz zx
zy xz
u z y
u x z
u y z
u z x
xy
yx
u y x
u x y
(4—6)
3.粘性流体运动微分方程
采用类似于推导理想流体运动微分方程式(4—1)的方 法,取微小平行 六面体,根据牛顿第二定律建立以应力(包 括切应力)表示的运动微分方程式,并以式(4—5)、式(4—6) 代人整理,使得到粘性液体运动微分方程:
2 x2
2 y 2
2 z 2
——拉普拉斯算子。
——粘性流体运动微分方程,又称为纳维— 斯托克斯方程(简写为N—S方程)。
N—S方程表示作用在单位质量流体上的质量力、表面力(压力 和粘性力) 的相平衡。由N—S方程式和连续性微分方程式组成的 基本方程组,原则上可以求解速度场和压强场p,可以说粘性流体的 运动分析,归结为对N—S方程的研究。
X Y
1
1
p x
p y
ux ux
u x x
u y x
uy uy
u y y
u y y
uz uz
u z z
u y z
Z
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 流体动力学基础
伯努利方程的能量意义
单位重量流体所具有的 压强势能
单位重量流体所具有的 动能
单 位 重 量 流 体位 所置 具势 有能 的
z1
p1 g
u12 2g
z2
p2 g
u 22 2g
H
·2
单位重量流体所具有的
1·
总势能
单位重量流体所具有的 机械能
第四章 流体动力学基础
伯努利方程的几何意义
如图,在直角坐标系中,取一边长为δxx、δy、
δz的微元体ABCDEFGH,且每边分别平行于x,y,z 轴和,点MO((xx,δ2xy,, zy),z点)为为AB微CD元,体EFG中H面心的点中,点点。N(xδ2x , y , z)
第四章 流体动力学基础
M点为压强p。
M点速度
u uxi
uy
j
uz
k
M点单位质量力 f Xi Yj Zk
由于流体为理想流体,则作用在
C
G
z
y
D.
NB A
.
M
H
.O
F E
x
微元体上的外力只有质量力(重力)和垂直于表面的
压力。
1) 在x方向合压力
ABCD面所受压力
(p
p x
x )δyδz 2
EFGH面所受压力
(p
p x
x )δyδz 2
∴
所受合压力
(p
p x
EL
HGL inc o m p re ss ib le flo w
B e rno ulli e q ua tio n fo r
1 .s te a d y fric tio nle s s
2 .inc o m p re s s ib le flo w
3 .a lo ng a s tre a m line .
u y y
uz
u y z
Z
1 ρ
p z
u z t
ux
u z x
uy
u z y
uz
u z z
写成矢量式
f
1
p
du
ρ
dt
——理想不可压缩流体运动微分方程(欧拉方程)
讨论:
1) 在受力分析中,没有考虑流体粘性,所以方
程只适于理想流体。
第四章 流体动力学基础
2) 在此方程中共有8个物理量,一般X、Y、Z及ρ为 已知,ux,uy,uz 及p为未知参数,还需补充方程(一般为 连续性方程),理论上此方程组完全可以求解。
gs
θ
单位质量力在流线坐标方向的分量
g
gs=-g cosθ
而
dz cosθ =
ds
g s=-g
dz ds
us表示u沿流线上的分量(us = u)。
第四章 流体动力学基础
dz gs g ds , us u
代入方程
gs-
1 ρ
dp ds
us
dus ds
-g dz - 1 dp =u du ds ρ ds ds
dt
ρ y
duz Z 1 p
dt
ρ z
C
G
z
y
D N
.
B
A
.
M
H
.O
F E
x
又由于
dux dt
ux t
ux
ux x
uy
ux y
uz
ux z
第四章 流体动力学基础
∴ 上式可写成
X
1 ρ
p x
ux t
ux
ux x
uy
ux y
uz
ux z
同理
Y
1 ρ
p y
u y t
ux
u y x
uy
第四章 流体动力学基础
4.2 沿流线方向欧拉方程的积分 4.2.1 沿流线方向的欧拉方程
s u ds
1) 流线与流速矢量相切。
dz ds
2) 在定常流动中,流线与迹线重合。
θ dz
一元定常流动欧拉方程沿流线方向投影
gs-
1 ρ
dp ds
us
dus ds
其中: g 表示单位质量力沿流线方向的分量。 s
第四章 流体动力学基础
第四章 流体动力学基础
第四章 流体动力学基础
研究流体的机械运动规律——流体运动与其所
受外力之间的关系(其中最主要是压强和流速在空间
的分布)以及运动流体与固体间相互作用的问题。
C
G
4.1 理想不可压缩流体运动微分方程 理想流体——没有粘性的流体。
z
y
D.
NB A
.
M
H
.O
F E
——流动问题,一般会使用连续性方程以及伯努利方程联立求解
第四章 流体动力学基础
例4-1 水从水箱中沿一变直径管流出,若d1 175mm , d2 100mm , d3 125mm , d4 75mm , H 15m ,不计损失,试求 水管中水量,并绘制测压管线(假设水位恒定)。
p/γ:单位重量流体具有的压能
单位重量流
z:单位重量流体的位能
体所具有的
u2/2g:单位重量流体具有的动能
总机械能
——单位重量流体所具有的总机械能沿任意一
条流线(元流)保持不变。 p u2
+z+ =c
2) 几何意义
γ 2g
·2
·1
p/γ:压强水头(压强作用使流体沿测压管所能上
升的高度)
以总
z:位置水头(流体质点相对于基准的高度) 水头
X
1 ρ
p x
ux t
ux
ux x
uy
ux y
uz
ux z
Y
1 ρ
p y
u y t
ux
u y x
uy
u y y
uz
u y z
Z
1 ρ
p z
uz t
ux
uz x
uy
uz y
uz
uz z
ux u y uz 0 x y z
除少数情况,该非线性微分方程组的解析解很难得到。
第四章 流体动力学基础
3) 对静止流体
ux uy uz 0 ,
dux duy duz 0 dt dt dt
∴ X 1 p 0 , Y 1 p 0 , Z 1 p 0
ρ x
ρ y
ρ z
——静止流体平衡微分方程
4) 对一元流动
X
1 ρ
p x
ux t
ux
ux x
对一元定常流动
X
1 ρ
dp dx
ux
dux dx
或 积分
udu+gdz+ dp =0 ⇒ d( u 2 )+dz+d( p )=0
ρ
2g
γ
p +z+ u2 =c(常数)若在流线上任意取两点
γ 2g
p1 γ
+z1+
u12 2g
=
p2 γ
+z
2+
u
2 2
2g
·2
1·
——理想不可压缩流体伯努利方程
4.2.2 元流(流线)伯努利方程的意义
1) 能量意义
第四章 流体动力学基础
2x)δyδz(p
p x
x 2
)δyδz
pδxδyδz x
第四章 流体动力学基础
2) 在x方向的质量力 ρXδxδyδz
根据牛顿第二定律:
F
m a
Fx
max
ρXδxδyδz p δxδyδz ρδxδyδzdux
x
dt
即
dux X 1 p
dt
ρ x
同理,在其它两个方向同样可得:
duy Y 1 p
H表 u2/2g:速度水头(以断面速度u为初速度铅直上 示
升所能达到的高度)
——沿任意一流线(元流)总水头为常数。
第四章 流体动力学基础
符号
z
p
u2 2g
z p
z p u2
2g
能量意义
单位重流体的位能 单位重流体的压能 单位重流体的动能 单位重流体总势能 单位重流体总机械能
几何意义
位置水头 压强水头 速度水头 测压管水头