近世代数第一章练习题
近世代数试题及答案
近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。
答案:半群2. 一个群G的所有子群的集合构成一个________。
答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。
答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。
答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。
答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。
答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。
正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。
2. 请解释什么是群的同态和同构。
答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。
群的同构是同态,并且是双射,即存在逆映射。
3. 请解释什么是环的零因子和非零因子。
答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。
如果环R中不存在零因子,则称R为无零因子环。
近世代数课后题答案修改版
(2)在乘法表中任取一个 1,在同一列中必有一个 x,在同一行 中必有一个 y,设第四个顶点的元素为 z,见下图,
�
..........a-1.........................c...................
......
...........................................................
......
近世代数第一章答案
近世代数第一章基本概念答案§ 1 . 集合1.A B ⊂,但B 不是A 的真子集,这个情况什么时候才能出现? 解 由题设以及真子集的定义得,A 的每一个元都属于B ,因此B A ⊂.于是由A B ⊂ B A ⊂得B A =.所以上述情况在A=B 时才能出现.2. 假设B A ⊂,?=⋂B A ?=⋃B A解 (i ) 由于B A ⊂,所以A 的每一个元都属于B ,即A 的每一个元都是A 和B 的共同元,因而由交集的定义得B A A ⋂⊂但显然有A B A ⊂⋂所以A B A =⋂(ii) 由并集的定义,B A ⋃的每一个元素都属于A 和B 之一,但B A ⊂,所以B A ⋃的每一元素都属于B :B B A ⊂⋃另一方面B A B ⋃⊂,所以B B A =⋃.§ 2 . 映射1. A ={1,2,…,100}.找一个A A ⨯到A 的映射.解 用()b a ,表示A A ⨯的任意元素,这里a 和b 都属于A .按照定义做一个满足要求的映射即可,例如 Φ: ()b a ,→a 就是这样的一个,因为Φ替A A ⨯的任何元素()b a ,规定了一个唯一的象a ,而A a ∈.读者应该自己再找几个A A ⨯到A 的映射. 2.在你为习题1所找的映射之下,是不是A 的每一个元都是A A ⨯的一个元的象?解 在上面给出的映射Φ之下,A 的每一个元素都是A A ⨯的一个元的象,因为()b a ,中的a 可以是A 的任一元素.你自己找到的映射的情况如何?有没有出现A 的元素不都是象的情况?假如没有,找一个这样的映射.§ 3 .代数运算1. A ={所有不等于零的偶数}.找一个集合D ,使得普通除法是A A ⨯到D 的代数运算.是不是找得到一个以上的这样的D ?解 一个不等于零的偶数除一个不等于零的偶数所得结果总是一个不等于零的有理数.所以取 D ={所有不等于零的有理数} 普通除法就是一个A A ⨯到D 的代数运算.可以找得到一个以上的满足要求的D .读者可以自己找几个. 2.{}c b a A ,,=.规定A 的两不同的代数运算.解 (i )我们用运算表来给出A 的一个代数运算: a b ca a a ab a a ac a a a按照这个表,通过 ,对于A 的任何两个元素都可以得出一个唯一确定的结果a 来,而a 仍属于A ,所以 是A 的人一个代数运算.这个代数运算也可以用以下方式来加以描述 : ()y x a y x o =→, 对一切A y x ∈, (ii)同理: ()y x x y x o =→, 对一切A y x ∈,也是A 的一个代数运算.读者可用列表的方法来给出这个代数运算.读者应自己给出几个A 的代数运算.§4 .结合律1. A ={所有不等于零的实数}, 是普通的除法:ba b a =o 这个代数运算适合不适合结合律?解 这个代数运算 不适合结合律.例如, 当4=a 2==c b时()122224224)(====o o o o o c b a ()()414224224==⎪⎭⎫ ⎝⎛==o o o o o c b a所以当a ,b 和c 取上述值时()()c b a c b a o o o o ≠2. A ={所有实数},代数运算: (a,b )→a+2b=a b适合不适合结合律?解读者可以用解上一题的方法来证明,所给代数运算不适合结合律.3.A={a,b,c}.由表a b ca ab cb bc ac c a b给出的代数运算适合不适合结合律?解所给代数运算 适合结合律.为了得出这个结论,需要对元素a,b,c的27(=33)种排列(元素允许重复出现)加以验证.但是利用元素a的特性,可以把验证简化.仔细考察运算表,我们发现以下规律:对集合A的任意元素x来说,都有a x=x a=x由此得出,对于有a出现的排列,结合律都成立.这一点读者可以自己验证.还剩下a不出现的排列.这样的排列共有8(=32)种.我们在这里验证4种,其余4种读者可以自己验证.(b b) b=c b=ab (b b)=b c=a所以(b b) b=b (b b)(b b) c=c c=bb (b c)=b a=b所以 (b b) c=b (b c)(b c) b=a b=bb (c b)= b a=b所以 (b c) b=b (c b)(b c) c=a c=cb (c c)=b b=c所以 (b c) c=b (c c)§5.交换律1.A={所有实数}. 是普通减法:a b= a b这个代数运算适合不适合交换律?解容易验证,当a = 1,b = 2时a b b a ≠ 所以这个代数运算不适合交换律. 2. A ={a , b ,c , d},由表 a b c da abcd b b d a c c c a b d d d c a b所给的代数运算适合不适合交换律?解 要回答这个问题,只须考察一下运算表,看一看关于主对角线对称的位置上,有没有不相同的元素.易知此运算表不对称,所以此代数运算不适合交换律。
近世代数基础习题课答案到第二章9题
第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。
近世代数一——精选推荐
近世代数⼀⼀、单项选择题(每⼩题3分,共12分)1.设A=R(实数集),B=R +(正实数集) υ:a →10a +1,?a ∈A 则?是从A 到B 的( )。
A.满射⽽⾮单射 B.单射⽽⾮满射 C.⼀⼀映射D.既⾮单射也⾮满射2.剩余类加群Z 6中,元素[1]的阶是( )。
A.1 B.2 C.3 D.63.7阶循环群的⽣成元个数是( )。
A.1 B.2 C.6 D.74.设R=?∈??? ??Z b a b 00a 、,那么R 关于矩阵的加法和乘法构成环,则这个矩阵环是( )。
A.有单位元的可换环 B.⽆单位元的可换环 C.⽆单位元的⾮可换环D.有单位元的⾮可换环⼆、填空题(每⼩题3分,共24分)1.设集合A 含有m 个元,则A 的⼦集共有_____个.2.每⼀个有限群都和⼀个_____群同构.3.设a 、b 是群G 的两个元,则(ab)-2=_____.4.在3次对称群S 3中与元(1 2 3)不可交换的元有_____个.5.剩余类环Z m 是⽆零因⼦环的充要条件是_____.6.设F 是域,则F [x ]与欧⽒环的关系是_____.7.设Q 为有理数域,S={2,3},则Q(S)=____.8.42i 在Q 上的次数是_____.三、(本题共3⼩题,第1⼩题14分,第2、3⼩题各10分,共34分) 1.设B 4={e 、a 、b 、ab}乘法表为以上定义的群叫做Ktein 四元群(简称四元群) (i)找出B 4的所有⼦群.(ii)找出与B 4同构的S 4(4次对称群)的⼦群. 2.设Z 是整数环,(i)找出整数环Z 的所有理想. (ii)找出整数环Z 中的全部可逆元.3.设F 是域,问多项式环F [x ]的主理想(x 2)含有哪些元?F [x ]/(x 2)含有哪些元? 四、(本题共3⼩题,每题10分,共30分)1.设群G 除单位元外的每⼀个元的阶均为2,证明G 是交换群.2.证明阶为10的可换群是循环群.3.设A 是Z 上的⼆阶⽅阵环,N 是元素为偶数的所有⼆阶⽅阵所成的集合。
(精选)近世代数练习题题库
§1 第一章 基础知识1 判断题:1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。
( )1.2 A ×B = B ×A ( )1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f。
( ) 1.4 如果ϕ是A 到A 的一一映射,则ϕ[ϕ(a)]=a 。
( )1.5 集合A 到B 的可逆映射一定是A 到B 的双射。
( )1.6 设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。
( )1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。
( )1.8 整数的整除关系是Z 的一个等价关系。
( )2填空题:2.1 若A={0,1} , 则A A= __________________________________。
2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。
2.3 设={1,2,3} B={a,b},则A ⨯B=_______。
2.4 设A={1,2}, 则A A=_____________________。
2.5 设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B 。
2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。
2.8 设A 、B 是集合,| A |=| B |=3,则共可定义 个从A 到B 的映射,其中有 个单射,有 个满射,有 个双射。
2.9 设A 是n 元集,B 是m 元集,那么A 到B 的映射共有____________个.2.10 设A={a,b,c},则A 到A 的一一映射共有__________个.2.11 设A={a,b,c,d,e},则A 的一一变换共有______个.2.12 集合A 的元间的关系~叫做等价关系,如果~适合下列三个条件:_____________________________________________。
近世代数习题第一章
第一章 基本概念1、设B A ,是两个有限集,证明:||||||||B A B A B A +=+ .2、设Y X ,都是有理数集,证明:法则b a ab + :δ 不是X 到Y 的映射.3、设},3,2,1{ =X ,Y 是有理数集,证明:法则2:x x δ是X 到Y 的映射.4、设X 为数域F 上的全体n 维向量构成的集合,证明:法则121),,,(:a a a a n δ是X 到F 的映射.5、设},3,2,1{ =X ,},6,4,2{ =Y ,证明:法则x x 2: δ是X 到Y 的双射.6、设X 为数域F 上的全体n 阶方阵作成的集合,},2,1,0{ =Y ,用)(A r 表示矩阵A 的秩,证明:法则)(:A r A δ是X 到Y 的满射,但不是单射.7、设Y X ,是两个有限集且||||Y X =,则X 到Y 的映射δ是满设当且仅当δ是单射.8、设},3,2,1{ =X ,证明:法则2:x x δ是X 到Y 的单射,但不是满射.9、证明:具有n 个元素的集合共可构成!n 个双射.10、判断法则b a b a +=是不是整数集的代数运算.11、判断法则1+=ab b a是不是整数集的代数运算.12、判断法则B A B A ||=是不是数域F 上的全体n 阶方阵的集合的代数运算.13、设M 是自然数集合,则M 的代数运算1+=ab b a 不满足结合律.14、变换的乘法满足结合律.15、设M 是实数集合,则M 的代数运算b a b a 32+= 是否满足结合律和交换律.16、设M 全校学生全体,规定b a aRb ,⇔同在一系.证明:这一关系是M 上的一个等价关系.17、求由等价关系)4(mod b a aRb ≡⇔所决定的整数集Z 的分类.18、设}10,6,4,2,1{=M ,规定b a aRb +⇔|4问:R 是不是M 上关系,是否满足反身性、对称性与传递性.19、设A 、B 是集合,| A |=3,| B |=2,则共可定义多少个从A 到B 的映射,其中 有多少个个单射,有多少个个满射,有多少个个双射.。
近世代数第一章练习题
第一章练习题填空:1、集合S 的幂集是指由S 的全体子集组成的集合。
记作S 2。
比如:A={1,2,3},则A 2= 。
2、若A 中有个m 元素,B 中有个n 元素,则A ×B 与B ×A 中均有 个元素,但一般B A ⨯≠A B ⨯3. 设}2,1{=A ,}4,3{=B .那么=⨯B A .4.A={2,3},B={1,4,5},则A ×B=——————。
5、若A={2,5}, B={1,0,-2}则A ×B=6、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 17.任一个D B A 到⨯的映射都叫做D B A 到⨯的一个代数运算 8:A={所有整数},B={所有不等于零的整数}。
D={所有有理数},则:b a b a),(:是B A ⨯到D 的 ,即是普通的除法。
9:实数域R 上全体n 阶可逆方阵组成的集合为()n M R ,建立映射:A A λλ⋅,可知数乘矩阵运算是R ×()n M R 到()n M R 的一个代数运算,10.设A=B=D=Z ,则有代数运算)1(),(:+b a b a ,但是验证可知:11. 设A 是非空集合,则集合的并与交是幂集A z 上的代数运算(12)3= ,1(23)==12. 若A A A 到是⨯ 的代数运算,则可称 是A 的代数运算或二元运算 ,也称A 对 是封闭的。
13.实数域上的全体阶可逆矩阵的集合记为()n GL R 或(),GL n R ,矩阵的乘法 是一个二元运算,而加法不是。
14.减法不是正整数集的代数运算,除法 是有理数集的代数运算。
15.设 是集合A 的一个代数运算。
如果对任意A c b a ∈,,,有)()(c b a c b a =,则称代数运算 适合16.一个A 与A 间的映射φ习惯上叫做A 的一个变换17.建立实数集R 到正实数集R +的映射,:2x x σ,R 的运算为数的加法,R +的运算为数的乘法,该映射 是R 到正实数集R +的一个同态映射18.建立正实数集R +到实数集R 的映射,:ln xx σ,R +的运算为数的乘法,R 的运算为数的加法,该映射是R +到R 的一个 。
《近世代数》习题及答案
《近世代数》作业一.概念解释1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元二.判断题1.Φ是集合n A A A ⨯⨯⨯ 21列集合D 的映射,则),2,1(n i A i =不能相同。
2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。
3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。
4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。
5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。
6.环R 的非空子集S 作成子环的充要条件是:1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。
7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。
8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。
9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。
10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。
11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。
12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么*F 的任何有限子群G 必为循环群。
13. 集合A 的一个分类决定A 的一个等价关系。
( )14. 设1H ,2H 均为群G 的子群,则21H H ⋃也为G 的子群。
( )15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。
( )三.证明题1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。
近世代数(吴品三)习题解答第一章 基本概念
第一章 基本概念练习§1. 集合 子集 集合的运算1.设A ={x |x ∈R ,|x |≥5},B ={x |x ∈R ,-6≤x <0},求B A ,B A ,B A \,A B \,并用图形表示出来.[解] (图形略.)B A ={x |x ∈R ,x <0或x ≥5},B A ={x |x ∈R ,-6≤x ≤-5}, B A \={x |x ∈R ,x <-6或x ≥5}, A B \={x |x ∈R ,-5<x <0}.2. 证明:(B A ⊂)⇔(B B A = )⇔(A B A = ).[证] 先证(B A ⊂)⇔(B B A = ).若B A ⊂,则B A x ∈∀,B x ∈.所以B B A ⊂)( ;显然B B A ⊃)( ,故B B A = .反之,若B B A = ,则A x ∈∀,B B A x =∈)( ,故B A ⊂.所以(B A ⊂)⇔(B B A = ).次证(B A ⊂)⇔(A B A = ).若B A ⊂,则A x ∈∀,B x ∈,于是A x ∈∀,有B A x ∈,所以)(B A A ⊂,显然A B A ⊂)( ,所以A B A = .反之,若A B A = ,则A x ∈∀,B A x ∈,于是A x ∈∀,有B x ∈,故B A ⊂.所以(B A ⊂)⇔(A B A = ).综上所述得:(B A ⊂)⇔(B B A = )⇔(A B A = ).3. 证明:B A =⇔B A B A =.[证] 若B A =,则A B A = ,A B A = ,所以B A B A =.反之,若B A B A =,则A x ∈∀,有x ∈B A =B A ,从而B x ∈,所以B A ⊂;同理可证A B ⊂,故B A =所以B A =⇔B A B A =.4. 设n A =(n ,∞),(n ,∞)表示实数轴上的开区间,即(n ,∞)={x |x ∈R , ∞<<x n },n =0,1,2,….求 ∞=0i i A 与 ∞=0i i A[解] 因为 ⊃⊃⊃210A A A ,所以 ∞=0i i A =0A =(0,∞).因为∈∀x R ,存在非负整数n ,使n x ≤.于是n A x ∉, ∞∉i A x ,所以φ=∞= 0i i A .5. 设A ={x |x ∈Z ,x x 32-+2=0},写出A 2. [解] A ={1,2},故A 2={φ,{1},{2},{1,2}}.6. 设A ,B 是U 的子集,规定)\()\(A B B A B A =+,证明:(ⅰ)A B B A +=+; (ⅱ)A A =+φ; (ⅲ)φ=+A A .[证] (ⅰ)因为集合的并适合交换律,故)\()\(A B B A =)\()\(B A A B ,即A B B A +=+.(ⅱ)因为A A =φ\,φφ=A \,所以)\()\(A A φφ =φ A =A ,即A A =+φ.(ⅲ)因为φ=A A \,所以φ=)\()\(A A A A ,即φ=+A A .§2. 映射 映射的合成1. 对于下面给出的Z 到Z 的映射f ,g ,h ,f :x x 3 ,g :13+x x ,h :23+x x计算g f ,f g ,h g ,g h ,h g f .[解] g f :39+x x , f g :19+x x , h g :79+x x ,g h :59+x x , h g f :2127+x x .2.对于上题的f ,g ,h 分别求它们的左逆映射.[解] f 的一个左逆映射为1-L f :⎪⎩⎪⎨⎧≠=.3,3,3n x x n x x x 当当 .g 的一个左逆映射为1-L g :⎪⎩⎪⎨⎧+=-+≠.13,31,13,n x x n x x x 当当 .h 的一个左逆映射为1-L h :⎪⎩⎪⎨⎧+=-+≠.23,32,23,n x x n x x x 当当 . 其中n 为任意整数. 3.对于上题的f ,g ,h ,找出f ,g ,h 的共同的左逆映射,即找出Z 到Z 的映射k ,使f k =g k =h k =Z I .[解] 令k :Z →Z ,⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-+=-=.23,32,13,31,3,3n x x n x x n x x x 当当当 ,其中n 为任意整数.容易验证,k 是f ,g ,h 的一个共同的左逆映射.4. 对于上题的f ,g ,h ,找出Z 到Z 的一个映射,使其为f ,g 的共同的左逆映射,但不是k 的左逆映射.[解] 令k :Z →Z ,⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=-=.23,,13,31,3,3n x x n x x n x x x 当当当 ,其中n 为任意整数.容易验证,k 为满足题中要求的映射.5. 设f 是A 到B 映射,g 是B 到C 的映射,f g 有左逆映射,能否证明f ,g 都有左逆映射?[解] 当f ,g 为题设,且f g 有左逆映射,可以证明f 有左逆映射,但g 未必有左逆映射.下面分别加以证明:(ⅰ)f 有左逆映射.设f g 有一个左逆映射k ,于是对于任一A a ∈,有A 到C 的映射)))(((a f g k =a =)(a I .根据映射合成满足结合律得:a a f g k =))()(( ,对A a ∈∀都成立.故g k 为f 的一个左逆映射.(ⅱ)g 未必有左逆映射.例如:A ={1,2},B ={1,2,3},C ={1,2},令f :B A →,x x ;g :C B →,⎩⎨⎧==.313.2,1,i i i i .容易验证,f g 存在左逆映射,但g 不存在左逆映射.6*. 设f 是A 到B 的单射(满射),g 是B 到C 的单射(满射),则f g 是A 到C 的单射(满射).[解] (ⅰ)设f 是A 到B 的单射,g 是B 到C 的单射,则对A a a ∈∀21,,且21a a ≠,有)()(21a f a f ≠,从而))((1a f g ≠))((2a f g ,于是f g 是A 到C 的单射.(ⅱ)设f 是A 到B 的满射,则B A f =)(;g 是B 到C 的满射,则C B g =)(.于是))((A f g =)(B g =C ,所以f g 是A 到C 的满射.7. 设A 表示某四年制大学数学系全体学生所成的集合,B ={1,2,3,4}.对A a ∈∀,规定)(a f 表示a 所在年级,这个f 是不是A 到B 映射?单射?满射?A a ∈∀,))((1a f f -=?设B b b ∈21,,21b b ≠,问)(11b f -∩)(21b f -=? B b b f ∈-)(1=?[解] 根据题意,A a ∈∀是且仅是某一个年级的学生,故)(a f 是B 中唯一确定的元素,所以f 是A 到B 的映射;f 未必是满射,因为未必每个年级都有学生;一般说f 不是单射,因为某年级如有学生,一般不会只有一人.A a ∈∀,))((1a f f -={a 所在年级的全体学生}.当B b b ∈21,,21b b ≠时,)(11b f -∩)(21b f -=φ, B b b f∈-)(1=A .8. 设A =B =Z ,m 是取定的正整数,A a ∈∀,规定r a f =)(,此处r 是a 被m 除所得非负余数:r qm a +=,0≤r <m .f 是不是A 到B 的映射?单射?满射?若取B ={0,1,2,…,m -1},问)0(1-f ,)1(1-f ,…,)1(1--m f 分别由哪些数组成?设B j i ∈,,j i ≠,问)()(11j f i f -- =? B b b f∈-)(1=?[解] 依题意且根据整数的带余除法知,f 是A 到B 的映射,但f 不是单射,也不是满射.设B ={0,1,2,…,m -1},则依题意有:)0(1-f ={x |km x =,k =0,±1,±2,…},)1(1-f ={x |km x =+1,k =0,±1,±2,…},…………………………………………,)1(1--m f ={x |km x =+(m -1),k =0,±1,±2,…}.当B j i ∈,,j i ≠时,)()(11j f i f -- =φ, B b b f∈-)(1=Z .9. 设A 是坐标平面上所有点的集合,B 是x 轴上所有点的集合,A a ∈∀,规定)(a f 表示a 向x 轴作垂线的垂足,这个f 是不是A 到B 的映射?单射?满 射?设B b b ∈21,,21b b ≠,问)(11b f -∩)(21b f -=? ))((1a f f -=? B b b f∈-)(1=?[解] 依题意,f 是A 到B 的映射,显然f 是满射,但f 不是单射.设B b b ∈21,,21b b ≠,则:)(11b f -∩)(21b f -=φ,))((1a f f -={)(a f ,y }, Bb b f∈-)(1=A . 10. 设f :B A →,A S ⊆,证明S S f f⊇-))((1,举例说明“=”不一定成立. [解] 设f :B A →,A S ⊆,则S s ∈∀,有)()(S f s f ∈,所以))((1S f f s -∈,S S f f ⊇-))((1.例如:A =B ={0,1,2,…},S ={0}A ⊆,作A 到B 的映射f :A a ∈∀,)(a f =0,显然))((1S f f-=)0(1-f =A ≠S .§3 有限集与可数集1.证明,有限集的任一子集都是有限集;无限集的任一扩集都是无限集.[证] 设A 为有限集,若φ=A ,则结论显然成立.现在设A 非空,则A 的元素可以如下列举出来:1a ,2a ,…,n a .A 的空子集显然是有限集,若B 是A 的非空子集,则B 的元素可以如下列举出来:1i a ,2i a ,…,m i a , m i i i <<< 21.于是B 与自然数的一个断片|1,m |={1,2,…,m }等浓,从而B 是有限集.设A 为无限集,B 是A 的任一扩集.若B 不是无限集,则B 为有限集,从而由前半部证明知,B 的任一子集,特别地,B 的子集A 为有限集,此与假设矛盾.所以B 是无限集.2. 证明,一个有限集与一个可数集的并是一个可数集.[证] 设A ={1a ,2a ,…,n a }为有限集,B ={1b ,2b ,…,n b ,…}为可数集,则A ∪B ={1a ,2a ,…,n a ,1b ,2b ,…,n b ,…}.作f :(A ∪B )→+Z ,⎩⎨⎧=+≤≤.,2,1,,1, j j n b n i i a j i .显然f 是B A 到+Z 上的一一映射,所以B A 与+Z 等浓,从而B A 为可数集.3. 找出自然数集P 的三个与P 等浓的真子集1A ,2A ,3A .[解] 设P ={1,2,3,…},令1A ={全体正奇数},2A ={全体正偶数},}1{\3P A =.1A ,2A ,3A 为P 的真子集,容易看出存在i A (i =1,2,3)到P 上的一一映射,所以i A (i =1,2,3)与P 等浓.4. 证明,坐标平面上所有格子点(即坐标均为整数的点)的集合是可数集.[证] 记所有格子点的集合为A ,即:A ={(a ,b )|a ,b ∈Z}.可将A 的元素排成一个方阵,再按右图所示箭头方向给A 中的元素按自然数顺序编号:这样,A 的元素可利用自然数排列出来,故A 是可数集.5. 证明:开区间(a ,b )与闭区间[a ,b ]等浓.[证] 映射f :a x a b x +-)( 显然是(0,1)到(a ,b ),[0,1]到[a ,b ]的双射.由P.18例4知,(0,1)与[0,1]等浓.设ϕ是(0,1)到[0,1]的双射,则1-f f ϕ是(a ,b )到[a ,b ]的双射,所以(a ,b )与[a ,b ]等浓.注:此题也可以用类似P.18例4的方法,直接作(a ,b )到[a ,b ]的双射.6. 利用例3的方法,证明全体“自然数的无限序列”作成的集合是不可数集.[证] 设A ={X |X =(1a ,2a ,…,n a ,…),i a ∈+Z },显然A 为无限集.假定A 为可数集,则A 的元素可用自然数予以编号,于是A ={1X ,2X ,…,n X ,…},其中1X =(11a ,12a ,…,n a 1,…)2X =(21a ,22a ,…,n a 2,…)…………………………n X =(1n a ,2n a ,…,nn a ,…)…………………………作自然数的无限序列X =(1a ,2a ,…,n a ,…),其中ii i a a =(i =1,2,…,n ,…).显然A X ∈,但X 与1X ,2X ,…,n X ,…中的任一个都不相同,从而产生矛盾.故A 为不可数集.§4 加氏积 二元关系与等价关系1. 设*R 表示一切非零实数作成的集合,数目的+、-、×、÷是不是*R 的代数运算?为什么?n 次方幂,n 次方根是不是*R 的一元运算?为什么?x log 是不是一元运算?为什么?构造*R 的两个三元运算.[解] (ⅰ)数目的×、÷是*R 的代数运算.因为∈∀b a ,*R ,b a ⨯,b a ÷是*R中唯一确定的元素.(ⅱ)数目的+、-不是*R 的代数运算.因为∈∀a *R ,∈-a *R ,但)(a a -+=0*R ∉,a a -=0*R ∉.(ⅲ)n 次方幂是*R 的一元运算.因为∈∀a *R ,n a 是*R 中唯一确定的元素. (ⅳ)当n 是奇数时,n 次方根是*R 的一元运算;当n 是偶数时,n 次方根不是*R 的一元运算,因为负数在实数范围内不能开偶次方.(ⅴ)x log 不是*R 的一元运算.因为1∈*R ,而*01log R ∉=.(ⅵ)构造*R 的两个三元运算1f ,2f 如下: x z y x f =),,(1,2222),,(z y x z y x f ++=,∀x ,y ,z ∈*R .2. 设A ={a ,b },R ={(a ,a )},R 是否具有反身性?对称性?传递性?反对称性?[解] R 不具有反身性,因为b R b '.但R 具有对称性,传递性,反对称性.3. 设A ={平面上所有直线},规定A 中的二元关系~为:1l ,2l ∈A ,1l ~2l ⇔1l ∥2l 或21l l =.证明,~是A 的一个等价关系,决定相应的等价类.[证] (ⅰ)依题意,A l ∈∀,有l l =,故l ~l .A l l ∈∀21,,由1l ~2l ⇒1l ∥2l 或21l l =⇒2l ∥1l 或12l l =⇒2l ~1l .A l l l ∈∀321,,,由⎭⎬⎫⎩⎨⎧=⇒=⇒323232212121//~//~l l l l l l l l l l l l 或或⇒3131//l l l l =或⇒1l ~3l . 可见~具有反身性、对称性、传递性,所以~是A 的一个等价关系. (ⅱ)当A l ∈时,由l 决定的等价类为:直线y =kx ={l |A l ∈,l ∥直线kx y =,或l 就是直线kx y =},k 为任意实数; 直线x =0={l |A l ∈,l ∥直线x =0,或l 就是直线x =0}.4. 在复数集C 中,规定二元关系~为:a ~b ⇔a 的幅角=b 的幅角.证明,~是C 的一个等价关系,决定相应的等价类.[证] (ⅰ)∈∀a C ,有a a arg arg =,故a ~a .∈∀b a ,C ,由a ~b ⇒b a arg arg =⇒a b arg arg =⇒b ~a .∈∀c b a ,,C ,由⎭⎬⎫⎩⎨⎧=⇒=⇒c b c b b a b a arg arg ~arg arg ~⇒c a arg arg =⇒a ~c . 可见~是C 的一个等价关系.(ⅱ)其决定的等价类为:ϕa ={z |∈z C ,πϕk z 2arg +=,k ∈Z },0≤ϕ<2π;与0={0}.5. 设A ={1,2,3,4},在A 2中规定二元关系~为:S ~T ⇔S ,T 含有元素个数相同,证明,这是一个等价关系,写出商集A2/~.[证] 记A 2的元素S 所含元素个数为|S |.A S 2∈∀,则|S |=|S |,故S ~S . A T S 2,∈∀,由S ~T ⇒|S |=|T |⇒|T |=|S |⇒T ~S .AV T S 2,,∈∀,由⎭⎬⎫⎩⎨⎧=⇒=⇒||||~||||~V T V T T S T S ⇒|S |=|V |⇒S ~V . 可见~是A2的一个等价关系.商集A 2/~={φ,1A ,2A ,3A ,4A },其中 1A ={{1},{2},{3},{4}},2A ={{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}},3A ={{1,2,3},{1,2,4},{1,3,4},{2,3,4}},4A =A .6. n F )(表示数域F 上全部n 阶方阵的集合,f 是n F )(到{0,1,2,…,n }上的满射f :(ij a ) (ij a ).求f 决定的等价关系,决定的等价类.[解] 由f 确定的n F )(中的等价关系为:(ij a )~(ij b )⇔))(())((ij ij b f a f =,即秩(a )=秩(b ).决定的等价类为:r A ={X |n ij F x X )()(∈=,秩X =r },r =0,1,2,…,n .7. 设1R ,2R 是A 的两个等价关系,21R R 是不是A 的二元关系?是不是等价关系?为什么?21R R 是不是A 的二元关系?[解] 集A 的二元关系实际上是A A ⨯的子集,而A A ⨯的两个子集之交、之并仍然是A A ⨯的子集,故21R R 、21R R 都是A 的二元关系.若1R ,2R 都是A 的等价关系,则21R R 仍是A 的等价关系.事实上A a ∈∀,由⎭⎬⎫∈∈21),(),(R a a R a a ⇒21),(R R a a ∈. 对A b a ∈∀,,由21),(R R b a ∈⇒⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈⇒∈∈⇒∈2211),(),(),(),(21R a b R b a R a b R b a R R 为等价关系为等价关系⇒ 21),(R R a b ∈.同样可证,21R R 具有传递性,所以21R R 是A 的一个等价关系.8. 设1R ,2R 是A 的两个二元关系,规定:21R R ={),(b a |A x ∈∃:1),(R x a ∈,2),(R b x ∈}}.证明,“ ”是A 的一切二元关系所成的集合B 的一个二元关系.[证] 因为21R R 是A A ⨯的一个子集,即21R R 确定了A 的一个二元关系,所以“ ”:2121),(R R R R 是B B ⨯到B 的一个映射,故它是B 的一个二元关系.9. 设n R )(表示实数域R 上一切n 阶方阵的集合.(ⅰ)对于∈B A ,n R )(,规定:∈∃⇔Q P B AR ,1n R )(,|P |≠0,|Q |≠0:B PAQ =.证明,R 是R )(的一个等价关系.等价元素类取怎样的方阵作为代表元,形式最简单?(ⅱ)对于∈B A ,n R )(,规定:∈∃⇔P B AR 2n R )(,|P |≠0:B PAP =-1.证明,2R 是n R )(的一个等价关系.等价元素类取怎样的方阵作为代表元,形式最简单?(ⅲ)对于∈B A ,n R )(,规定:∈∃⇔P B AR 3n R )(,|P |≠0:B P PA ='.证明,3R 是n R )(的一个等价关系.等价元素类取怎样的方阵作为代表元,形式最简单?(ⅳ)对于∈B A ,n R )(,规定:∈∃⇔P B AR 4n R )(,I P P ='(单位方阵):B P PA ='.证明,4R 是n R )(的一个等价关系.等价元素类可以取怎样的代表元?[证] 由线性代数知识可知,实数域上n 阶方阵的等价、相似以及实对称矩阵的合同、正交合同皆具有反身性、对称性、传递性,故本题中的1R ,2R ,3R ,4R 都是等价关系.(ⅰ)关于1R ,等价元素类的代表元取如下方阵,形式最简单:r E =diag (rn r -0,,0,0,1,,1,1),(0≤r ≤n ). (ⅱ)由等价关系2R 所划分的等价类,其代表元可取矩阵的有理标准形(详见张远达,熊全淹的《线性代数》第五章).关于3R ,等价元素类的代表元取如下方阵,形式最简单:st E =diag ()(0,,0,0,1,1,1,1,,1,1t s n t s +----),s ,t 为非负整数,且n t s ≤+. 关于4R ,等价元素类的代表元可取如下方阵:n E λλ,,1 =diag (1λ,2λ,…,n λ),R i ∈λR ,1λ≤2λ≤…≤n λ.§5. 有序集 Zorn 引理1. 写出右边图形表示的偏序关系,指出其极大元,极小元,最大元,最小元.[解] 上图表示的偏序关系为:“≤”={),(a a ,),(b b ,),(c c ,),(d d ,),(b d ,),(c d ,),(a b ,),(a c ,),(a d }.a 为极大元同时亦为最大元,d 为极小元同时亦为最小元.下图表示的偏序关系为:“≤”={),(a a ,),(b b ,),(c c ,),(d d ,),(e e ,),(c d ,),(c e ,),(a c ,),(b c ,),(b d ,),(a d ,),(b e ,),(a e }.a ,b 为极大元,d ,e 为极小元,此偏序关系中无最大元,也无最小元.2. 举一个偏序集(S ,≤)但不是有序集的例子.[解] 令S ={数域P 上的首项系数为1的多项式},规定:对于任意S x g x f ∈)(),(,)(x f ≤)(x g ⇔)(|)(x g x f .显然可知,依规定“≤”具有反身性、对称性、传递性,故(S ,≤)是一个偏序集.但(S ,≤)不是有序集,因为存在S x g x f ∈)(),(,)(|)(x g x f /,且)(|)(x f x g /,从而既无)(x f ≤)(x g ,又无)(x g ≤)(x f .故“≤”不是顺序关系.3. 举一个有序集(S ,≤)但不是良序集的例子,并对S 规定另一偏序关系,使之成为良序集.[解] 取S =Z ,“≤”表示数目的大小关系,显然(S ,≤)是有序集,但不是良序集,因为(S ,≤)中无最小元.现在规定Z 的二元关系“≤'”:b a ≤',如果|a |<|b |;或b a =;或b a -=,且a 为负数.显然(Z ,≤')是有序集,下面证明它是良序集:设N 是Z 的任一非空子集,记N '={|a |N a ∈},因为以数目大小为二元关系的非负整数集是良序集,所以(N ',≤')有最小元|0a |,如果N a ∈∀,且0a a ≠,有|a |≠|0a |,即|a |>|0a |,则0a 是(N ,≤')中最小元;如果N a ∈∃1,且01a a ≠,但|1a |=|0a |,则1a ,0a 中是负数的那一个为(N ,≤')的最小元.总之,(N ,≤')有最小元.所以(Z ,≤')是良序集.4. 证明,一个偏序集(S ,≤)若有最大元,则只存在一个.[证] 设(S ,≤)为偏序集,m ,n 皆为其最大元,则依定义有m ≤n 和n ≤m ,由反对称性得n m =,所以(S ,≤)若有最大元,则只存在一个.5. 证明,有限偏序集的每一个非空子集均含有极小元.[证] 设S 是有限偏序集,T 是S 的任一非空子集,“≤”为偏序关系.取定T x ∈0,考虑0Tx ={x |T x ∈,x ≤0x },显然00Tx x ∈,若0Tx ={0x },则0x 为T 的一个极小元,否则01Tx x ∈∃,1x <0x .继续考虑1Tx ={x |T x ∈,x ≤1x },若1Tx ={1x },则1x 为T 的一个极小元,否则12Tx x ∈∃,2x <1x .如此继续,我们得到一个链: …<n x <…<2x <1x <0x .由于T 为有限集,此链不可能无限下去,必在有限步后中止,即存在m x ,使m Tx ={x |T x ∈,x ≤m x }={m x },从而T x ∈∀,x ≤m x ,m x 为T 的极小元.6. 举一个含有n +1个元的偏序集,使其含有n 个极大元,1个极小元.[解] 令S ={1,1p ,2p ,…,n p ,i p 为互不相同的素数}.定义S 中的二元关系“≤”为数的整除关系,显然(S ,≤)成为一个偏序集.1是S 的一个极小元,其余n 个元皆为极大元.7. 设(Z ,≤)是整数集关于整除关系作成的偏序集,T ={1,2,…,10},求T 的上界,下界,有没有最小上界?最大下界?与例6的区别何在?[解] 依题意,T 的上界和下界分别是1,2,…,10的公倍数和公约数,而最小上界和最大下界则分别是的它们的最小公倍数和最大公约数,所以T 的最小上界为:5·7·9·8=2520,T 的上界为:2520k ,k ∈+Z ;T 的最大下界为1,且是T 仅有的下界.与例6的区别在于:例6讨论的是T 的最小元,极小元,最大元,极大元,这与上,下界,最大下界,最小上界是不同的概念.对一个偏序集的子集来说,如有最小元,则最小元必是最大下界.如有最大元,由最大元必是最小上界.反之未必.例如本题中的T ,1是最小元,也是最大下界;2520是最小上界,但不是T 的最大元.8. 设A 是任意集合,在偏序集(A 2,⊆)中取其子集的序列{1a },{1a ,2a },…,{1a ,2a ,…,n a },…,它们的并集是不是A 2的一个极大元?为什么?[解] 题中所取子集序列之并未必是A 2的一个极大元.因为该子集序列的并集可能是A 的真子集,例如当A 是不可数集时.事实上,(A 2,⊆)中仅有一个极大元,也是最大元A .9. 证明,偏序集(A 2,⊆)既有最大元,也有最小元.(φ\2A ,⊆)有没有最小元?找出它的极小元.[证] 因为A A 2∈,且对A x 2∈∀,总有A x ⊆,故A 是(A 2,⊆)的最大元; 同样,由于A 2∈φ,且对A x 2∈∀,总有x ⊆φ,故φ是(A2,⊆)的最小元. (φ\2A ,⊆)没有最小元,其极小元为所有{a },A a ∈.10. 设S =Z ,“m ≤n ”表示mn 是非负整数,且n m |,证明(S ,≤)是一个偏序集.S 有没有最大元?最小元?极大元?极小元?[证] 对S x ∈∀,恒有x x ⋅为非负整数,且x |x ,故x ≤x .对S y x ∈∀,,若x ≤y 且y ≤x ,则依题意可知x ,y 或同时为0,或为同号的互相整除的整数,故y x =.对S z y x ∈∀,,,若x ≤y 且y ≤z ,则由y x |且z y |,推得z x |,再由xy ,yz 非负,可知xz 非负.所以x ≤y .可见“≤”具有反身性,对称性,传递性.所以(S ,≤)是一个偏序集.显然0为S 的一个最大元,也是S 的唯一极大元.S 没有最小元,S 有极小元1和-1.11. 设偏序集(S ,≤)有最小元,则S 有且只有唯一的极小元.[证] 首先可知(S ,≤)的最小元,也是S 的一个极小元.所以,当(S ,≤)有最小元m 时,S 至少有一个极小元.设m '是(S ,≤)的任一极小元,因为m 是最小元,所以m ≤m '.又因为m '是极小元,所以由m ≤m '⇒m m '=.12. 设A 是一个非空集合,B 是A 上一切二元关系所组成的集合,对于B 中元素1R ,2R ,如果对于x ,y ∈A ,y xR 1⇒y xR 2,那么,就规定1R ≤2R ,则(B ,≤)作成一个偏序集.[证] 依题意,对B R ∈∀,总有R ≤R .设1R ,2R ∈B ,且1R ≤2R 及2R ≤1R ,则对于x ,y ∈A ,y xR 1⇒y xR 2及y xR 2⇒y xR 1,这就是说,由(x ,y )∈1R ⇒(x ,y )∈2R 及(x ,y )∈2R ⇒(x ,y )∈1R .所以1R ,2R 表示A A ⨯的同一子集合,21R R =.设1R ,2R ,3R ∈B ,满足1R ≤2R 且2R ≤3R ,则对于x ,y ∈A ,y xR 1⇒y xR 2及y xR 2⇒y xR 3,从而y xR 1⇒y xR 3,所以1R ≤3R .可见B 中的二元关系“≤”具有反身性,对称性,传递性,所以(B ,≤)作成一个偏序集.此外,我们也可以直接由(B ,≤)=(A A ⨯2,⊆)得(B ,≤)是一个偏序集.习题1. 设n A ={a |a ∈Z ,(n 2|a )∧(a n |21/+)},求A = ∞=1n n A . [解] A = ∞=1n n A={2k |k ∈Z }.2. 设x A ={y |y ∈R ,0≤y <x },求A =1>∈x R x x A 且.[解] A = 1>∈x R x x A 且={y |y ∈R ,0≤y ≤1}.3. 设1A ,2A ,…,是集合E 的可数个子集,令A =∞=∞=1m m i i A ,A = ∞=∞=1m m i i A .证明: (ⅰ)A 由一切属于无限多个i A 的元所组成; (ⅱ)A 由一切属于“几乎所有i A ”的元所组成.(“几乎所有i A ”指除有限个外的全部i A ,也说“差不多所有i A ”.)[证] (ⅰ)若x 属于无限多个i A ,则m ∀≥1,1A ,2A ,…,1-m A 是有限个,所以E m '≥m ,使m A x '∈,于是 ∞=∈m i i A x .故A x ∈= ∞=∞=1m m i i A .若x 属于有限个i A ,不妨设x 属于1i A ,2i A ,…,k i A ,1i <2i <…<k i ,m >k i ,取m '∀≥m ,m A x '∉,于是 ∞=∉m i i A x ,故A x ∉.综上所述,A 由一切属于无限多个i A 的元组成.(ⅱ)若 ∞=∞=∈1m m i i A x ,则至少0m ∃,使 ∞=∈0m i i A x ,于是,x 至多不属于1A ,2A ,…,1-m A ,即x 属于“几乎所有的i A ”.若x 属于“几乎所有的i A ”,不妨设x 属于除了1i A ,2i A ,…,k i A 以外的所有i A ,取0m >k i ,则 ∞=∈0m i i A x .故A x ∈= ∞=∞=1m mi i A .综上所述,A 由一切属于“几乎所有的i A ”的元所组成.4. 设{i A |I i ∈}是集合E 的子集族,f 是E 到B 的映射,证明:(ⅰ) I i i I i i A f A f ∈∈=)()(;(ⅱ) Ii i I i i A f A f ∈∈⊆)()(.并举例说明,(ⅱ)中的“⊂”可能发生.[证] (ⅰ)设)( I i i A f x ∈∈',则 Ii i A x ∈∈∃,使)(x f x =',于是x 属于某一个i A ,从而x '=)(x f ∈)(i A f ⊆ I i i A f ∈)(,所以)( I i i A f ∈⊆ I i i A f ∈)(.同样可证, I i i A f ∈)(⊆)( I i i A f ∈.所以)( I i i A f ∈= Ii i A f ∈)(.(ⅱ)任取)( I i i A f x ∈∈',则 Ii i A x ∈∈∃,使)(x f x =',因为i A x ∈,I i ∈∀,所以)()(i A f x f ∈,I i ∈∀,即)(i A f x ∈',I i ∈∀.故 I i i A f x ∈∈')(,从而)( I i i A f ∈⊆ Ii i A f ∈)(.例:取E =Q ,1A ={非负有理数},2A ={非正有理数},B ={0,1}.定义f :E →B ,⎩⎨⎧≠=.0,1,0,0时当时当x x x x . 因为)(21A A f ={0},)()(21A f A f ={0,1},所以)(21A A f ⊂[)()(21A f A f ].5. 设f :A →A 且f f =f ,则f =A I .[证] 由题设,f 是A 到A 的满射,故对于A a ∈∀,A a ∈'∃,使a a f =')(.又因为f f =f ,所以有)(a f =)(a f f ' =)(a f '=a ,A a ∈∀.所以f =A I .6. 找出Z 到Z 的n +1个映射i f ,i =1,2,…,n ,n +1,使1f ,2f ,…,n f 有共同的左逆映射g ,但g 不是1+n f 的左逆映射.[解] 作Z 到Z 的n +1映射如下i f :)1(-+i nx x ,∈∀x Z ,i =1,2,…,n ,n +1.再令g :Z →Z ,⎥⎦⎤⎢⎣⎡n x x ,∈∀x Z ,符号[a ]表示不超过a 的最大整数. 容易看出,∈∀x Z ,))((x f g i =x ,i =1,2,…,n .而))((1x f g n + =x +1≠x . 所以g 是1f ,2f ,…,n f 的共同左逆映射,但不是1+n f 的左逆映射.7. 设A ,B C 是集合E 的三个子集,且C B A =,φ=C B ,找出A 2到加氏积C B 22⨯的一个双射.[解] 作映射f :A 2→C B 22⨯,),(C A B A A i i i ,Ai A 2∈∀.由)()(C A B A i i =)(C B A i =A A i =i A ,可知f 是单射. B B i ∈∀,C C i ∈,记i i i C B A =,A i A 2∈.因为φ=C B ,所以φ=i C B ,故B A i =B C B i i )(=)()(B C B B i i =B B i =i B ;同理可证C A i =i C .于是i A 在映射f 下的象是(i B ,i C ),故f 是满射,从而f 是双射.8. 设f 是A 到B 的映射,g 是B 到C 的映射,*f 是A 2到B 2的映射,*f :)(S f S ,A S ⊆∀.*g 是B 2到C 2的映射,*g :)(T g T ,B T ⊆∀,证明下面图形交换:即*)(gf =**f g .[证] 显然*)(gf ,**f g 都是A 2到C2的映射.对A S ⊆∀,有:)()(*S gf =))((S gf =))((S f g =))((*S f g=))((**S f g =))((**S f g ,所以*)(gf =**f g .9. 设+Z ={1,2,…},证明:存在++⨯Z Z 到+Z 的双射φ. [证] ∈∀q p ,+Z ,p q p q p +-+-+)1)(2(21∈+Z . 令φ:++⨯Z Z →+Z ,p q p q p q p +-+-+)1)(2(21),( ,∈∀q p ,+Z . 则φ是映射为显然.下面首先证明它是一个满射:∈∀n +Z ,∈∃k +Z ,使得)1(21+k k ≤n <)2)(1(21++k k . 若n =)1(21+k k ,则取p =k ,q =1,有),(q p φ=n . 若)1(21+k k <n <)2)(1(21++k k ,则取p =)1(21+-k k n ,q =)1(21+k · )2(+k -n +1,有),(q p φ=n .可见对于∈∀n +Z ,∈∃),(q p ++⨯Z Z ,使),(q p φ=n .再证φ是单射:设),(q p ,),(n m ∈++⨯Z Z ,且),(q p ≠),(n m ,则p ≠m 或q ≠n .若p +q =m +n ,则p +q -2=m +n -2,p +q -1=m +n -1,且p ≠m ,于是,),(q p φ=)1)(2(21-+-+q p q p +p =)1)(2(21-+-+n m n m +p ≠)1)(2(21-+-+n m n m +m =),(n m φ. 若p +q ≠m +n ,不妨设p +q >m +n ,于是,)1)(2(21-+-+q p q p -)1)(2(21-+-+n m n m =)1)(2(21-+-+q p q p -)1)(2(21-+-+n m q p +)1)(2(21-+-+n m q p -)1)(2(21-+-+n m n m ≥)2(21-+q p +)1(21-+n m >m -1≥m -p . 所以,)1)(2(21-+-+q p q p +p >)1)(2(21-+-+n m n m +m ,即),(q p φ≠),(n m φ.故φ是单射.从而证得,φ是++⨯Z Z 到+Z 的一个双射.注:本题也可用练习三第4题的方法证明++⨯Z Z 是可数无限集,从而存在++⨯Z Z 到+Z 的双射.10. 证明,不存在A 到A2的双射,此处A ≠φ.[证] 如果存在A 到A 2的双射ϕ,则对A a ∈∀,或者)(a a ϕ∈,或者)(a a ϕ∉.令S ={a |A a ∈,)(a a ϕ∉},S '={a |A a ∈,)(a a ϕ∈}.于是A =S S ' ,且S S ' =φ.因为A S 2∈,所以A a ∈∃0,使S a =)(0ϕ.若S a ∈0,则由S a =)(0ϕ,有)(00a a ϕ∈,这与S 的定义矛盾.若S a ∉0,则S a '∈0,于是根据S '的定义,又得到S a a =∈)(00ϕ,产生矛盾. 从而,不存在A 到A 2的双射.11. 设A ={1,2,3},f 是A 到A 的满射,具有性质)1(f =3,求f 的个数.[解] 由题设,f 是A 到A 的一一变换,且限定f (1)=3,于是f 的个数为2:1f :⎪⎪⎭⎫ ⎝⎛123321, 2f :⎪⎪⎭⎫ ⎝⎛21332112. 设A ={1,2,…,n },f 是A 到A 的满射,具有性质i i y x f =)(,i =1,2,…, k ,k <n ,i x ,i y ∈A ,求f 的个数.[解] 由题设,f 是A 到A 的一一变换,今限定i i y x f =)(,i =1,2,…,k ,k <n ,则f 的个数应为(n -k )个元素的全排列数)!(k n -.13. 设A 有k 个元素,B 有n 个元素,且k ≤n ,求A 到B 的单射的个数.[解] 若f 是A 到B 的单射,则)(A f 是由B 中k 个不同元素所组成,于是f 的个数为从B 中每次取k 个不同元素进行排列所得到的排列数.因而,A 到B 的单射的个数为:k n A =)!(!k n n -. 14. Z [x ]表示一切整数的一元多项式的集合,证明,Z [x ]是可数集.[证] 显然Z 是可数集.由§3练习第4题知Z Z ⨯是可数集,因此Z Z ⨯与Z 等势,于是利用归纳法可证,有限个Z 的加氏积Z Z Z ⨯⨯⨯ 是可数集.下面证明Z [x ]是可数集.)(x f ∀=n n x a +11--n n x a +…+x a 1+0a ∈Z [x ],可由系数的有序数组(n a ,1-n a ,…,1a ,0a )∈1+⨯⨯⨯n Z Z Z 唯一确定. 记n Z ={)(x f =∑=ni i i x a 0|i a ∈Z }.因为Z Z Z ⨯⨯⨯ 是可数集,所以n Z 也是可数集,而Z [x ]=+∈Z n n Z .用类似的证明方法,可以证明可数个可数集的并集是可数集.于是得到Z [x ]是可数集.15. 证明Q [x ]是可数集.[证] 由P.40例4知,全体正有理数是可数集,于是存在+Z 到+Q 的双射ϕ.作Z 到Q 的映射f :⎪⎩⎪⎨⎧=-.0,00,),(,),(时当为负整数时当为正整数时当a a a a a a a ϕϕ容易看出,f 是Z 到Q 的双射,而Z 是可数集,所以Q 也是可数集.以下仿14题的方法,可证得Q [x ]是可数集.16. 证明,+Z 2是不可数集. [证] 假设+Z 2是可数集,则+Z 2与+Z 等浓,从而存在+Z 到+Z 2的一个双射,这与习题10已得结论“不存在A 到A 2的双射”矛盾.所以+Z 2是不可数集.17. 举一个集合的例子,在它上定义一个二元关系,分别适合反身性、对称性、传递性中两个且仅适合两个.[解] 设A =Z .(ⅰ)在A 上定义二元关系1R 为通常数的整除,即A b a ∈∀,,b aR 1⇔a |b .显然,R 适合且仅适合反身性、传递性,而不适合对称性.(ⅱ)在A 上定义2R 为:A b a ∈∀,,b aR 2⇔a =b ,a ≠0.显然2R 适合传递性、对称性,但2R 不适合反身性,因为02R '0. (ⅲ)在A 上定义3R 为:A b a ∈∀,,b aR 3⇔(a ,b )≠1(即a 与b 不互素),或者a =b =±1.显然3R 适合反身性、对称性,但3R 不适合传递性.例如,取a =2,b =6,c =9,则b aR 3,c bR 3,c R a 3'. 18. 设A =++⨯Z Z ,规定(m ,n )≤(m ',n ')⇔m ≤m ',n ≤n ',证明,(A ,≤)是偏序集,并且A 有最小元.是否A 的每一个非空子集要都有最小元?极小元?[证] 对A n m ∈∀),(=++⨯Z Z ,总有⎩⎨⎧≤≤nn m m ,故(m ,n )≤(m ,n );),(11n m ∀,),(22n m ∈A ,由⎩⎨⎧≤≤),(),(),(),(11222211n m n m n m n m ,显然可得⎩⎨⎧==2121n n m m ,所以),(11n m =),(22n m .),(n m ∀,),(k l ,),(t s ∈A ,由⎩⎨⎧⎭⎬⎫≤≤⇒≤≤≤⇒≤t k s l t s k l k n l m k l n m ,),(),(,),(),(⇒⎩⎨⎧≤≤t n s m ,所以),(n m ≤),(t s .综上可见“≤”满足反身性、反对称性及传递性,所以(A ,≤)是偏序集. 由于(1,1)∈A ,且A n m ∈∀),(,均有(1,1)≤),(n m ,故(1,1)是A 的最小元. A 的每一个非空子集未必有最小元,例如A 的子集{(1,2),(2,1)}.但A 的每一个非空子集都有极小元.19. 设(A ,≤),(B ,≤)是两个偏序集,规定B A ⨯的字典排法偏序关系为:),(11b a ≤),(22b a ⇔1a ≤2a 1a =2a ,1b ≤2b ,证明,(B A ⨯,≤)是偏序集.若(A ,≤),(B ,≤)均为有序集,是否有(B A ⨯,≤)是有序集?[证] (ⅰ)由于A ,B 皆为偏序集,故B A b a ⨯∈∀),(,总有a =a ,b ≤b ,所以),(b a ≤),(b a .),(b a ∀,),(d c ,),(f e ∈B A ⨯,由⎩⎨⎧≤=≤⇒≤≤=≤⇒≤fd e c e c f e d c d b c a c a d c b a ,),(),(,),(),(或或⇒a ≤e 或a =e ,b ≤f ,所以),(b a ≤),(f e .),(b a ∀,),(d c ∈B A ⨯,由⎩⎨⎧≤⇒≤≤⇒≤a c b a d c c a d c b a ),(),(),(),(⇒a =c , 又由⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫≤⇒⎭⎬⎫≤=≤⇒⎭⎬⎫=≤b d b a d c a c d b c a d c b a ),(),(),(),(⇒b =d ,所以(a ,b )=(c ,d ). 综上可见(B A ⨯,≤)是一个偏序集.(ⅱ)若(A ,≤),(B ,≤)是有序集,则(B A ⨯,≤)亦是有序集.事实上,),(b a ∀,∈),(d c (B A ⨯,≤),因为(A ,≤)是有序集,所以a <c ;c <a ;a =c 中有且仅有一种情况出现.若a <c ,则),(b a ≤),(d c ;若c <a ,则),(d c ≤),(b a ;若a =c ,因为(B ,≤)是有序集,所以必有b ≤d 或d ≤b .当b ≤d 时,有),(b a ≤),(d c ;当d ≤b 时,有),(d c ≤),(b a .总之),(b a ∀,∈),(d c (B A ⨯,≤),均有),(b a ≤),(d c 或),(d c ≤),(b a .故(B A ⨯,≤)是一个有序集.20. 给出复数集C 的两种顺序关系,使之成为有序集.与“复数无大小”的概念是否矛盾?[解] 任一复数bi a y +=决定一对有序实数),(b a ,)(bi a +∀,∈+)(di c C ,定义:bi a +1≤di c +⇔a <c 或a =c ,b ≤d ,其中“≤”为通常数目的大小关系.由于(R ,≤)是有序集,故由前题证明知“1≤”成为C 上的一个顺序关系,故使(C ,1≤)成为有序集.又任一复数都可以唯一地表示成一个三角函数式:z =)sin (cos ααi r +, 0≤α<2π.定义:)sin (cos 1ααi r +2≤)sin (cos 2ββi r +⇔α<β或α=β,1r ≤2r ,其中“≤”为通常数目的大小关系.)sin (cos 1ααi r +∀,∈+)sin (cos 2ββi r C ,同样地可知,“2≤”是C 上的一个顺序关系,故(C ,2≤)成为有序集.我们这里给出的C 上的两种顺序关系与“复数无大小”是不矛盾的.通常的数的大小关系,不仅是一种顺序关系,而且还要满足阿基米公理,乘法单调性.但我们在这里给出的两种顺序关系是不具有这些性质的:不能用来比较复数的大小.21. 设(A ,≤)是偏序集,对A a ∈∀,令)(a f ={x |A x ∈,x ≤a },证明,f 是A 到A 2的一个单射,并且,f 保持(A ,≤),(A 2,⊆)的偏序关系,即当a ≤b 时,有)(a f ⊆)(b f .[证] (ⅰ)显然f 为映射,下面仅证f 是单射.设S a f =)(,T b f =)(,且T S =.由于A 是偏序集,故a ≤a ,所以S a ∈,但T S =,所以T a ∈,于是a ≤b .同样可证,b ≤a .所以a =b ,从而f 是A 到A 2的一个单射.(ⅱ)若a ≤b ,则)(a f x ∈∀,x ≤a .于是,x ≤b ,所以)(b f x ∈,即)(a f ⊆)(b f .可见f 保持(A ,≤),(A 2,⊆)的偏序关系.22. 设(A ,≤)是偏序集,T 是(A 2,⊆)的一个子集,令T ={y |A y 2∈,t y ⊆,T t ∈},则T 与T 有相同的极大元.[证] 根据T 与T 的定义,显然有T T ⊆.若x 是T 的一个极大元,下证x 是T 的一个极大元.如若不然,则T y ∈∃,使y x ⊂.由于T y ∈,所以T t ∈∃,满足t y ⊆,从而t x ⊂,这与x 是T 的极大元矛盾.这就证明了凡T 的极大元,必是T 的极大元.反之,若y 是T 的一个极大元,则由于T y ∈,知T t ∈∃,使t y ⊆,但T T ⊆,所以T t ∈,从而T t y ∈=,即y 是T 的极大元.这就证明了凡T 的极大元必是T 的极大元.23. 设(S ,≤)是有序集,则(S ,≤)是良序集的充要条件是:对S a ∈∀,a S ={x |S x ∈,x <a }是良序集.[证] 若(S ,≤)是良序集,则对S a ∈∀,a S 必是良序集.这是因为a S 的任一非空子集必是S 的非空子集,从而有最小元.反之,若对S a ∈∀,a S 是良序集,下证(S ,≤)是良序集.设M 是S 的一个非空子集,M m ∈∀0,记M '={m |M m ∈,m <0m }.如果0m 不是M 的最小元,则M '非空.因为M '是0m S 的子集,所以M '有最小元m ',易知m '也是M 的最小元.从而(S ,≤)是一个良序集.24. 设(S ,≤)是偏序集,如果S 中每一非空子集M 均有极大元,那么S 中任意递增序列1a <2a <…<n a <…必终止于有限项.并且,反之亦然.[证] 设1a <2a <…<n a <…是S 中任一无限递增序列,则S 的非空子集{1a ,2a ,…,n a ,…}没有极大元,与题设矛盾,故递增序列1a <2a <…<n a <…必终止于有限项.反之,设S 中任意递增序列终止于有限项,下证S 的每一个非空子集皆有极大元.设M 是S 的任一非空子集,如果M 无极大元,则M a ∈∀1,M a ∈∃2,使1a <2a ;同样M a ∈∃3,使2a <3a .如此类推,取定M a n ∈后,因为n a 不是M 的极大元,所以M a n ∈∃+1,使n a <1+n a ,这样就得到S 中的一个无限递增序列1a <2a <…<n a <1+n a <…,与S 中任意递增序列必终止于有限项矛盾.此矛盾表明M 有极大元.25. 设(+Z ,≤)是整数集关于整除关系作成的偏序集,证明,(+Z ,≤)中存在无穷递增序列1a <2a <…<n a <….(+Z ,≤)中是否存在无穷递降序列?[证] 对∈∀a +Z ,且a ≠1,有a |2a ,2a |3a ,…,n a |1+n a ,…故有a <2a <3a <…<n a <1+n a <…,即(+Z ,≤)中存在无穷递增序列.在(+Z ,≤)中,不存在无穷递降序列.这是因为对∈∀a +Z ,a 的约数只有有限多个.26. 有人说,U A i i =∈ φ(见§1末)不应该规定,而是可以证明,即:假定U A i i ≠∈ φ,则U A i i ⊂∈ φ.于是,U x ∈∃,但 φ∈∉i i A x .从而,φ∈∃j ,但j A x ∉,与φ是空集矛盾.此矛盾表明U A i i =∈ φ.你以为如何?[解] 上面证明过程是错误的.“ φ∈∉i i A x ,从而存在φ∈j ,j A x ∉”,这是根据 Ii i A ∈={x |U x ∈,I i ∈∀,j A x ∈}得到的,而后者作为定义,其前提条件要求I 非空,故当φ=I 时,不能应用该定义.。
近世代数练习题(附答案)
《近世代数》练习题(附答案)一.选择题1. 设R 是实数集, 则对任意的,a b R ∈, 代数运算2a b a b =+ ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律2. 在群G 中,a G ∈, a 的阶为12, 则8a 的阶为 ( B )(A) 12 (B) 3 (C) 4 (D) 63.在7次对称群7S 中(25)(437)π=和(13)(546)λ=, 则πλ等于( A )(A) (1376524) (B) (137)(6524) (C) (65)(24137) (D) (1746253)4.在一个无零因子环R 中,,a b R ∈,,0a b ≠对加法来说,有( C )(A) a 的阶<3b 的阶 (B) a 的阶>3b 的阶(C) a 的阶=3b 的阶 (D) 4a 的阶>3b 的阶5.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子6. 假定φ是A 与A 间的一一映射,A a ∈, 则)]([1a φφ-和)]([1a -φφ分别为 ( D )(A) a , a (B) 无意义, a (C) 无意义,无意义 (D) a ,无意义7. 在群G 中, G b a ∈,, 则方程b ax =和b ya =分别有唯一解为 ( B )(A) 1-ba , b a 1- (B) b a 1-, 1-ba (C) a b 1-, b a 1- (D) b a 1-, 1-ab8. 设M 是正整数集, 则对任意的,a b R ∈, 下面“o ”是代数运算的是( B ) (A) b a b a = (B) b a b a = (C) 2a b a b =+- (D) 2a b ab =- 9. 设M 是实数集, 代数运算是普通加法,下列映射是M 的自同构的是( D )(A) 2x x → (B) sin x x → (C) x x → (D) 5x x →-10. 在偶数阶群G 中阶等于2的元数为 ( A )(A) 奇数 (B) 偶数 (C) 1 (D) 不可确定11.在5次对称群5S 中元1(15)(24)π=和2(154)π=的乘积12ππ是( D )(A) (14)(25) (B) (124) (C) (152) (D) (142)12.若群G 的阶为48, G 的真子群H 的阶不可能为 ( C )(A) 12 (B) 16 (C) 18 (D) 2413.群G 中元a 的阶为24中,那么G 的循环子群9()a 的阶为 ( C )(A)3 (B) 4 (C) 8 (D) 914.在一个环R 里如果有一个消去律成立,那么下面不正确的是( B )(A) 另一个消去律也成立 (B) R 中非零元都有逆元(C) R 是无零因子环 (D) R 中非零元对加法的阶都一样15.假定F 是一个域,则一元多项式环[]F x 一定是 ( A )(A) 欧式环 (B) 除环 (C) 域 (D) 无法确定16.设12,εε为唯一分解环I 中单位, a 是I 中任意元, 则下列正确的是 ( B )(A) 12εε+ 也是单位 (B) 12,εε互为相伴元(C) 12,εε 都是a 的真因子 (D) a 有唯一分解17.一个30个元的域的特征可能是( A )(A) 5 (B) 6 (C) 10 (D) 1518.假定域R 与R 同态, 则R 是( C )(A) 域 (B) 整环 (C) 环 (D) 除环19.若I 是一个唯一分解环,I a ∈且a 21p p =和a 21q q =(其中2121,,,q q p p 都为素元),则下列说法正确的是 ( D )(A) 1p 与1q 互为相伴元 (B) 1p 与1q 互为相伴元和2p 与2q 互为相伴元(C) 2p 与2q 互为相伴元 (D) 1p 与1q 互为相伴元或1p 与2q 互为相伴元20.假定)(a 和)(b 是整环I 的两个主理想, 若)()(b a =, 则 ( A )(A) b 是a 的相伴元 (B) b 与a 互素 (C) b 是a 的真因子 (D) |b a 21.=A {所有整数},令τ: 2a a →,当a 是偶数;21+→a a ,当a 是奇数.则τ为 ( B )(A) 单射变换 (B) 满射变换 (C) 一一变换 (D) 不是变换22.若)(a G =,且a 的阶为有限整数n ,则下列说法正确的是 ( A )(A) G 与模n 的剩余类加群同构 (B) G 的阶可能无限(C) 元21012,,,,,---n a a a a a 中没有相同元 (D) G 与整数加群同构23.若R 是一个特征为有限整数n 的无零因子环,且R b a ∈,,则 ( D )(A) 0,00≠≠⇒=b a b a (B) 21n n n =,其中21,n n 为素数(C) 存在R 中元c 的阶为无限整数 (D) R 对乘法成立两个消去律24. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( C ) (A)22a b b a b =+ (B)b a b a= (C) 22a b a ab b =-+ (D) 10a b a b += 25. 在群G 中, ,,a b c G ∈, 则方程xaxba xbc =的唯一解为 ( D )(A)11abca b -- (B) 111bca a b --- (C) 111a b a bc --- (D) 111a bca b ---26.在6次对称群6S 中123456326514π⎛⎫= ⎪⎝⎭的阶是( A ) (A) 5 (B) 24 (C) 12 (D) 627.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个28.假定F 是一个域,则一元多项式环[]F x 一定是 ( B )(A) 除环 (B) 欧式环 (C) 域 (D) 无法确定29.若Q 是一个域, 不正确的是 ( B )(A) Q 是交换除环 (B) Q 对乘法作成群(C) Q 无零因子 (D) Q 中不等于零的元都有逆元30.若I 是主理想环, p 是I 中素元, 且I b a ∈, 则 ( C )(A) 主理想)(p 不是I 的最大理想 (B) a 没有唯一分解(C) 若p |ab ,有p |a 或p |b (D) I /()p 不是域31. 设R 是实数集, 则对任意的,a b R ∈, 代数运算a b a b =- ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律32. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( A )(A) 2a b a b =+ (B)b a b a= (C) a b b a = (D) 10a a b = 33. 在群G 中, ,a b G ∈, 则方程xaxb xb =的唯一解为 ( D )(A)1aba - (B) 11a b -- (C) 11ba b -- (D) 1a -34.在5次对称群5S 中1234532541π⎛⎫= ⎪⎝⎭的阶是( B )(A) 2 (B) 3 (C) 4 (D) 535.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个36.假定R 是一个整环,则一元多项式环[]R x 一定是 ( A )(A) 整环 (B) 除环 (C) 域 (D) 无法确定37. 在16阶循环群()G a =中 , 循环子群6()a 的阶为 ( D )(A) 6 (B) 3 (C) 4 (D) 838.一个有8个元的域的特征是( A )(A) 2 (B) 4 (C) 6 (D) 839.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子40.若群G 的阶为48, G 的子群H 的阶为16,则H 在G 中的指数为( C )(A) 1 (B) 2 (C) 3 (D) 441. 设R 是实数集, 则对任意的,a b R ∈, 代数运算a b a b =- ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律42. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( C ) (A)a b b a = (B)b a b a= (C) 2a b a b =+ (D) 10a a b = 43. 在群G 中, ,a b G ∈, 则方程xaxb xb =的唯一解为 ( C )(A)1aba - (B) 11a b -- (C) 1a - (D) 11ba b --44.在5次对称群5S 中1234532541π⎛⎫= ⎪⎝⎭的阶是( B ) (A) 2 (B) 3 (C) 4 (D) 545.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个46.假定R 是一个整环,则一元多项式环[]R x 一定是 ( A )(A) 整环 (B) 除环 (C) 域 (D) 无法确定47. 在16阶循环群()G a =中 , 循环子群6()a 的阶为 ( D )(A) 6 (B) 3 (C) 4 (D) 848.一个有8个元的域的特征是( )(A) 2 (B) 4 (C) 6 (D) 849.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子50.若群G 的阶为48, G 的子群H 的阶为16,则H 在G 中的指数为( C )(A) 1 (B) 2 (C) 3 (D) 4二.填空题1.设是集合A 的元间的一个等价关系,那么满足反射律、 对称律 、 推移律 .2.若G 为群,,,a b c G ∈,则3211()b c a c --- 123c ac b .3.循环群()a 的阶是50,则它的子群15()a 的阶是 10 .4. 群G 的中心N 是G 的一个 不变 子群.5.n 次对称群n S 的阶为 !n .6.假定B A ⊂,那么B A A , B A B .7. 假定A 和A 同态, A 和A 同态, 则A 和A 也同态 .8. 在群G 中, G b a ∈,, 则方程b ya =有唯一解为 1ba .9.设集合A 的元数为3 ,那么A 共有子集 8 个,A 的元间的关系共有 512 个.10.若G 为群, 方程1x ax bx -=的唯一解为 1ba .11.一个有限非可换群至少含有______ 6 ______个元素 .12.设~是集合A 的元间的一个等价关系,那么~满足自反律、对称律 、 推移律 .13.若G 为群,,,a b c G ∈,则211()bc a --- 21ac b .14.5次对称群5S 的阶为 120 .15.若φ是环R 与R 的同态满射, 则同态核中元都是R 中 单位元 e 的逆象,且同态核是R 的一个 理想 .16.设A 是有单位元的交换环R 的一个最大理想,那么剩余类环R A 是一个 域 .17.在整数环Z 中,理想(3,7)等于主理想 (1) .18.设9Z 为模9的剩余类环,那么[5]的负元为 [4] ,逆元为 【2】 .19.设G 是17阶群,则G 的生成元有 16 个.20.除环的最大理想是 零理想 .21.设R 是模7的剩余类环,在多项式环[]R x 中2([6][4])([2][5])x x x +-+=32[6][6]x x x -++22.设10Z 为模10的剩余类环,那么[3]的负元为 [7] ,逆元为[7] .23.在整数环I 中,主理想()()a b =当且仅当b 是a 的 相伴元 .24.设{,,}A a b c =,{,,,}R aRa aRc cRa cRc =.那么由R 决定的A 的分类为 {,},{}a c b .25.设I 是一个唯一分解环,那么多项式环[]I x 是 唯一分解 环.26.设9Z 为模9的剩余类环,那么[7]的负元为 [2] ,逆元为[4] .27.设I 是一个唯一分解环,那么I 的元12,,,n a a a 的两个最大公因子d 和d '相差一个相伴元 .28.若群的元a 的阶是15,b 的阶是8,且ab ba =, 则8a 和ab 的阶分别是 15 和 120 .29.在一个特征为p 的无零因子的交换环R 中,有p 为 素 数,且()p a b += p p a b + .30. 若群G 的阶为60, G 的子群H 的阶为15,则H 在G 中的指数为 4 .31. 若φ是环R 与R 的同态满射,则对,,a b c R ∈,它们的象分别为,,a b c ,则元()a b c +的象为 ()a b c + .32.设A 是环R 的一个最大理想,那么包含A 的R 的理想仅有 A 和R .33.在整数环Z 中,理想(42,35)等于主理想 (7) .34.在唯一分解环I 中,若素元p 能整除ab ,则p 必能整除 ,a b 中一个元 .35. 若G 是由集合A 的全体一一变换所作成, 则G 是一个 变换 群.36.若R 是有单位元的交换环,则R 的主理想)(a 中的元有形式为 ,ra r R . 37.0R 是有单位元的交换环, x 是0R 的子环R 上的未定元, 则仅当 010n a a a时,才有010=+++n n x a x a a 成立.38. R 是一个有单位元的环, 且}0{≠R ,则在R 中必有一个元没有逆元, 它是 0 ; 必有两个元有逆元,它们是 1和-1 .39.唯一分解环I 中的元a 和b 的两个最大公因子d 和d '只能差一个 相伴元 .40.设}2,1{=A ,}4,3{=B .那么=⨯B A { (1,3),(1,4),(2,3),(2,4) } .41.若群G 和集合G 同态,则G 是 群 ,并且有G 中元e 和1-a 的象为G 中元e 和1a .42.在无零因子环R 中,如果对R b a ∈,有0=ab , 那么必有 0a 或0b .43.群的元a 的阶是n ,若d 是整数r 和n 的最大公因子,则r a 的阶是 n d. 44.在一个域Q 中,若有0,0,,≠≠∈d b Q d c b a ,则=+d c b a ad bc bd. 45.设φ是环R 与R 的同态满射, 则φ的核是环R 的一个 理想 . 46.在整环中必有一个元没有逆元,它是 0 ; 必有两个元有逆元,它们是 1和-1 .47.整环I 的元a 是][x I 的多项式)(x f 的根, 当且仅当)(x f 能被 xa 整除.三.判断题1.设}4,3,2,1{=A ,则能找到A A ⨯到A 的一一映射. ( × )2.无限群中的元的阶都无限. ( × )3.除环的最大理想是单位理想. ( × )4.整环中的素元只能有有限个数的因子. ( × )5.任何欧式环一定是主理想环,也一定是唯一分解环. ( √ )6.A 为不等于零的实数的全体,那么普通除法适合结合律. ( × )7.有限群中存在某个元的阶无限. ( × )8.假定域R 与R 同态, 则R 也是域. ( × )9.整环中的单位ε同素元p 的乘积p ε还是一个素元. ( √ )10.除环除了零理想和单位理想还有其它理想. ( × )四.解答题1. 用循环置换的方法写出三次对称群3S 的全体元.说明集合})23(,)1({=N 是3S 的子群,并且写出N 的所有左陪集.解: )}132(),123(),23(),13(),12(),1{(3=S ,(2分) 因为N 是有限集合, 由)1()1)(1(=,)23()23)(1(=,)23()1)(23(=,)1()23)(23(=知N 是封闭的,所以N 是3S 的子群.(4分) N 的全体左陪集为(6分):)}23(),1{()23()1(==N N ,)}132(),12{()132()12(==N N ,)}123(),13{()123()13(==N N .2. 求模6的剩余类环F 的所有子环.解:因为剩余类环F 是循环加群,所有子环为主理想:([1]),([2]),([3]),([6]).3. 设A 是整数集,规定A 中元间的关系R 如下:)6(b a aRb ≡⇔说明R 是A 中元间的等价关系,并且写出模6的所有剩余类.解: 因为对任意的整数 c b a ,,有(1)反射律: a 与a 模6同余;(2分)(2)对称律: 若a 与b 模6同余,那么必有b 与a 模6同余;(2分)(3)推移律: 若a 与b 模6同余,b 与c 模6同余,那么必有a 与c 模6同余, 所以R 是A 中元间的等价关系.(2分)模6的全体剩余类为(6分):},12,6,0,6,12,{]0[ --=, },13,7,1,5,11,{]1[ --=,},14,8,2,4,10,{]2[ --=, },15,9,3,3,9,{]3[ --=,},16,10,4,2,8,{]4[ --=, },17,11,5,1,7,{]5[ --=.4.求出阶是32的循环群()a 的所有子群.这些子群是否都是不变子群.解: 因为()a 为循环群,所以()a 为交换群,又因为32的所有正整数因子为:1,2,4,8,16,36. (2分) 所以循环群()a 的所有子群为循环子群:()a ,2()a ,4()a ,8()a ,16()a 360()(){}a a e ==. (8分)并且这些子群都是不变子群. (10分)5.设Z 是整数环,请把Z 的理想(3)(4)和(3,4)的元列出来.解: Z 是整数环,理想(3)(4)和(3,4)如下:(3)(4){,9,6,3,0,3,6,9,}{,12,8,4,0,4,8,12,}=------ (2分){,24,12,0,12,24,}=-- (4分)(12)= (6分) (3,4)(1){,3,2,1,0,1,2,3,}Z ===--- (10分)6.设R 是模8的剩余类环,在一元多项式环[]R x 中把32([2][7][3])([5][2])x x x x +--+计算出来,并求432()[4][5][2][7]f x x x x x =-+-+的导数. 解: R 是模8的剩余类环(1) 32([2][7][3])([5][2])x x x x +--+543322[2][5][2][2][2][7][5][7][7][2][3][5][3][3][2]x x x x x x x x =-++-+-+- (1分)543322[2][2][4][3][7][6][7][3][6]x x x x x x x x =-++-+-+- (3分) 5432[2][2][7][6][6]x x x x x =-+-+- (5分)(2) 多项式432()[4][5][2][7]f x x x x x =-+-+的导数为32()4[1]3[4]2[5][2]f x x x x '=-+- (2分)32[4][4][2][2]x x x =-+-.7.找出对称群3S 的所有子群.解:因为3{(1),(12),(13),(23),(123),(132)}S =,它的子群的阶只可能为:1,2,3,6.所以它的所有子群为:1阶子群1{(1)}H =; (1分) 2阶子群21{(1),(12)}H =,22{(1),(13)}H =,23{(1),(23)}H =; (4分) 3阶子群3{(1),(123),(132)}H =; (5分) 6阶子群3{(1),(12),(13),(23),(123),(132)}S =。
近世代数基础习题课答案到 题
第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。
代数学引论(近世代数)第一章答案
第一章代数基本概念习题解答与提示(P54)1.如果群G中,对任意元素a,b有(ab)2=a2b2,则G为交换群.证明:对任意a,b G,由结合律我们可得到(ab)2=a(ba)b, a2b2=a(ab)b再由已知条件以及消去律得到ba=ab,由此可见群G为交换群.2.如果群G中,每个元素a都适合a2=e, 则G为交换群.证明: [方法1]对任意a,b G,ba=bae=ba(ab)2=ba(ab)(ab)=ba2b(ab)=beb(ab)=b2(ab)=e(ab)=ab 因此G为交换群.[方法2]对任意a,b G,a2b2=e=(ab)2,由上一题的结论可知G为交换群.3. 设G 是一非空的有限集合,其中定义了一个乘法ab,适合条件:(1) a(bc)=(ab)c; (2) 由ab=ac 推出a=c; (3) 由ac=bc 推出a=b;证明G 在该乘法下成一群. 证明:[方法1]设G={a 1,a 2,…,a n },k 是1,2,…,n 中某一个数字,由(2)可知若i j(I,j=1,2,…,n),有a k a i a k a j ------------<1> a i a k a j a k ------------<2>再由乘法的封闭性可知G={a 1,a 2,…,a n }={a k a 1, a k a 2,…, a k a n }------------<3> G={a 1,a 2,…,a n }={a 1a k , a 2a k ,…, a n a k }------------<4>由<1>和<3>知对任意a t G, 存在a m G,使得a k a m =a t .由<2>和<4>知对任意a t G, 存在a s G,使得a s a k =a t .由下一题的结论可知G 在该乘法下成一群.下面用另一种方法证明,这种方法看起来有些长但思路比较清楚。
近世代数1(6.25)
近世代数1(6.25)总分:100分及格分:60分时长:1时30分0秒1、[单选题]本小题4分1、下面的代数系统(G,*)中,()不是群A、G为整数集合,*为加法B、G为偶数集合,*为加法C、G为有理数集合,*为加法D、G为有理数集合,*为乘法答案:D解析:单选题解析2、[单选题]本小题4分2.略3、[单选题]本小题4分3.略4、[单选题]本小题4分4.略5、[单选题]本小题4分5.略6、[单选题]本小题4分6.略7、[单选题]本小题4分7.略8、[单选题]本小题4分8. 阶有限群的任何子群一定不是()。
A、2 阶B、3 阶C、4 阶D、6 阶答案:C解析:单选题解析9、[单选题]本小题4分9.设G 是群,G 有()个元素,则不能肯定G 是交换群。
A、4个B、5个C、6个D、7个答案:C解析:单选题解析10、[单选题]本小题4分10.有限布尔代数的元素的个数一定等于()。
A、偶数B、奇数C、4 的倍数D、2 的正整数次幂答案:D解析:单选题解析11、[填空题]每空3分1.若有元素e∈R 使每a∈A,都有ae=ea=a,则e称为环R 的_________。
答案1:单位元解析:填空题解析12、[填空题]每空3分2.环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个______。
答案1:交换环解析:填空题解析13、[填空题]每空3分3.偶数环是______的子环。
答案1:整数环解析:填空题解析14、[填空题]每空3分4.一个集合A 的若干个--变换的乘法作成的群叫做A 的一个______。
答案1:变换群解析:填空题解析15、[填空题]每空3分5.每一个有限群都有与一个置换群______。
答案1:同构解析:填空题解析16、[填空题]每空3分6.全体不等于0 的有理数对于普通乘法来说作成一个群�则这个群的单位元是______,元a 的逆元是______。
答案1:零答案2:-a解析:填空题解析17、[填空题]每空3分7.一个除环的中心是一个______。
近世代数基础知到章节答案智慧树2023年哈尔滨工程大学
近世代数基础知到章节测试答案智慧树2023年最新哈尔滨工程大学第一章测试1.在一个有限群里阶大于0的元的个数一定是偶数参考答案:错2.循环群一定不是交换群参考答案:错3.同构的两个群有相同的阶数参考答案:对4.整数环存在零因子参考答案:错5.设Z11是整数模11的剩余类环,则Z11的特征是1参考答案:错第二章测试1.参考答案:错2.参考答案:对3.参考答案:对4.在一个有限群里阶大于2的元的个数一定是偶数参考答案:对5.一个有限群的每一个元素的阶都是有限的参考答案:对6.参考答案:错7.参考答案:;8.循环群一定是交换群参考答案:对9.参考答案:对10.参考答案:对第三章测试1.参考答案:对2.参考答案:对3.参考答案:错4.参考答案:对5.参考答案:对6.正规子群的交仍是正规子群。
参考答案:对7.参考答案:对8.参考答案:对9.参考答案:错10.参考答案:对第四章测试1.参考答案:32.参考答案:3.参考答案:P仅有平凡因子4.参考答案:5.参考答案:欧式环6.若Q是一个域,不正确的是参考答案:Q对乘法成群7.参考答案:8.参考答案:9.数域P上的n阶可逆上三角矩阵的集合关于矩阵的乘法()参考答案:构成一个群10.在高斯整数环Z[i]中,可逆元的个数为()参考答案:4个11.参考答案:12.参考答案:R的理想一定是子环13.参考答案:有单位元的交换环14.参考答案:1第五章测试1.参考答案:错2.参考答案:对3.参考答案:对4.参考答案:对5.参考答案:对6.参考答案:错7.参考答案:错8.参考答案:;;9.参考答案:;;10.参考答案:对第六章测试1.有限域F 的非零元作成的乘群是一个循环群参考答案:对2.每个有限扩展不一定是代数扩张参考答案:错3.域一定是整环,但整环却不一定是域参考答案:对4.整数环Z是域.参考答案:错5.若R是一个可交换的除环,则称R为域参考答案:对6.有限整环不是域参考答案:错7.参考答案:对8.参考答案:对9.下面是无限域的是参考答案:全体复数构成域;全体实数构成域10.参考答案:;;。
近世代数第二版答案韩士安第一章
近世代数第二版答案韩士安第一章第一章韩士安一、韩士安的简介1. 韩士安是一位中国马术运动员,也是中国马术运动的杰出代表。
2011年,他就拿到了第一个世界级冠军,2012年又拿到了第一个奥运会奖牌。
2. 韩士安1963年4月4日出生于北京,1984年入国家体操队。
1985年选择国际马术运动,1987年参加广州亚运会,拿到个人金牌。
1992年南西马上世界杯,获得团体金牌。
3. 韩士安与罗伯特·班克斯,邓尚楠,王凡,郑青实等众多马术大师一起,打造了中国马术的传奇,对中国马术的革新发展作出了重要贡献。
二、韩士安的成就1. 2011至2013年,韩士安荣登全球马术大奖赛排行榜冠军,先后夺得全球马术冠军杯,宝马马术世界锦标赛,中国首届高级跳马世界冠军赛冠军等重要赛事,堪称“马王”。
2. 2012年7月,韩士安与马宝龙一起,获得了全球第一金牌,也是中国第一个,第一块奥运会跳马金牌,画进历史的美好篇章。
3. 2013年,韩士安被国际马术联合会聘为大使,也是中国第一个担任该职务的马术运动员。
三、韩士安的受奖情况1、2008年,被推举为中国体育放飞丰碑活动——“天仪体育将”,被誉为“中国体育新一本”;2、2009年,荣获“全国劳模”称号3、2010年,荣获“中华体育文明进步奖”;4、2012年,被授予“中国体育奖章”;5、2016年,荣获“北京市先进工作者”称号;6、2017年,被授予“中国精神英雄档案”,宣传“中国梦”形象。
四、韩士安的要义1、韩士安以多年磨练之心,竭尽全力,辉煌的成就,彰显着中国人的耐心和毅力,向人们提出了一个关于不畏困难,勇往直前的良好训示;2、韩士安的成功也诠释了一句中国人民的传统精神——“只要用心,一切皆有可能”;3、韩士安的事迹,激发了千千万万中国人开拓创新的斗志,让世界再一次感受到中国人民的勇气和气魄,让他们跃跃欲试,把梦想变成现实。
近世代数一二章自测题
近世代数一、二章自测题一、判断题(1) 设A 与B 都是非空集合,那么}{B x A x B A ∈∈=⋃且.(2) 空集是任意集合的子集.(3) 设D B A ,,都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算.(4) 只要φ是A 到A 的一一映射,那么必有唯一的逆映射1-φ.(5) 如果一个集合A 的代数运算 同时适合消去律和交换律,那么在n a a a 21里,元的次序可以掉换.(6) 设A 是实数集,规定A 的元间的一个关系如下:0,,≥⇔∈∀ab aRb A b a 。
则R 是A的元间的等价关系.(7) 如果循环群)(a G =中生成元a 的阶是无限的,则G 与整数加群同构.(8) 群G 的所有子群的交集是G 的子群.(9) 如果群G 的子群H (商群G/N )是循环群,那么G 也是循环群.(10) 设N 是G 的不变子群,N n G a ∈∈∀,,一定存在N n ∈1使a n na 1=.二、填空题(1) 设集合}1,0,1{-=A ;}2,1{=B ,则有=⨯A B ,有 个从A 到B 的映射(单射、满射).(2) 设R 是实数集,规定R 的一个代数运算ab b a 2:= ,(右边的乘法是普通乘法), 则仅就结合律、交换律而言, 适合如下运算律: .(3) 如果φ是A 与A 间的一一映射,a 是A 的一个元,则=-))((1a φφ .(4) 设Z 整数集,规定Z 的元间的一个等价关系~如下:对任意Z b a ∈,,b a b a 与⇔~奇偶性相同.则~所决定的Z 的分类为 .(5) 设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为 . (6) 给出一个5-循环置换)31425(=π,那么=-1π .(7) 设)(a G =是循环群,则G 与模n 的剩余类加群同构的充要条件是 .(8) 设H 是群G 的子群,G b a ∈,,则⇔=Hb Ha .(9) 设)(a G =是12阶循环群,则G 的生成元是 .(10) 写出三次对称群3S 的子群)}13(),1{(=H 的一切右陪集 .三、证明题(1) 在整数集Z 中,规定代数运算2-+=b a b a ,证明),( Z 是一个交换群.(2) 设K H ,都是群G 的子群,证明G a Ka Ha a K H ∈∀=,)( .(3) 整数加群),(+Z 与偶数加群),2(+Z 同构.(4)设G 是群,G N G H ,≤.则HN G ≤,且//.HN N H H N ≅⋂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数试题
一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填
在题干的括号内。
每小题3分,共15分)
1.设A=R(实数域),B=R+(正实数域)
φ:a→10a∀a∈A
则φ是从A到B的( )。
A.满射而非单射
B.单射而非满射
C.一一映射
D.既非单射也非满射
2.设A={所有实数x},A的代数运算是普通乘法,则以下映射作成A到A的一个子集A的同态满射的是( )。
A.x→10x
B.x→2x
C.x→|x|
D.x→-x
3.设S3={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S中与元(1 2 3)不能交换的元的个数是( )。
A.1
B.2
C.3
D.4
4.整数环Z中,可逆元的个数是( )。
A.1个
B.2个
C.4个
D.无限个
5.剩余类加群Z18的子群有( )。
A.3个
B.6个
C.9个
D.12个
二、填空题(每空3分,共27分)
1.设A是n元集,B是m元集,那么A到B的映射共有____________个.
2.n次对称群S n的阶是____________.
3.一个有限非可换群至少含有____________个元素.
4.设G是p阶群,(p是素数),则G的生成元有____________个.
5.除环的理想共有____________个.
6.剩余类环Z6的子环S={[0],[2],[4]},则S的单位元是____________.
7.设I是唯一分解环,则I[x]与唯一分解环的关系是____________.
8.在2, i+3, π2, e-3中,____________是有理数域Q上的代数元.
9.2+ 3在Q上的极小多项式是____________.
三、解答题(第1、2小题各12分,第3小题10分,共34分)
1.设G是6阶循环群,找出G的全部生成元,并找出G的所有子群.
2.求剩余类环Z6的所有子环,这些子环是不是Z6的理想?
3.设Z是整数环,则(2)∩(3)、(2,3)是Z的怎样一个理想?(2)∪(3)是Z的理想吗?为什么?
四、证明题(每小题8分,共24分)
1.设a 、b 是群G 的元素,a 的阶为2,b 的阶为3,且ab=ba ,证明ab 的阶是6.
2.证明:在n 阶群G 中每个元都满足x n =e.
3.设A=⎩⎨⎧⎪⎪⎭⎫ ⎝⎛c 0b a a 、b 、c ∈⎭
⎬⎫
关于矩阵的加法和乘法构成一个环,证明 A 1=⎩⎨⎧⎪⎪⎭⎫
⎝⎛x 0
00
x ∈⎭⎬⎫是A 的子环,找出A 到A 1的一个同态满射f,求f 的核N.。