统计学第5章概率论作业

合集下载

概率论与数理统计习题册 第五章 答案

概率论与数理统计习题册 第五章  答案

P{X
>
4500}
=1−
P{X

4500}
= 1 − Φ⎜⎜⎝⎛
4500 − 4475 612.5
⎟⎟⎠⎞
≈ 1− Φ(1.01) = 1− 0.8413 = 0.1587
(2) P{4400
<
X
<
4500} = Φ⎜⎜⎝⎛
4500 − 4475 612.5
⎟⎟⎠⎞

Φ⎜⎜⎝⎛
4400 − 4475 612.5
E( Xi ) = 10× 0.4 + 9× 0.3 + 8× 0.2 + 7 × 0.05 + 6× 0.05 = 8.95 ,
D( Xi
)
=
E
(
X
2 i
)

( EX i
)2
=1.225 ,
设总分为 X ,则 X ~ N (500 × 8.95, 500 ×1.225) ,即 X ~ N (4475, 612.5) . 因此
n
∑ 解 设有 n 个数相加,X i 分别为每个数的舍入误差。记 X = Xi ,E( Xi ) = 0 , i =1
16
∑ D( Xi )
=
1 12
由定理一知,随机变量 Z
=
k =1
Xi − n⋅0 n / 12
近似地服从正态分布 N (0,1)
(1) 所求概率
P{ X ≤ 15} = P{−15 ≤ X ≤ 15} = P{ −15 < X < 15 } 55 55 55
P{| Xn − a |< 0.1} ≥ 0.95 的 n 的最小值应不小于自然数

概率论与数理统计》课后习题习题详解第五章

概率论与数理统计》课后习题习题详解第五章

习题解答习题5.11.设样本值如下:15, 20, 32, 26, 37, 18, 19, 43计算样本均值、样本方差、2阶样本矩及2阶样本中心矩.解 由样本均值的计算公式,有()8111152032263718194326.2588i i x x ===⨯+++++++=∑由样本方差的计算公式,有()28211102.2181i i s x x==-=-∑由2阶样本矩的计算公式,有82211778.58i i a x ===∑由2阶样本中心矩的计算公式,有()2821189.448i i b x x==-=∑2. 设总体~(12,4)X N ,125(,,,)X X X 是来自总体X 的样本,求概率12345{m a x (,,,,)12}P X X X X X >. 解 12345{m a x (,,,,)12}P X X X X X > []551311(0) 1()232=-Φ=-=3. 设总体X ~ P (λ),X 是容量为n 的样本的均值,求 ()E X 和 ()D X . 解 因总体X ~ P (λ),故有(),()E X D X λλ==,于是()()E X E X λ==()()D X D X n nλ== 4. 某保险公司记录的6n =起火灾事故的损失数据如下(单位:万元):1.86, 0.75, 3.21,2.45, 1.98, 4.12. 求该样本的经验分布函数.解 将样本观测值排序可得:0.751.86 1.982.453.21<<<<< 则经验分布函数为60, 0.751, 0.75 1.8661, 1.86 1.9831(), 1.98 2.4522, 2.45 3.2135, 3.21 4.1261, 4.12x x x F x x x x x <⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩5.求标准正态分布的上侧0.01分位数和上侧0.48分位数 .解 由题知,X ~ (0,1)N ,求X 的上侧α分位数. 即求u α使满足{}P X u αα>=得{}1P X u αα≤=-即()1u ααΦ=-取0.01α=,查标准正态分布表得上侧0.01分位数为0.012.33u u α==取0.48α=,查标准正态分布表得上侧0.48分位数为0.480.05u u α==习题5.21.设总体~(8,36)X N ,129(,,,)X X X 是取自总体X 的样本,X 是样本均值,求{|7|2}P X -< .解 因~(8,36)X N ,且样本容量9n =,故36~(8,), ~(8,4)9X N X N 即 ,于是 9858{|7|2}{59}()()22P X P X ---<=<<=Φ-Φ (0.5)( 1.5)(0.5)(1.5)10.69150.933210.6247=Φ-Φ-=Φ+Φ-=+-=2.设 2~(9)X χ ,求λ使其满足()0.95P X λ<=解 由()0.95P X λ<=,得()0.05P X λ≥=,因为2~(9)X χ,所以查表可得20.05(9)16.919λχ==3. 设总体~(0,1X N ,1210(,,,)X X X 是取自总体X 的样本,求2221210()E X X X +++ 及2221210()D X X X +++ .解 由总体~(0,1)X N 可知~(0,1) (1,2,,10)i X N i = ,且1210,,,X X X 相互独立,于是22221210()~(10)X X X χ+++故有2221210()10E X X X +++= 2221210()21020D X X X +++=⨯=4. 设总体X ~ N (20 ,3),从中独立地抽取容量分别为10和15的两个样本,求它们的样本均值之差的绝对值大于0.3的概率.解 设这两个样本分别为1210,,,X X X 和1215,,,Y Y Y , 则对样本均值有101110i i X X ==∑ ~15131(20,),1015i i N Y Y ==∑~3(20,)15N依定理 X Y -~1(0,)2N ,所以{}0.3P X Y P ⎫->=>1P ⎫=-≤1=-ΦΦ(1210.6744⎡⎤=-Φ-=⎢⎥⎣⎦(查标准正态分布表可得)5.设X ~ t (12) ,(1) 求 a 使得()0.05P X a <=;(2)求 b 使得()0.99P X b >= 解 (1)由()0.05P X a <=利用t 分布的对称性可得()0.05P X a >-=,查表可得0.05(12) 1.7823 1.7823a t a -==⇒=-(2)由()0.99P X b >=得()0.01P X b ≤=,又由t 分布的对称性可得()0.01P X b >-=于是0.01(12) 2.6810 2.6810b t b -==⇒=-6.设~(8,12)X F ,求 λ 使得()0.01P X λ<=.解 由()0.01P X λ<= 得 ()0.99P X λ>=,于是查表可得0.990.0111(8,12)0.176(12,8) 5.67f f λ====习题5.31.设总体X ~ N (μ ,4),(X 1 ,X 2 ,… ,X 16)为其样本,2S 为样本方差,求: (1) P ()666.62<S ; (2) P ()865.4279.22<<S . 解 因为()221n S σ-~()21n χ-所以本题中2154S ~()215χ 则 (1) {}(){}22215156.666 6.6661524.997544P S P S P χ⎧⎫<=<⨯=<⎨⎬⎩⎭(){}211524.997510.050.95P χ=-≥=-=(2) {}221515152.279 4.865 2.279 4.865444P S P S ⎧⎫<<=⨯<<⨯⎨⎬⎩⎭(){}28.546251518.24375P χ=<<(){}(){}22158.546251518.24375P P χχ=>-≥0.900.250.6=-= 2. 总体2~(0,)X N σ,1225(,,,)X X X 是总体X 的样本,2X S 和分别是样本均值和样本方差,求λ,使5()0.99XP Sλ<=. 解 根据抽样分布定理知5~(24)X Xt S = 又由5()0.99XP Sλ<=得 5()0.01XP Sλ>= 故查表可得0.01(24) 2.4922t λ==3.设总体X ~ N (30 ,64),为使样本均值大于28的概率不小于0.9 ,样本容量n 至少应是多少?解 因为X ~(30,64)N , 所以样本均值X .~64(30,)N n因此X ()0,1N , 故{}{}28128P X P X >=-≤1X P ⎧⎫=-≤1⎛=-Φ ⎝0.9=Φ≥1.29≥,解得 27n ≥,所以n 至少应取27.*4.设总体X ~ N )16(1,μ 与总体Y ~ N )36(2,μ 相互独立,(X 1 ,X 2 ,… ,X 13)和(Y 1 ,Y 2 ,… ,Y 10)分别为来自总体X 和总体Y 的样本.试求两总体样本方差之比落入区间(0.159 ,1.058)内的概率.解 因为()221n S σ-~()21n χ-,所以本题中211216S ~()222912,36S χ~()29χ又因为21212222121291694936S S F S S ==~()12,9F从而221122229990.159 1.0580.159 1.058444S S P P S S ⎧⎫⎧⎫<<=⨯<<⨯⎨⎬⎨⎬⎩⎭⎩⎭(){}0.3577512,92.3805P F =<< 0.85=(查F 分布表*5. 设从两个正态总体~(4,1)~(6,1)X N Y N 和中分别独立地抽取两个样本1219(,,,)X X X 和1216(,,,)Y Y Y ,样本方差分别为2212S S 和.求λ,使2122()0.05S P S λ<=.解 根据抽样分布定理可知2122~(18,15)S F S 又由2122()0.05S P S λ<=可得2122()0.95S P S λ>=,于是查表可得0.950.0511(18,15)0.44(15,18) 2.27f f λ====*6.设总体X 与总体Y 相互独立,且都服从正态分布N (0 ,9),(X 1 ,X 2 ,… ,X 9)和(Y 1 ,Y 2 ,… ,Y 9)分别为来自总体X 和Y 的样本.试证明统计量T =∑∑==91291i ii iYX服从自由度为9的t 分布.证明 由正态分布的性质及样本的独立性知91ii X=∑~2(0,9)N得9119i i X =∑~(0,1)N 又因为i Y ~(0,9) (1,2,,9)N i =所以()22222291212913339Y Y Y Y Y Y ⎛⎫⎛⎫⎛⎫+++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ~()29χ 由于两个总体X 和Y 是相互独立的,所以其相应的样本也是相互独立的,故 9119i i X =∑与92119i i Y =∑也相互独立,于是由t 分布的定义知991ii XX T ==∑∑ ~ ()9t综合练习五一、填空题1.设总体X 的一组样本观测值为1.4 ,2.3 ,1.8 ,3.4 ,2.7则样本均值 x= ( 2.32 ) ,样本方差 2s = ( 0.607 ) .2.设总体X 服从正态分布N (2 ,5),(X 1 ,X 2 ,… ,X 10)为其样本,则样本均值X 的分布为 ( 122N ⎛⎫⎪⎝⎭, ).3.设总体X 服从具有n 个自由度的2χ 分布,(X 1 ,X 2 ,… ,X n )为其样本,X为样本均值,则有 ()( )E X n = ,()( 2 )D X = .4.设总体X ~ N (μ ,2σ),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别为样本均值和样本方差,则有 X ~( 2N n σμ⎛⎫ ⎪⎝⎭, ),22)1(σS n - ~( 2(1)n χ- ),nSX μ- ~( t (n - 1) ).5.设总体X ~ N (1 ,4),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)2()(X X X b X X a --+-则当a = (81 ) 、1()24b =时有T ~ 2χ(2) . 二、选择题1.设总体X ~ N (μ ,1),其中 μ 为未知参数,若(X 1 ,X 2 ,… ,X n )为来自总体X 的样本,则下列样本函数中( (b ) ) 不是统计量.(a )∑=ni i X1;(b )∑=-ni iX12)(μ ;(c) X 1 X 2 … X n ; (d )∑=ni i X12.2.设总体X ~ N (2 ,4),(X 1 ,X 2 ,… ,X 9)为其样本,X 为样本均值,则下列统计量中服从标准正态分布的是( (c ) ).(a ) X ; (b))2(43-X ; (c ))2(23-X ; (d ) )2(29-X . 3.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X 5)为其样本,令T = 2543221)(2)(3X X X X X +++则有T ~ ( (b ) ) .(a ) t (5) ; (b ) F (1 ,1) ; (c ) F (2 ,3) ; (d ) F (3 ,2) . 4.设总体X ~ N ⎪⎪⎭⎫ ⎝⎛410,,(X 1 ,X 2 ,… ,X 5)为其样本,令T=则有T ~( (d ) ).(a ) t (1) ; (b ) t (2) ; (c ) t (3) ; (d ) t (4) . 5.设总体X ~ N (0 ,1),(X 1 ,X 2 ,… ,X n )为其样本,X 、2S 分别是样本均值和样本标准差,则 ( (c ) ) .(a ) n X ~ N (0 ,1): (b ) X ~ N (0 ,1); (c )∑=ni i X 12 ~ 2χ(n ) ; (d )SX~ t (n - 1) . 6.设随机变量X 和Y 都服从标准正态分布,则 ( (c ) ) .(a ) Y X + 服从正态分布; (b ) 22Y X + 服从 2χ 分布;(c ) 2X 和 2Y 都服从 2χ 分布; (d )22Y X 服从F 分布.三、解答题1.设总体~(2,16)X N ,12(,,,)n X X X 是总体X 的样本,令2211ni i A X n ==∑,求2A 的数学期望2()E A .解 因为~(2,16)X N ,所以~(2,16) (1,2,,)i X N i n = ,则有 22()()()16420i i i E X D X E X =+=+= 于是22111()()2020n i i E A E X n n n===⨯⨯=∑2.设总体~(15,9),X N ,129(,,,)X X X 是总体X 的样本,X 是样本均值,.求常数c ,使()0.95.P X c ≤=解 根据抽样分布定理可知~(15,1)X N 又由()0.95P X c ≤=可得15()()0.951c P X c -≤=Φ= 查表可得15 1.645c -=,于是得16.645c =3.设一组数据20.5,15.5,30.2,20.5,18.6, 21.3,18.6,23.4来自于总体,X 求经验分布函数.解 将样本观测值排序可得:15.518.618.620.520.521.32<=<=<<< 则由定义可得经验分布函数为80, 15.51, 15.518.683, 18.620.585(), 20.521.386, 21.323.487, 23.430.081, 30.2x x x F x x x x x ≤⎧⎪⎪≤<⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪⎪≤<⎪⎪≥⎩4.设总体X ~ N (0 ,4),(X 1 ,X 2 ,… ,X 9)为其样本.求系数a 、b 、c ,使得T = 298762543221)()()(X X X X c X X X b X X a ++++++++服从 2χ 分布,并求其自由度.解 由于129,,,X X X 相互独立且来自总体X ~(0,4)N ,则由正态分布的线性运算性质有12X X +~(0,8)N ,345X X X ++~(0,12)N ,6789X X X X +++~(0,16)N于是,由2χ分布与正态分布的关系,有()()()22212345678981216X X X X X X X X X T ++++++=++ 服从2χ(3)分布,因此111,,81216a b c ===,自由度为3。

统计学 第五章习题 正确答案

统计学 第五章习题 正确答案

第五章 概论与概率分布重点知识1.样本、样本空间、随机事件的定义;2.事件的运算:交、并、对立事件、互斥事件;3.概论的定义:古典定义、统计定义、经验定义;4.概率的计算:加法公式,乘法公式,条件概率,事件的独立性,全概率公式,贝叶斯公式; 5.随机变量的定义,有几种类型;6.离散型随机变量及其分布的定义与性质,数学期望与方差:重点了解二项分布及其简单性质; 7.连续型随机变量及其分布的定义与性质,数学期望与方差:重点了解正态分布及其简单性质,会根据标准正态分布计算任何正态分布随机变量的概率;复习题一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设 。

2.若事件A 和事件B 不能同时发生,则称A 和B 是 事件。

3.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是 ;在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是 。

4.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件 表示.5.已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__.6.设A,B 为两个事件,若概率P (A )=41,P(B)=32,P(AB)=61,则概率P(A+B)=__.7.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)=__. 8.设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A ⊃B ,则条件概率P(B A )=__. 9.设A,B 为两个事件,若概率P(B)=103,P(B A )=61,P(A+B)=54,则概率P(A)=__.10.设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__. 11.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__. 12.设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__. 13.设离散型随机变量X 的概率分布如下表ccccPX 4322101-则常数c =__.14.已知离散型随机变量X 的概率分布如下表414121P321X则概率P {3<X }=__.15.已知离散型随机变量X 的概率分布如下表6632P213-X11则数学期望)(X E =__.16.设离散型随机变量X 服从参数为p 的两点分布,若离散型随机变量X 取1的概率p 为它取0的概率q 的3倍,则方差)(X D =__.17.设连续型随机变量的概率X 密度为⎪⎩⎪⎨⎧<<-=其他,0210,1)(2x x k x ϕ 则常数k =__.18.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=其他,00,24)(2rx x x ϕ 则常数r =__.19.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥=-其他,00,2)(2x xex xϕ 则概率}11{<<-X P =__.20.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,021,2)(2x x x ϕ 则数学期望)(X E =_____.21.设X 为随机变量,若数学期望1)12(=-X E ,则数学期望)(X E =__.22.设X 为随机变量,若方差3)63(=-X D ,则方差)(X D =__.二、单项选择1.设A,B 为两个事件,若事件A ⊃B ,则下列结论中( )恒成立.(a)事件A,B 互斥 (b)事件A,B 互斥 (c)事件A ,B 互斥 (d)事件A ,B 互斥 2.设A,B 为两个事件,则事件B A +=( ).(a)A +B (b)A-B (c)A B (d)AB3.投掷两颗均匀骰子,则出现点数之和等于6的概率为( ).(a)111 (b)115 (c)361 (d)3654.盒子里装有10个木质球与6个玻璃球,木质球中有3个红球、7个黄球,玻璃球中有2个红球、4个黄球,从盒子里任取1个球.设事件A 表示取到玻璃球,事件B 表示取到红球,则条件概率P(A B )=( ).(a)114 (b)74 (c)83 (d)535.设A,B 为两个事件,若概率P(A)=31,P(A B )=32,P(A B )=53,则概率P(B)=__.(a)51 (b)52 (c)53 (d)546.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>0,若事件A ⊃B,下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A-B)=P(A)-P(B)(c)P(AB)=P(A)P(B) (d)P(B A )=17.设A,B 为两个事件,则概率P(A+B)=( ).(a)P(A)+P(B) (b)P(A)+P(B)-P(A)P(B)(c)1-P (B A ) (d)1-P( A )P(B ) 8.设A,B 为两个事件,若概率P(A)=31,P(B)=41,P(AB)=121,则( ).(a)事件A 包含B (b)事件A ,B 互斥但不对立 (c)事件A ,B 对立 (d)事件A ,B 相互独立 9.设A,B 为两个事件,且已知概率P(A)=53,P(A+B)=107,若事件A,B 相互独立,则概率P(B)=( ).(a)161 (b)101 (c)41 (d)5210.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>O ,若事件A,B 相互独立,则下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A+B)=P(A) (c)P(A-B)=P(A)-P(B) (d)P(A-B)=P(A)P(B )11.中( )可以作为离散型随机变量X 的概率分布.(a)6321-P321X11 (b)653-21P321X1(c)6321P321X 11 (d)65321P321X 112.已知离散型随机变量X 的概率分布如下表52511015110142101PX-则下列概率计算结果中( )正确.(a)0}3{==X P (b)0}0{==X P . (c)1}1{=->X P (d)1}4{=<X P13.设离散型随机变量X 的所有可能取值为-1与l ,且已知离散型随机变良X 取-1的概率为)10(<<p p ,取1的概率为q ,则数学期望=)(2X E ( ).(a)O (b)l (c)p q - (d)2)(p q - 14.设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥+=其他,00,1)(2x x kx ϕ 则常数k =( ).(a)π1(b)π (c)π2(d)2π15.下列函数中( )不能作为连续型随机变量X 的概率密度.(a)⎩⎨⎧≤≤-=其他,001,3)(2x x x f (b)⎪⎩⎪⎨⎧≤≤-=其他,021,2)(x x x g(c)⎪⎩⎪⎨⎧≤≤=其他,020,cos )(πx x x h (d)⎪⎩⎪⎨⎧≤≤=其他,02,sin )(ππx x x h 16.设X 为连续型随机变量,若b a ,皆为常数,则下列等式中( )非恒成立.(a)}{}{a X P a X P ==≥ (b)}{}{b X P b X P <=≤ (c)1}{=≠a X P (d)0}{==b X P 17.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x ϕ 则数学期望)(X E =( ).(a)21 (b)2 (c)83 (d)3818.设X 为随机变量,若数学期望)(X E 存在,则数学期望))((X E E =( ).(a)O (b))(X E (c))(2X E (d)2))((X E 19.设X 为随机变量,若方差)(X D =4,则方差)43(+X D =( ).(a)12 (b)16 (c)36 (d)4020.设X ,Y 为随机变量,已知随机变量X 的标准差等于4,随机变量Y 的标准差等于3,若随机变量X ,Y 相互独立,则随机变量X -Y 的标准差等于( ).(a)1 (b)7 (c)5 (d)7四、名词解释1、 数学期望:2、 对立事件:3、 随机事件:4、 事件和:5、 事件积:6、 互斥事件:7、 互相独立事件:五、判断题1.对于连续型随机变量,讨论某一点取值的概率是没有意义的。

《概率论与数理统计》典型例题第五章数理统计初步

《概率论与数理统计》典型例题第五章数理统计初步

第五章 数理统计初步例1.若总体2~(,)X N µσ,其中2σ已知,但µ未知,而为来自总体的一个简单随机样本,试指出下列样本函数中 12,,n X X X …是统计量, 不是统计量:(1)11n i i X n =∑; (2)211(n i i X n )µ=−∑; (3)211()1n i i X X n =−−∑;;X 。

分析:利用统计量的定义即可辨别,特别注意不能含有未知参数。

解:由统计量的定义:设为总体12,,n X X X …X 的一个样本,为连续函数,如果不包含任何未知参数,则称其为一个统计量。

12(,,)n g x x x …12(,,)n g X X X …显然,(1),(3),(4),(6)给出的是统计量;而(2),(5)给出的量因含有未知参数µ,所以不是统计量。

注:统计量不包含任何未知参数,它具有两重性。

统计量是样本的一个函数,所以是一个随机变量。

若是的一组观察值,则统计量12,,nX X X …12(,,)n g X X X …12,,n x x x …12,,n X X X …12(,,)n g x x x …又是一个确定的数。

例2.设随机变量X 和Y 都服从标准正态分布,则 。

(A ) X Y +服从正态分布。

(B ) 22X Y +服从2χ分布。

(C ) 2X 和都服从2Y 2χ分布。

() D 22X 服从F 分布。

分析:考察统计中三种常见分布的构成,注意正态分布的性质。

解:由于的联合分布是否为二维正态分布未知,不能确定(,)X Y X Y +服从正态分布,又因X 与Y 是否独立未知,因而不能确定X Y +服从正态分布,也不能确定22X Y +服从2χ分布,也不能确定22X Y 服从F 分布,因而选。

C 注:本例重在强调各分布的构成中,都有独立性的要求。

另外,正态分布的性质中也同样要求独立性。

例3.设2~(,)X N µσ,则样本均值X 与总体期望µ的偏差不超过(n 为样本容量)的概率为 。

概率论与数理统计第五章习题解答

概率论与数理统计第五章习题解答

第五章 假设检验与一元线性回归分析 习题详解解:这是检验正态总体数学期望μ是否为提出假设:0.32:,0.32:10≠=μμH H由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验当零假设H 0成立时,变量:)1,0(~61.10.320N X n X U -=-=σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u计算得: 6.31)6.318.310.326.310.306.32(61=+++++⨯=x89.061.10.326.310-=-=-=n x u σμ因 0.89 1.96u =<它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显着为32.0kg/cm 2。

解:这是检验正态总体数学期望μ是否大于10提出假设:10:,10:10>≤μμH H 即:10:,10:10>=μμH H由题设,样本容量5n =,221.0=σ,1.01.020==σ,km x 万1.10=,所以用U 检验当零假设H 0成立时,变量:)1,0(~51.010N X n X U -=-=σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251.0101.100=-=-=n x u σμ 因 2.24 1.64u =>它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ所以可以认为这批新摩托车的平均寿命μ有显者提高。

解:这是检验正态总体数学期望μ是否小于240提出假设:240:,240:10<≥μμH H即:240:,240:10<=μμH H由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验当零假设H 0成立时,变量:)1,0(~625240N X n X U -=-=σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.16252402200-=-=-=n x u σμ 因 1.959 1.64u =-<-它落入拒绝域,于是拒绝H 0,而接受H 1,即可以认为240<μ 所以可以认为今年果园每株梨树的平均产量μ显着减少。

概率论与数理统计第五章习题参考答案

概率论与数理统计第五章习题参考答案

0.05

查表得: χ 20.95 (8) = 15.507 ,故拒绝域为 (15.507, + ∞) .
代入样本值 s = 0.007 得 K 值为 K = 8 × (0.007)2 = 15.68 > 15.507 (0.005) 2
所以拒绝 H 0 ,故可以认为这批导线的标准差显著地偏大。
7. 某厂使用两种不同的原料 A, B 生产同一类产品,现抽取用原料 A 生产的样品 220 件,测得平均 重量为 2.46kg,标准差为 0.57kg。抽取用原料 B 生产的样品 205 件,测得平均重量为 2.55kg,标 准差为 0.48kg。设这两个总体都服从正态分布,且方差相等,问在显著水平α = 0.05 下能否认为 使用原料 B 生产的产品平均重量较使用原料 A 生产的产品平均重量为大?
当假设 H 0 为真时,取检验统计量
T = X − 3.25 ~ t(4) S/ 5

P ⎪⎨⎧ ⎪⎩
X − 3.25 S/ 5
>
t
0.01 2
(4)⎪⎬⎫ ⎪⎭
=
0.01
查表得: t 0.01 (4) = 4.6041,故拒绝域为 (−∞,−4.6041) U (4.6041,+∞) .
2
代入样本值 x = 3.252, s = 0.013 得 T 值为 T = 3.252 − 3.25 = 0.344 < 4.6041 0.013 / 5
当假设 H 0′ 为真时,取检验统计量
F = S12 ~ F (10,8)
S
2 2

P⎪⎨⎧ ⎪⎩
S12
S
2 2
<
F 1−
0.05

概率论与数理统计 第五章 概率数理统计

概率论与数理统计 第五章 概率数理统计

概率论与数理统计第五章概率数理统计例题
10. 设总体 X 的密度 f(x)=2������ ������ − 最大似然验估计量。
1
(������−μ ) ������
λ>0,λ、μ 均为未知参数,������1 ,������2 ,… , ������������ 为样本,求 λ、μ 的
11. 设总体 X 的密度 f(x)=
15. 设某种病发病的年龄服从正态分布 N (μ,δ2 ) , 随机抽取 10 名患者, 记下年龄������1 ,������2 ,… , ������10 , 10 10 2 计算 ������ =1 ������������ =210, ������ =1 ������������ =4510,问显著水平 α=0.05 下可否认为该病发病的平均年龄 为 18 岁。
������������ +1 −������ ������ ������ ������ +1
~t(n-1)。
概率论与数理统计第五章概率数理统计例题
4. 设总体 X~N(μ, δ2 ) (δ>0) ������1 ,������2 ,… , ������2������ (n>2) 是 X 的一组简单随机样本, 设������=2������ ������=
求������1 ,������2 ,… , ������������ 为样本观测值,求 a 的矩估计量和最大似然估计量。
概率论与数理统计第五章概率数理统计例题
������ ������
13. 设总体 X 的密度为 f(x)=
k −1 !
������ ������−1 ������ −β x 0 < x ,β<0 为未知参数,k>0,为已知参数, x≤0 0

概率论与数理统计第五章习题

概率论与数理统计第五章习题

概率论与数理统计习题 第五章 大数定律及中心极限定理习题5-1 据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,设它们的寿命是相互独立的。

求这16只元件的寿命的总和大于1920小时的概率。

解:设第i 只寿命为X i ,(1≤i ≤16),故E (X i )=100,D (X i )=1002(l=1,2,…,16).依本章定理1知⎪⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯-≤⨯-=≤∑∑∑===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=Φ=从而.2119.07881.01)1920(1)1920(161161=-=≤-=>∑∑==i ii iXP XP习题5-2 设各零件的重量都是随机变量,它们相互独立且服从相同的分布,其数学期望为0.5kg ,均方差为0.1kg ,问5000只零件的总重量超过2510kg 的概率是多少?解设X i 表示第i 只零件的重量, 则E (X i )=0.5, D (X i )=0.01. 于是5000只零件的总重量X =∑=50001i iX, 所以由独立同分布中心极限定理知,{2510}P X >=P >1Φ≈-=1-0.921=0.079.习题5-3 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少? 解设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}1P X P X ≥=-<≈-Φ1(2.5)10.99380.0062.=-Φ=-=习题5-4(1)一复杂的系统由100个相互独立起作用的部件所组成.在整个运行期间每个部件损坏的概率为0.10 ,为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率.100(100,0.9),85{85)11( 1.67)(1.67)0.9525X X B P X ⨯⨯≈Φ-Φ≥≈-Φ=-Φ-=Φ=注释:设这个部件中没有损坏部件数为, 则服从二项分布且有______EX=np=1000.9=90,DX=npq=900.1=9由拉普拉斯定理,b-EX a-EXP{a<X<b}故至少须有个部件工作的概率为:85-90(2)一复杂的系统由n 个相互独立起作用的部件所组成.每个部件的可靠性为0.90,且必须至少有80%的部件工作才能使整个系统正常工作,问n 至少为多大才能使系统的可靠性不低于0.95?解:(2)设每个部件为X i (i=1,2,……n )⎩⎨⎧=部件损坏不工作部件工作1i XP {X i =1}=p =0.9, P {X i =0}=1-p =0.1 E (X i ) =p =0.9,D (X i ) =0.9×0.1=0.09由问题知95.0100801=⎭⎬⎫⎩⎨⎧>∑=n i i n X P 求n=?而⎭⎬⎫⎩⎨⎧>∑=n X P n i i 100801⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-=∑=)(10080)(1i i ni i X nD np n X nD npX P=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->-∑=n n n nn X P ni i 3.09.0100803.09.01=1-⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-≤-∑=n n n nn X P n i i 3.09.0100803.09.01由中心极限定理知=95.03.01.03.01.01≥⎪⎪⎭⎫⎝⎛Φ=⎪⎪⎭⎫⎝⎛-Φ-n n n n 查标准正态分布表得645.13.01.0≥nn解得n ≥24.35取n=25,即n 至少为25才能使系统可靠性为0.95.习题5-5 随机地选取两组学生,每组80人,分别在两个实验室里测量某种化合物的pH 值.各人测量的结果是随机变量,它们相互独立,且服从同一分布,其数学期望为5,方差为0.3,以Y X ,分别表示第一组和第二组所得结果的算术平均:(1)求}1.59.4{<<X P ; (2)求}1.01.0{<-<-Y X P(1)求P {4.9<1.5<X } (2)1.01.0{<-<-Y X P } 解:由中心极限定理知3.080580801⨯⨯-=∑=i iXU ~N (0,1)3.080580801⨯⨯-=∑=j jYV ~N (0,1)(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯⨯-⨯<⨯⨯-<⨯⨯-⨯=<<∑=3.080580801.53.0805803.080580809.4}1.59.4{801i i X P X P8968.019484.021)63.1(263.12458063.1801=-⨯=-Φ=⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧<⨯-<-∑=i i X P (2)由X i , Y j 的相互独立性知∑∑==801801j ji iYX 与独立。

陈国华等主编概率论与数理统计第五章习题解答

陈国华等主编概率论与数理统计第五章习题解答

x>0 x≤0
(α > 0, β > 0)
a a 1 1 1 dx = ∫ cos(tx) ⋅ dx + ∫ sin(tx) ⋅ dx −a −a −a 2a 2a 2a 1 1 1 = ⋅ sin(tx) |a sin(at ) x =− a = at 2a t t −1 (2)参数为 λ 的指数分布的特征函数为, φ X (t ) = (1 − i ) ,参数为 λ 的指数分布可看做
1
π (1 + x 2 )
(−∞ < x < +∞) ;
⎧A ⎪ (D) X i 的概率函数为 : g ( x) = ⎨ x 3 ⎪0 ⎩
x ≥1 x <1
(i = 1,2,3, ) .
答案:CABAD 三.解答题
1.一颗骰子连续掷 4 次,点数总和记为 X ,估计 p (10 < X < 18) .
3.已知随机变量 X 的数学期望为 10,方差 DX 存在且 P (−20 < X < 40) ≤ 0.1 ,则
DX ≥ . 4.设 X 1 , X 2 , , X n, 为独立同分布的随机变量序列,且 X i (i = 1,2, ) 服从参数为 2 的
指数分布,则 n → ∞ 当时, Yn =
1 n 2 ∑ X i 依概率收敛于 n i =1
1 1 ln n + ln n = 0 2 2
n
DX n = EX n = ln n
n 1 1 D ( Xi) = 2 ∑ 2 n n i =1
2
∑ ln i → 0(n → ∞)
i =1
根据马尔可夫大数定律, {X n } 服从大数定律。
3 、 已 知 随 机 变 量 X 和 Y 的 数 学 期 望 、 方 差 以 及 相 关 系 数 分 别 为 E ( X ) = E (Y ) = 2 ,

统计学第5章概率论作业

统计学第5章概率论作业

一、选择1、一项试验中所有可能结果的集合称为()A事件B简单事件C样本空间D基本事件2、每次试验可能出现也可能不出现的事件称为()A必然事件B样本空间C随机事件D不可能事件3、抛3枚硬币,用0表示反面,1表示正面,其样本空间Ω=()A{000,001,010,100,011,101,110,111}B{1,2,3}C{0,1}D{01,10}4、随机抽取一只灯泡,观察其使用寿命t,其样本空间Ω=()A{t=0} B{t<0} C{t>0} D{t≥0}5、观察一批产品的合格率P,其样本空间为Ω=()A{0<P<1} B{0≤p≤1} C{p≤1} D{p≥0}6、若某一事件取值的概率为1,则这一事件被称为()A随机事件B必然事件C不可能事件D基本事件7、抛掷一枚骰子,并考察其结果。

其点数为1点或2点或3点或4点或5点或6点的概率为( )。

A.1 B.1/6 C.1/4 D.1/28、一家计算机软件开发公司的人事部门最近做了一项调查,发现在最近两年内离职的公司员工中有40%是因为对工资不满意,有30%是因为对工作不满意,有15%是因为他们对工资和工作都不满意。

设A一员工离职是因为对工资不满意;B一员工离职是因为对工作不满意。

则两年内离职的员工中.离职原因是因为对工资不满意、或者对工作不满意、或者二者皆有的概率为( )。

A.0.40 B.0.30 C.0.15 D.0.559、一家超市所作的一项调查表明,有80%的顾客到超市是来购买食品,60%的人是来购买其他商品,35%的人既购买食品也购买其他商品。

设A一顾客购买食品,B一顾客购买其他商品。

则某顾客来超市购买食品的条件下,也购买其他商品的概率为()。

A.0.80 B.0.60 C.0.437 5 D.0.3510设A=出的一个为正品的概率()A .0.93B .0.45C .0.42D .0.933311.一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况同第10题所示:设A一取出的一个为正品;B一取出的一个为供应商甲供应的配件。

概率论与数理统计第五章

概率论与数理统计第五章

4. 设 X 1, X 2 , 为相互独立的随机变量序列, 且 X i ( i 1, 2, ), 服
从参数为 的泊松分布, 则
n
Xi n
lim P i 1
n
n
x _____ .
三、解答题 1. 一药厂试制成功一种新药, 卫生部门为了检验此药的效果, 在100
名患者中进行了试验 , 决定若有 75 名或更多患者显示有效时, 即
验中 , 事件 A 出现的次数 , 试用切比雪夫不等式估计得
P 0.74
0.76
.
10000
10
3. 某批产品的次品率为 0.1, 连续抽取10000 件, 表示其中的次品
数 , 试用中心极限定理计算 P{ 970 }
.
已知 F0.1(1) 0.8413 , F 0.1 (2) 0.9772 , F0.1(33.333) 1.
5. 某灯泡厂生产的一批灯泡 , 次品率为 1% , 现随机地抽样 500 个 ,
试用泊松逼近和正态逼近二种方法计算次品不超过5个的概率是
多少? 已知标准正态分布函数 F0,1 ( x) 的值
F0,1(2.25) 0.9878, F0,1(0) 0.5, F0,1(1.01) 0.8438.
k
泊松分布
11
3. 为了使问题简化 , 假定计算机进行数的加法运算时, 把每个加数 取为最接近于它的整数 (其后一位四舍五入) 来计算, 设所有的取 整误差是相互独立的, 且它们都在[ 0.5, 0.5]上服从均匀分布, 若 有 1500 个数相加,问误差总和的绝对值超过15 的概率是多少?已
知标准正态分布函数 F 0,1( x)的值 : F0,1(0.12) 0.5478, F0,1(1.342) 0.9099, F0,1(0.134) 0.5517.

概率论与数理统计第5章习题

概率论与数理统计第5章习题

1
200 160 157.44
0 160 157.44
1 200 160 157.44
160 0 157.44
1 3.19 1 0.9992886 0.0007114
24
10 0.05 10 0.05
2(0.632) 1 0.472
20
5. 某 商 店 负 责 供 应 某 地 区1000人 的 商 品,某 种 商 品 任 一 段 时 间 内,每 人 需 用 一 件 的 概 率 为0.6, 假 定 在 这 一 段 时 间 内 每 人 购买 与 否 彼 此 无 关,问 商 店 至 少 应 预 备 多 少 件 商 品才 能 以99.7%的 概 率 保 证 不会脱销?
DX i
n
2
n
n
i1 X i ~ N (0,1)
n
2
1
n
i 1
Xi
n
~
N (0,1)
n

X
n i 1
Xi
n
n
n
2
分 子 分 母 同 乘 以
Xi n
X
lim n
i 1
n p{ X
x}
lim
n
p
n i 1
Xi n
n
x
lim
p
n i 1
Xi
n
x ( x)
n
n
2
2. 已知一本300页的书中每页印刷错误的个数服从
解 : 设X表示某段时间内1000人中需用一件商品的人数
则X ~ B(1000,0.6) EX np 600 DX npq 240 设应预备n件商品,则由拉普拉斯中心极限定理

X ~ N( 600,240)

概率论与数理统计5.1-5.3

概率论与数理统计5.1-5.3

例2、某市保险公司开办一项人身保险业务,
被保险人每年需交付保险费160元,
若一年内发生重大人身事故,其本人或
家属可获2万元赔金,假设每个参保人 发生重大人身事故的概率为0.005,且 相互独立,现有5000人参加此项保险. 求: 保险公司一年内从此项业务所得到的总 收益在20万元到40万元之间的概率.
X n
i 1
i
记做 X .
根据中心极限定理
X 即

X 1 12 100

20 3 X
n
近似∼N(0,1) 于是
3 3 P{ X } 20 20 3 3 P{ 20 3 20 3 X 20 3} 20 20 (3) (3) 0.9973
例3 某单位有200部电话分机,每部电话约有
2、P(Zn≤y)≈Φ(y) n,y,Φ (y)三者知道两个求第三个
例2、某药厂生产的某种药品,声称对某疾
病的治愈率为80%。为检验此治愈率,
任意抽取100此种病患者进行临床试,
若有超过75人治愈,则此药通过检验。
试在以下两种情况下分别计算此药通过
检验的可能性。
(1)此药的实际治愈率为80%;
(2)此药的实际治愈率为70%.
P{20 80 2 X i 40} P{60 2 X i 40}
i 1 i 1 5000 5000
P{20 X i 30}
i 1
5000
∵ np=25
np(1-p)=250.995
5000 i 1
P{20
X
i
30}
20 np P{ np (1 p )
的标准化变量
n X i n i 1 lim P x n n

概率论与数理统计第五章习题详解 (2)

概率论与数理统计第五章习题详解  (2)

习题五1 .已知()1E X =,()4D X =,利用切比雪夫不等式估计概率{}1 2.5P X -<.解: 据切比雪夫不等式{}221P X σμεε-<≥-{}241 2.51 2.5P X -<≥-925=.2.设随机变量X 的数学期望()E X μ=,方程2()D X σ=,利用切比雪夫不等式估计{}||3P X μσ-≥.解:令3εσ=,则由切比雪夫不等式{}2()||3D X P X μσε-≥≤, 有{}221||3(3)9P X σμσσ-≥≤=.3. 随机地掷6颗骰子,利用切比雪夫不等式估计6颗骰子出现点数之和在1527 之间的概率.解: 设X 为6颗骰子所出现的点数之和;i X 为第i 颗骰子出现的点数,1,2,,6i = ,则61ii X X==∑,且126,,...,X X X 独立同分布,分布律为:126111666⎛⎫ ⎪⎪ ⎪⎝⎭,于是6117()62i k E X k ==⋅=∑6221191()66i k E X k ==⋅=∑所以22()()()i i i D X E X E X =-914964=-3512=,1,2,,6i =因此 617()()6212ii E X E X===⨯=∑6135()()612i i D X D X ===⨯∑352=故由切比雪夫不等式得:{}{}|5271428P X P X ≤≤=<<{}7217P X =-<-< {}|()|7P X E X =-<2()17D X ≥-13559114921414=-⨯=-=.即6颗骰子出现点数之和在1527 之间的概率大于等于914.4. 对敌阵地进行1000次炮击,每次炮击中。

炮弹的命中颗数的期望为0.4,方差为3.6,求在1000次炮击中,有380颗到420颗炮弹击中目标的概率.{}1|()|7P X E X =--≥解: 以i X 表示第i 次炮击击中的颗数(1,2,,1000)i =有()0.4i E X = ,() 3.6i D X =据 定理:则10001380420i i P X =⎧⎫<≤⎨⎬⎩⎭∑420400380400--≈Φ-Φ11()()33=Φ-Φ-12()13=Φ- 20.62931=⨯- 0.2586= .5. 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g ,标准差是10g . 求一盒螺丝钉的重量超过10.2kg 的概率.解: 设i X 为第i 个螺丝钉的重量,1,2,,100i = ,且它们之间独立同分布,于是一盒螺丝钉的重量1001ii X X==∑,且由()100i E X =10=知()100()10000i E X E X =⨯=,100=,由中心极限定理有:100001020010000(10200)10100X P X P --⎧⎫>=>⎨⎬⎩⎭100002100X P -⎧⎫=>⎨⎬⎩⎭1000012100X P -⎧⎫=-≤⎨⎬⎩⎭1(2)≈-Φ10.977250.02275=-= .6. 用电子计算机做加法时,对每个加数依四舍五入原则取整,设所有取整的舍入误差是相互独立的,且均服从[]0.5,0.5-上的均匀分布.(1)若有1200个数相加,则其误差总和的绝对值超过15的概率是多少? (2)最多可有多少个数相加,使得误差总和的绝对值小于10的概率达到90%以上.解: 设i X 为第i 个加数的取整舍入误差, 则{}i X 为相互独立的随机变量序列, 且均服从[]0.5,0.5-上的均匀分布,则0.50.5()0i E X xdx μ-===⎰0.5220.51()12i D X x dx σ-===⎰(1) 因1200n =很大,由独立同分布中心极限定理对该误差总和12001ii X=∑,1200115i i P X =⎧⎫>⎨⎬⎩⎭∑15P ⎫⎪=>12 1.5i i P X =⎫⎪=>⎬⎪⎭2(1(1.5))=-Φ 0.1336= .即误差总和的绝对值超过15的概率达到13.36% .(2) 依题意,设最多可有n 个数相加,则应求出最大的n ,使得1100.9n k k P X =⎧⎫<≥⎨⎬⎩⎭∑由中心极限定理:1110n ni ii i P X P X ==⎧⎧⎫⎪<=<⎨⎬⎨⎪⎩⎭⎩∑∑210.9≈Φ-≥ .即0.95Φ≥查正态分布得 1.64≥即21012()446.161.64n ≤≈取446n =,最多可有446个数相加 .7. 在人寿保险公司是有3000个同一年龄的人参加人寿保险,在1年中,每人的的死亡率为0.1%,参加保险的人在1年第1天交付保险费10元,死亡时家属可以从保险公司领取2000元,求保险公司在一年的这项保险中亏本的概率.解 以X 表示1年死亡的人数 依题意,(3000,0.001)X B注意到{}{}200030000P P X =>保险公司亏本其概率为{}1530000.001151P X -⨯>≈-Φ1(6.932)=-Φ 0≈ .即保险公司亏本的概率几乎为0 .8. 假设12,,...,n X X X 是独立同分布的随机变量,已知()ki k E X α= (1,2,3,4;1,2,,)k i n == .证明:当n 充分大时,随机变量211nn i i Z X n==∑近似服从正态分布.证明:由于12,,...,n X X X 独立同分布,则22212,,...,n X X X 也独立同分布由()ki k E X α= (1,2,3,4;1,2,,)k i n ==有22()iE X α=,2242()((i iiD XE X E X ⎡⎤=-⎣⎦242αα=-2211()()nn i i E Z E X nα==⋅=∑2242211()()()nn i i D Z D X n nαα==⋅=-∑{}15P X =>因此,根据中心极限定理:(0,1)nZU Nα-=即当n充分大时,n Z近似服从2242(,())N nααα- .9. 某保险公司多年的统计资料表明:在索赔户中被盗索赔户占20%,以X表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X的概率分布;(2)利用德莫弗-位普拉斯中心极限定理.求:被盗索赔户不少于14户,且不多于30户的概率.解(1)(100,0.2)X B,所以{}1001000.20.80,1,2,,100k k kP X k C k-===()20E X np==,()(1)16D X np p=⋅-=(2){}|430P X≤≤1420203020XP---⎧⎫=≤≤(2.5)( 1.5)=Φ-Φ-(2.5)( 1.5)1=Φ+Φ--0.9940.93310.927=+-= .10 .某厂生产的产品次品率为0.1p=,为了确保销售,该厂向顾客承诺每盒中有100只以上正品的概率达到95%,问:该厂需要在一盒中装多少只产品?解:设每盒中装n只产品,合格品数~(,0.9)X B n,()0.9E X n=,()0.09D X n=则{}{}1001100P X P X>=-≤1000.910.95n -=-Φ=1000.9 1.65n-=-解得117n =,即每盒至少装117只才能以95%的概率保证一盒内有100只正品。

概率论与数理统计教程习题(第五章统计量及其分布)

概率论与数理统计教程习题(第五章统计量及其分布)

习题13(统计量及其分布)一.填空题1. 设总体X 具有分布函数()12,,,,n F x x x x 为取自该总体的容量为n 的样本,则样本联合分布函数_________________________________________.2. 为了解统计学专业本科毕业生的就业情况,我们调查了某地区30名2000年毕业的统计学专业本科生实习期满后的月薪情况,则总体是_____________,样本是___________,样本量是______。

二.选择题1. 设总体()2~,X N μσ,其中2σ已知,但μ未知,而12,,,n X X X 为它的一个简单随机样本,则下列量中( )是统计量,( )不是统计量:① 11n i i X n =∑; ② ()211n i i X n μ=-∑; ③ ()2111n i i X X n =--∑;④ X ⑤ X ⑥X . 三.解答题1. 证明 (1)()10n i i X X =-=∑;(2)()()()22211n n i i i i X A X X n X A ==-=-+-∑∑; (3)()22211n n i i i i X X X nX ==-=-∑∑。

2. 在一本书上随机检查了10页,发现每页上的错误个数分别为4 5 6 0 3 1 4 2 1 4试计算其样本均值、样本方差和样本标准差。

3. 设总体总体X 的均值为μ,方差为2σ,而12,,,n X X X 为它的一个简单随机样本,X ,2S 是样本均值和样本方差,证明:()E X μ=;()2D X n σ=;()22E S σ=。

习题14(三大抽样分布)一.填空题1. 设4321,,,X X X X 相互独立且服从相同分布),(2n χ则________~34321X X X X ++; 2. 设)1,0(~N X ,随机抽取样本n X X X ,,,21 ,X 为样本均值,2S 为样本方差,则∑=-n i i X n X122~,~22S X n .3. 设总体()36.0,~μN X ,从中抽取容量为18的样本1821,,,X X X ,则()=⎪⎪⎭⎫ ⎝⎛<-∑=38.72181i i X X P ____. 二.选择题1. 设总体2~(,)X N μσ,X 为该总体的样本均值,则()P X μ<__________ ① 14<② 14= ③ 12> ④ 12= 2. 设随机变量()~()1X t n n >,21Y X =则__________ (A )()2~Y n χ (B )()2~1Y n χ-(C )()~,1Y F n (D )()~1,Y F n三.解答题1. 总体()2,σμN 中抽取16个样本,2,σμ均未知,2S 为样本方差,求⎪⎪⎭⎫ ⎝⎛≤04.222σS P2. 总体()22,0~N X ,4321,,,X X X X 是来自总体X 的简单随机样本.求b a ,的值,使243221)43()2(X X b X X a Y -+-=服从-2χ分布.并写出此分布的自由度.3. 设921,,,X X X 为来自正态总体X 的简单随机样本,记()621161X X X Y +++= ,()987231X X X Y ++=,()∑=-=97221221i Y Y S , ()S Y Y Z 212-=.证明:统计量Z 服从自由度为2的t 分布.。

概率论第五章习题答案

概率论第五章习题答案

ˆ = min(x , x ,L, x ) 。 然函数 L 取得最大值,从而知 θ 1 2 n
16.设总体 X 的概率分布为
X
0
1
2θ (1 − θ )
2
3
P
θ2
θ2
1 − 2θ
其中 θ
1 (0 < θ < ) 是未知参数,利用总体 X 的如下样本值 3,1,3,0,3,1,2, 2
3,求 θ 的矩估计值和极大似然估计值。
2 答案与提示:由于 X ~ N ( 3} = 0.1336
3.设 X 1 , X 2 , L , X n 为来自总体 X ~ P (λ ) 的一个样本, X 、 S 2 分别为样本均值 和样本方差。求 DX 及 ES 2 。 答案与提示:此题旨在考察样本均值的期望、方差以及样本方差的期望与总体 期望、总体方差的关系,显然应由定理 5-1 来解决这一问题。
8.设 X 1 , X 2 , L , X n 为来自正态总体 X ~ N ( µ , σ 2 ) 的一个样本, µ 已知,求 σ 2 的极大似然估计。 答案与提示:设 x1 , x 2 , L, x n 为样本 X 1 ,X 2 ,L ,X n 的一组观察值。则似然函数 为
( xi − µ ) 2 2σ
15.设某种元件的使用寿命 X 的概率密度为
⎧2e −2( x −θ ), x > θ , f ( x;θ ) = ⎨ 0 , x θ ≤ ⎩
其中 θ > 0 为未知参数。又设 x1,x 2, L,x n 是 X 的一组样本观察值,求 θ 的极大似然 估计值。 答案与提示: 构造似然函数 L(θ ) = ∏ 2e
第五章 习题参考答案与提示
第五章 数理统计初步习题参考答案与提示

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<-="X" )103010(<-<-="X" 709.010<="" bdsfid="71" p="" x="">1.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<-="X" )2010020(<-<-="X" 8<="" bdsfid="77" p="" x="">7205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<="">解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<-<-="X" )<="" bdsfid="88" p="" x="">414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(?->?-=X P )2251020020000(>?-=X P 由独立同分布的中心极限定理,1020020000?-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>?-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--??-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--??-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<="" bdsfid="123" p="">()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--?-≤?-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=XP )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(?->?-=T P )91.03010300(>?-≈T P ,由独立同分布的中心极限定理,3010300?-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>?-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。

概率论与数理统计第五章测试题

概率论与数理统计第五章测试题

第5章 数理统计的一些基本概念一、选择题1.设随机变量X 服从n 个自由度的t 分布,定义t α满足P(X ≤t α)=1-α,0<α<1。

若已知 P(|X|>x)=b ,b>0,则x 等于(A )t 1-b (B ) t 1-b/2 (C )t b (D )t b/22.设n X X X ,...,,21是来自标准正态总体的简单随机样本,X 和S 2为样本均值和样本方差,则(A )X 服从标准正态分布 (B )∑=ni iX12服从自由度为n-1的χ2分布(C )X n 服从标准正态分布 (D )2)1(S n -服从自由度为n-1的χ2分布 3.设n X X X ,...,,21是来自正态总体N(μ,σ2) 的简单随机样本,X 为其均值,记∑=-=n i i X n S 1221)(1μ,∑=-=n i i X X n S 1222)(1,∑=--=n i i X n S 1223)(11μ, ∑=--=ni i X X n S 1224)(11,服从自由度为n-1的t 分布的随机变量是 (A )1/1--=n S X T μ (B )1/2--=n S X T μ(C )1/3--=n S X T μ (D )1/4--=n S X T μ4.设21,X X 是来自正态总体N(μ,σ2) 的简单随机样本,则21X X +与21X X -必 (A )不相关 (B )线性相关 (C )相关但非线性相关 (D )不独立 5.设n X X X ,...,,21是来自正态总体N(μ,σ2) 的简单随机样本,统计量2⎪⎪⎭⎫ ⎝⎛-=S X n Y μ,则 (A )Y~χ2(n-1) (B )Y~t(n-1) (C )Y~F(n-1,1) (D )Y~F(1,n-1) 6.设随机变量X~N(0,1),Y~N(0,2),且X 与Y 相互独立,则(A )223231Y X +服从χ2分布 (B )2)(31Y X +服从χ2分布 (C )222121Y X +服从χ2分布 (D )2)(21Y X +服从χ2分布7.设X , 1021,...,,X X X 是来自正态总体N(0,σ2) 的简单随机样本,∑==ni i X Y 122101,则 (A )X 2~χ2(1) (B )Y 2~χ2(10) (C )X/Y~t(10) (D )X 2/Y 2 ~F(10,1)8.设总体X 与Y 相互独立且都服从正态分布N(μ,σ2) ,X ,Y 分别为来自总体X,Y 的容量为n 的样本均值,则当n 固定时,概率)|(|σ>-Y X P 的值随σ的增大而 (A )单调增大 (B )单调减小 (C )保持不变 (D )增减不定 9设随机变量X 和Y 都服从标准正态分布,则 (A )X+Y 服从正态分布 (B )22Y X+服从χ2分布(C )X 2和Y 2都服从χ2分布 (D )22/Y X 服从F 分布 填空题1.已知随机变量 X ,Y 的联合概率密度为)}4849(721exp{121),(22+-+-=y y x y x f π, 则22)1(49-Y X 服从参数为 的 分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择
1、一项试验中所有可能结果的集合称为()
A事件 B简单事件 C样本空间 D基本事件
2、每次试验可能出现也可能不出现的事件称为()
A必然事件 B样本空间 C随机事件 D不可能事件
3、抛3枚硬币,用0表示反面,1表示正面,其样本空间Ω=()
A{000,001,010,100,011,101,110,111}
B{1,2,3}C{0,1}D{01,10}
4、随机抽取一只灯泡,观察其使用寿命t,其样本空间Ω=()
A{t=0} B{t<0} C{t>0} D{t≥0}
5、观察一批产品的合格率P,其样本空间为Ω=()
A{0<P<1} B{0≤p≤1} C{p≤1} D{p≥0}
6、若某一事件取值的概率为1,则这一事件被称为()
A随机事件 B必然事件 C不可能事件 D基本事件
7、抛掷一枚骰子,并考察其结果。

其点数为1点或2点或3点或4点或5点或6点的概率为( )。

A.1 B.1/6 C.1/4 D.1/2
8、一家计算机软件开发公司的人事部门最近做了一项调查,发现在最近两年内离职的公司员工中有40%是因为对工资不满意,有30%是因为对工作不满意,有15%是因为他们对工资和工作都不满意。

设A一员工离职是因为对工资不满意;B一员工离职是因为对工作不满意。

则两年内离职的员工中.离职原因是因为对工资不满意、或者对工作不满意、或者二者皆有的概率为( )。

A. B.0.30 C. D.
9、一家超市所作的一项调查表明,有80%的顾客到超市是来购买食品,60%的人是来购买其他商品,35%的人既购买食品也购买其他商品。

设A一顾客购买食品,B一顾客购买其他商品。

则某顾客来超市购买食品的条件下,也购买其他商品的概率为()。

A. B.0.60 C. 5 D.
10.一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况如下表所示:
设A=取出的一个为正品;B=取出的一个为供应商甲供应的配件。

从这200个配件中任取一个进行检查,取出的一个为正品的概率()
A .
B . 0.45
C .
D .
11.一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况同第10题所示:
设A一取出的一个为正品;B一取出的一个为供应商甲供应的配件。

从这200个配件中任取一个进行检查,已知为正品,那么取出的一个为供应商甲供应的配件的概率为( )。

12.一家报纸的发行部已知在某社区有75%的住户订阅了该报纸的日报,而且还知道某个订阅日报的住户订阅其晚报的概率为50%。

设A=某住户订阅了日报;B=某住户订阅了晚报,则该住户既订阅日报又订阅晚报的概率为( )。

A.0.75 B.0.50 C.0.375 D.0.475
13.某考生回答一道四选一的考题,假设他知道正确答案的概率为1/2,而他不知道正确答案时猜对的概率应该为1/4。

分别定义事件A=该考生答对了;B=该考生知道正确答案,考试结束后发现他答对了,那么他知道正确答案的概率为( )。

A.1 B.0.25 C.0.5 、一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数X及概率如下表所示:则该供应商次品数的数学期望为()
A. 0.43
B. 0.15
C.
D.
15、同上题,该供应商次品数的标准差为()
A. 0.43
B. 0.84
C.
D.
16、指出下面关于n重贝努里试验的陈述中哪一个是错误的
A 一次试验只有两个可能结果,即“成功”和“失败”
B每次试验成功的概率p都是相同的
C试验是相互独立的
D在n次试验中,“成功”的次数对应一个连续型随机变量
17、推销员向客户推销某种产品成功的概率为,他在一天中共向5名客户进行了推销,则成功谈成客户数不超过2人的概率为()
A. B.0.3602 C. 、已知一批产品的次品率为4%,从中有放回地抽取5个,则5个产品中没有次品的概率()
A、 B、0.170 C、 D、
19、设X是参数n=4,p=的二项随机变量,则P(X<2)=()
B.0.2125
C. 、设Z服务从标准正态分布,则P(0≤Z≤)=()
A. B.0.4319 C. 、设Z服从标准正态分布,则P(≤z≤0)=()
A. B.0.4319 C. 、设Z服从标准正态分布,则P(z >)=()
A.0.3849 B. 0.4319 C 、假定某公司职员每周的加班津贴服从均值为50元、标准差为10元的正态分布,那么全公司中每周的加班津贴在40-60之间的职员比例为()
B.0.0228
C. 二、计算
1.某钢铁公司所属三个工厂的职工人数如下表。

从该公司中随机抽取1人,问:
(1)该职工为男性的概率
(2)该职工为炼钢厂职工的概率
(3)该职工为炼钢厂或轧钢厂职工的概率
2.某工厂为节约用电,规定每天的用电量指标为1000度。

按照上个月的用电记录,30天中有12天的用电量超过规定指标,若第二个月仍没有具体的节电措施,试问该厂第一天用电量超过指标的概率。

3.设某地有甲、乙两种报纸,该地成年人中有20%读甲报纸,16%读乙报纸,8%两种报纸都读。

问成年人中有百分之几至少读一种报纸。

4.设有1000种产品,其中850件是正品,150件是次品,从中依次抽取2件,两件都是次品的概率是多少
5.某工人同时看管三台机床,每单位时间(如30分钟)内机床不需要看管的概率:甲机床为,乙机床为,丙机床为。

若机床是自动且独立地工作,求
(1)在30分钟内三台机床都不需要看管的概率
(2)在30分钟内甲、乙机床不需要看管,且丙机床需要看管的概率
6.一人乘公共汽车或地铁上班的概率是和,当他乘公共汽车时,有30%的日子迟到,当他乘地铁时,有10%的日子迟到,问此人上班迟到的概率是多少若此人在某一天迟到,其乘地铁的概率是多少
7.某车间用甲、乙、丙三台机床进行生产,各种机床的次品率分别为5%、4%、2%,它们各自的产品分别占总产量的25%、35%、40%,将它们的产品组合在一起,求任取一个是次品的概率。

8.某车间用甲、乙、丙三台机床进行生产,各种机床的次品率分别为5%、4%、2%,它们各自的产品分别占总产量的25%、35%、40%,将它们的产品组合在一起,如果取到的一件产品是次品,分别求这一产品是甲、乙、丙生产的概率
8.离散型随机变量的分布函数。

求X的分布函数:F(x)=P{X≤x}。

再求P{X≤1/2}。

相关文档
最新文档