实验 基本磁化曲线和动态磁滞回线的测量

合集下载

磁滞回线的测量(实验报告)

磁滞回线的测量(实验报告)

实验名称: 用示波器观测铁磁材料的动态磁滞回线姓 名学 号 班 级桌号教 室 基础教学楼1101实验日期 2016年 月 日 节4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。

二、实验仪器1. 双踪示波器2. DH4516C 型磁滞回线测量仪三、实验原理(一)铁磁物质的磁滞现象铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。

以下是关于磁滞的几个重要概念1、饱和磁感应强度B S 、饱和磁场强度H S 和磁化曲线铁磁材料未被磁化时,H 和B 均为零。

这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。

到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。

与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。

我们称曲线OS 为磁性材料的磁化曲线。

图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线2、磁滞现象、剩磁、矫顽力、磁滞回线当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。

即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。

当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。

这种现象叫磁滞现象,B r 叫剩磁。

若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。

当反向磁场继续增加,铁磁质的磁化达到反向饱和。

反向磁场减小到零,同样出现剩磁现象。

不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞回线,如图2所示。

即:IH (1)由(1)式可知,若将电压U1输入示波器 X偏转板时,示波器上任一时刻电子束在X轴的偏转正比于磁场强度H。

为了追踪测量样品内的磁感应强度B,在截面面积为S的样品中缠绕副线圈N2,B可通过副线圈N2中由于磁通量变化而产生的感应电动势ε来测定。

铁磁材料的磁化曲线和磁滞回线的 测量

铁磁材料的磁化曲线和磁滞回线的 测量

铁磁材料的磁化曲线和磁滞回线的测量磁化曲线和磁滞回线是铁磁材料的两个基本磁性特性,可以通过实验测量来获得。

磁化曲线反映了铁磁材料在外加磁场下的磁化过程,磁滞回线则是描述铁磁材料在磁场变化时磁化状态的变化过程。

在这篇文章中,我们将详细介绍铁磁材料磁化曲线和磁滞回线的测量方法。

一、磁化曲线的测量1、实验原理铁磁材料在外磁场作用下会被磁化,磁化过程可以被描述为一个磁化曲线。

实验中,我们可以通过应用不同大小的磁场来测量铁磁材料的磁化曲线,并在相应的磁场值处记录样品磁化强度。

2、实验步骤(1)选择适当的铁磁材料。

铁磁材料应该具有较高的磁滞回线,磁化曲线应平滑连续。

(2)制备样品。

将铁磁材料制成条状或薄片状,并尽可能保持样品尺寸一致。

(3)将制备好的铁磁材料打磨并清洗干净。

(4)准备实验装置。

将样品放置于磁感应计中间,并将磁感应计连接到电压表或电流表。

(5)应用不同大小的外磁场,并记录磁化强度。

使用恒流源或电压源,应用不同大小的电流或电压,同时记录磁感应计测得的磁感应强度,以得到磁化曲线。

重复多次实验,取平均值或绘制不同曲线来验证测量结果的准确性。

3、注意事项(1)要保持样品尺寸一致,以避免磁滞回线太宽或太窄。

(2)应避免外界干扰和温度变化对实验结果的影响。

(3)在应用不同磁场时,应注意不要让磁场过强以至于将样品磁化到饱和,否则曲线终止于饱和点。

(1)选择适当的铁磁材料。

(4)以一个磁场方向开始,应用不同大小的磁场,并记录磁化强度,记录下磁化曲线,此时磁滞回线仍未形成完整闭合环形。

(5)随着外磁场方向变化,记录相应的磁化曲线和磁滞回线,直到一整个闭合环形的曲线测得。

(6)重复多次实验,取平均值或绘制不同曲线来验证测量结果的准确性。

(1)测量时应注意保持外部环境的稳定,避免温度、震动等因素对实验结果的影响。

(2)应避免将试样磁滞回线的心磁化带磁化到饱和,否则将不能获得完整的磁滞回线。

(3)应避免在试样磁滞回线完成闭合之前改变外加磁场的方向,否则将失去呈环形的磁化曲线。

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。

2测定样品的基本磁化曲线作H 曲线。

3测定样品的Hc、Br、Bm和Hm�6�1Bm等参数。

4测绘样品的磁滞回线。

【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化故磁导率很高。

另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。

图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。

当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。

图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。

所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。

在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。

2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。

动态法测量磁滞回线和磁化曲线实验报告

动态法测量磁滞回线和磁化曲线实验报告

1. 动态法测量磁滞回线和磁化曲线实验报告2. 引言在材料科学和物理学领域,磁性材料的性质对于电磁器件和磁性储存系统的设计和性能起着至关重要的作用。

磁滞回线和磁化曲线是描述磁性材料特性的重要参数,它们对于磁性材料的应用和应力分析具有重要意义。

本实验旨在通过动态法测量磁滞回线和磁化曲线,研究和分析磁性材料的特性,以期能更深入地理解和应用这些理论知识。

3. 实验目的本次实验旨在探索磁性材料的磁滞回线和磁化曲线特性,通过动态法测量并分析磁性材料的磁滞回线和磁化曲线,了解磁性材料在外加磁场作用下的磁性响应规律,并对实验结果进行分析和讨论。

4. 实验原理磁滞回线是描述磁性材料在外加磁场变化时磁化状态的变化规律的曲线。

而磁化曲线则是描述磁性材料在外加磁场的作用下,磁化强度随磁场强度的变化关系。

通过动态法测量磁滞回线和磁化曲线,可以得到材料的磁滞回线图形和磁化曲线图形,并通过分析曲线的各项参数,揭示材料中的一些重要性质。

5. 实验步骤(1)准备工作:准备好磁性材料样品、测量设备和外加磁场设备。

(2)动态法测量磁滞回线:将样品置于外加磁场设备中,通过改变外加磁场的大小和方向,观察样品的磁化状态变化,并记录数据。

(3)动态法测量磁化曲线:在不同外加磁场下,测量样品的磁化强度,并记录数据。

(4)数据处理和分析:根据实验数据,绘制磁滞回线图和磁化曲线图,并分析曲线的各项参数,如剩磁、矫顽力等。

6. 实验结果通过动态法测量,我们得到了样品的磁滞回线和磁化曲线图形,并对实验数据进行了分析。

在磁滞回线图中,我们观察到样品在外加磁场作用下出现了明显的磁滞现象,磁滞回线的形状反映了样品的磁滞性能;在磁化曲线图中,我们观察到了样品在不同外加磁场下磁化强度的变化规律,通过对曲线参数的分析,我们可以得到材料的一些重要性能指标。

7. 实验分析通过对实验数据的分析,我们可以发现磁滞回线和磁化曲线反映了磁性材料在外加磁场作用下的磁性响应规律。

动态法测量磁滞回线和磁化曲线实验报告

动态法测量磁滞回线和磁化曲线实验报告

动态法测量磁滞回线和磁化曲线实验报告动态法测量磁滞回线和磁化曲线实验报告一、引言磁滞回线和磁化曲线是研究磁性材料磁化性质的重要工具。

磁滞回线描述了材料在外加磁场作用下磁化程度的变化规律,而磁化曲线则反映了材料的磁化特性。

本实验通过动态法测量磁滞回线和磁化曲线,旨在深入了解磁性材料的磁化行为,并通过分析实验数据得出相关结论。

二、实验原理1. 磁滞回线磁滞回线是描述材料在外加磁场逐渐增加和减小过程中磁化程度的变化情况。

在实验中,我们需要使用霍尔效应磁强计来测量磁场强度,从而可以得到材料的磁滞回线。

2. 磁化曲线磁化曲线是描述材料在外加磁场作用下磁化程度随磁场变化的曲线。

在实验中,我们需要使用霍尔效应磁强计和恒流源来测量材料在不同磁场强度下的磁场强度和磁化强度,并绘制出磁化曲线。

三、实验步骤1. 实验准备:a. 准备一块磁性材料样品,并将其放置在实验装置上。

b. 连接霍尔效应磁强计和恒流源到实验装置上,确保测量的准确性和稳定性。

2. 磁滞回线的测量:a. 调整恒流源的电流使得霍尔效应磁强计输出为零。

b. 逐渐增加恒流源的电流,记录同时测量到的磁场强度和霍尔效应磁强计输出的数值。

c. 逐渐减小恒流源的电流,重复步骤b的测量过程。

d. 根据实验数据绘制磁滞回线图。

3. 磁化曲线的测量:a. 调整恒流源的电流使得霍尔效应磁强计输出为零。

b. 逐渐增加恒流源的电流,记录同时测量到的磁场强度和霍尔效应磁强计输出的数值。

c. 根据实验数据绘制磁化曲线图。

四、实验结果与讨论1. 磁滞回线的分析根据所测得的磁滞回线数据,我们可以观察到磁性材料在磁场逐渐增大过程中逐渐磁化,达到饱和磁化强度后,进一步增大磁场也不会有明显增加的效果。

而在磁场逐渐减小过程中,磁性材料的磁化程度也会随之减小,直到完全消除磁化。

磁滞回线的形状对应着材料的磁滞损耗和剩磁等特性。

2. 磁化曲线的分析根据所测得的磁化曲线数据,我们可以观察到磁性材料在不同磁场强度下的磁化程度存在一定的非线性关系。

磁化曲线和磁滞回线测量实验报告

磁化曲线和磁滞回线测量实验报告

磁化曲线和磁滞回线测量实验报告磁化曲线和磁滞回线测量实验报告引言:磁场是物质中储存的一种能量形式,而磁化曲线和磁滞回线则是描述磁场特性的重要工具。

本实验旨在通过测量磁化曲线和磁滞回线的变化,了解磁场对物质的影响,以及探索磁场的特性和应用。

实验步骤:1. 实验仪器和材料准备:- 电磁铁- 磁场强度计- 直流电源- 磁滞回线测量仪2. 实验过程:a. 将电磁铁连接到直流电源上,并调节电流大小以改变磁场强度。

b. 在不同电流下,使用磁场强度计测量磁场强度,并记录数据。

c. 使用磁滞回线测量仪,测量不同电流下的磁滞回线。

实验结果与讨论:通过实验测量,我们获得了一系列磁化曲线和磁滞回线的数据。

根据这些数据,我们可以得出以下结论:1. 磁化曲线:磁化曲线描述了物质在外加磁场作用下磁矩的变化情况。

从实验数据中,我们可以观察到磁化曲线呈现出非线性的特点。

随着外加磁场的增加,磁矩也随之增加,但增加的速率逐渐减慢,直至趋于饱和。

这是因为在磁场较小的情况下,磁矩的增加主要是由于磁矩的取向发生变化,而在磁场较大时,磁矩的取向已经趋于饱和,因此磁矩的增加速率减慢。

2. 磁滞回线:磁滞回线描述了物质在磁场强度发生变化时,磁矩的变化情况。

从实验数据中,我们可以看到磁滞回线呈现出环形的特点。

当磁场强度逐渐增加时,磁矩也随之增加,但当磁场强度减小时,磁矩并不完全回到初始状态,而是略微偏离。

这是因为在磁场强度减小时,磁矩的取向需要一定的能量来改变,导致磁矩的回复不完全。

3. 磁场的应用:磁场的特性和应用广泛。

在电磁铁中,通过改变电流大小可以控制磁场强度,从而实现吸附和释放物体的功能。

在电动机和发电机中,利用磁场与电流的相互作用,实现能量的转换和传输。

此外,磁场还在磁存储器、磁共振成像等领域发挥着重要作用。

结论:通过本次实验,我们深入了解了磁化曲线和磁滞回线的测量方法和特性。

磁化曲线展示了物质在外加磁场下磁矩的变化规律,而磁滞回线则描述了物质在磁场强度变化时磁矩的变化情况。

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告铁磁材料的磁滞回线和基本磁化曲线一、实验原理铁磁材料在磁场的作用下会发生磁化现象,而磁化程度随着磁场强度的变化而发生变化。

在一定的磁场范围内,铁磁材料的磁化程度与磁场的强度之间存在着一种函数关系,成为基本磁化曲线。

而铁磁材料在外磁场作用下,它的磁化状态会发生变化,在磁场强度逐渐增大时,磁矩也逐渐变大,这种变化的过程称为磁滞回线。

本实验旨在通过使用霍尔效应仪器和实验方法,实现对铁磁材料磁滞回线和基本磁化曲线的测定,探讨磁滞回线和基本磁化曲线之间的关系,并对实验结果进行分析和讨论。

二、实验装置实验仪器主要包括霍尔效应电路、锁相放大器、磁力计、线圈等实验器材。

三、实验步骤1、首先将磁力计放置在霍尔效应电路的输出端,然后将电路连接好。

2、在运行实验之前,需要先将霍尔效应电路进行调零操作,以保证实验的精度。

3、在调零之后,需要将待测物品即铁磁材料放置在磁力计的测量端。

4、接下来,可以利用锁相放大器对磁力计的输出信号进行检测,并进行相应的数据采集和处理。

5、在不同磁场强度下,可以对待测物品的磁化状态进行测量和记录,并记录相应的数据。

6、最终,可以将所得数据绘制成磁滞回线和基本磁化曲线图形,并对实验结果进行分析和讨论。

四、实验结果通过对铁磁材料的实验测量和数据处理,可以得到所得到的磁滞回线和基本磁化曲线图形如下:[图1] 铁磁材料的磁滞回线根据实验结果可知,铁磁材料的磁滞回线和基本磁化曲线之间存在着一定的关系,当外磁场逐渐增大时,铁磁材料的磁矩也逐渐增大,并随着磁场的逐渐增大而逐渐达到饱和状态。

当外磁场逐渐减小时,铁磁材料的磁矩也逐渐减小,并在磁场降低到一定程度时达到磁剩余状态。

五、实验分析此外,铁磁材料的基本磁化曲线也具有一定的特点,即其呈现S形曲线,表明在一定的磁场强度范围内,铁磁材料的磁化程度与磁场强度之间呈现一定的正比关系,但随着磁场强度的逐渐增大,铁磁材料的磁化程度将达到饱和状态,磁化度不再增大。

《磁化曲线和磁滞回线测量》实验要求与指引

《磁化曲线和磁滞回线测量》实验要求与指引

《磁化曲线和磁滞回线测量》实验要求与指引z 实验预习要求:(实验前完成)1、 明确本实验要求做的内容(测量初始磁化曲线和磁滞回线);2、 阅读实验原理部分,弄懂(1)铁磁质磁化过程中的初始磁化、磁饱和、磁滞、剩磁、矫顽力等现象和概念,以及H 与B 的非单值关系;(2)实验中,H 和B 的测量原理和方法;阅读【附录1】初步了解仪器的使用; B B H U SN CR B dt E CR U dt dB S N E U LR N H R I UH L I N H ⋅=⇒=−=⋅=⇒==∫22222221111111和,和3、 阅读【注意事项】;4、 写好预习报告(预先写好实验报告里的实验目的、实验仪器、实验原理(要有文字描述、有关公式)、实验主要步骤等部分以及在预习报告纸上设计画好实验数据的记录表格和做好要求做的【预备问题】的1、2、3。

z 实验测量要求1、 设定测量电路的电路元件参数(按智能实验仪默认参数取值):取样电阻R 1=5.5Ω,积分电阻R 2=30K Ω,积分电容C=3.0μF, 励磁电流频率实验时分别设f =50.0Hz 和f =70.0Hz 。

另外蓝色磁环几何参数:截面S=124mm 2,平均磁路长度L=130mm ,N1 =N2 =100匝已由实验室给定; 2、 测量电路连接(5分钟内连接好);3、 打开电源开关,按实验讲义的【实验内容与步骤】要求进行实验:¾ 观察磁滞回线簇和初始磁化曲线; ¾ 逐点测量初始磁化曲线;(分别取交流励磁电流频率f =50Hz 和70Hz 测量); ¾ 逐点测量磁滞回线。

(分别取交流励磁电流频率f =50Hz 和100Hz 测量)。

(自行设计数据表记录数据)。

4、 数据处理;(课后完成,写在实验报告上)按讲义【数据处理】要求作图(一定要用作图纸作图或用(建议)Excel 作图打印); 5、 做思考题1、2。

(课后完成,写在实验报告上)z 实验报告要求(实验后完成)按实验报告格式要求写好实验报告,其中思考题做P.150的1、2、3题。

实验16铁磁质的磁化曲线和磁滞回线的测定

实验16铁磁质的磁化曲线和磁滞回线的测定

实验十六铁磁质的磁化曲线和磁滞回线的测定本实验中用交流电对铁磁材料样品进行磁化,测得的B—H曲线称为“动态磁滞回线”。

测量磁性材料动态磁滞回线的方法较多,用示波器法测量动态磁滞回线的方法具有直观、方便、迅速以及能够在不同磁化状态下(交变磁化及脉冲磁化等)进行观察和测量的独特优点。

【实验目的】1•利用动态法测量磁性材料的磁化曲线和磁滞回线;2.了解磁性材料的基本特性;3.了解磁性材料的退磁以及磁锻炼的方法。

【实验仪器】CZ-2磁滞回线装置,可隔离变压器,万用表,标准互感器,电键等【实验原理】、铁磁材料的磁滞性质铁磁材料除了具有高的磁导率外,另一个重要的特点就是磁滞。

当材料磁化时,磁感应强度B不仅与当时的磁场强度H有关,而且决定于磁化的历史情况,如图16-1所示。

当H增加到某一值H s时,B几乎不再增加,说明磁化已达饱和。

材料磁化后,如使H减小,B将不沿原路返回,而是沿另一条曲线ACA下降。

当H从-H s增加时,将沿AC A曲线到达A,形成一个闭合曲线称为磁滞回线”,其中H图16-1磁滞回线示意图个反向磁场—He, H c称为“矫顽力”。

此曲线和原点中心对称,不同的I值即不同外磁场值所对应的回线大小也不同。

在磁测量中,进行反复磁化过程的操作称为磁锻炼”,所得到的一系列振幅不同的磁滞回线端点轨迹的连线,称为基本磁化曲线”,如图16-1中曲线OA。

各种铁磁材料有不同的磁滞回线,主要区别在于矫顽力的大小,矫顽力大的称为硬磁材料,矫顽力小的称为软磁材料。

由于铁磁材料的磁滞性质,磁性材料所处的某一状态必然和它的历史有关。

为了使样品的磁特性能重复出现,也就是指所测得的基本磁化曲线都是由原始状态(H =0, B =0)开始,在测量前必须进行退磁,以消除样品中的剩余磁性。

二、示波器测量磁滞回线的原理如图16-2,为测量铁磁材料动态磁滞回线的原理电路图。

将样品制备成闭合的方形(或环行),然后均匀地绕以磁化线圈N1以及副线圈N2,(如果是环行样品绕制,则叫罗兰环)。

铁磁材料的磁滞回线及基本磁化曲线_实验报告

铁磁材料的磁滞回线及基本磁化曲线_实验报告

铁磁材料的磁滞回线及基本磁化曲线_实验报告摘要:本实验旨在从实验结果中观察到铁磁材料的磁滞回线及基本磁化曲线的特性。

根据实验观察,铁磁材料的磁滞回线及基本磁化曲线有一定的特性:当磁感应强度B在某一特定值Ming之后,磁滞回线开始放大;在磁滞回线和磁化曲线处,在较低的磁感应强度B下,磁通密度H值是较为均匀的,当磁感应强度B增大时,磁通密度H增大。

从实验结果看,随着磁感应强度的改变,磁通密度也随之变化。

关键词:铁磁材料;磁滞回线;磁化曲线1、实验目的本实验旨在探究铁磁材料的磁滞回线及基本磁化曲线,主要探究磁化曲线和磁滞回线特性,揭示铁磁材料磁性特性和应用基础。

2、实验原理铁磁性材料在一定范围内,随着外加磁场的强弱,由于内在磁介质的存在,响应磁场的强弱而产生的磁效应,可用磁化曲线来描述,磁化曲线横坐标为外加磁场B,纵坐标为磁通密度H,绘制磁化曲线时,可得到磁滞回线区和磁化曲线区,按假设,若满足磁滞回线的条件,虚部磁化曲线低于实部磁化曲线,磁通密度H随外加磁场B的增强而减弱。

3、实验材料(1)各类铁磁材料;(2)阳极小电流表;(3)变压器;(4)钳形线圈;(5)可调晶闸管及其他电路控制元件;(6)电子计算表等。

4、实验流程(1)实验电路图设计:根据实验要求,绘制实验电路图,电路中包括可调晶闸管、比较示波器和磁电路。

(2)测量磁滞回线:将晶闸管设置为半导体导通阶段,阳极小电流表与变压器连接,在钳形线圈中绕入样品,并加入磁电路及相关电路控制元件,应用变压设备,根据电路控制调节磁感应强度,测量磁滞回线的特性,进而得到磁滞回线参数。

(3)测量磁化曲线:将可调晶闸管设置为完全打开或全关闭,将变压器的输出电压稳定,调节比较示波器的控制参数,进而得到磁化曲线数据,从而得到铁磁材料的磁滞回线和磁化曲线参数。

5、实验结果分析通过上述实验,本实验求出了铁磁材料的磁滞回线及基本磁化曲线参数。

实验研究发现,当磁感应强度B增大时,磁通密度H增大,且随着磁感应强度的改变,磁通密度也随之变化。

实验4-7动态磁滞回线和磁化曲线的测量动态磁滞回线和磁化曲线的测量

实验4-7动态磁滞回线和磁化曲线的测量动态磁滞回线和磁化曲线的测量

实验4-7动态磁滞回线和磁化曲线的测量动态磁滞回线和磁化曲线的测量指南预习指南铁磁材料包括铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体),在外磁场的作用下,能被强烈磁化,磁导率很高并随磁场变化,当外磁场撤掉以后,铁磁材料仍具有一定的磁性,磁化规律复杂。

铁磁材料具有的这种保持原定磁化状态的性质称为磁滞。

研究铁磁材料的磁化规律,一般是通过测量磁化场的磁场强度H与磁感应强度B之间的关系来进行的。

实验中要了解示波器显示和观察动态磁滞回线的原理与方法,掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理与方法,学会根据磁滞回线确定铁磁材料的矫顽力、剩磁、饱和磁感应强度、磁滞损耗等磁化参数,学习测量磁性材料磁导率的一种方法,理解铁磁材料的磁化规律和主要特性。

该实验是一个综合物理实验,难度系数:1.00,适合自动化、电子信息工程、电气工程及其自动化、机械设计制造及其自动化、过程装备与控制工程、材料成型及控制工程、数学、信息、车辆工程、安全、计算机等专业以及对近代物理理论和实验感兴趣的同学选做。

实验内容1、线路连接选择测试样品,正确连接实验线路(实验室已连接好,只需选择好待测样品即可),调整好双踪示波器。

2、观测样品的磁滞回线(1)退磁。

顺时针方向转动励磁电压旋钮,使其从0V 增加到3V,再逆时针方向转动电压旋钮,从3V 降至0,消除剩磁,使样品处于磁中性状态。

(2)观察磁滞回线。

调节示波器各旋钮使光点处于坐标原点,选择Ω=5.21R ,励磁电压选取一个合适的值,调节示波器的X 轴和Y 轴灵敏度,使屏幕上显示大小合适的磁滞回线.若出现畸变,可适当降低励磁电压.(3)测绘磁滞回线。

使用智能磁滞回线测试仪采集B 和H 的数据,并记录磁滞损耗[]BH 和40组左右的B 、H 数据,注意在磁滞回线顶点、剩磁与矫顽力附近读取数据点间隔稍微密集一些。

用坐标纸或计算机绘出磁滞回线,从所绘制的磁滞回线上读取m B 、m H 、c H 。

磁化曲线和磁滞回线的测量

磁化曲线和磁滞回线的测量

铁磁材料的磁化曲线和磁滞回线磁性材料应用广泛,从常用的永久磁铁、变压器铁芯到录音、录像、计算机存贮用的磁带、磁盘等都采用磁性材料。

磁滞回线和基本磁化曲线反映了磁性材料的主要特征。

通过实验研究这些性质不仅能掌握用示波器观察磁滞回线以及基本磁化曲线的基本测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。

铁磁材料分为硬磁和软磁两大类,其根本区别在于矫顽磁力C H 的大小不同。

硬磁材料的磁滞回线宽,剩磁和矫顽磁力大()以上从m A m A /102~/1204⨯,因而磁化后,其磁感应强度可长久保持,适宜做永久磁铁。

软磁材料的磁滞回线窄,矫顽磁力C H 一般小于m A /120,但其磁导率和饱和磁感强度大,容易磁化和去磁,故广泛用于电机、电器和仪表制造等工业部门。

磁化曲线和磁滞回线是铁磁材料的重要特性,也是设计电磁机构作仪表的重要依据之一。

本实验采用动态法测量磁滞回线。

需要说明的是用动态法测量的磁滞回线与静态磁滞回线是不同的,动态测量时除了磁滞损耗还有涡流损耗,因此动态磁滞回线的面积要比静态磁滞回线的面积要大一些。

另外涡流损耗还与交变磁场的频率有关,所以测量的电源频率不同,得到的H B ~曲线是不同的,这可以在实验中清楚地从示波器上观察到。

【实验目的】1.掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量:矫顽力、剩磁和磁导率的理解。

2.学会用示波法测绘基本磁化曲线和磁滞回线。

3.根据磁滞回线确定磁性材料的饱和磁感应强度S B 、剩磁Br 和矫顽力C H 的数值。

4.研究不同频率下动态磁滞回线的区别,并确定某一频率下的磁感应强度S B 、剩磁Br 和矫顽力C H 的数值。

5.改变不同的磁性材料,比较磁滞回线形状的变化。

【实验原理】1.磁化曲线如果在通电线圈产生的磁场中放入铁磁物质,则磁场将明显增强,此时铁磁物质中的磁感应强度比单纯由电流产生的磁感应强度增大百倍,甚至在千倍以上。

铁磁物质内部的磁场强度H 与磁感应强度B 有如下的关系:H B ∙=μ对于铁磁物质而言,磁导率μ并非常数,而是随H 的变化而改变的物理量,即()H f =μ,为非线性函数。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2、测定样品的基本磁化曲线,作μ—H 曲线。

3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。

4、了解磁性材料在工程技术中的应用。

二、实验原理1、铁磁物质的磁化特性铁磁物质具有很强的磁化特性,其磁感应强度 B 与磁场强度 H 之间不是简单的线性关系。

当 H 从零开始增加时,B 随之缓慢增加;当H 增加到一定值时,B 急剧增加,这种现象称为磁饱和。

当 H 从最大值逐渐减小时,B 并不沿原曲线返回,而是滞后于 H 的变化,这种现象称为磁滞。

2、磁滞回线当磁场强度 H 从最大值 Hm 逐渐减小到零,再反向增加到 Hm,然后再从 Hm 逐渐减小到零,最后又正向增加到 Hm 时,B 随 H 变化的闭合曲线称为磁滞回线。

磁滞回线所包围的面积表示在一个反复磁化的循环过程中单位体积的铁磁物质所消耗的能量。

3、基本磁化曲线对同一铁磁材料,选择不同的最大磁场强度 Hm 进行反复磁化,可得到一系列大小不同的磁滞回线。

连接这些磁滞回线顶点的曲线称为基本磁化曲线,它反映了铁磁材料在反复磁化过程中的平均磁化特性。

4、磁性材料的分类根据磁滞回线的形状,磁性材料可分为软磁材料和硬磁材料。

软磁材料的磁滞回线狭窄,剩磁 Br 和矫顽力 Hc 都很小,磁导率高,适用于制作变压器、电机的铁芯等;硬磁材料的磁滞回线宽阔,Br 和 Hc都很大,适用于制作永磁体。

三、实验仪器1、磁滞回线实验仪2、示波器四、实验步骤1、按实验仪的电路图连接好线路,确保线路连接正确无误。

2、将样品放入测试线圈中,调节示波器的灵敏度和扫描速度,使示波器上能显示出清晰的磁滞回线。

3、逐渐增加磁场强度 Hm,观察磁滞回线的变化,记录不同 Hm下的磁滞回线。

4、测量磁滞回线的顶点坐标,计算出相应的 Bm、Hm、Br 和 Hc 等参数。

5、绘制基本磁化曲线,即 B—H 曲线。

铁磁物质磁化曲线和磁滞回线的测量实验报告

铁磁物质磁化曲线和磁滞回线的测量实验报告

铁磁物质磁化曲线和磁滞回线的测量实验报

实验目的:
通过测量铁磁物质的磁化曲线和磁滞回线,了解铁磁物质的磁性特性。

实验仪器:
1. 铁磁材料样品
2. 磁场计
3. 磁场源
实验步骤:
1. 准备工作:
- 确保实验环境没有其他磁场干扰。

- 校准磁场计,保证测量精确。

2. 测量磁化曲线:
- 将磁场计放置在磁场源附近,调整到合适的位置。

- 施加逐渐增强的磁场,记录磁场和磁感应强度的关系。

- 确保磁场逐渐增强的过程中,磁场计处于稳定的位置。

3. 测量磁滞回线:
- 先将磁场逐渐增大,记录磁场和磁感应强度的关系。

- 然后将磁场逐渐减小,同样记录磁场和磁感应强度的关系。

- 确保磁场逐渐增大和减小的过程中,磁场计处于稳定的位置。

4. 实验数据处理:
- 将实验测得的磁场和磁感应强度数据制作成磁化曲线和磁滞回线的图像。

- 根据图像分析铁磁物质的磁性特性,如饱和磁感应强度、矫顽力等。

实验结果:
根据实验测得的数据,制作出铁磁物质的磁化曲线和磁滞回线的图像,并在图像上标注各个关键参数的数值。

实验讨论:
通过对磁化曲线和磁滞回线的分析,我们可以得出铁磁物质的磁性特性。

例如,可以通过磁化曲线的饱和磁感应强度来判断物质的饱和磁化强度,通过磁滞回线的闭合程度来判断物质的矫顽力大小等。

实验结论:
通过本实验的磁化曲线和磁滞回线的测量,我们得出了铁磁物质的磁性特性,为进一步研究铁磁物质的应用和原理提供了基础数据。

铁磁材料的磁滞回线和基本磁化曲线测定实验方法

铁磁材料的磁滞回线和基本磁化曲线测定实验方法

155实验十七 铁磁材料的磁滞回线和基本磁化曲线磁性材料应用广泛,从常用的永久磁铁、变压器铁芯到录音、录像、计算机存贮用的磁带、磁盘等都采用磁性材料。

磁滞回线和基本磁化曲线反映了磁性材料的主要特征。

通过实验研究这些性质不仅能掌握用示波器观察磁滞回线以及基本磁化曲线的基本测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。

【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2. 测绘样品的磁滞回线,比较其磁滞损耗大小。

3. 测定样品的B s 、Hs 、B r 、H D 等参数。

4. 测定样品的基本磁化曲线,作B -H 及μ-H曲线。

【实验仪器】FB310A 磁滞回线实验仪、GOS-620型示波器【实验原理】铁磁物质是一种性能特异、用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁物质仍保留磁化状态,它的图17-1 铁磁质起始磁化曲线和磁滞回线 图17-2 同一铁磁材料的一簇磁滞回线磁感应强度不仅依赖于外磁场强度,而且还依赖于原先的磁化程度。

图17-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段Oa所示,其后B的增长趋于缓慢,并当H增至Hs时,B达到饱和值Bs,OabS称为起始磁化曲线。

如果将磁化场H减小,B并不沿原来的曲线OabS减小,而是沿另一条新的曲线SR下降,比较线段OS和SR知,H减小B也相应减小,但B的变化滞后于H的变化,此现象即称为磁滞。

磁滞的明显特征是当H=0时,B不为零,而保留剩磁Br。

当磁场反向逐渐变至-H D时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。

动态磁滞回线的测量实验报告

动态磁滞回线的测量实验报告

物理实验报告实验名称:动态磁滞回线的测量学院:安全与应急管理工程学院专业班级:安全1802学号:2018003964学生姓名:王朝春实验成绩实验预习题成绩:一、选择题1、当材料磁化的时候,磁感应强度B和磁场强度H之间的关系因为磁滞的原因,B和H并不是一一对应的关系。

但是当H足够大的时候,H继续增大,B 几乎不变此时用Bs表示,称为(A)。

A.饱和的磁感应强度B.剩余磁感应强度C.测量磁感应强度2、当磁化饱和之后,若去掉磁场,材料仍保留一定的磁性,此时用Br表示,称为(B)。

A.饱和的磁感应强度B.剩余磁感应强度C.测量磁感应强度3、加足够反向磁场,材料才完全退磁,使材料完全退磁所需的反向磁场,用Hc表示,称为(A)。

A.矫顽力B.临界磁场强度C.磁导率4、不断地(C)增加磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞回线。

A.正向B.反向C.正向或反向交替5、示波器测量磁滞回线的原理中,Ux(x轴输入)与磁场强度H成(),Uy (y轴输入)与磁感应强度B成(A)。

A.正比;正比B.反比;反比C.正比;反比二、判断题1、静态测量的损耗较动态测量要大。

(×)2、测量动态磁滞回线的时候,铁磁材料中不仅有磁滞损耗,还有电流和磁场的变化造成的涡流电流产生的损耗。

(√)3、磁滞回线的形状和大小只与铁磁材料的种类有关。

(×)4、当正向磁场持续增加,铁磁质的磁化可达到反向饱和。

反向磁场减小到零,同样出现剩磁现象。

(√)5、软磁材料的磁滞回线窄,矫顽磁力小(一般小于120安/米),但它的磁导率和饱和磁感应强度大,容易磁化和去磁,故常用于制造电机、变压器和电磁铁。

(√)原始数据记录成绩:1.测饱和磁滞回线80V 的电流=0.62A 。

电源电压V=80V.记录饱和磁滞回线的Hm、Bm、Hc、Br:2.测量基本磁化曲线记录示波器CH1和CH2的增益分别为:50mv和0.1v;调节电源电压,使磁化电流从零逐渐增大,记录对应的磁滞回线顶点坐标值Bm 和Hm:其中,用到的公式:格数*增益=电压;lR N 11x U H =;S N C R 22c U B =;H B =μ;已知参数:F1C ;k 11;2;5003273.1;75;123.47600210221μ=Ω=Ω=Ω=====R R R cm S N cm l N ;测量量Hm Bm Hc Br -Hc -Br -Hc -Hm -Bm 示波器对应的格数17.511.58.88.39.08.59.217.812.2电压102030405060708090100Ux(小格) 4.0 5.0 5.6 6.58.010.513.517.021.026.0Uy(小格) 2.0 3.0 4.5 6.27.89.210.212.012.613.0Hm(A/m)25.4731.8335.6541.3850.9366.8585.95108.23133.69165.52Bm(T)0.0440.0660.0990.1370.1720.2030.2250.2650.2780.287相对磁导率rμ1374.722062.083093.124280.375373.906342.457029.818279.568685.728966.92实验报告正文成绩:一、实验名称:动态磁滞回线的测量二、实验目的:1、学习示波器测量动态磁滞回线的原理和方法2、学习磁性材料的基本磁化特征3、掌握磁化曲线和磁滞回线的测量方法4、进一步熟悉模拟示波器的使用三、实验仪器:交流电流表,示波器,螺绕环,电阻,电容,可调隔离变压器,若干导线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验 基本磁化曲线和动态磁滞回线的测量
1.实验目的 1) 认识铁磁物质的磁化规律,比较两种典型铁磁物 质的动态磁化特性。 2) 测定样品的基本磁化曲线,并作出μ-H曲线。 3) 测定样品的HD、Br、Bs等参数。 4) 学会用示波器测绘基本磁化曲线和动态磁滞回线。
2.实验原理 1) 磁滞回线
图1 铁磁质起始磁化 Hale Waihona Puke 线和磁滞回线图5 实验线路
根据安培环路定律,样品的磁化场强为:
Ni1 N H U1 L LR1
式中N为励磁绕组,R1为励磁电流取样电阻,U1是交 流励磁电压,L为样品的平均磁路长度。 根据法拉第电磁感应定律,在交变磁场下样品的 磁感应强度B是测量绕组n和R2C2电路给定的:
C 2 R2 B U2 nS
4.实验内容及步骤 • 1) 电路连接:选择样品,按实验仪上所给的电路接 线图连接好线路。令R1=2.5Ω,置励磁电压U于0位。 UH和UB分别接示波器的“X输入”和“Y输入”,插 孔“⊥”为接地公共端。 • 2) 样品退磁:开启仪器电源开关,对样品进行退磁, 顺时针方向转动电压U的调节旋钮,观察数字电压表 可看到U从0逐渐增加增至最大,然后逆时针方向转 动电压U的调节旋钮,将U逐渐从最大值调为0,这 样做的目的是消除剩磁,确保样品处于磁中性状态, 即B=H=0,如图7所示。
式中U2为积分电容C2两端电压,S为样品的截面积。
3.实验仪器 磁滞回线实验仪、数字万用表、示波器等。
将图5中的U1(UH)和U2(UB)分别加到示波器的 “X输入”和“Y输入”便可观察样品的动态磁滞回 线;接上数字电压表则可以直接测出U1(UH)和 U2(UB)的值,即可绘制出B-H曲线;通过计算可测 定样品的饱和磁感应强度Bs、剩磁Br、矫顽力HD以 磁导率µ。
磁化曲线和磁滞回线是铁磁材 料分类和选用的主要依据,图4为 常见的两种典型的磁滞回线,其中 软磁材料的磁滞回线狭长、矫顽力、 剩磁和磁滞损耗均较小,是制造变 压器、电机、和交流磁铁的主要材 料。而硬磁材料的磁滞回磁滞回线 较宽,矫顽力大,剩磁强,可用来 制造永磁体。
图4 不同铁磁材料 的磁滞回线
3) 示波器显示B-H曲线的原理和线路
• 4) 观察基本磁化曲线:按步骤2对样品进行退磁,从U=0 开始,逐渐提高励磁电压,将在显示屏上得到面积由小 到大一个套一个的一蔟磁滞回线。这些磁滞回线顶点的 连线,就是样品的基本磁化曲线,借助长余辉示波器, 便可观察到该曲线的轨迹。 • 5) 测绘基本磁化曲线,并据此描绘μ-H曲线:接通实验 仪的电源,对样品进行退磁后,依次测定 U = 0,0.2, 0.4,0.6…3.0V时的若干组H和B值,作B-H和μ-H曲线。 • 6) 令U = 3.00V,R1=2.5Ω测定样品的BS、Br、HD等参数: 从已标定好的示波器上读取UX(UH)、UY(UB)值(峰值), 计算相应的H和B,逐点描绘作B-H曲线。再由磁滞回线 测定样品的BS、Br、HD等参数。
图2 同一铁磁材料的 一簇磁滞回线
图3 铁磁材料µ 与H 关系曲线
当磁场按Hs→O→-HD→-Hs→O→HD→Hs次序变 化,相应的磁感应强度B则沿闭合曲线 SRDS’R’D’S变化,这闭合曲线称为磁滞回线。 2) 磁化曲线 当初始态为H=B=0的铁磁材料,在交变磁 场强度由弱到强依次进行磁化,可以得到面积 由小到大向外扩张的一簇磁滞回线,其中最大 面积的磁滞回线称为极限磁滞回线,如图2所示, 这些磁滞回线顶点的连线称为铁磁材料的基本 磁化曲线,由此可近似确定其磁导率μ=B/H,因 B与H非线性,故铁磁材料的μ不是常数而是随H 而变化(如图3所示)
5.实验数据记录 • 1) 作B-H基本磁化曲线与μ-H曲线 • 2) 描绘动态磁滞回线并计算样品的BS、Br、HD 参数。 6.思考题 • 1) 为什么要退磁?如果不退磁,对实验结果会 有什么影响? • 2) 为什么测绘磁滞回线时,励磁电压不宜过高 或过低?
图7 退磁示意图
图8 U2和B的相位差等因素引起的畸变
3) 观察样品在50HZ交流信号下的磁滞回线:开启示 波器电源,调节示波器上“X”、“Y”位移旋钮,使光 点位于坐标网格中心,调节励磁电压U和示波器的X和 Y轴灵敏度,使显示屏上出现大小合适、美观的磁滞 回线图形(若图形顶部出现编织状的小环,如图8所 示,这时可降低U予以消除)。
相关文档
最新文档