实验十PN结物理特性测定
PN结物理特性及玻尔兹曼常数测量
PN 结物理特性及玻尔兹曼常数测量半导体PN 结的物理特性是物理学和电子学的重要基础内容之一。
使用本实验的仪器用物理实验方法,测量PN 结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。
本实验的仪器同时提供干井变温恒温器和铂金电阻测温电桥,测量PN 结结电压be U 与热力学温度T 关系,求得该传感器的灵敏度,并近似求得0K 时硅材料的禁带宽度。
【实验目的】1、在室温时,测量PN 结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。
2、在不同温度条件下,测量玻尔兹曼常数。
3、学习用运算放大器组成电流—电压变换器测量10-6A 至10-8A 的弱电流。
4、测量PN 结结电压be U与温度关系,求出结电压随温度变化的灵敏度。
5、计算在0K 时半导体(硅)材料的禁带宽度(选作)。
6、学会用最小二乘法拟合数据。
【实验仪器】FD-PN-4型PN 结物理特性综合实验仪(如下图),TIP31c 型三极管(带三根引线)一只,长连接导线11根(6黑5红),手枪式连接导线10根,3DG6(基极与集电极已短接,有二根引线)一只,铂电阻一只。
FD-PN-4 型PN 节物理特性测定仪【实验原理】1. 测量三极管发射极与基极电压U 1和集电极与基极电压U 2之间的关系(a)PN 结伏安特性及玻尔兹曼常数测量由半导体物理学可知,PN 结的正向电流-电压关系满足:[]1/0-=KT eU e I I (1)式(1)中I 是通过PN 结的正向电流,I 0是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。
由于在常温(300K)时,kT /e ≈0.026v ,而PN 结正向压降约为十分之几伏,则KTeU e/>>1,(1)式括号内-1项完全可以忽略,于是有:KT eU e I I /0= (2)也即PN 结正向电流随正向电压按指数规律变化。
PN结的物理特性实验
量中。
LF356 是一个高输入阻抗集成运算放大 器, 用它组 成的 电流- 电压 变换器( 弱电 流放
大器) , 如图4 .1 .2 所示。其中虚线框内电阻 Zr 为电流- 电压 变换 器等 效输入 阻抗( 弱电
流放大器等效内阻) 。由图4 .1 .2 可知, 运算放大器的输出电压为
Uo = - K0 Ui
量作为已知值代入, 即可得到玻耳兹曼常数 k 。
为了 验 证 式( 4 .1 .2) 及 求 出 准 确 的 e/ k 常 数 , 在 实 际 测 量 中, 选 取 性 能 良 好 的
TIP31 型 硅三 极管( NPN 管) , 接 成 共 基 极 线 路。 实 验 中, 发 射 极 与 基 极 处 于 较 低 的 正
图4 .1 .2 电流- 电压变换图
[ ᇔ僂Ԡಞ] FD- PN- 2 型 PN 结物理特性测 定仪, 其 主要 组 成部 分 有电 源、数 字 电压 表 组 合装 置
( 包括±15 V 直流电源、1 .5 V 直流电源、三位半 数字电 压表、四位 半数 字电 压表) 及 实验 板一块( 由电路图、LF356 运算放 大器、印 刷电路 引线、多 圈电 位器、接 线 柱等 组成) , 带 3 根引线的 TIP31 型硅三极管, 温度计。 [ ᇔ僂ᇯ]
( 1) 将测得的 U1 和 U2 各对数据, 以 U1 为自变量, U2 作因变量, 分别代入: ①线性函
数 U2
=
a U1
+
b;
②乘幂函数 U2
=
a
Ub 1
;
③指数函数 U2
=
aexp(
b U1 )
,
求出各函数相应的 a
和b 值, 得出3 种函数的经验公式。
PN结物理特性的测量实验
.::PN结物理特性的测量::.图一PN结物理特性的测量实验装置全图伏安特性是PN结的基本特性,测量PN结的扩散电流与PN结电压之间的关系,可以验证它们遵守波尔兹曼分布,并进而求出波尔兹曼常数的值.PN结的扩散电流很小,为10-6~10-8 A数量级,所以在测量PN结扩散电流的过程中,运用了弱电流测量技术,即用运算放大器对电流进行电流-电压变换。
图二PN结形成示意图.::实验预习::.1. LF356运算放大器介绍利用LF356运算放大器可以组成电流-电压变换器,如图1所示.LF356运算放大器是一个集成运算放大器,Rf为反馈电阻,若Rf → ∞时,输出电压U0与输入电压Ui的比值叫做运算放大器的开环增益K0.运算放大器的输入阻抗r很大,理想情况下r → ∞,可以认为反馈电流等于信号源的输入电流Is.Zr为电流—电压变换器的等效输入阻抗,因为反馈电流等于信号源的输入电流Is,输入电流Is可以写为【实验内容】实验线路图如图1所示.在常温和零温(冰水混合物)下测量硅三极管发射极与基极之间的电压U1和相应的LF356输出电压U2 .通过调节100可调电位器改变U1的值,尽量在线性区域多测量数据点.根据公式(7)拟合求波尔兹曼常数k B..::实验仪器::.【实验仪器】±15V 直流稳压电源,TIP31型硅三极管,LF356集成运算放大器,四位半数字万用表,电阻,电容,电位器,导线,实验接线板等.TIP31型硅三极管,LF356集成运算放大器的管脚如图2所示.图3.::思考题::.【思考题】1.得到的数据一部分在线性区,一部分不在线性区,为什么?拟合时应如何注意取舍?数据不在线性区有两种情况:1.u1较小时,2.u1较大时1).u1较小时,公式不满足2).u1较大时,p-n结所通过的电流虽可增加,但放大器的输出电压达到饱和。
2.减小反馈电阻的代价是什么?对实验结果有影响吗?反馈电阻减小使输出电压减小,在一定范围瑞影响不大.::参考资料::.有关PN结的介绍纯净的半导体称为本征半导体,为研究半导体的性质,必须对其掺杂形成P型半导体和N型半导体(掺杂的浓度可以达到1017个/cm3)。
半导体pn结的物理特性及弱电流测量实验
半导体pn结的物理特性及弱电流测量实验半导体pn结是常见的半导体器件之一,由p型半导体和n型半导体构成。
与其它半导体器件相比,它有很多特殊的物理特性。
首先,当p型半导体和n型半导体结合时,两种材料的掺杂离子会互相扩散,导致接触面区域形成一个空间电荷区。
这个区域中没有载流子,因此是不导电的。
在pn结正侧和负侧形成了电位差,负侧形成了减小电位相对于正侧,就形成了内建电场。
这个电场会阻止载流子(即电荷)通过pn结。
当向pn结外加电压时,如果外加电压与内建电场方向相反,则内部电场减弱,载流子的移动就更容易了,流动性能增强;反之外部电场增强内部电场,丝毫不利指导电流的流动,参极熑阻挡作用,这就是pn结的整流特性,即所谓的势垒效应。
由于pn结的势垒效应,它可以将电流的方向限制在一个方向上,使其变成单向导电,即只有在正向电压下才能导通,反向电压下是不导通的。
这个特性非常有用,例如在电子电路中可以用它来作为整流器、稳压器、放大器等器件。
此外,由于pn结的导通特性,其本身也可以被用来制造发光二极管、太阳能电池等器件。
在弱电流测量实验中,pn结也被广泛应用。
由于pn结在反向偏置时具有可靠的硬特性,可以被用来作为电流表的电压比较器,在电流表中起到非常重要的作用。
这种电压比较器又称为伏安电路,可以将电流转换成电压,测量微弱电流。
具体而言,电流I进入测量电路,经过一个电阻R后进入远端的伏安电路(即pn结),由于其反向偏置,只有微小的正向漏电流I流经伏安电路,并引起一个微小的电压降U,这个电压降就是I通过伏安电路时所产生的电势差,按照欧姆定律,U/R=I,即可转化为电流的大小。
通过这种方法,研究者可以测量非常微小的电流,比如常常需要测量光电器件、二极管、甚至可以用来研究生物体内的电流等。
总之,半导体pn结的物理特性和其在弱电流测量实验中的应用对于电子学研究和工程实践具有非常重要的意义。
PN结物理特性及玻尔兹曼常数测量(精品)
PN 结物理特性及玻尔兹曼常数测量半导体PN 结的物理特性是物理学和电子学的重要基础内容之一。
使用本实验的仪器用物理实验方法,测量PN 结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。
本实验的仪器同时提供干井变温恒温器和铂金电阻测温电桥,测量PN 结结电压be U 与热力学温度T 关系,求得该传感器的灵敏度,并近似求得0K 时硅材料的禁带宽度。
【实验目的】1、在室温时,测量PN 结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。
2、在不同温度条件下,测量玻尔兹曼常数。
3、学习用运算放大器组成电流—电压变换器测量10-6A 至10-8A 的弱电流。
4、测量PN 结结电压be U与温度关系,求出结电压随温度变化的灵敏度。
5、计算在0K 时半导体(硅)材料的禁带宽度(选作)。
6、学会用最小二乘法拟合数据。
【实验仪器】FD-PN-4型PN 结物理特性综合实验仪(如下图),TIP31c 型三极管(带三根引线)一只,长连接导线11根(6黑5红),手枪式连接导线10根,3DG6(基极与集电极已短接,有二根引线)一只,铂电阻一只。
FD-PN-4 型PN 节物理特性测定仪【实验原理】1. 测量三极管发射极与基极电压U 1和集电极与基极电压U 2之间的关系(a)PN 结伏安特性及玻尔兹曼常数测量由半导体物理学可知,PN 结的正向电流-电压关系满足:[]1/0-=KTeU eI I (1)式(1)中I 是通过PN 结的正向电流,I 0是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。
由于在常温(300K)时,kT /e ≈0.026v ,而PN 结正向压降约为十分之几伏,则KTeU e/>>1,(1)式括号内-1项完全可以忽略,于是有:KTeU eI I /0= (2)也即PN 结正向电流随正向电压按指数规律变化。
PN结的物理特性—实验报告
半导体PN 结的物理特性实验报告姓名:陈晨 学号:12307110123 专业:物理学系 日期:2013年12月16日 一、引言半导体PN 结是电子技术中许多元件的物质基础具有广泛应用,因此半导体PN 结的伏安特性是半导体物理学的重要内容。
本实验利用运算放大器组成电流-电压变换器的方法精确测量弱电流,研究PN 结的正向电流I ,正向电压U ,温度T 之间的关系。
本实验桶过处理实验数据得到经验公式,验证了正向电流与正向电压的指数关系,正向电流与温度的指数关系以及正向电压与温度的线性关系,并由此与计算玻尔兹曼常数k 与0K 时材料的禁带宽度E ,加深了对半导体PN 节的理解。
二、实验原理 1、 PN 结的物理特性(1)PN 结的定义:若将一块半导体晶体一侧掺杂成P 型半导体,即有多余电子的半导体,另一侧掺杂成N 型半导体,即有多余空穴的半导体,则中间二者相连的接触面就称为PN 结。
(2)PN 结的正向伏安特性:根据半导体物理学的理论,一个理想PN 结的正向电流I 与正向电压U 之间存在关系 ①,其中I S 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,e 为电子电量。
在常温(T=300K )下和实验所取电压U的范围内, 故①可化为 ②,两边取对数可得 。
(3)当温度T 不变时作lnI-U 图像并对其进行线性拟合,得到线性拟合方程的斜率为e/kT ,带入已知常数e 和T ,便得玻尔兹曼常数k 。
2、反向饱和电流I s(1)禁带宽度E :在固体物理学中泛指半导体或是绝缘体的价带顶端至传导带底端的能量差距。
对一个本征半导体而言,其导电性与禁带宽度的大小有关,只有获得足够能量的电子才能从价带被激发,跨过禁带宽度跃迁至导带。
(2)根据半导体物理学的理论,理想PN 结的反向饱和电流Is 可以表示为③,代入②得 ,其中I 0为与结面积和掺杂浓度等有关的常数,γ取决于少数载流子迁移率对温度的关系,通常取γ=3.4,k 为玻尔兹曼常数,T 为热力学温度.E 为0K时材料的禁带宽度。
pn结特性测量
PN 结的伏安特性与温度特性测量半导体PN 结的物理特性是物理学和电子学的重要基础内容之一。
使用本实验的仪器用物理实验方法,测量PN 结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。
本实验的仪器同时提供干井变温恒温器和铂金电阻测温电桥,测量PN 结结电压U 与热力学温度beT 关系,求得该传感器的灵敏度,并近似求得0K 时硅材料的禁带宽度。
【实验目的】1、在室温时,测量PN 结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。
2、在不同温度条件下,测量玻尔兹曼常数。
3、学习用运算放大器组成电流一电压变换器测量10-6A 至10-8A 的弱电流。
4、测量PN 结结电压U be 与温度关系,求出结电压随温度变化的灵敏度。
5、计算在0K 时半导体(硅)材料的禁带宽度。
6、学会用铂电阻测量温度的实验方法和直流电桥测电阻的方法。
【实验仪器】FD-PN-4型PN 结物理特性综合实验仪(如下图),TIP31c 型三极管(带三根引线)一只,长连接导线11根(6黑5红),手枪式连接导线10根,3DG6(基极与集电极已短接,有二根引线)一只,铂电阻一只。
实验原理】1、PN 结伏安特性及玻尔兹曼常数测量由半导体物理学可知,PN 结的正向电流-电压式(1)中I 是通过PN 结的正向电流,I 0是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。
由于在常温(300K )时,kT /e W026v ,而PN 结正向压降约为十分之几伏,则eeu/KT >>1,(1)式括号内-1项完全可关系满足:LeU/KT11(1)u 0=-K 0u i (3)以忽略,于是有:IIe eU/KT (2)也即PN 结正向电流随正向电压按指数规律变化。
若测得PN 结I-U 关系值,则利用(1)式可以求出e /kT 。
pn结的特性实验报告
pn结的特性实验报告PN结的特性实验报告引言:PN结是半导体器件中最基本的结构之一,它由P型半导体和N型半导体组成。
在本次实验中,我们将通过实验来研究PN结的特性,包括正向偏置、反向偏置和截止电压等。
通过实验数据的分析,我们可以更好地理解PN结的工作原理和特性。
实验方法:1. 实验仪器和材料:- P型硅片和N型硅片- 直流电源- 电压表- 电流表- 变阻器- 连接线等2. 实验步骤:1) 将P型硅片和N型硅片连接起来,形成一个PN结。
2) 将正极连接到P型硅片,负极连接到N型硅片,进行正向偏置实验。
3) 测量正向电流和正向电压的关系。
4) 将正极连接到N型硅片,负极连接到P型硅片,进行反向偏置实验。
5) 测量反向电流和反向电压的关系。
6) 根据实验数据分析PN结的特性。
实验结果和分析:1. 正向偏置实验:在正向偏置实验中,我们将电压从0V逐渐增加,并测量相应的电流。
实验数据显示,当电压低于PN结的截止电压时,电流非常小,接近于0。
随着电压的增加,电流迅速增加,符合指数增长的特性。
这是因为在正向偏置下,PN结的载流子被注入并迅速扩散,形成电流。
2. 反向偏置实验:在反向偏置实验中,我们将电压从0V逐渐减小,并测量相应的电流。
实验数据显示,当电压低于PN结的截止电压时,电流非常小,接近于0。
然而,当电压超过截止电压时,电流急剧增加。
这是因为在反向偏置下,PN结的耗尽层宽度增加,电流主要由漏电流组成。
3. 截止电压:通过实验数据的分析,我们可以得到PN结的截止电压。
在正向偏置实验中,当电流开始迅速增加时,我们可以得到PN结的截止电压。
同样,在反向偏置实验中,当电流开始急剧增加时,也可以得到PN结的截止电压。
通过多次实验得到的数据可以取平均值,提高结果的准确性。
结论:通过本次实验,我们成功研究了PN结的特性。
正向偏置下,PN结的电流随电压增加而指数增长;反向偏置下,PN结的电流在低于截止电压时非常小,但在超过截止电压后急剧增加。
实验十PN结物理特性测定
一、概述半导体结的物理特性是物理学和电子学的重要根底内容之一。
本仪器用物理试验方法,测量结集中电流与电压关系,证明此关系遵循指数分布规律,并较准确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种方法。
本仪器同时供给干井变温恒温器和铂金电阻测温电桥,测量结结电压U be与热力学温度T 的关系,求得该传感器的灵敏度,并近似求得 0K 时硅材料的禁带宽度。
二、仪器简介图 1 结物理特性测定仪试验装置4 型结物理特性测定仪主要由直流电源、数字电压表、试验板以及干井测温控温装置组成,如图 1 所示。
三、技术指标1.直流电源:±15V 直流电源一组, 1.5V 直流电源一组2.数字电压表:三位半数字电压表量程 0—2V ,四位半数字电压表量程 0—20V3.试验板: 由运算放大器 356、印刷引线、接线柱、多圈电位器组成。
31 型三极管外接。
4.恒温装置:干井式铜质可调整恒温,恒温掌握器控温范围,室温至80℃;控温区分率0.1℃;5.测温装置:铂电阻及电阻组成直流电桥测温0℃〔R0 =100.00Ω〕。
四、试验工程1.测量结集中电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。
2.较准确地测量玻尔兹曼常数。
(误差一般小于 2%)3.测量结结电压U be与温度关系,求出结电压随温度变化的灵敏度。
4.近似求得 0K 时半导体〔硅〕材料的禁带宽度。
5.学会用铂电阻测量温度的试验方法和直流电桥测电阻的方法。
五、留意事项1.试验时接±12V 或±15V,但不行接大于 15V 电源。
±15V 电源只供运算放大器使用,请勿作其它用途。
2.运算放大器7 脚和 4 脚分别接+15V 和-15V,不能反接,地线必需与电源 0V(地)相接(接触要良好)。
否则有可能损坏运算放大器,并引起电源短路。
一旦觉察电源短路(电压明显下降),请马上切断电源。
3.要换运算放大器必需在切断电源条件下进展,并留意管脚不要插错。
半导体PN结的物理特性测量 终定稿
半导体PN 结的物理特性测量实验目的(1) 了解用运算放大器测量弱电流的原理和方法。
(2) 测量PN 结结电压与电流关系,证明此关系符合指数分布规律,用作图法求玻尔兹曼常数。
实验仪器PN 结物理特性实验仪实验原理1.PN 结介于导体与绝缘体之间的物质叫半导体,在半导体中只有一种载流子导电,只有电子(负电荷)导电的半导体叫N 型半导体,只有空穴(正电荷)导电的半导体叫P 型半导体。
以一定的工艺制成的P 型半导体和N 型半导体相邻的交接处,由于自由扩散形成的结叫PN 结。
三极管制造工艺的特点:发射极高掺杂浓度;基极很薄几微米到十几微米,减小复合电流;集电极低掺杂浓度,面积较大,有利于接收电子。
发射结正向偏置,集电结反向偏置。
2.PN 结伏安特性及玻尔兹曼常数的测量半导体在常温下PN 结电压与电流有如下指数关系:0qUkTS I I e= (1)公式(1)中0I 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,q 为电子电量,U 为电压。
本实验用常规方法测量时,当PN 结电压较小时,PN 结没导通,通过的电流很弱,普通电流表很难准确测量,无法验证真实的电压电流关系和测量玻尔兹曼常数,而采用集成运放对弱电流放大可解决这些问题。
3. 弱电流测量实验装置如图1所示,所用PN 结由三极管提供,加在三极管B 、E 间的电压1U 则通过的电流为e I ,三极管电流分布满足eb c I I I =+,又因为b I 很小,所以e c I I ≈;LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器,把c I 放大成2U ,且它们之间满足线性关系,因此可以说1U 与2U 之间满足指数函数关系,那么1U 与流过PN 结的电流e I 也满足指数关系。
其工作原理如图2所示,S I 为被测弱电流,r Z 为电路的等效输入阻抗,f R 为负反馈电阻,运放的开环放大倍数为0K ,运算放大器的输出电压为:00i U K U =- (2) 由于运放输入阻抗i r 为无限大,反馈电阻f R 流过的电流近似为S I ,00001()(1)i S f ffU U U I U R R R K -==-+≈-(3)只要测得输出电压0U 和已知f R 值,即可求得S I ,将上式代入0qU kTS I I e=可得:102qU kTU U Ae== (4)图2 电流-电压变换器实验内容(1)按图联接线路,调节电压1U ,取值在0.3V -0.5V 范围内,依次记下电压1U 和2U 的数值。
半导体pn结的物理特性及弱电流测量
半导体pn结的物理特性及弱电流测量半导体 PN 结的物理特性:1. 堆积区与耗尽区:在 PN 结中,PN 结两侧有一个堆积区和一个耗尽区。
堆积区是在 PN 接触处的一侧,其中 N 区的自由电子会向 P 区扩散,而 P 区的空穴会向 N 区扩散。
耗尽区是在堆积区的另一侧,其中电子和空穴被扩散后形成的正负离子互相吸引,形成一个没有可自由移动电荷的区域。
2. 正向偏置:当在 PN 结上施加正向电压时,电子从 N 区向 P 区移动,空穴从 P 区向 N 区移动,导致堆积区的宽度变窄。
此时电流从 P 区流向 N 区,称为正向电流。
3. 反向偏置:当在 PN 结上施加反向电压时,电子被吸引进 N 区,空穴被吸引进 P 区,导致堆积区的宽度增加。
这时几乎没有电流通过 PN 结,称为反向电流。
当反向电压过大时,会发生击穿现象,此时电流急剧增加。
4. PN 结的导电特性:在正向偏置下,PN 结导电特性近似于理想二极管,正向电流随着正向电压的增加呈指数型增长。
在反向偏置下,PN 结导电特性近似于理想断路器,基本没有电流通过。
弱电流测量:弱电流测量是指对非常小的电流进行测量。
由于电流非常微弱,存在一些测量上的困难和限制。
常见的弱电流测量方法有以下几种:1. 电流放大:由于弱电流不能直接测量,通常需要将其放大到可以测量的范围。
放大器可以选择放大电流,提高信号的幅度。
2. 高阻抗电路:在测量弱电流时,需要使用高阻抗电路,以最大程度地减小电流的流失。
高阻抗电路可以降低电流流过测量电路时的电压降,从而减小电流的误差。
3. 屏蔽环境干扰:由于弱电流非常微弱,容易受到环境中的电磁干扰影响。
屏蔽环境干扰可以采取一些措施,例如使用屏蔽罩、信号隔离等,减小干扰对弱电流测量结果的影响。
4. 温度控制:温度的变化也会对弱电流测量产生影响。
通常需要对测量环境进行温度控制,确保测量的稳定性和准确性。
需要注意的是,弱电流测量需要仪器设备的高灵敏度和高精度,同时也需要严密的实验条件和精确的操作技巧。
半导体PN结的物理特性及弱电流测量实验报告
引言: 导电性介于绝缘体和导体之间的物质称为半导体,半导体分为 P 型半导体和 N 型半导
体。当 P 型半导体和 N 型半导体相互接触时,形成 PN 结。半导体 PN 结电流—电压关系特 性是半导体器件的基础。
本实验通过一个简单电路测量通过 PN 结的扩散电流与 PN 结电压之间的关系,并证实 PN 结的电流与电压遵循指数关系。同时通过实验数据求得波尔兹曼常数。 实验原理 1、 弱电流的测量。
������0
������������
与1的拟合曲线:
������
图
5
������0������������~
1图
������
拟合公式:y = A������−������������ + ������0
式中:A = (1.5 ± 0.6) × 1014,t = (7.0 ± 0.1) × 10−5 ,������0 = ( − 5.2 ± 0.4) × 10−7 R-Square=0.99931 , R-Square 接近于 1, 数据点线性关系很好。
拟合结果:������0������������ = 1.5 × 1014 × ������−7.0×110−5������ − 5.2 × 10−7
拟合结果和(6)对比可得−
������������ ������������
=
−
1 t������
,
所以
0k
时的禁带宽度
E0
=
������ ������
实验结果 1、 PN 结正向电流与电压的关系。
表 1 PN 结正向电压 U1 与正向电流对应电压 U2 的关系
实验序号
pn结特性实验报告
pn结特性实验报告PN结是P型和N型半导体材料接触而形成的结,是半导体器件中最基本的一种结构之一。
PN结的特性非常重要,对于理解和应用半导体器件非常关键。
本实验主要通过测量PN结的伏安特性曲线,研究PN结的整流作用和反向击穿特性。
实验仪器包括PN结二极管、直流电压源、直流电流表、电阻箱等。
首先按照电路图连接好实验电路,然后将直流电压源的电压调节到0V,将直流电流表改为电压测量模式,并设置合适的量程。
然后逐步增加直流电压源的电压,并记录PN结的电压和电流值。
在改变电压的同时,可以观察PN结上是否有发光现象,以及发光强度的变化。
实验结果显示,当外加电压为正向时,即P端连接正电压,N端连接负电压,PN结的电流非常小,大约在10^-6量级以下。
这是因为PN结的整流作用,电子由N端向P端流动,而空穴由P端向N端流动,形成了电流。
此时PN结处于正向偏置状态。
而当外加电压为反向时,即P端连接负电压,N端连接正电压,PN结的电流非常大,大约在10^-3量级以上。
这是因为反向击穿现象的发生,电子和空穴在PN结处以较高的速度相遇复合,形成漫射电流。
此时PN结处于反向偏置状态。
需要注意的是,过高的反向电压会导致PN结的击穿,从而破坏PN结。
实验中还观察到了PN结的发光现象。
在正向偏置状态下,电流随着电压的增加而增加,当电压达到正向击穿电压时,PN结开始发光,并逐渐增强。
这是因为PN结发生辐射复合,使得能量得以转移为光子。
发光强度与电流强度成正比。
通过本次实验,我深入了解了PN结的特性。
PN结不仅可以实现整流作用,还可以实现发光效果。
在实际应用中,PN结被广泛应用于半导体器件中,比如二极管、LED和激光器等。
半导体PN结的物理特性测量
半导体PN结的物理特性及弱电流的测量[摘要]本文利用PN 结正向压降温度特性测试仪,测量了PN 结电压电流特性。
验证了PN 结电压与电流的指数关系,并利用Excel 进行曲线拟合,再计算出玻尔兹曼常数,用运算放大器组成电流-电压变换器测量弱电流[关键词]PN结玻尔兹曼常数指数拟合弱电流测量1.引言基本物理常数如电子电量e、电子荷质比e/m、普朗克常数物理h、光速c 等的测量,在实验物理发展过程中具有重要地位。
利用PN 结正向压降温度特性测试仪测试出PN 结正向压降与电流,再进行数据拟合并计算出玻尔兹曼常数K,用运算放大器组成电流-电压变换器测量弱电流2.实验仪器FD-PN-4型PN结物理特性测定仪3.实验原理1. 在一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P型半导体和N型半导体的交界面附近的过渡区称为PN结。
PN结有同质结和异质结两种。
用同一种半导体材料制成的PN结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。
制造异质结通常采用外延生长法。
基本特性在P型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。
在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。
N型半导体中有许多可动的负电子和固定的正离子。
当P型和N型半导体接触时,在界面附近空穴从P 型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。
空穴和电子相遇而复合,载流子消失。
因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区(图1)。
P型半导体一边的空间电荷是负离子,N 型半导体一边的空间电荷是正离子。
正负离子在界面附近产生电场,这电场阻止载流子进一步扩散,达到平衡。
PN结在PN结上外加一电压,如果P型一边接正极,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,甚至消失,电流可以顺利通过。
pn结特性实验报告
pn结特性实验报告PN结是半导体器件中最基本的结构之一,它由P型和N型两种半导体材料组成。
通过合理的掺杂工艺,P型材料中掺入三价掺杂剂,N型材料中掺入五价掺杂剂,使得PN结具有独特的电学特性和器件功能。
而本次实验旨在研究PN结的特性,并通过实验数据验证PN结的一些基本特性。
实验步骤如下:1. 准备实验器材与元件:我们需要准备的实验器材包括电流源、电压源、台式电压表、数字万用表和示波器等。
而元件方面,可选择硅(Si)或锗(Ge)为半导体材料,并分别制备P型和N型材料单晶体。
2. 制备PN结:首先,将P型和N型材料片分别放入刻有浅浩深度的腐蚀液中进行腐蚀,以去除表面的氧化层。
然后,分别用净化液进行洗涤,使片面维持清洁无杂质状态。
接下来,将两片材料通过高温扩散或涂覆方式粘接在一起,形成PN结结构。
3. 测量I-V特性曲线:使用电流源和电压源连接到PN结,依次改变电流和电压的大小,测量不同电压下的电流值。
将实验得到的I-V数据记录下来,并绘制出I-V特性曲线。
4. 测量C-V特性曲线:切换到电容模式,依然使用电压源和电流源连接到PN结,逐渐增加电压的大小,并测量得到不同电压下的电容值。
将实验得到的C-V数据记录下来,并绘制出C-V特性曲线。
实验结果与数据分析:从实验数据可以得知,PN结的I-V特性曲线通常呈现出非线性的特点。
在低于开启电压的情况下,PN结的电流非常微弱,近似于零电流。
一旦开启电压达到一定阈值,PN结将出现快速增加的电流。
而在反向电压下,PN结的电流保持较小的值。
通过对I-V曲线的分析,我们可以得知PN结的整流特性。
具体来说,当PN结正向偏置时,导通电流会迅速增加,这意味着PN结可以作为半导体整流器件使用。
而反向偏置时,可以发现PN结具有一定的阻断能力,可作为保护电路使用。
同时,C-V曲线也能提供有关PN结的一些信息。
当电压的振幅增加时,PN结的电容值将增大。
这是因为在高反向电压下,空穴和电子会被强烈地吸引到PN结中,从而增加了电容。
pn结物理特性实验报告
pn结物理特性实验报告PN结物理特性实验报告引言:PN结是半导体器件中最基本的结构之一,它由P型半导体和N型半导体通过扩散形成。
PN结具有很多重要的物理特性,如整流、发光、放大等。
本实验旨在通过实际操作和测量,深入了解PN结的物理特性。
一、实验目的:1. 理解PN结的基本结构和形成原理;2. 掌握PN结的整流特性;3. 研究PN结的发光特性;4. 了解PN结的放大特性。
二、实验仪器和材料:1. PN结二极管;2. 直流电源;3. 示波器;4. 光敏二极管;5. 放大器。
三、实验步骤和结果:1. 整流特性实验:将PN结二极管连接到直流电源上,通过改变电压的正负极性,记录电流和电压之间的关系。
实验结果显示,当正向偏置时,电流呈指数增长;当反向偏置时,电流几乎为零,符合PN结的整流特性。
2. 发光特性实验:将PN结二极管连接到直流电源上,逐渐增加正向偏置电压,观察并记录发光现象。
实验结果表明,当正向偏置电压达到一定值时,PN结二极管会发出明亮的光线,这是由于电子和空穴在结区复合产生能量释放的结果。
3. 放大特性实验:将PN结二极管连接到放大器电路中,通过输入信号的变化,观察输出信号的变化。
实验结果表明,当输入信号的幅度较小时,输出信号经过放大后与输入信号相似;当输入信号的幅度较大时,输出信号会出现失真现象,这是由于PN 结的非线性特性导致的。
四、实验分析和讨论:1. 整流特性分析:PN结的整流特性使其在电子学中广泛应用于整流电路。
通过实验可以发现,当PN结处于正向偏置时,电流可以流动,符合正向导通的特点;而当PN结处于反向偏置时,电流几乎为零,符合反向截止的特点。
这种特性使得PN结二极管可以用于电源的整流。
2. 发光特性分析:PN结二极管的发光特性使其成为现代光电器件的重要组成部分。
通过实验可以发现,当正向偏置电压达到一定值时,PN结二极管会发出明亮的光线。
这是由于电子和空穴在结区复合产生能量释放的结果。
pn结物理特性测试
3.为什么实验要求测 V--T 曲线,而不是 VF--T 曲线 答: 因为 VF—T,VF 受温度变化影响极快,而 V—T 曲线则可在一定程度上消除温度 T 对 V 的影响,提高精确度,故要去测 V—T 曲线
七、
教师批改评语:
成绩(百分制) :
25.8 26 26.6 27.7 28.3 28.9 29.5 30.2 31.3 31.9 32.5 33 34.9 35.2 35.6 36.5 36.8 37.1 37.6 38.2 38.9 39.5 39.9 40.4 40.8 41.4 42.4 42.9 43.3 43.9 44.8 45.4 45.9 46.4 47.1 47.5 48 48.7 49.3 49.7 50.1 50.6 51.2 51.7
相对误差:
1.21
1 。 45%
六、
思考题: 1.测量时,为什么温度必须在-50 摄氏度~150 摄氏度范围内?
答:因为对通常的硅二级管来说,在温度-50 摄氏度~150 摄氏度的范围内杂质全部电 离,本征激发可以忽略的温度区,如果温度低于或高于上述范围时,由于杂质电离因 子减小或本证载流子迅速增加,VF--T 关系将产生新的非线性。 2. V-T 曲线为何按 V 的变化读取 T,而不是按自变量 T 的变化读取 V? 答:因为温度 T 的读取,是由温度传感器晶体管这种电路结果结构与恒流、放大等 电路集成一体,便构成集成电路温度传感器读取的。故只需要知道∆V,而温度有传 感器获知,便可得到∆V—T 曲线。
-0.06 -0.062 -0.064 -0.066 -0.068 -0.069 -0.071 -0.073 -0.075 -0.076 -0.078 -0.079 -0.081 -0.083 -0.085 -0.087
【精品】半导体PN结的物理特性及弱电流测量实验报告
【精品】半导体PN结的物理特性及弱电流测量实验报告
一、实验目的
本实验的目的是要了解半导体PN结的物理特征,并通过相关实验来考察和测量PN结
的特性。
二、实验原理
PN结是半导体电子器件的最基本结构,由掺杂的德勒普及层组成,它们具有非常重要的物理和化学特性,被广泛用在微电子器件中。
它由半导体表面凹凸不平、绝缘体或金属
覆盖层、P型和N型掺杂层组成,当它处于正向偏置时,在P掺杂表面之间就会形成可以
用于传输电子的“及P全”,可以传输能量的“及N层”,成功实现一定电压后形成电流
流动,因而功能实现。
因此,熟悉和理解N插头所具有的物理特性,对于设计和制作微电
子器件有着重要的意义。
三、实验结果与分析
实验表明,本次实验通过测量PN结的电压-电流特性和功耗特性,获得了精确的数据。
发现当电压由零改变时,当电压较低时,流过PN结的电流较小,对结的功耗也较低,但
随着电压的增加,电流和功耗也随之增大,这说明具有较强的正序特性,而电压超过一定
限值后,电流和功耗就不再增加,这说明其具有稳定的拐点,可以有效的控制PN结的特性。
四、结论
本次实验通过测量PN结的电压-电流特性和功耗特性,获得了精确的数据,得出了相
应的结论:PN结具有较强的正序特性,具有稳定的拐点,可以有效控制其特性。
通过本次实验,我们不仅能够深入理解半导体PN结的物理特性,还可以更好地应用于微电子器件中。
PN结物理特性
电压U1和相应电压U2。在常温下U1的值约从0.3V至 0.42V范围每隔0.01V测一点数据,约测10多数据点, 至U2值达到饱和时(U2值变化较小或基本不变),
结束测量。在记数据开始和记数据结束都要同时记 录变压器油的温度,取温度平均值。
(3).改变干井恒温器温度,待PN结与油温湿度
一致时,重复测量U1和U2的关系数据,并与室温
Rf
-
Is
Ko
+
Is
Zr
Ui
U0
(3).PN结的结电压U与热力R2
RT R4
V2
3V
3.实验步骤
(1)U1为三位半数字电压表,U2为四位半数字电压
表,TIP31型为带散热板的功率三极管,调节电压的 分压器为多圈电位器,为保持PN结与周围环境一致, 把TIP31型三极管浸没在盛有变压器油干井槽中。变 压器油温度用铂电阻进行测量。 (2)在室温情况下,测量三极管发射极与基极之间
在分析数据的时候,起初我没有把对扩散电流太小 (起始状态)及扩散电流接近或达到饱和时的数据 删去,所以总是得不出较好的结果。后来才发现, 之后删除那些数据拟合出来的图线较为完美了,得 到这些图像后我才真正了解了半导体的物理特性, 真正动手做一个实验和理论上研究实验原理是由本 质区别的。
谢谢观看!
二、关系测定,求PN结温度传感器灵敏度S,计算
硅材料0K时近似禁带宽度值。
1.通过调节电路中电源电压,使上电阻两端电压
保持不变,即电流I=100μA。同时用电桥测量铂
电阻的电阻值,通过查铂电阻值与温度关系表, 可得恒温器的实际湿度。从室温开始每隔5℃-
10℃测一定值(即V1)与温度(℃)关系,求得
关系。(至少测6点以上数据)
近代物理实验思考题答案
一、 夫兰克—赫兹实验 1解释曲线I p -V G2形成的原因答;充汞的夫兰克-赫兹管,其阴极K 被灯丝H 加热,发射电子;电子在K 和栅极G 之间被加速电压KG U 加速而获得能量,并与汞原子碰撞,栅极与板极A 之间加反向拒斥电压GA U ,只有穿过栅极后仍有较大动能的电子,才能克服拒斥电场作用,到达板极形成板流A I ;2实验中,取不同的减速电压V p 时,曲线I p -V G2应有何变化为什么答;减速电压增大时,在相同的条件下到达极板的电子所需的动能就越大,一些在较小的拒斥电压下能到达极板的电子在拒斥电压升高后就不能到达极板了;总的来说到达极板的电子数减小,因此极板电流减小;3实验中,取不同的灯丝电压V f 时,曲线I p -V G2应有何变化为什么答;灯丝电压变大导致灯丝实际功率变大,灯丝的温度升高,从而在其他参数不变得情况下,单位时间到达极板的电子数增加,从而极板电流增大;灯丝电压不能过高或过低;因为灯丝电压的高低,确定了阴极的工作温度,按照热电子发射的规律,影响阴极热电子的发射能力;灯丝电位低,阴极的发射电子的能力减小,使得在碰撞区与汞原子相碰撞的电子减少,从而使板极A 所检测到的电流减小,给检测带来困难,从而致使A GK I U 曲线的分辨率下降;灯丝电压高,按照上面的分析,灯丝电压的提高能提高电流的分辨率;但灯丝电压高, 致使阴极的热电子发射能力增加,同时电子的初速增大,引起逃逸电子增多,相邻峰、谷值的差值却减小了; 二、 塞曼效应1、什么叫塞曼效应,磁场为何可使谱线分裂答;若光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同;后人称此现象为塞曼效应;原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩;总磁矩在磁场中受到力矩的作用而绕磁场方向旋进从而可以使谱线分离2、叙述各光学器件在实验中各起什么作用答;略3、如何判断F-P标准具已调好答;实验时当眼睛上下左右移动时候,圆环无吞吐现象时说明F-P标准具的两反射面平行了;4、实验中如何观察和鉴别塞曼分裂谱线中的π成分和σ成分如何观察和分辨σ成分中的左旋和右旋偏振光答;沿着磁场方向观测时,M∆=-1时为左旋偏振光;在实∆=+1为右旋圆偏振光,M验中,+σ成分经四分之一玻片后,当偏振片透振方向在一、三象限时才可观察到,因此为相位差为π2的线偏振光,所以+σ成分为右旋偏振光;同理可得-σ成分为左旋偏振光;三、核磁共振1、什么叫核磁共振答;自旋不为零的粒子,如电子和质子,具有自旋磁矩;如果我们把这样的粒子放入稳恒的外磁场中,粒子的磁矩就会和外磁场相互作用使粒子的能级产生分裂,分裂若发生在原子核上则我们称为,核磁共振;2、观测NMR吸收信号时要提供哪几种磁场各起什么作用各有什么要求答两种;第一种恒磁场B0使核自旋与之相互作用核能级发生塞曼分裂分裂为两个能级第二种垂直于B0的B1使原子核吸收能量从低能级跃迁到高能级发生核磁共振; 共振条件足条件003、 NMR 稳态吸收有哪两个物理过程实验中怎样才能避免饱和现象出现 答;需要稳态吸收和弛豫两个过程;4、 怎样利用核磁共振测量回磁比和磁场强度 答;有共振条件0000,)(B B h g v N N ⋅=⋅=γϖμ即测出0ϖ带入就可求出回磁比将理论的回磁比带入就可求出磁场;四、电子顺磁共振1电子顺磁共振的原理是什么答;将原子磁矩不为零的顺磁物质置于外磁场B 0中,则原子磁矩与外磁场相互作用能为4那么,相邻磁差0hB E γ-=∆ 5如果垂直于外磁场B 0的方向上加一振幅值很小的交变磁场2B 1cosωt,当交变磁场的角频率ω满足共振条件0hB E h γω-=∆=6时,则原子在相邻磁能级之间发生共振越迁这就是自旋共振的基本原理; 2微波段电子顺磁共振的主要装置有哪些各起什么作用答;略五、用光栅光谱仪测钠光光谱解释光谱的物理意义,以及从形状上区别光谱的种类六、密立根油滴实验1、 加上电压后,油滴可能出现哪些运动请分别说明原因;答;匀速运动或静止;油滴保持匀速运动或者静止时才受力平衡,才符合我们的实验原理,才能用已知公式进行计算;2为什么不挑选带质量很大的油滴测量3,如果电容器两极板不水平,即极板间电场方向与重力场方向不平行,这对测量结果有何影响七、傅立叶分解与合成1、 写出方波和三角波的傅里叶分解式; 答;方波)7sin 715sin 513sin 31(sin 4)( ++++=t t t t ht f ωωωωπ =∑∞=--1])12sin[()121(4n t n n h ωπ 三角波)7sin 715sin 513sin 31(sin 8)(2222 +-+-=t t t t ht f ωωωωπ =∑∞=----1212)12sin()12(1)1(8n n t n n h ωπ 2、 实验中使用什么电路对方波或三角波进行频谱分解答;用RLC 串联谐振电路作为选频电路,对方波或三角波进行频谱分解; 3、 将1KHz,3KHz,5KHz,7KHz 四组正弦波的初相位和振幅调节到什么条件输入到加法器叠加后,可以分别合成出方波波形答;波振幅比为1:31:51:71,初相位为同相;八、光拍法测量光速1、“拍”是怎么形成的它有什么特性答;根据波的叠加原理,两束传播方向相同、频率相差很小的简谐波相叠加,将会形成拍2、声光调制器是如何形成驻波衍射光栅的什么叫声光效应答;使声光介质的厚度为超声波半波长的整数倍,使超声波产生反射,在介质中形成驻波场,从而产生驻波衍射光栅;功率信号输出角频率为Ω的正弦信号加在频移器的晶体压电换能器上,超声波沿方向通过声光介质,使介质内产生应变,导致介质的折射率在空间和时间上发生周期性变化,形成一个相位光栅,使入射激光发生衍而传播方向,这种衍射光的频率产生了与超声波频率有关的频率移动这种现象叫声光效应;3、斩光器的作用是什么答;,可在示波器上同时观察到远、近程光信号的图形,适当微调光路和光电接收管的位置调节螺丝,使示波器上显示的二路光信号均有一定的幅度;4、获得光拍频波的两种方法是什么本实验采取哪一种答;光拍法和;光拍法九、全息照相1、怎样理解全息图每点都记录了物体上各点光的全部信息像面全息也是这样的吗为什么答;全息照相是将物光波中的振幅和位相信息以干涉条纹的反差和明暗变化的形式记录下来,形成的干涉条纹,感光后的全息干板,经显影、定影等处理得到的全息照片,相当于一个“衍射光栅”;全息图的观察是衍射光线逆光线,部分的“衍射光栅”激光照射下也会产生衍射光线,故部分全息图可以再现完整物体,只是衍射光强减弱,光信息容量减小,看到的像变暗或相对模糊;拍摄全息图时,光路布置要注意些什么答;1,要求光路中的物光与参考光的光程尽量相等;2光学元件安置要牢靠;十、混沌实验与实验十一合并解释倍周期分岔、混沌、奇怪吸引子概念的物理意义;十一、PN结物理特性测定实验与实验十合并1、解释在实际测量中用二极管的正向I-U关系求得的玻尔兹曼常数偏小的原因;答;通过二极管的电流不只是扩散电流,还有其他电流;2、该实验装置中如何实现弱电流的测量能测量的最小电流值为多少答;采用光点反射式检流计与高输入阻抗集成运算放大器实现,能测量的最小电流值为-11110A十二、高温超导转变温度的测量1、高温超导体和低温超导体的区别是什么答;低温超导材料具有低临界转变温度Tc<30K,在液氦温度条件下工作的超导材料;低温超导材料由于Tc低,必须在液氦温度下使用,运转费用昂贵,故其应用受到限制;高温超导材料具有高临界转变温度Tc能在液氮温度条件下工作的超导材料;因主要是氧化物材料,故又称高温氧化物超导材料;高温超导材料不但超导转变温度高,而且成分多是以铜为主要元素的多元金属氧化物,氧含量不确定,具有陶瓷性质;氧化物中的金属元素如铜可能存在多种化合价,化合物中的大多数金属元素在一定范围内可以全部或部分被其他金属元素所取代,但仍不失其超导电性;除此之外,高温超导材料具有明显的层状二维结构,超导性能具有很强的各向异性;高温超导材料的上临界磁场高,具有在液氦以上温区实现强电应用的潜力;2、什么叫超导现象超导材料有什么主要特性答;超导现象是指材料在低于某一温度时,电阻变为零的现象,而这一温度称为超导转变温度Tc;超导现象的特征是零电阻和完全抗磁性;超导材料是存在电阻为零的超导态的材料,当其处于超导态时,能够无损耗地传输电能;超导体主要具有三个特性:零电阻性超导材料处于超导态时电阻为零,如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去;这种“持续电流”已多次在实验中观察到;完全抗磁性超导材料处于超导态时,只要外加磁场小于临界磁场,磁场不能透入超导体内,超导材料内部的磁场恒为零;超导悬浮,就是利用超导体的完全抗磁性;约瑟夫森效应当两超导体之间有一薄绝缘层厚度约1nm而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体;当电流超过一定值后,绝缘层两侧出现电压U也可加一电压U,同时,直流电流变成高频交流电,而且频率与电压成正比;3、从实验中如何判断样品进入超导态了4、解释零电阻现象和迈斯纳效应现象的物理本质;答;产生迈斯纳效应的原因是:当超导体处于超导态时,在磁场作用下,表面产生一个无损耗;这个电流产生的磁场恰恰与外加磁场大小相等、方向相反,因而在深入超导区域总合成磁场为零;换句话说,这个无损耗感应电流对外加磁场起着作用,因此称它为抗磁性屏蔽电流;十三、铁磁材料居里温度的测试1、铁磁物质的三个特性是什么2、用磁畴理论解释样品的磁化强度在温度达到局里点时发生突变的微观机理是什么答:样品的磁化强度在温度达到居里点时发生突变的微观机理是,铁磁性物质的磁化与温度有关,存在一临界温度Tc称为居里温度也称为居里点;当温度增加时,由于热扰动影响磁畴内磁矩的有序排列,但在未达到居里温度Tc时,铁磁体中分子热运动不足以破坏磁畴内磁矩基本的平行排列,此时物质仍具有铁磁性,仅其自发磁化强度随温度升高而降低;如果温度继续升高达居里点时,物质的磁性发生突变,磁化强度M实为自发磁化强度剧烈下降,因为这时分子热运动足以使相邻原子或分子之间的交换耦合作用突然消失,从而瓦解了磁畴内磁矩有规律的排列,此时磁畴消失,铁磁性变为顺磁性;3、测出的V-T曲线,为什么与横坐标没有交点答;在εeffB~T曲线斜率最大处作切线,与横坐标轴温度相交的一点即为居里温度Tc,这是因为温度升高到居里点时,铁磁材料的磁性才发生突变,所以要在斜率最大处作切线;又因为在居里点附近时,铁磁性已基本转化为顺磁性虽然μ值较小,但仍大于0,故εeffB~T曲线不可能与横坐标相交,所以不是由曲线与温度轴的交点来确定Tc;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概述半导体PN结的物理特性是物理学和电子学的重要基础内容之一。
本仪器用物理实验方法,测量PN结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。
本仪器同时提供干井变温恒温器和铂金电U与热力学温度T的关系,求得该传感器的灵敏度,并近似求得阻测温电桥,测量PN结结电压be0K时硅材料的禁带宽度。
二、仪器简介图1 PN结物理特性测定仪实验装置FD-PN-4型PN 结物理特性测定仪主要由直流电源、数字电压表、实验板以及干井测温控温装置组成,如图1所示。
三、技术指标1.直流电源:±15V 直流电源一组, 1.5V 直流电源一组2.数字电压表:三位半数字电压表量程0—2V ,四位半数字电压表量程 0—20V3.实验板: 由运算放大器LF356、印刷引线、接线柱、多圈电位器组成。
TIP31型三极管外接。
4.恒温装置:干井式铜质可调节恒温,恒温控制器控温范围,室温至80℃;控温分辨率0.1℃; 5.测温装置:铂电阻及电阻组成直流电桥测温0℃(Ω=00.1000R )。
四、实验项目1.测量PN 结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。
2.较精确地测量玻尔兹曼常数。
(误差一般小于2%)3.测量PN 结结电压be U 与温度关系,求出结电压随温度变化的灵敏度。
4.近似求得0K 时半导体(硅)材料的禁带宽度。
5.学会用铂电阻测量温度的实验方法和直流电桥测电阻的方法。
五、注意事项1.实验时接±12V 或±15V ,但不可接大于15V 电源。
±15V 电源只供运算放大器使用,请勿作其它用途。
2.运算放大器7脚和4脚分别接+15V 和-15V ,不能反接,地线必须与电源0V (地)相接(接触要良好)。
否则有可能损坏运算放大器,并引起电源短路。
一旦发现电源短路(电压明显下降),请立即切断电源。
3.要换运算放大器必须在切断电源条件下进行,并注意管脚不要插错。
元件标志点必须对准插座标志槽口。
4.必须经教师检查线路接线正确,学生才能开启电源,实验结束应先关电源,才能拆除接线。
实验十 半导体PN 结的物理特性及弱电流测量实验【实验目的】1.在室温时,测量PN 结电流与电压关系,证明此关系符合指数分布规律。
2.在不同温度条件下,测量玻尔兹曼常数。
3.学习用运算放大器组成电流-电压变换器测量弱电流。
4.测量PN 结电压与温度的关系,求出该PN 结温度传感器的灵敏度。
5.计算在0K 温度时,半导体硅材料的近似禁带宽度。
【实验原理】1. PN 结伏安特性及玻尔兹曼常数测量由半导体物理学可知,PN 结的正向电流-电压关系满足:⎥⎦⎤⎢⎣⎡-=10ktqU e I I (1)式中I 是通过PN 结的正向电流,0I 是反向饱和电流,在温度恒定是为常数,T 是热力学温度,q 是电子的电荷量,U 为PN 结正向压降。
由于在常温(300K)时,q kT /≈0.026v ,而PN 结正向压降约为十分之几伏,则)/exp(kT qU >>1,(1)式括号内-1项完全可以忽略,于是有:)(0kTqUeI I = (2)也即PN 结正向电流随正向电压按指数规律变化。
若测得PN 结I-U 关系值,则利用(1)式可以求出kT e /。
在测得温度T 后,就可以得到k e /常数,把电子电量作为已知值代入,即可求得玻尔兹曼常数k 。
在实际测量中,二极管的正向I-U 关系虽然能较好满足指数关系,但求得的常数k 往往偏小。
这是因为通过二极管电流不只是扩散电流,还有其它电流。
一般它包括三个部分:1)扩散电流,它严格遵循(2)式;2)耗尽层符合电流,它正比于)2/exp(kT qU ;3)表面电流,它是由硅和二氧化硅界面中杂质引起的,其值正比于)/exp(mkT qU ,一般m >2。
因此,为了验证(2)式及求出准确的e /k 常数,不宜采用硅二极管,而采用硅三极管接成共基极线路(只能放大电压,不能放大电流),因为此时集电极与基极短接,集电极电流中仅仅是扩散电流。
复合电流主要在基极出现,测量集电极电流时,将不包括它。
本实验中选取性能良好的硅三极管(TIP31型),实验中又处于较低的正向偏置,这样表面电流影响也完全可以忽略,所以此时集电极电流与结电压将满足(2)式。
2.弱电流测量过去实验中610-A -1110-A 量级弱电流采用光点反射式检流计测量,该仪器灵敏度较高约910-A /分度,但有许多不足之处,如十分怕震,挂丝易断;使用时稍有不慎,光标易偏出满度,瞬间过载引起引丝疲劳变形产生不回零点及指示差变大。
使用和维修极不方便。
近年来,集成电路与数字化显示技术越来越普及。
高输入阻抗运算放大器性能优良,价格低廉,用它组成电流-电压变换器测量弱电流信号,具有输入阻抗低,电流灵敏度高。
温漂小、线性好、设计制作简单、结构牢靠等优点,因而被广泛应用于物理测量中。
图 电流-电压变换器LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。
其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。
由图2,运算放大器的输入电压0U 为:i U K U 00-= (3)式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图4中电阻∞→f R 时的电压增益,f R 称反馈电阻。
因为理想运算放大器的输入阻抗∞→i r ,所以信号源输入电流只流经反馈网络构成的通路。
因而有:f i r i S R K U R U U I /)1(/)(00+=-= (4) 由(4)式可得电流-电压变换器等效输入阻抗r Z 为00/)1/(/K R K R I U Z f f s i r ≈+== (5) 由(3)式和(4)式可得电流-电压变换器输入电流z I 输出电压0U 之间得关系式,即: f f f s R U R K U R K KU I //)/11(/)1(00000-=+-=+-= (6) 由(6)式只要测得输出电压0U 和已知f R 值,即可求得s I 值。
以高输入阻抗集成运算放大器LF356为例来讨论r Z 和s I 值的大小。
对LF356运放的开环增益50102⨯=K ,输入阻抗Ω=1210i r 。
若取f R 为1.00ΩM ,则由(5)式可得:Ω=⨯+Ω⨯=5)1021/(1000.156r Z若选用四位半量程200mV 数字电压表,它最后一位变化为0.01mV ,那么用上述电流-电压变换器能显示最小电流值为:A V I s 1163min 101)101/(1001.0)(--⨯=⨯⨯=由此说明,用集成运算放大器组成电流-电压变换器测量弱电流,具有输入阻抗小、灵敏度高的优点。
3.PN 结的结电压be U 与热力学温度T 关系测量。
当PN 结通过恒定小电流(通常电流A I μ1000=),由半导体理论可得be U 与T 近似关系:go be U ST U += (5)式中S ≈-2.3C mV o/为PN 结温度传感器灵敏度。
由go U 可求出温度0K 时半导体材料的近似禁带宽度go E =go qU 。
硅材料的go E 约为1.20eV 。
【实验仪器】1. 直流电源、数字电压表、温控仪组合装置(包括±15V 直流电源、0-1.5V 及3.0V 直流电源、三位半数字电压表、四位半数字电压表、温控仪)。
2. TIP31型三极管(带三根引线)1个,3DG 三极管1个。
3. 干井铜质恒温器(含加热器)及小电风扇各1个。
4. 配件:LF356运放各2块,TIP31型三极管1只,引线9根;用户自配:ZX21型电阻箱1只。
【实验过程】实验接线必须是在断电情况下进行 1)PN 结伏安特性测量be c U I -关系测定,并进行曲线拟合求经验公式,计算玻尔兹曼常数。
(1U U be =)1)实验线路如图1所示。
图中1U 为三位半数字电压表,2U 为四位半数字电压表,TIP31型为带散热板的功率三极管,调节电压的分压器为多圈电位器,为保持PN 结与周围环境一致,把TIP31型三极管浸没在盛有变压器油干井槽中,变压器油温度用铂电阻进行测量。
2)在室温情况下,测量三极管发射极与基极之间电压1U 和运放输出电压2U 。
在常温下1U 的值约从0.3V 至0.42V 范围每隔0.01V 测一点数据,约测14个数据点,至2U 值达到饱和时(2U 值变化较小或基本不变),结束测量。
在记数据开始和记数据结束都要同时记录变压器油的温度θ(室温),取温度平均值θ。
3)改变干井恒温器温度,待PN 结与油温湿度一致时,重复测量1U 和2U 的关系数据,并与室温测得的结果进行比较。
4)曲线拟合求经验公式:运用最小二乘法,将实验数据分别代入线性回归、指数回归、乘幂回归这三种常用的基本函数(它们是物理学中最常用的基本函数),然后求出衡量各回归程序好坏的标准差δ。
对已测得的1U 和2U 各对数据,以1U 为自变量,2U 作因变量,分别代入:(1)线性函数b aU U +=12;(2)乘幂函数baU U 12=;(3)指数函数)ex p(12bU a U =。
求出各函数相应的a和b 值,得出三种函数式,究竟哪一种函数符合物理规律必须用标准差来检验。
方法是:把实验测得的各个自变量U 1分别代入三个基本函数,得到相应因变量的预期值*2U ,并由此求出各函数拟合的标准差:δ=∑=-ni i in U U12*/)(式中n 为测量数据个数,i U 为实验测得的因变量,*i U 为将自变量代入基本函数的因变量预期值,最后比较哪一种基本函数为标准差最小,说明该函数拟合得最好。
5)计算k e /常数,将电子的电量作为标准差代入,求出玻尔兹曼常数并与公认值进行比较。
【实验数据处理】(注:实验条件影响,以下数据仅供参考) 1.be c U I -关系测定,曲线拟合求经验公式,计算玻尔兹曼常数。
室温条件下:1θ =25.90C,2θ =26.10C,θ=26.00C表1 原始数据记录以1U 为自变量,2U 为因变量,分别进行线性函数、乘幂函数和指数函数的拟合,结果见表2(1)线性函数b aU U +=12; (2)乘幂函数baU U 12=; (3)指数函数)ex p(12bU a U =表2 拟合数据计算(可在matlab 、excel 下计算并打印)由表2可知,指数回归拟和的最好,也就说明PN 结扩散电流-电压关系遵循指数分布规律。
以下计算玻尔兹曼常数:由表2数据得bT k q =/ =38.79×(273.15+26.00)=1.160410⨯J /CK则)/(k q q k ==41910160.110602.1⨯⨯-=K J /1038.123-⨯ 此结果与公认值K J k /10381.123-⨯=相当一致。