ASME A335 高温用无缝铁素体合金钢公称管

合集下载

钢材美标材料表

钢材美标材料表

ASTM铁基材料化学成分和机械性能表
Momax Vmax Other σbMPamin σsMPamin ASTM A53/53M 无镀层或热浸镀锌焊接与无缝公称钢管 Type S (seamless pipe) 330 205 415 240 Type E (electric-resistance-welded) 330 205 415 240 Type F (furnace-welded pipe) 330 205 ASTM A106/106M 高温用无缝碳钢公称管 330 205 415 240 485 275 ASTM A333/333M 低温用无缝和焊接钢管 380 205 450 240 Al:0.04-0.30 415 240 415 240 450 240 690 515 435 315 Nb:0.05max 550 450 Al:0.06max Co:0.5max 450 240 ASTM A312/312M 无缝和焊接不锈钢公称管 0.15-0.30 635 330 0.20-0.40 Nb:0.10-0.30 690 380 0.15-0.40 620 345 0.15-0.40 620 345 0.20-0.40 690 380 515 205 ... 485 170 ... 515 205 0.12–0.18 Ce:0.03-0.08 600 290 0.10–0.16 550 240 0.10–0.16 N:0.10-0.16 515 205 ... 640 240 ... Al:0.80-1.50 620 275 0.14–0.20 Ce:0.03-0.08 600 310 ... 515 205 ... 515 205 ... Nb: 10 3C min, 1.10 max 515 205 ... Nb: 10 3C min, 1.10 max 515 205 0.10min 500 205 ... 515 205 ... 515 205 ... Nb: 10 3C min, 1.10 max 515 205 ... Nb: 10 3C min, 1.10 max 515 205 0.09–0.15 580 270 0.18–0.22 675 310 Ti:0.30-0.60 450 200 B:0.004-0.008 0.30–0.40 770 360 ... 515 205 ... 485 170 ... 515 205 0.10 Ti:53(C+N) min, 0.70 515 205 0.10–0.16 550 240 0.10–0.16 515 205 ... 515 205 N δs% Min ψ HB max HRBmax

阀门标准ASME标准目录

阀门标准ASME标准目录

DocumentNumber Date Language TitleASME B31.1-2004版动力管道ASME B31.3-2004版工艺管道ASME规范压力管道及管件B31、B16系列标准(上册)含5个标准1.ASME B31.4-1998版液态烃和其他液体管线输送系统2.ASME B31.5-1992(R1994) 制冷管道3.ASME B31.8-1999版输气和配气管道系统4.ASME B31.9-1996版建筑管道规范5.ASME B31.11a-1989(R1998)版浆液输送管道系统ASME B31G-1991版确定已腐蚀管线剩余强度的手册(对ASME B31压力管道规范的补充文件)ASME规范压力管道及管件B31、B16系列标准(下册)含10个标准1.ASME B16.1-1998版铸铁管法兰和法兰管件(25、125和250磅级)2.ASME B16.3-1998版可锻铸铁螺纹管件(150和300磅级)3.ASME B16.4-1998版灰铸铁螺纹管件(125和250磅级)4.ASME B16.9-1993版工厂制造的锻钢对焊管件5.ASME B16.10-1992版阀门的面至面和端至端尺寸6.ASME B16.11-1996版承插焊式和螺纹式锻造管件7.ASME B16.14-1991版钢铁管螺纹管堵、内外螺丝和锁紧螺母8.ASME B16.28-1994版锻轧钢制对接焊小弯头半径弯头和180度弯头9.ASME B18.2.1a-1999版方头及六角头螺栓和螺钉10.ASME PTC25-1994 压力泄放装置性能试验规范(含1998 Special Addenda)版ASME B1.1-2003版统一英制螺纹ASME B1.3M-1992(R2001)版螺纹尺寸验收的检测体系—英寸和米制螺纹(UN、UNR、UNJ、M和MJ)ASME B1.5-1997版爱克母(ACME)螺纹ANSI/ASME B1.7M-1984(R2001)版螺纹的术语、定义和字母符号ASME B1.8-1988(R1994)版矮牙爱克母螺纹ASME B1.12-1987(R1998)版5级过盈配合螺纹ASME B1.13M-2005版M形米制螺纹ANSI/ASME B1.20.1-1983(R2001)版通用管螺纹ASME B1.20.3-1976(R1998)版干密封管螺纹(英制)ASME B1.20.5-1991(R1998)版干密封管螺纹的检测(英制)ASME B1.20.7-1991(R1998)版软管接头螺纹(英制)ASME B4.3-1978(R1999)版米制尺寸产品通用公差ASME B16.5-2003版管法兰和法兰管件ASME B16.9-2003版工厂制造的锻轧制对焊管配件ASME B16.10-2000(R2003)版阀门的面对面和端至端的尺寸ASME B16.11-2001版承插焊式和螺纹式锻造管件(2002年颁布)ASME B16.15-1985(R1994)版铸青铜螺纹管配件(125和250磅级)ASME B16.18-1984(R1994)版铸铜合金钎焊接头受压管配件ASME B16.20a-2000版管道法兰用环垫式、螺旋缠绕式和夹层式金属垫片ASME B16.21-2005版管法兰用非金属平垫片ASME B16.22-2001版锻压铜和铜合金钎焊连接压力管配件ASME B16.24-2001版铸铜合金管法兰和法兰连接管配件ASME B16.25-2003版对焊端部ASME B16.33-2002版压力在125psi以下燃气系统用手动金属制燃气阀门(规格从NPS1/2至NPS2)ASME B16.34a-2004版法兰、螺纹和焊接端连接的阀门ASME B16.36-1996版孔板法兰ASME B16.38-1985(R1994)版气体分配用大金属阀ASME B16.39-1998版可锻铸铁螺纹端管套节150、250和300磅级ASME B16.40-1985(R1994)版气体分配系统中手动热塑切断器和阀门ASME B16.42-1998版球墨铸铁管法兰和法兰连接管配件ASME B16.44a-1997版室内管道系统用手动操作金属气阀ASME B16.47a-1998版大直径管钢制法兰(NPS 26~NPS 60)ASME B16.48-1997版钢制管线盲板ASME B18.15-1985(R2003)版锻制吊环螺栓ASME B18.2.2-1987(R2005)版方螺母和六角螺母(英制系列ASME B18.2.3.2M-2005版米制成型加工六角头螺钉ASME B18系列标准合订本含25个标准,也可以单个标准订购1.ASME B18.2.3.1M-1999版米制六角头螺钉2.ASME B18.2.3.2M-79(R1995) 米制成型加工六角头螺钉3.ASME B18.2.3.3M-79(R2001)版米制大六角头螺钉4.ASME B18.2.3.4M-2001版米制六角头法兰面螺钉5.ASME B18.2.3.5M-79(R2001) 米制六角头螺栓6.ASME B18.2.3.6M-79(R2001) 米制厚六角头螺栓7.ASME B18.2.3.7M-79(R2001) 米制大六角头结构螺栓8.ASME B18.2.3.8M-81(R1999) 米制六角头尖端阻滞螺钉9.ASME B18.2.3.9M-2001版米制大六角头法兰面螺钉10.ASME B18.2.3.10M-1996版方头螺栓(米制系列)11.ASME B18.2.4.1M-2002版米制六角螺母-类型112.ASME B18.2.4.2M-2005版米制六角螺母-类型213.ASME B18.2.4.3M-79(R2001) 米制六角开槽螺母14.ASME B18.2.4.4M-82(R1999) 米制六角法兰面螺母15.ASME B18.2.4.5M-79(R1998) 米制六角形压紧螺母16.ASME B18.2.4.6M-79(R1998) 米制厚六角形螺母17.ASME B18.5-90(R1998)版圆头螺栓(英制系列)18.ASMEB18.5.2.1M-96 (R2001) 米制圆头短方颈螺栓19.ASME B18.5.2.2M-82(R2000) 米制圆头方颈螺栓20.ASME B18.5.2.3M-90(R1998) 大圆头方颈螺栓21.ASME B18.9-1996版农用防松螺栓(英制系列)22.ASME B18.10-82(R2000)版轨道螺栓和螺母23.ASME B18.13a-1998版螺钉和垫圈组件-24.ASME B18.16.1M-79(R2001) 有效力矩型钢质米制六角锁紧螺母和六角法兰面锁紧螺母的力学和性能要求25.ASME B18.16.2M-79(R2001) 有效力矩型钢质米制六角锁紧螺母和六角法兰面锁紧螺母的扭转拉伸试验要求ASME B18.29.1-1993(R2002)版螺旋盘绕螺纹内插件—自由旋入和螺钉锁紧(英制系列)B31.4-2006版液态烃和其他液体管线输送系统ASME B31.8-2005 输气和配气管道系统ASME B31.8S-2004版输气管道的管理系统完整性ASME B31.9-2004版建筑管道规范ASME B36.10M-2004版焊接和无缝轧制钢管ASME B36.19M-2004版不锈钢钢管ASME B46.1-2002版表面结构特征(表面粗糙度、波浪度及形态)ASME B73.1-2001版化学流程用卧式轴向吸入离心泵技术规范ASME B73.2M-1991(R1999)版化学过程用立式管道离心泵技术规范ASME B107.46-1998版螺柱、螺钉和管道提取器:安全要求ASME BPVC-I-2004 ASME锅炉及压力容器规范第Ⅰ卷动力锅炉建造规范2005年版ASME BPVC-II A-2004 ASME锅炉及压力容器规范第Ⅱ卷A篇铁基材料2005年版ASME BPVC-II B-2004 ASME锅炉及压力容器规范第Ⅱ卷B篇非铁基材料2005年版ASME BPVC-II C-2004 ASME锅炉及压力容器规范第Ⅱ卷C篇焊条焊丝及填充材料05版ASME BPVC-II D-2004 ASME锅炉及压力容器规范第Ⅱ卷D篇材料性能2005年版ASME BPVC-IV-2004 ASME锅炉及压力容器规范第Ⅳ卷采暖锅炉建造规范2005年版ASME BPVC-V-2004 ASME锅炉及压力容器规范第Ⅴ卷无损检测2005年版ASME BPVC-VI-2004 ASME锅炉及压力容器规范第Ⅵ卷采暖锅炉维护和运行推荐规则2005年版ASME BPVC-VII-2004 ASME锅炉及压力容器规范第Ⅶ卷动力锅炉维护推荐导则2005年版ASME BPVC-VIII-1-2004 ASME锅炉及压力容器规范第Ⅷ卷1压力容器建造规则2005年版ASME BPVC-VIII-2-2004 ASME锅炉及压力容器规范第Ⅷ卷2压力容器另一规则2005年版ASME BPVC-VIII-3-2004 ASME锅炉及压力容器规范第Ⅷ卷3高压容器建造另一规则2005年版ASME BPVC-IX-2004 ASME锅炉及压力容器规范第Ⅸ卷焊接及钎焊评定标准2005年版ASME BPVC-XII-2004 ASME锅炉及压力容器规范第Ⅻ卷运输罐的建造和连续使用规则2005年版ASTM钢管标准1& j: Z) J)A1000-99 弹簧专用碳钢和合金钢钢丝规范A1001-99 大型材高强度钢铸件规范A1002-99 镍铝类合金铸件规范A100-93(2000) 硅铁A101-93(2000) 铬铁A102-93(2000) 钒铁合金A105/A105M-01 管系部件用碳素钢锻件A106-999e1 高温用无缝碳素钢管A108-99 优质冷加工碳素钢棒材技术规范A109/A109M-00e1 冷轧碳素钢带技术规范A111-99a 电话和电报线路用镀锌"铁"丝规格A116-00 镀锌钢丝编织栏栅网A121-99 镀锌刺钢丝A123/A123M-00 钢铁产品的锌镀层(热浸镀锌)技术规范A125-96 热处理螺旋形钢弹簧A126-95(2001) 阀门、法兰和管配件用灰铁铸件A128/A128M-93(1998) 钢铸件,奥氏体锰A131/A131M-94 海船用结构钢A132-89(2000) 钼铁合金A134-96 电熔(电弧)焊钢管(NPS为16英寸和16英寸以上)A135-01 电阻焊钢管A139-00 电熔(电弧)焊钢管(4英寸以上的)A143-74(1999) 热浸镀锌结构钢制品防脆裂措施和探测脆裂的程序A146-64(2000) 氧化钼制品A148/A148M-01 结构用高强度钢铸件A153/A153M-00 钢铁制金属构件上镀锌层(热浸)A159-83(2001) 汽车用灰铁铸件A167-99 不锈钢和耐热铬镍钢板、薄板及带材A176-99 不锈钢和耐热铬钢板、薄板及带材A178/A178M-95(2000) 电阻焊接碳素钢钢管及碳锰钢锅炉和过热器管的技术规范A179/A179M-90a(1996)e1 热交换器和冷凝器用无缝冷拉低碳钢管A181/A181M-01 普通锻制碳素钢管的规格A182/A182M-01 高温设备用锻制或轧制的合金钢管法兰、锻制管件、阀门及零件A183-98 钢轨用碳素钢螺栓和螺母A184/A184M-01 混凝土加筋用变形钢筋编织网A185-97 钢筋混凝土用焊接钢丝结构A1-00 碳素钢丁字轨A192/A192M-91(1996)e1 高压用无缝碳素钢锅炉管A193/A193M-01 高温设备用合金钢和不锈钢螺栓材料A194/A194M-01 高温和高压设备用碳素钢与合金钢螺栓和螺母的规格A197/A197M-00 化铁炉用可锻铸铁A20/A20M-01 压力容器用钢板材通用要求A202/A202M-93(1999) 压力容器用铬锰硅合金钢板A203/A203M-97 压力容器用镍合金钢板A204/A204M-93(1999) 压力容器用钼合金钢板A209/A209M-98 锅炉和过热器用无缝碳钼合金钢管A210/A210M-96 锅炉和过热器用无缝中碳素管A213/A213M-01 无缝铁素体和奥氏体合金钢锅炉、过热器和换热器管A214/A214M-96 热交换器与冷凝器用电阻焊接碳素钢管A216/A216M-93(1998) 高温下使用的适合于熔焊的碳素钢铸件规格A217/A217M-01 适合高温受压零件用合金钢和马氏体不锈钢铸件A21-94(1999) 铁路用未经热处理和经热处理的碳素钢轴A220/A220M-99 珠光体可锻铁A225/A225M-93(1999) 压力容器用锰矾镍合金钢板A227/A227M-99 机械弹簧用冷拉钢丝A228/A228M-00 乐器用优质弹簧钢丝A229/A229M-99 机械弹簧用油回火的钢丝A230/A230M-99 阀门用油回火优质碳素钢弹簧丝A231/A231M-96 铬钒合金钢弹簧丝A232/A232M-99 阀门用优质铬钒合金钢弹簧丝A234/A234M-00a 中温与高温下使用的锻制碳素钢及合金钢管配件A239-95(1999) 用普力斯试验法(硫酸铜浸蚀)确定铁或钢制品上镀锌层最薄点的测试方法A240/A240M-01 压力容器用耐热铬及铬镍不锈钢板、薄板及带材A242/A242M-00a 高强度低合金结构钢A247-67(1998) 铁铸件中石墨显微结构评定试验方法A249/A249M-01 锅炉、过热器、换热器和冷凝器用焊接奥氏体钢管A250/A250M-95(2001) 锅炉和过热器用电阻焊铁素体合金钢管A252-98e1 焊接钢和无缝钢管桩A254-97 铜焊钢管规格A255-99 测定钢淬透性用末端淬火试验的标准试验方法A262-98 奥氏体不锈钢晶间浸蚀敏感性的检测A263-94a(1999) 耐腐蚀铬钢包覆板材,薄板材及带材技术规范A264-94a(1999) 包覆的不锈铬镍钢板,薄板及带材规格A265-94a(1999) 镍和镍基合金包覆钢板规格A266/A266M-99 压力容器部件用碳素钢锻件规格A268/A268M-01 一般设备用无缝和焊接铁素体与马氏体不锈钢管A269-01 一般设备用无缝和焊接奥氏体不锈钢管A27/A27M-95(2000) 通用碳素钢铸件A270-01 卫生设施用无缝钢和焊接奥氏体不锈钢管A275/A275M-98 钢锻件的磁粉检查试验方法A276-00a 不锈钢棒材和型材A278-93 适用于650F容压部件用灰铸铁件的技术规范A283/A283M-00 低和中等抗拉强度碳素钢板A285/A285M-90(2001) 压力容器用低和中等抗拉强度的碳素钢板A288-91(1998) 涡轮发电机磁性定位环用碳素钢和合金钢锻件A289/A289M-97 发电机非磁性定位环用合金钢锻件的技术规范A29/A29M-99e1 热锻及冷加工碳素钢和合金钢棒A2-90(1997) 普通型,带槽和防护型碳素工字钢轨A290-95(1999) 减速器环用碳素钢和合金钢锻件A291-95(1999) 减速器小齿轮、齿轮和心轴用碳素钢和合金钢锻件A295-98 高碳耐磨轴承钢技术规范A297/A297M-97(1998) 一般用耐热铬铁与镍铬铁合金钢铸件规格A299/A299M-97e1 压力容器用锰硅碳钢板A302/A302M-97e1 压力容器用锰钼和锰钼镍合金钢板A304-96 有末端淬火淬透性要求的合金钢棒材的技术规范A307-00 抗拉强度为60000psi的碳素钢螺栓和螺柱的技术规范A308-99 经热浸处理镀有铅锡合金的薄板材的技术规范A309-94a(1999) 用三点试验法测定长镀锌薄钢板镀层的重量成分的试验方法A311/A311M-95(2000) 有机械性能要求的消除应力的冷拉碳素钢棒A312/A312M-00c 无缝和焊接奥氏体不锈钢管A313/A313M-98 不锈钢弹簧丝技术规范A314-97 锻造用不锈及耐热钢坯及钢棒规格A31-00 钢铆钉及铆钉和压力容器用棒材A319-71(2001) 高温无压部件用灰铁铸件A320/A320M-01 低温用合金钢螺栓材料规格A321-90(1995)e1 经淬火和回火的碳素钢棒A322-91(1996) 合金钢棒材.级别A323-93(2000) 硼铁规格A324-73(2000) 钛铁合金A325-00 经热处理最小抗拉强度为120/105ksi的钢结构螺栓A325M-00 结构钢连接件用高强度螺栓(米制)A327-91(1997) 铸铁冲击试验方法A327M-91(1997) 铸铁冲击试验方法(米制)A328/A328M-00 薄钢板桩A331-95(2000) 冷加工合金钢棒A333/A333M-99 低温用无缝与焊接钢管规格A334/A334M-99 低温设备用无缝与焊接碳素和合金钢管A335/A335M-01 高温用无缝铁素体合金钢管A336/A336M-99e1 压力与高温部件用合金钢锻件规格A338-84(1998) 铁路,船舶和其他重型装备在温度达到650华氏度(345摄氏度)时使用的可锻铸铁法兰,管件和阀门零件ASTM钢管标准2A34/A34M-96 磁性材料的抽样和采购试验的标准惯例A340-99a 有关磁性试验用符号和定义的术语A341/A341M-00 用直流磁导计和冲击试验法测定材料的直流磁性能的试验方法A342/A342M-99 磁铁材料导磁率的试验方法A343-97 在电力频率下用瓦特计-安培计-伏特计法(100-1000赫兹)和25 厘米艾普斯亭(EPSTEIN) 机架测定材料的交流电磁性能的试验方法A345-98 磁设备用平轧电炉钢A348/A348M-00 用瓦特计--安培计--伏特计法(100-10000赫兹)和25厘米艾普斯亭框测定材料的交流磁性能的试验方法A350/A350M-00c 要求进行缺口韧性试验的管道部件用碳素钢与低合金钢锻件技术规范A351/A351M-00 容压零件用奥氏体及奥氏体铁素体铸铁的技术规范A352/A352M-93(1998) 低温受压零件用铁素体和马氏体钢铸件规格A353/A353M-93(1999) 压力容器用经二次正火及回火处理的含9%镍的合金钢板A354-01 淬火与回火合金钢螺栓,双头螺栓及其他外螺纹紧固件规格A355-89(2000) 渗氮用合金钢棒A356/A356M-98e1 蒸汽轮机用厚壁碳素钢、低合金钢和不锈钢铸件A358/A358M-01 高温用电熔焊奥氏体铬镍合金钢管A36/A36M-00a 碳素结构钢技术规范A363-98 地面架空线用镀锌钢丝绳A367-60(1999) 铸铁的激冷试验方法A368-95a(2000) 不锈钢和耐热钢丝绳的标准A369/A369M-01 高温用锻制和镗孔碳素钢管和铁素体合金钢管A370-97a 钢制品机械测试的标准试验方法和定义A372/A372M-99 薄壁压力容器用碳素钢及合金钢锻件A376/A376M-01 高温中心电站用无缝奥氏钢管A377-99 球墨铸铁压力管规范索引A380-99e1 不锈钢零件、设备和系统的清洗和除垢A381-96 高压输送用金属弧焊钢管A384-76(1996) 防止钢组件热浸镀锌时翘曲和扭曲用安全保护A385-00 提供高质量镀锌覆层(热浸)A3-01 低、中、高碳素钢鱼尾(连接)板A387/A387M-99e1 压力容器用铬钼合金钢板A388/A388M-95(2000)e1 重型钢锻件超声波检测A389/A389M-93(1998) 适合高温受压部件用经特殊热处理的合金钢铸件规格A390-95(2001) 饲养家禽用镀锌钢丝栏栅网(六角形和直线形)A391/A391M-98 80号合金钢链条A392-96 镀锌钢丝链环栏栅网A394-00 传动塔架用镀锌和裸露钢螺栓A395/A395M-99 高温用铁素体球墨铸铁受压铸件A400-69(2000) 钢棒的成分及机械性能选择指南A401/A401M-98 铬硅合金钢丝A403/A403M-00b 锻制奥氏体不锈钢管配件A407-93(1998) 盘簧用冷拉钢丝A409/A409M-01 腐蚀场所或高温下使用的焊接大口径奥氏体钢管A411-98 镀锌低碳钢铠装线A413/A413M-00 碳素钢链A414/A414M-00 压力容器用碳素薄钢板A416/A416M-99 预应力混凝土用无涂层七股钢铰线A417-93(1998) 之字型、方型和正弦型装垫弹簧元件用冷拉钢丝A418-99 涡轮机及发电机钢转子锻件的超声波检查方法A420/A420M-00b 低温下用锻制碳素钢和合金钢管配件A421/A421M-98a 预应力混凝土用无涂层消除应力钢丝的技术规范A423/A423M-95(2000) 无缝和电焊低合金钢管A424-00 搪瓷用钢薄板A426-92(1997) 高温用离心铸造的铁素体合金钢管A427-74(1996)e1 冷轧和热轧用锻制合金钢辊A428/A428M-01 钢铁制品上铝覆层重量的测试方法A434-90a(2000) 热轧与冷精轧经回火及淬火的合金钢棒A435/A435M-90(2001) 钢板的直射束纵向超声波检验A436-84(1997)e1 奥氏体灰口铁铸件A437/A437M-01 高温用经特殊处理的涡轮型合金钢螺栓材料A438-80(1997) 灰铸铁横向弯曲试验A439-83(1999) 奥氏体可锻铸铁铸件A447/A447M-93(1998) 高温用镍铬铁合金钢铸件(25-12级)A449-00 经淬火和回火的钢螺栓和螺柱A450/A450M-96a 碳素钢管、铁素体合金钢管及奥氏体合金钢管A451-93(1997) 高温用离心铸造的奥氏体钢管A453/A453M-00 具有同奥氏体钢相类似的膨胀系数、屈服强度为50-120Ksi(345-827MPa)的耐高温螺栓材料A455/A455M-90(2001) 压力容器用高强度碳锰钢板A456/A456M-99 大型曲轴锻件的磁粉检查A459-97 镀锌平轧扁钢铠装带A460-94(1999) 包铜钢丝绳标准A463/A463M-00 热浸镀铝薄钢板A466/A466M-98 非焊接碳素钢链A467/A467M-98 机器链和盘旋链A469-94a(1999) 用于发电机转子的真空处理钢锻件A470-01 涡轮机转子和轴用经真空处理的碳素钢和合金锻件A471-94(1999) 涡轮转子转盘和转轮用真空处理合金钢锻件技术规范A472-98 蒸汽涡轮机轴及转子锻件的热稳定性的试验方法A473-01 不锈和耐热钢锻件A474-98 包铝钢丝绳标准A475-98 镀锌钢丝绳A476/A476M-00 造纸厂干燥辊用球墨可锻铸铁件A478-97 铬镍不锈钢和耐热钢制编织钢丝A479/A479M-00 锅炉及压力容器用不锈钢和耐热钢棒与型材A47/A47M-99 铁素体可锻铁铸件A480/A480M-01 扁平轧制耐热不锈钢厚板材、薄板材和带材通用要求A481-94(2000) 金属铬A482-93(2000) 铬铁硅A483-64(2000) 硅锰合金A484/A484M-00 不锈及耐热锻钢棒,钢坯及锻件的规格A485-00 高淬透性耐磨轴承钢的技术规范A487/A487M-93(1998) 受压钢铸件A488/A488M-01 钢铸件焊接规程和工作人员的合格鉴定A48-94ae1 灰铁铸件A489-00 碳素钢吊耳A490-00 最小拉伸强度为150千磅/平方英寸热处理钢结构螺栓A491-96 镀铝钢链环栏栅结构A492-95(2000) 耐热不锈钢丝绳A493-95(2000) 冷镦和冷锻不锈钢和耐热钢丝A494/A494M-00 镍和镍合金铸件A495-94(2000) 硅钙合金钢技术规范A496-97ae1 钢筋混凝土用变形钢丝A497-99e1 钢筋混凝土用焊接变形钢丝网A498-98 无缝与焊接碳素钢,铁素体钢与奥氏体钢制有整体散热片的换热器钢管A49-01 经热处理的碳素钢鱼尾(连接)板,微合金鱼尾板及锻制碳素钢异型鱼尾板A499-89(1997)e1 轧制丁字钢轨用的碳素钢棒材及型材的技术规范A500-01 圆形与异型焊接与无缝碳素钢结构管A501-01 热成型焊接与无缝碳素钢结构管A503/A503M-01 锻制大型曲轴的超声波检验A504-93(1999) 锻制碳素钢轮A505-00 热轧和冷轧合金钢薄板和带材A506-00 正规质量及优质结构的热轧和冷轧合金钢薄板与带材A507-00 优质拉拔,热轧和冷轧合金钢薄板与带材A508/A508M-95(1999) 压力容器用经回火和淬火真空处理的碳素钢与合金钢锻件A510-00 碳素钢盘条和粗圆钢丝通用要求A510M-00 碳素钢盘条和粗圆钢丝(米制)A511-96 无缝不锈钢机械管A512-96 冷拉对缝焊碳素钢机械管A513-00 电阻焊碳素钢与合金钢机械钢管A514/A514M-00a 焊接用经回火与淬火的高屈服强度合金钢板A515/A515M-92(1997) 中温及高温压力容器用碳素钢板A516/A516M-90(2001) 中温及低温压力容器用碳素钢板A517/A517M-93(1999) 压力容器用经回火与淬火的高强度合金钢板A518/A518M-99 耐蚀高硅铁铸件A519-96 无缝碳素钢与合金钢机械管A521-96 一般工业用闭式模钢锻件A522/A522M-95b(2000) 低温用锻制或轧制含镍8%和9%的合金钢法兰,配件,阀门和零件规格A523-96 高压管型电缆线路用平端无缝与电阻焊钢管A524-96 常温和低温用无缝碳素钢管A529/A529M-00 高强度碳锰结构钢质量A530/A530M-99e1 特种碳素钢和合金钢管A531/A531M-91(1996) 涡轮发电机钢定位环的超声波检验A532/A532M-93a(1999)e1 耐磨铸铁A533/A533M-93(1999) 压力容器用经回火和淬火的锰钼及锰钼镍合金钢板A534-94 用于耐摩擦轴承的渗碳钢A536-84(1999)e1 球墨铸铁件A537/A537M-95(2000) 压力容器用经热处理的碳锰硅钢板A53/A53M-01 无镀层热浸的、镀锌的、焊接的及无缝钢管的技术规范A539-99 天然气和燃料油管线用电阻焊钢盘管A540/A540M-00 特殊用途的合金钢螺栓材料A541/A541M-95(1999) 压力容器部件用经淬火和回火的碳素钢及合金钢锻件A542/A542M-99e1 压力容器用经回火和淬火的铬钼、铬钼钒及铬钼钒钛硼合金钢板A543/A543M-93(1999) 压力容器用经回火和淬火的镍铬钼合金钢板A550-78(2000) 铌铁合金A551-94(1999) 钢轮箍A553/A553M-95(2000) 压力容器用经回火和淬火的含8%及9%镍的合金钢板A554-98e1 焊接的无缝钢机械管A555/A555M-97 耐热不锈钢丝和盘条的通用要求A556/A556M-96 无缝冷拉碳素钢给水加热器管A560/A560M-93(1998) 铬镍合金铸件A561-71(1999) 工具钢棒的宏观刻蚀试验A562/A562M-90(2001) 搪玻璃或扩散金属镀层的压力容器用锰钛合金碳素钢板A563-00 碳合金钢螺母ASTM钢管标准3A563M-00 碳素钢及合金钢螺母技术规范(米制)A564/A564M-01 热轧及冷精轧时效硬化处理过的不锈钢棒材和型材技术规范A565-97 高温用马氏体不锈钢棒,锻件和锻制坯规格A568/A568M-00b 热轧及冷轧高强度低合金碳素钢薄板A571-84(1997) 适用于低温压力容器零件的奥氏体球墨铸铁件A571M-84(1997) 适用于低温压力容器零件的奥氏体球墨铸铁件(米制)A572/A572M-00a 高强度低合金钴钒结构钢技术规范A573/A573M-00a 增强韧性的结构碳素钢板A574-00 合金钢内六角螺钉A574M-00 合金钢内六角螺钉(米制)A575-96 商品级碳素钢棒(M级)A576-90b(2000) 特级热轧碳素钢棒A577/A577M-90(2001) 钢板的超声角波束检验A578/A578M-96(2001) 特殊设备用的普通钢板和包覆钢板的直波束超声探伤检验A579-99 超高强度合金钢锻件A580/A580M-98 耐热不锈钢丝A581/A581M-95b(2000) 高速切削用耐热不锈钢丝和盘条A582/A582M-95b(2000) 热轧或冷精轧的高速切削不锈及耐热钢棒A583-93(1999) 铁路用铸钢轮A584-97 镀铝钢丝编织栅栏网A585-97 镀铝刺钢丝A586-98 镀锌平行和螺旋形钢丝绳A587-96 化学工业用电阻焊低碳钢管A588/A588M-00a 高强度低合金结构钢4英寸(100mm)厚屈服点最小为50ksi(345MPa) A589-96 水井用无缝和焊接碳素钢管A591/A591M-98 薄镀层电解镀锌薄钢板A592/A592M-89(1999) 压力容器用经回火和淬火的高强度低合金钢锻制附件和零件A595-98 结构用圆锥形低碳钢管A596/A596M-95(1999) 用环形试验法和冲击法测定材料的直流磁性能的试验方法A597-87(1999) 铸造工具钢A598-92(1997) 磁放大器磁芯的磁性能测试法A599/A599M-99 锡制品,电解镀锡的冷滚轧薄板规范A6/A6M-01 轧制结构钢板材、型材和薄板桩通用技术要求A600-92a(1999) 高速工具钢A601-96(2000) 电解金属锰A602-94(1998) 汽车用可锻铸铁件A603-98 镀锌结构钢丝绳A604-93(1998) 自耗电极再溶化钢棒与钢坯的宏观腐蚀试验方法A606-98 改进防大气腐蚀性的热轧和冷轧高强度低合金钢薄板和带材A608-91a(1998) 高温受压离心铸造的铁铬镍高合金钢管A609/A609M-91(1997) 碳素钢,低合金钢和马氏体不锈钢铸件的超声波检测A610-79(2000) 尺寸测量用铁合金的取样和试验A611-00 冷轧优质碳素结构钢薄板A612/A612M-00 中温和低温压力容器用高强度碳素钢板A615/A615M-01a 钢筋混凝土配筋用变形和光面坯钢筋A618-01 热成型焊接与无缝高强度低合金结构钢管系A623-00 锡轧制产品A623M-00 镀锡薄钢板轧制品通用要求(米制)A624/A624M-98 锡辊轧制品.单压延电解马口铁A625/625M-98 一次轧制原钢板(未镀)和镀锡薄钢板轧制产品技术规范A626/A626M-98 二次压延电解镀锡厚钢板轧制品技术规范A626/A626M-98 锡轧制品.二次压延的电解镀锡板(米制)A627-95 安全设备用均质不易加工的钢棒A629-88(1994)e1 安全设备用不易加工的扁钢棒和型材A630-98 热浸电解镀锡板镀锡层重量测定的方法A632-01 通用无缝和焊接奥氏体不锈钢管(小直径)A633/A633M-00a 正火的高强度低合金结构钢A635/A635M-00 热轧碳素钢薄板,带材和重型粗盘条规格A636-76(2000) 氧化镍烧结块A638/A638M-00 高温用沉积硬化铁基超级合金棒,锻件及锻坯料A640-97 8字型缆吊架用镀锌钢丝绳A641/A641M-98 镀锌(电镀)碳素钢丝技术规范A644-98 铁铸件的相关术语A645/A645M-99a 压力容器用经特殊热处理的5%镍合金钢板A646-95(1999) 飞机及航空器锻件用优质合金钢大方坯及坯段A648-95(2000) 预应力混凝土管用冷拉钢丝A649/A649M-99 波纹纸机械用锻制钢辊规格A650/A650M-98 二次压延的锡轧黑板材A653/A653M-00 热浸处理的镀锌铁合金或镀锌合金薄钢板的标准规范A656/A656M-00a 具有改良可模锻性的高强度低合金热轧结构钢板A657/A657M-98a 一次和二次压延电解镀铬黑钢板轧制品技术规范A65-01 钢轨道钉A659/A659M-97 商业级热轧碳素钢薄板和带材(最大含碳量为0.16%-0.25%)A660-96 高温用离心铸造碳素钢管A662/A662M-99 中温和低温压力容器用锰碳钢板规格A663/A663M-89(2000) 商品级碳素钢棒的机械特性A664-99 在ASTM规范中对电工钢和层压钢级别的识别A666-00 退火或冷加工的奥氏体不锈钢薄板、带材、中厚板和扁棒A667/A667M-87(1998) 离心铸造的双金属(灰口及白口铸铁)圆柱体A668/A668M-96e1 一般工业用碳素钢和合金钢锻件A66-01 钢质螺旋道钉A671-96 常温和较低温用电熔焊钢管A672-96 中温高压用电熔焊钢管A673/A673M-95 结构钢冲击试验的取样程序A674-00 水或其它液体用球墨铸铁管的聚乙烯包装A675/A675M-90a(2000) 专用热轧碳素钢棒的机械特性A677/A677M-99 全处理型无取向电工钢A678/A678M-00a 结构用经回火和淬火的高强度低合金碳素钢板规格A679/A679M-00 硬(冷)拉高抗拉强度钢丝A67-00 热加工低碳钢和高碳钢垫板技术规范A681-94(1999) 合金工具钢A682/A682M-00 弹簧用冷轧高碳钢带材A683/A683M-99 半处理型无取向电工钢A684/A684M-99 冷轧高碳钢带材A686-92(1999) 碳素工具钢A688/A688M-01 焊接的奥氏体不锈钢给水加热器管A689-97 弹簧用碳素钢及合金钢棒A690/A690M-00a 在海洋环境中使用的高强度低合金工字形钢桩和薄板桩规格A691-98 高温下高压装置用电熔焊碳素钢和合金钢管A693-93(1999) 沉淀硬化耐热不锈钢板、薄板和带材A694/A694M-00 高压传输设备用碳素钢及合金钢管法兰、配件、阀门及零件用锻件A695-90b(1995)e1 流体动力设备专用热锻碳素钢棒A696-90a(2000) 压力管道部件专用热锻或冷精轧碳素钢棒A697-98 用伏特计、安培计和瓦特计法测定迭层铁芯样品的交流磁特性的试验方法A698/A698M-92(1997)e1 在弱交流磁场中磁屏蔽效率的试验方法A700-99e1 钢制品国内装运的包装、标记和装载方法A701-96(2000) 硅锰铁A702-89(2000) 热锻钢栅栏柱和组件A703/A703M-01 受压部件用钢铸件A704/A704M-96 混凝土加筋用焊接普通钢棒或杆的光面钢筋或钢筋网A705/A705M-95(2000) 时效硬化的不锈和耐热钢锻件A706/A706M-01 混凝土配筋用变形低合金光面无节钢筋A707/A707M-00a 低温设备用锻制碳素钢和合金钢法兰A709/A709M-01 桥梁用结构钢A710/A710M-00 低碳时效硬化的镍铜铬钼铌合金钢A711-92(1996)e1 钢锻件坯料A712-97 软磁性合金电阻率的测试方法A713-93(1998) 热处理部件用高碳弹簧钢丝A714-99 高强度低合金焊接钢管和无缝钢管A716-99 球墨铸铁涵洞管A717/A717M-95 单片样品表面绝缘电阻率的试验方法A719-97 磁性材料的叠装系数的试验方法A720-97 无取向电工钢延展性的试验方法A721-97 取向的电工钢的延展性试验方法A722/A722M-98 预应力混凝土用无涂覆的高强度钢筋A723/A723M-94(1999) 高强度压力元件用合金钢锻件A724/A724M-99 叠层焊接的压力容器用经淬火及回火的碳素钢压力容器板A726-00 半成品型冷轧磁性迭片级钢A727/A727M-00 具有固定切口韧性的管道部件用碳素钢锻件A729-93(1999) 货物运输及电气铁路用热处理合金钢轴A730-93(1999) 铁路用碳素钢及合金钢锻件A732/A732M-98 一般设备用熔模铸造碳素低合金钢及高强度加温钴合金钢铸件A733-99 焊接及无缝碳素钢和奥氏体不锈钢管接头A734/A734M-87a(1997) 经淬火和回火的合金钢与高强度低合金钢压力容器板A735/A735M-99 中温和低温用低碳锰钼钶合金钢压力容器板A736/A736M-88(2000) 低碳时效硬化的镍铜铬钼铌和镍铜锰钼铌合金钢压力容器板A737/A737M-99 高强度低合金钢压力容器板A738/A738M-00 中温和低温设备用经热处理的碳锰硅钢压力容器板A739-90a(2000) 升温或/和加压部件用热轧合金钢棒A740-98 钢丝网(编织或焊接电镀钢丝网)A741-98 公路护栏用镀锌钢丝绳和配件A742/A742M-98 波纹钢管用预涂聚合物和金属涂覆钢薄板A743/A743M-98ae1 一般用耐腐蚀铬铁及镍铬铁合金铸件A744/A744M-00 严酷条件下使用的耐腐蚀镍铬铁合金铸件A745/A745M-94(1999) 奥氏体钢锻件的超声波检验A746-99 排污管用球墨铸铁A747/A747M-99 沉淀硬化不锈钢铸件A748/A748M-87(1998) 压力容器用静态铸造的激冷白口铁-灰口铁双金属轧辊A749/A749M-97 热轧碳素钢和高强度低合金钢带材通用要求A74-98 铸铁污水管及配件的技术规范A750-77(1994)e1 阻挡区域用钢制通风格栅A751-96 钢制品化学分析的实验方法、操作和术语A752-93(1998) 合金钢条和粗圆钢丝A752M-93(1998) 合金钢条和粗圆钢丝(米制)A753-97 镍铁软磁合金A754/A754M-96(2000) X射线荧光涂层厚度的试验方法A755/A755M-99 外露建筑材料用热浸涂覆和用卷涂工艺预涂的钢薄板A756-94(2001) 耐磨不锈轴承钢A757/A757M-00 低温下承压设备及其它设备用铁素体和马氏体钢铸件A758/A758M-00 具有改进的切口韧性的对缝焊锻制碳素钢管配件A759-00 起重机用碳钢轨条。

ASTM A335标准解释

ASTM A335标准解释

订货须知
6、长度(分定尺和不定尺) 7、端部加工。 8、选用要求(水压及允许重量偏差)。 9、要求的试验报告(见A530)。 10、标准号。 11特殊要求或任何选用的补充要求。
一般要求
按本标准提供的材料,除在这里另有规定 外,应符合现行版本的A530/ A530M标 准的适用要求。
材料及制造
一、公称钢管可为热精整或冷拔的,并经过标准所要求 的最终热处理。 二、P2、P12级钢,该两个级别钢应采用粗晶熔化工艺制 造,若在晶粒度或脱氧工艺上有特殊 可要求限定时, 应由采购主和钢厂商定。 三、热处理 1、除P5C、P23、P91、P92、P122和P911级钢以及按规 定外,所有级别的公称管应经再次加热,并以完全退 火,等温退火或正火加回火状态下供货。如以正火加 回火状态下供货,对P5、P5B、P9、P21及P22级钢的 最低回火温度应是675℃对于P1、P2、P11、P12及P15 级钢的最低回火温度应是650 ℃
A335标准解释
标准名:
高温用无缝铁素体合金公称管
ASTM-335 或SA-355M Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service
注释
1、美国材料与试验学会标准。 2、属于锅炉和压力容器规范。 3、受A01 <<钢、不锈钢和相关合金>>权 限管辖,并由其委员会直接负责。 4、年号为修改批准和出版年,之后为本版 的更改次。
无损检测试验
4)、引用的漏磁通检测方法能够检测出重大的纵向或环向 取向的缺陷 并对其进行定位,应注意到应该采用不同 的测试技术来检测不同取向的缺陷。 5)、水压试验能够发现其尺寸能使试验液体透过管壁的缺 陷,它可通过目测或液体的压降而被发现,但这种试 验不能测出极紧密的穿壁缺陷或虽已深入管壁但当未 完全穿透管壁的缺陷 。 6)、当采购方有意于查明能被检测出的缺陷性质时,对于 这些检验方法在此事项上的特殊应用应和钢管厂方进 一步讨论。

中文版A335P9生产流程规范

中文版A335P9生产流程规范

制造流程规范
ASTM A335 P9高温用无缝铁素体合金钢管
英制外径: DN150
产品:168.3(外径)×7.11(壁厚)P9 带坡口
1.范围
本文规定了天津钢管集团生产ASTM A335 P9高温用铁素体合金钢管的制造,测试和供
应的基本要求。

2.引用标准
ASTM A335 高温用铁素体合金钢管的标准规范ASTM A999合金钢和不锈钢公称管通用技术要求ASTM E213金属管超声波检查操作规程
ASTM E309 钢管制品采用磁饱和的涡流检测规程ASME B16.25 对焊端部
EN10204 金属产品检验文件的类型
ASTM E92 金属材料维氏硬度的标准测试方法
ASTM E18 金属材料洛氏硬度的标准测试方法
ISO6508 金属材料洛氏硬度测试
ISO6507 金属材料维氏硬度测试。

厚壁耐热钢A335-P22材质钢管焊接工艺新

厚壁耐热钢A335-P22材质钢管焊接工艺新

厚壁耐热钢A335-P22材质钢管焊接工艺技术开发总结立项单位:吉化北建第八分公司编制人:董鑫2013年08月19日厚壁耐热钢A335-P22材质钢管焊接工艺技术开发总结1、开发的意义A335-P22(化学成分为2.25Cr-1Mo)是ASME规范的表示方法,在国内表示为12Cr2Mo,属于高温铁素体合金耐热钢。

特点是工艺性能良好,对热处理的加热温度不太敏感,焊接性能也较好,具有良好的塑性,具有抗高温、难腐蚀。

最大的缺点在焊接工艺中具有淬硬性和再热裂纹倾向。

目前,广泛应用于电力、石化行业的超高压蒸汽管道生产工艺中。

以甲醇分厂甲醇反应器R-52002抢修项目为例,对A335-P22材质的合金耐热钢焊接工艺进行分析,以指导现场焊接施工。

2、工程概况本项目为甲醇反应器R52002内中心管更换金属波纹膨胀节项目,由于金属波纹膨胀节外径φ780mm大于人孔尺寸DN600mm,所以将反应器下侧材质为A335-P22材质的合金耐热钢、φ1000*50mm直管段与下口变径连接处切开,待金属波纹膨胀节运送并安装完毕后进行恢复焊接。

本次焊接对象即为材质为A335-P22材质的合金耐热钢、φ1000*50mm直管段与下口变径之间的焊接,其设计压力为9.5MPa,操作压力为8.1MPa,设计温度为270o C,操作最高温度为180o C。

由于本次抢修项目具有施工工期短、施工难度大、技术、质量要求严格等特点,且A335-P22材质的合金耐热钢、φ1000*50mm的焊接在我分公司尚属首次,填补了在施工工艺方面的空白,为今后施工厚壁合金耐热钢管焊接提供了技术储备。

现将经验总结出来,使之能形成一套工法,并使之能在我公司中得到推广和应用。

3、焊接性分析A335-P22无缝钢管在注明标示外,外观与普通的碳钢无缝钢管是一样的,所以在材料的验收、使用及焊接等方面,必须严格执行国家的、行业的相关标准、规范及公司的相关规定,认真核对材料。

耐热钢A335-P22材质在施工现场的焊接

耐热钢A335-P22材质在施工现场的焊接

耐热钢A335-P22材质在施工现场的焊接摘要 A335-P22(化学成分为2.25Cr-1Mo)是ASME规范的表示方法,在国内表示为12Cr2Mo,属于高温铁素体合金耐热钢。

特点是工艺性能良好,对热处理的加热温度不太敏感,焊接性能也较好,具有良好的塑性,具有抗高温、难腐蚀。

最大的缺点在焊接工艺中具有淬硬性和再热裂纹倾向。

目前,广泛应用于电力、石化行业的超高压蒸汽管道生产工艺中。

以天津石化100万吨/年乙烯装置超高压管道为例,对A335-P22材质的合金耐热钢焊接工艺进行分析,以指导现场焊接施工。

关键词耐热钢管道焊接性能焊接工艺1工程概况天津石化100万吨/年乙烯工程100万吨/年乙烯装置,为全国首套大乙烯工程,具有工程量大、施工工期短、施工难度大、技术,质量要求严格等特点。

其超高压蒸汽管道采用A335-P22无缝钢管,设计温度538℃,操作温度520℃,设计压力1 2.8MPa,操作压力11MPa。

超高压蒸汽管道主管线贯穿街区主管廊,分散于热区、压缩区、急冷区、冷区,裂解炉区,共计管道延长米 3.2公里,共计焊口3300多道。

管道规格:Φ21.3*4.78~Φ610*73.025。

焊接工作主要为A335-P22同材质焊接。

耐热钢焊接作业时间、热处理周期长。

高压管道坡口加工、焊接和安装是整个乙烯装置的重点和难点。

2焊接准备工作2.1材料检验A335-P22无缝钢管在注明标示外,外观与普通的碳钢无缝钢管是一样的,所以在材料的验收、入库、保管、发放,必须严格执行国家的、行业的相关标准、规范及公司的相关规定,认真核对材料的质量证明文件。

材料验收、核对材料证明文件需参照表1和表2数值。

必须做到材料实物与材料证明相符合,并做上合格标记。

根据SH3501的要求,对合金钢管道组成件主体的关键合金部分应采用光谱分析等进行复查。

表1 A335-P22无缝钢管的化学成分表2 A335-P22无缝钢管的力学性能2.2焊接材料焊接材料的选择应根据所焊管材的化学成分、力学性能及使用和施焊条件进行综合考虑的,所以焊接材料的合理选用必须慎重。

ASTM A335标准解释解析

ASTM A335标准解释解析

适用范围
1、适合于弯管、卷 边及类似的成形加工 以及熔化焊。可根据设计、工作条件力 学性能及高温特性进行选用。 2、铁素体钢的定义为含Cr小于等于10%的 低、中合金钢。 3、按补充要求进行附加试验时应在订货单 中提出所要求的试验次数, 4、以英寸-磅单位供货,以SI(米)单位订货 需另行提出。
引用标准
成品分析
1、根据采购方要求,钢管厂从每批取两根进行 分析。 2、分析的结果应向采购方或其代表报告。并与 规定的要求相符合。 3、P91钢管的含碳量可偏离规定有-0.01%和 +0.02%。 4、若试验中的一根不合格,则应自同炉同批的 每一个钢坯或每要公称管进行分析,符合要求 的每个钢坯或公称管应可以接受。
A335标准解释
标准名:
高温用无缝铁素体合金公称管
ASTM-335 或SA-355M Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature Service
注释
1、美国材料与试验学会标准。 2、属于锅炉和压力容器规范。 3、受A01 <<钢、不锈钢和相关合金>>权 限管辖,并由其委员会直接负责。 4、年号为修改批准和出版年,之后为本版 的更改次。
化学成份
见表1
工艺质量、表面质量和外观
1、钢管厂应探足够数量的可见表面缺陷进行测定,以保 证对缺陷 的深度做过适当评估,不必查出所有的表面 进行测定,但需保证与下一条的要求相符。 2、当表面缺陷穿透深度越过12.5%公称壁厚或侵犯最小 壁厚时,应认为是有害缺陷,带有这类缺陷的管子应 按下列方法这一处理: 1)、如果剩余厚度仍在规定范围以内,则该类缺陷可以用 砂轮磨去。 2)、焊接修补规定进行返修。 3)、在长度允许范围内,可割去管长中含有缺陷的一截管 段。 4)、拒收。

材料牌号对照

材料牌号对照

P22管线指的是ASME SA-335 Gr.P22(一种用于高温管道的铁素体铬钼钢管)ASME中没有A335 Gr.F11这种材料,因为:
1)ASME材料规范中铁基材料一律是以SA开头的,只有ASTM标准中才会出现A335;
2)F11中的F代表锻制(Forged),而SA-335指的是无缝钢管,其中的等级(Grade或Gr.) 是以P(代表Pipe)开头的,如前面所说的P22。

我想你说的可能是ASME中的SA-336 Gr.F11。

其中SA-336是材料的标准号,Gr.=Grade是材料的等级,一般与材料的化学成份或热处理方法有关。

F11 就是其中的一个等级。

A335指美国标准:SA-335/SA-335M 高温用无缝铁素体合金钢公称管,
GR.指钢的级别,
P11是一种低合金耐热钢,比GR.P12(对应我国的15CrMo)含铬量稍高
我国钢号表示方法
一、我国钢号表示方法概述
二、我国钢号表示方法的分类说明
......
10.不锈钢和耐热钢
①钢号中碳含量以千分之几表示。

例如“2Cr13”钢的平均碳含量为0.2%;若钢中含碳量≤0.03%或≤0.08%者,钢号前分别冠以“00”及“0”表示之,例如
00Cr17Ni14Mo2、0Cr18 Ni9等。

②对钢中主要合金元素以百分之几表示,而钛、铌、锆、氮……等则按上述合金结构钢对微合金元素的表示方法标出。

P91中文翻译版(ASTM A335)

P91中文翻译版(ASTM A335)

0.010 0.20-0.50
Cr … 0.50-0.81 4.00-6.00 4.00-6.00 4.00-6.00 8.00-10.00 1.00-1.50 0.80-1.25 … 2.65-3.35 1.90-2.60 1.90-2.60
8.00-9.50
Mo
其它
0.44-0.65

0.44-0.65
3.1.5.2 外径和公称壁厚
3.1.5.3 外径和最小壁厚
3.1.5.4 内径和公称壁厚
3.1.5.5 内径和最小壁厚
3.1.6 长度(定尺或不定尺)
表 1 化学成分要求
牌号
P1 P2
UNS 标 号A
K11522 K11547
C 0.10-0.20 0.10-0.20
Mn 0.30-0.80 0.30-0.61
7.7 完工交货管子应相当笔直。
5
8 成品分析
8.1 应买方要求,制造商应从每批管子中抽取两根管子进行分析,每批钢(见
注 6)管应由以下根数钢管构成:
NPS 标号
<2
400 根或其余数
2~5
200 根或其余数
≥6
100 根或其余数
注 6:一批钢管应由任一炉钢制得的具有相同尺寸和壁厚的按 8.1 中规定根数的管组成。
注 3:推荐回火温度应至少高于预期使用温度 100°F[50℃],因此,若使用温度高于 1100°F[600℃],则购买方应通知制造商。
5.3.2 P1、P2 和 P12 级钢管,可热轧或冷拔,可经 1200°F [650℃]-1300°F[705℃] 最终热处理以代替 5.3.1 中规定的热处理。
W1.45-1.75
0.85-1.05 V0.18-0.25

ASTM A335&A335M-2003 高温用无缝铁素体合金钢管

ASTM A335&A335M-2003 高温用无缝铁素体合金钢管

Designation:A335/A335M–03Standard Specification forSeamless Ferritic Alloy-Steel Pipe for High-Temperature Service1This standard is issued under thefixed designation A335/A335M;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope*1.1This specification2covers nominal wall and minimum wall seamless ferritic alloy-steel pipe intended for high-temperature service.Pipe ordered to this specification shall be suitable for bending,flanging(vanstoning),and similar form-ing operations,and for fusion welding.Selection will depend upon design,service conditions,mechanical properties,and high-temperature characteristics.1.2Several grades of ferritic steels(see Note1)are covered. Their compositions are given in Table1.N OTE1—Ferritic steels in this specification are defined as low-and intermediate-alloy steels containing up to and including10%chromium.1.3Supplementary requirements(S1to S7)of an optional nature are provided.These supplementary requirements call for additional tests to be made,and when desired,shall be so stated in the order together with the number of such tests required.1.4The values stated in either inch-pound units or SI units are to be regarded separately as standard.Within the text,the SI units are shown in brackets.The values stated in each system are not exact equivalents;therefore,each system must be used independently of the bining values from the two systems may result in nonconformance with the specifi-cation.The inch-pound units shall apply unless the“M”designation of this specification is specified in the order.N OTE2—The dimensionless designator NPS(nominal pipe size)has been substituted in this standard for such traditional terms as“nominal diameter,”“size,”and“nominal size.”2.Referenced Documents2.1ASTM Standards:A450/A450M Specification for General Requirements forCarbon,Ferritic Alloy,and Austenitic Alloy Steel Tubes3 A999/A999M Specification for General Requirements for Alloy and Stainless Steel Pipe3E213Practice for Ultrasonic Examination of Metal Pipe and Tubing4E309Practice for Eddy-Current Examination of Steel Tu-bular Products Using Magnetic Saturation4E381Method of Macroetch Testing Steel Bars,Billets, Blooms,and Forgings5E527Practice for Numbering Metals and Alloys(UNS)3 E570Practice for Flux Leakage Examination of Ferromag-netic Steel Tubular Products42.2Other Documents:SNT-TC-1A Recommended Practice for Nondestructive Personnel Qualification and Certification6SAE J1086Practice for Numbering Metals and Alloys (UNS)73.Ordering Information3.1Orders for material under this specification should include the following,as required,to describe the desired material adequately:3.1.1Quantity(feet,metres,or number of lengths),3.1.2Name of material(seamless alloy steel pipe),3.1.3Grade(Table1),3.1.4Manufacture(hot-finished or cold-drawn),3.1.5Size using one of the following:3.1.5.1NPS and schedule number,3.1.5.2Outside diameter and nominal wall thickness,3.1.5.3Outside diameter and minimum wall thickness, 3.1.5.4Inside diameter and nominal wall thickness,and 3.1.5.5Inside diameter and minimum wall thickness.3.1.6Length(specific or random),1This specification is under the jurisdiction of ASTM Committee A01on Steel, Stainless Steel and Related Alloysand is the direct responsibility of Subcommittee A01.10on Stainless and Alloy Steel Tubular Products.Current edition approved Apr.10,2003.Published May2003.Originally approved st previous edition approved in2002as A335/A335M-02.2For ASME Boiler and Pressure Vessel Code applications see related Specifi-cation SA-335in Section II of that Code.3Annual Book of ASTM Standards,V ol01.01.4Annual Book of ASTM Standards,V ol03.03.5Annual Book of ASTM Standards,V ol03.01.6Available from the American Society for Nondestructive Testing,1711Arlin-gate Plaza,PO Box28518,Columbus,OH43228-0518.7Available from Society of Automotive Engineers,400Commonwealth Drive, Warrendale,PA15096.1*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.3.1.7Endfinish(Ends Section of Specification A999/ A999M),3.1.8Optional requirements(Section8,11and12of this specification.See the Sections on Hydrostatic Test Require-ments and Permissible Variation in Weight for Seamless Pipe in Specification A999/A999M),3.1.9Test report required(Certification Section of Specifi-cation A999/A999M),3.1.10Specification designation,and3.1.11Special requirements or any supplementary require-ments selected,or both.4.General Requirements4.1Material furnished to this specification shall conform to the applicable requirements of the current edition of Specifi-cation A999/A999M,unless otherwise provided herein.5.Materials and Manufacture5.1Pipe may be either hotfinished or cold drawn with the finishing treatment as required in5.3.5.2Grade P2and P12—The steel shall be made by coarse-grain melting practice.Specific limits,if any,on grain size or deoxidation practice shall be a matter of agreement between the manufacturer and purchaser.5.3Heat Treatment:5.3.1All pipe of grades shown in Table1except P5c,P23 P91,P92,P122,and P911as provided in 5.3.2,shall be reheated and furnished in the full-annealed,isothermal an-nealed,or normalized and tempered condition.If furnished in the normalized and tempered condition,the minimum temper-ing temperature for Grades P5,P5b,P9,P21,and P22shall be 1250°F[675°C],the minimum tempering temperature for Grades P1,P2,P11,P12,and P15shall be1200°F[650°C].TABLE1Chemical RequirementsGradeUNSDesigna-tion AComposition,%CarbonMan-ganesePhos-phorus,maxSulfur,maxSilicon ChromiumMolybde-num OthersP1K115220.10–0.200.30–0.800.0250.0250.10–0.50...0.44–0.65...P2K115470.10–0.200.30–0.610.0250.0250.10–0.300.50–0.810.44–0.65...P5K415450.15max0.30–0.600.0250.0250.50max 4.00–6.000.45–0.65...P5b K515450.15max0.30–0.600.0250.025 1.00–2.00 4.00–6.000.45–0.65...P5c K412450.12max0.30–0.600.0250.0250.50max 4.00–6.000.45–0.65...B P9S504000.15max0.30–0.600.0250.0250.25–1.008.00–10.000.90–1.10...P11K115970.05–0.150.30–0.600.0250.0250.50–1.00 1.00–1.500.44–0.65...P12K115620.05–0.150.30–0.610.0250.0250.50max0.80–1.250.44–0.65...P15K115780.05–0.150.30–0.600.0250.025 1.15–1.65...0.44–0.65...P21K315450.05–0.150.30–0.600.0250.0250.50max 2.65–3.350.80–1.06...P22K215900.05–0.150.30–0.600.0250.0250.50max 1.90–2.600.87–1.13...P23K416500.04–0.100.10–0.600.030max0.010max0.50max 1.90–2.600.05–0.30V0.20–0.30Cb0.02–0.08B0.0005–0.006N0.030maxAl0.030maxW1.45–1.75 P91K915600.08–0.120.30–0.600.0200.0100.20–0.508.00–9.500.85–1.05V0.18–0.25N0.030–0.070Ni0.40maxAl0.04maxCb0.06–0.10 P92K924600.07–0.130.30–0.600.0200.0100.50max8.50–9.500.30–0.60V0.15–0.25N0.03–0.07Ni0.40maxAl0.04maxCb0.04–0.09W1.5–2.00B0.001–0.006P122K929300.07–0.140.70max0.0200.0100.50max10.00–12.500.25–0.60V0.15–0.30W1.50–2.50Cu0.30–1.70Cb0.04–0.10B0.0005–0.005N0.040–0.100Ni0.50maxAl0.040max P911K910610.09–0.130.30–0.600.020max0.010max0.10–0.508.50–10.500.90–1.10V0.18–0.25Ni0.40maxCb0.060–0.10B0.0003–0.006N0.04–0.09Al0.04maxW0.90–1.10A New designation established in accordance with Practice E527and SAE J1086,Practice for Numbering Metals and Alloys(UNS).B Grade P5c shall have a titanium content of not less than4times the carbon content and not more than0.70%;or a columbium content of8to10times the carboncontent.N OTE3—It is recommended that the temperature for tempering should be at least100°F[50°C]above the intended service temperature;conse-quently,the purchaser should advise the manufacturer if the service temperature is to be over1100°F[600°C].5.3.2Pipe of Grades P1,P2,and P12,either hotfinished or cold drawn,may be given afinal heat treatment at1200°F [650°C]to1300°F[705°C]instead of heat treatments specified in5.3.1.5.3.3All pipe of Grades P5c shall be given afinal heat treatment in the range from1325°F[715°C]to1375°F [745°C].N OTE4—Certain of the ferritic steels covered by this specification will harden if cooled rapidly from above their critical temperature.Some will air harden,that is,become hardened to an undesirable degree when cooled in air from high temperatures.Therefore,operations involving heating such steels above their critical temperatures,such as welding,flanging, and hot bending,should be followed by suitable heat treatment.5.3.4Grades P92and P911shall be normalized at1900°F [1040°C]minimum and tempered at1350°F[730°C]minimum as afinal heat treatment.5.3.5Grade P122shall be normalized at1900°F[1040°C] minimum,and tempered at1350°F[730°C]minimum as afinal heat treatment.5.3.6Grade P23shall be normalized at1900°F[1040°C] minimum with air cooling or accelerated cooling and tempered at1350°F[730°C]minimum as afinal heat treatment.5.4Except when Supplementary Requirement S7is speci-fied by the purchaser,Grade P91shall be normalized at1900°F [1040°C]minimum,and tempered at1350°F[730°C]mini-mum as afinal heat treatment.Alternatively,liquid quenching and tempering is allowed for thicknesses above3in.when mutually agreed upon between the manufacturer and the purchaser.In this case the pipe shall be quenched from1900°F [1040°C]minimum and tempered at1350°F[730°C]minimum asfinal heat treatment.6.Chemical Composition6.1The steel shall conform to the requirements as to chemical composition prescribed in Table1.7.Workmanship,Finish,and Appearance7.1The pipe manufacturer shall explore a sufficient number of visual surface imperfections to provide reasonable assurance that they have been properly evaluated with respect to depth. Exploration of all surface imperfections is not required but may be necessary to ensure compliance with7.27.2Surface imperfections that penetrate more than121⁄2% of the nominal wall thickness or encroach on the minimum wall thickness shall be considered defects.Pipe with such defects shall be given one of the following dispositions:7.2.1The defect may be removed by grinding provided that the remaining wall thickness is within specified limits.7.2.2Repaired in accordance with the repair welding pro-visions of7.6.7.2.3The section of pipe containing the defect may be cut off within the limits of requirements on length.7.2.4Rejected.7.3To provide a workmanlikefinish and basis for evaluat-ing conformance with7.2,the pipe manufacturer shall remove by grinding the following:7.3.1Mechanical marks,abrasions(see Note5)and pits, any of which imperfections are deeper than1⁄16in.[1.6mm]. N OTE5—Marks and abrasions are defined as cable marks,dinges,guide marks,roll marks,ball scratches,scores,die marks,and the like.7.3.2Visual imperfections,commonly referred to as scabs, seams,laps,tears,or slivers,found by exploration in accor-dance with7.1to be deeper than5%of the nominal wall thickness.7.4At the purchaser’s discretion,pipe shall be subject to rejection if surface imperfections acceptable under7.2are not scattered,but appear over a large area in excess of what is considered a workmanlikefinish.Disposition of such pipe shall be a matter of agreement between the manufacturer and the purchaser.7.5When imperfections or defects are removed by grinding,a smooth curved surface shall be maintained,and the wall thickness shall not be decreased below that permitted by this specification.The outside diameter at the point of grinding may be reduced by the amount so removed.7.5.1Wall thickness measurements shall be made with a mechanical caliper or with a properly calibrated nondestructive testing device of appropriate accuracy.In case of dispute,the measurement determined by use of the mechanical caliper shall govern.7.6Weld repair shall be permitted only subject to the approval of the purchaser and in accordance with Specification A999/A999M.7.7Thefinished pipe shall be reasonably straight.8.Product Analysis8.1At the request of the purchaser,an analysis of two pipes from each lot shall be made by the manufacturer.A lot(see Note6)of pipe shall consist of the following:NPS DesignatorUnder2400or fraction thereof2to5200or fraction thereof6and over100or fraction thereofN OTE6—A lot shall consist of the number of lengths specified in8.1of the same size and wall thickness from any one heat of steel.8.2The results of these analyses shall be reported to the purchaser or the purchaser’s representative,and shall conform to the requirements specified in Table1.8.3For grade P91the carbon content may vary for the product analysis by−0.01%and+0.02%from the specified range as per Table1.8.4If the analysis of one of the tests specified in8.1does not conform to the requirements specified in6.1,an analysis of each billet or pipe from the same heat or lot may be made,and all billets or pipe conforming to the requirements shall be accepted.9.Tensile and Hardness Requirements9.1The tensile properties of the material shall conform to the requirements prescribed in Table2.9.2Table3lists elongationrequirements.9.3Pipe of Grades P91,P92,and P122shall have a hardness not exceeding250HB/265HV[25HRC].9.4Table4gives the computed minimum elongation values for each1⁄32-in.[0.8-mm]decrease in wall thickness.Where the wall thickness lies between two values above,the minimum elongation value is determined by the following formula:Direction of Test Equation B Longitudinal,all grades except P23,P91,P92,P122,and P911E=48t+15.00[E=1.87t+15.00]Transverse,all grades except P23,P91,P92,P122,and P911E=32t+10.00[E=1.25t+10.00]Longitudinal,P23,P91,P92,P122,andP911E=32t+10.00[E=1.25t+10.00] where:E=elongation in2in.or50mm,%,andt=actual thickness of specimens,in.[mm].10.Permissible Variations in Diameter10.1For pipe ordered to NPS or outside diameter,variations in outside diameter shall not exceed those specified in Table5.10.2For pipe ordered to inside diameter,the inside diameter shall not vary more than61%from the specified inside diameter.11.Hydrostatic Test11.1Each length of pipe shall be subjected to the hydro-static test,except as provided for in11.2or11.3.11.2Unless otherwise specified in the purchase order,each length of pipe shall,at the option of the manufacturer,be subjected to the nondestructive electric test as shown in Section 12in lieu of the hydrostatic test.11.3When specified by the purchaser,pipe shall be fur-nished without hydrostatic test and without nondestructive examination.11.4When specified by the purchaser,pipe shall be fur-nished with both the hydrostatic test and a nondestructive examination having been performed.12.Nondestructive Examination12.1When selected by the manufacturer or when specified in the order,as an alternative to the hydrostatic test(11.2),or when secified in the purchase order in addition to the hydro-static test(11.4),each pipe shall be examined by a nondestruc-tive examination method in accordance with Practice E213,TABLE2Tensile RequirementsGradeP1,P2P12P23P91P92,P911P122All Others Tensile strength,min:ksi MPa55380604157451085585906209062060415Yield strength,min:ksi MPa30205322205840060415644405840030205TABLE3Elongation RequirementsElongation RequirementsAll gradesexcept P23,P91,P92,P122,and P911All other gradesLongi-tudi-nalTrans-verseLongi-tudi-nalTrans-verseElongation in2in.or50mm,(or4D),min,%:Basic minimum elongationfor wall5⁄16in.[8mm]andover in thickness,strip tests,and for all small sizes testedin full section302020...When standard round2-in.or50-mm gage length orproportionally smaller sizespecimen with the gagelength equal to4D(4timesthe diameter)is used22142013For strip tests a deductionfor each1⁄32-in.[0.8mm]decrease in wall thicknessbelow in.[8mm]from thebasic minimum elongation ofthe following percentagepoints shall be made1.50A 1.00A 1.00A...A Table4gives the calculated minimum values.TABLE4Calculated Minimum Elongation ValuesWall ThicknessElongation in2in.or50mm,min,% All grades except P23,P91,P92,P122,and P911Allothergradesin.mm Longi-tudinalTransverseLongi-tudinal5⁄16(0.312)8302020 9⁄32(0.281)7.2281919 1⁄4(0.250) 6.4271818 7⁄32(0.219) 5.626 (17)3⁄16(0.188) 4.824 (16)5⁄32(0.156)422 (15)1⁄8(0.125) 3.221 (14)3⁄32(0.094) 2.420 (13)1⁄16(0.062) 1.618 (12)TABLE5Permissible Variations in Outside DiameterOver UnderNPS Designator in.mm in.mm 1⁄8to11⁄2,incl.1⁄64(0.015)0.401⁄64(0.015)0.40 Over11⁄2to4,incl.1⁄32(0.031)0.791⁄32(0.031)0.79 Over4to8,incl.1⁄16(0.062) 1.591⁄32(0.031)0.79 Over8to12,incl.3⁄32(0.093) 2.381⁄32(0.031)0.79 Over1261%of thespecifiedoutsidediameterPractice E309or Practice E570.The range of pipe sizes that may be examined by each method shall be subject to the limitations in the scope of the respective practices.12.2The following information is for the benefit of the user of this specification:12.2.1The reference standards defined in12.8are conve-nient standards for standardization of nondestructive examina-tion equipment.The dimensions of these standards should not be construed as the minimum size imperfection detectable by such equipment.12.2.2Ultrasonic examination can be performed to detect both longitudinally and transversely oriented discontinuities.It should be recognized that different techniques should be employed to detect differently oriented imperfections.The examination may not detect short,deep imperfections.12.2.3The eddy current examination referenced in this specification has the capability to detect significant disconti-nuities,especially of the short abrupt type.12.2.4Theflux leakage examination referred to in this specification is capable of detecting the presence and location of significant longitudinally or transversely oriented disconti-nuities.It should be recognized that different techniques should be employed to detect differently oriented imperfections. 12.2.5The hydrostatic test of Section11has the capability tofind imperfections of a size that permit the testfluid to leak through the pipe wall so that it may be either visually seen or detected by a loss offluid pressure.This test may not detect very tight,through-wall imperfections,or imperfections that extend into the wall without complete penetration.12.2.6A purchaser interested in ascertaining the nature (type,size,location,and orientation)of discontinuities that can be detected in the specific application of these examinations should discuss this with the manufacturer of the tubular products.12.3Time of Examination:Nondestructive examination for specification acceptance shall be performed after all mechanical processing,heat treatments and straightening operations.This requirement does not preclude additional testing at earlier stages in the process-ing.12.4Surface Conditions:12.4.1All surfaces shall be clean and free of scale,dirt, grease,paint,or other foreign material that could interfere with interpretation of test results.The methods used for cleaning and preparing the surfaces for examination shall not be detrimental to the base metal or the surfacefinish.12.4.2Excessive surface roughness or deep scratches can produce signals that interfere with the test(see12.10.2.3). 12.5Extent of Examination:12.5.1The relative motion of the pipe and the transducer(s), coil(s),or sensor(s)shall be such that the entire pipe surface is scanned,except for end effects as noted in12.5.2.12.5.2The existence of end effects is recognized,and the extent of such effects shall be determined by the manufacturer, and,if requested,shall be reported to the purchaser.Other nondestructive tests may be applied to the end areas,subject to agreement between the purchaser and the manufacturer.12.6Operator Qualifications—The test unit operator shall be certified in accordance with SNT-TC-1A,or an equivalent, recognized and documented standard.12.7Test Conditions:12.7.1For examination by the ultrasonic method,the mini-mum nominal transducer frequency shall be2.25MHz. 12.7.2For eddy current testing,the excitation coil fre-quency shall be10kHz,or less.12.8Reference Standards:12.8.1Reference standards of convenient length shall be prepared from a length of pipe of the same grade,size(NPS or outside diameter and schedule or wall thickness),surfacefinish and heat treatment condition as the pipe to be examined. 12.8.2For ultrasonic testing,the reference notches shall be any one of the three common notch shapes shown in Practice E213,at the option of the manufacturer.The depth of the notch shall not exceed121⁄2%of the specified nominal wall thickness of the pipe or0.004in.(0.1mm),whichever is greater.The length of the notch shall be at least twice the diameter of the transducer(s).The width of the notch shall not exceed the depth.12.8.3For eddy current testing,the reference standard shall contain,at the option of the manufacturer,any one of the following discontinuities:12.8.3.1Drilled Hole—The reference standard shall contain three or more holes,equally spaced circumferentially around the pipe and longitudinally separated by a sufficient distance to allow distinct identification of the signal from each hole.The holes shall be drilled radially and completely through the pipe wall,with care being taken to avoid distortion of the pipe while drilling.The hole diameter shall vary with NPS as follows: NPS Designator Hole Diameter1⁄20.039in.(1mm)above1⁄2to11⁄40.055in.(1.4mm)above11⁄4to20.071in.(1.8mm)above2to50.087in.(2.2mm)above50.106in.(2.7mm)12.8.3.2Transverse Tangential Notch—Using a round tool orfile with a1⁄4in.(6.4mm)diameter,a notch shall befiled or milled tangential to the surface and transverse to the longitu-dinal axis of the pipe.Said notch shall have a depth not exceeding121⁄2%of the specified nominal wall thickness of the pipe or0.004in.(0.1mm),whichever is greater.12.8.3.3Longitudinal Notch—A notch0.031in.or less in width shall be machined in a radial plane parallel to the tube axis on the outside surface of the pipe,to have a depth not exceeding121⁄2%of the specified nominal wall thickness of the pipe or0.004in.(0.1mm),whichever is greater.The length of the notch shall be compatible with the testing method. 12.8.4Forflux leakage testing,the longitudinal reference notches shall be straight-sided notches machined in a radial plane parallel to the pipe axis.For wall thickness less than1⁄2 in.(12.7mm),outside and inside notches shall be used;for wall thicknesses equal to or greater than1⁄2in.,only an outside notch shall be used.Notch depth shall not exceed121⁄2%of the specified nominal wall thickness or0.004in.(0.1mm), whichever is greater.Notch length shall not exceed1in.(25.4 mm),and the width shall not exceed the depth.Outsideandinside notches shall have sufficient separation to allow distinct identification of the signal from each notch.12.8.5More or smaller reference discontinuities,or both, may be used by agreement between the purchaser and the manufacturer.12.9Standardization Procedure:12.9.1The test apparatus shall be standardized at the beginning and end of each series of pipes of the same size (NPS or diameter and schedule or wall thickness),grade and heat treatment condition,and at intervals not exceeding4h during the examination of such pipe.More frequent standard-izations may be performed at the manufacturer’s option or may be required upon agreement between the purchaser and the manufacturer.12.9.2The test apparatus shall also be standardized after any change in test system settings,change of operator,equip-ment repair,or interruption due to power loss,shutdown or operator breaks.12.9.3The reference standard shall be passed through the test apparatus at same speed and test system settings as the pipe to be tested.12.9.4The signal-to-noise ratio for the reference standard shall be2.5to1or greater and the reference signal amplitude for each discontinuity shall be at least50%of full scale of the display.12.9.5If upon any standardization,the reference signal amplitude has decreased by25%(2db),the test apparatus shall be considered out of standardization.The test system settings may be changed,or the transducer(s),coil(s)or sensor(s)adjusted,and the unit restandardized,but all pipe tested since the last acceptable standardization must be re-tested.12.10Evaluation of Imperfections:12.10.1Pipes producing a signal equal to or greater than the signal produced by the reference standard shall be positively identified and they shall be separated from the acceptable pipes.The area producing the signal may be reexamined. 12.10.2Such pipes shall be subject to one of the following three dispositions:12.10.2.1The pipes may be rejected without further exami-nation,at the discretion of the manufacturer.12.10.2.2The pipes shall be rejected,but may be repaired, if the test signal was produced by imperfections which cannot be identified,or was produced by cracks or crack-like imper-fections.These pipes may be repaired by grinding(in accor-dance with7.2.1),welding(in accordance with7.6)or section-ing(in accordance with7.2.3).To be accepted,a repaired pipe must pass the same nondestructive examination by which it was rejected,and it must meet the remaining wall thickness requirements of this specification.12.10.2.3Such pipes may be evaluated in accordance with the provisions of Section7,if the test signals were produced by visual imperfections such as those listed below:(a)Scratches,(b)Surface roughness,(c)Dings,(d)Straightener marks,(e)Cutting chips,(f)Steel die stamps,(g)Stop marks,or(h)Pipe reducer ripple.13.Mechanical Tests Required13.1Transverse or Longitudinal Tension Test and Flatten-ing Test,Hardness Test,or Bend Test—For material heat treated in a batch-type furnace,tests shall be made on5%of the pipe from each treated lot(see Note7).For small lots,at least1pipe shall be tested.For material heat treated by the continuous process,tests shall be made on a sufficient number of pipe to constitute5%of the lot(see Note7),but in no case less than2pipe.N OTE7—The term“lot”applies to all pipe of the same nominal size and wall thickness(or schedule)which is produced from the same heat of steel and subjected to the samefinishing treatment in a continuous furnace;whenfinal heat treatment is in a batch-type furnace,the lot shall include only that pipe which is heat treated in the same furnace charge.13.2Hardness Test:13.2.1For pipe of Grades P91,P92,P122,and P911, Brinell,Vickers,or Rockwell hardness tests shall be made ona specimen from each lot(see Note7).13.3Bend Test:13.3.1For pipe whose diameter exceeds NPS25and whose diameter to wall thickness ratio is7.0or less shall be subjected to the bend test instead of theflattening test.Other pipe whose diameter equals or exceeds NPS10may be given the bend test in place of theflattening test subject to the approval of the purchaser.13.3.2The bend test specimens shall be bent at room temperature through180°without cracking on the outside of the bent portion.The inside diameter of the bend shall be1in. [25mm].13.3.3Test specimens for the bend test specified in13.3 shall be cut from one end of the pipe and,unless otherwise specified,shall be taken in a transverse direction.One test specimen shall be taken as close to the outer surface as possible and another from as close to the inner surface as possible.The specimens shall be either1⁄2by1⁄2in.[12.5by12.5mm]in section or1by1⁄2in.[25by12.5mm]in section with the corners rounded to a radius not over1⁄16in.[1.6mm]and need not exceed6in.[150mm]in length.The side of the samples placed in tension during the bend shall be the side closest to the inner and outer surface of the pipe,respectively.14.Certification14.1In addition to the information required by Specification A999/A999M,the certification shall state whether or not the pipe was hydrostatically tested.If the pipe was nondestruc-tively examined,the certification shall so state and shall show which practice was followed and what reference discontinuities were used.In addition,the test method information as given in Table6shall be appended to the specification number and grade shown on the certification.15.Product Marking15.1In addition to the marking prescribed in Specification A999/A999M,the marking shall include the length,an。

A335P22合金管

A335P22合金管

A335P22合金管钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。

当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字"1",例如钢号"12CrMoV"和"12Cr1MoV",前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同。

当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。

例如18Cr2Ni4WA。

③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。

例如20MnVB钢中。

钒为0.07-0.12%,硼为0.001-0.005%。

④高级优质钢应在钢号最后加"A",以区别于一般优质钢。

⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。

例如铆螺专用的30CrMnSi钢,钢号表示为ML30CrMnSi。

合金管与无缝管两者既有关系又有区别,不能混为一谈。

合金管是钢管按照生产用料(也就是材质)来定义的,顾名思义就是合金做的管子;而无缝管是钢管按照生产工艺(有缝无缝)来定义的,区别于无缝管的就是有缝管,包括直缝焊管和螺旋管。

P22和T22的化学成分和性能接近,T22用于锅炉受热面,与烟气直接接触,P22用于连接管道P22/T22与德国10CrMo910相当,T22属于ASTM SA213锅炉、过热器和换热器用无缝铁素体和奥氏体合金钢管(Tube),P22属于ASTM SA335高温用无缝铁素体合金钢管(Pipe)。

执行标准:ASTMA335/A355M ASTMA213/213M DIN17175-79A335P22合金管的材质16-50Mn、27SiMn、40Cr、Cr5Mo、12Cr1MoV、12Cr1MovG、15CrMo、15CrMoG、15CrMoV、13CrMo44、T 91、27SiMn、25CrMo、30CrMo、35CrMo、35CrMoV、40CrMo、45CrMo、Cr9Mo、10CrMo910、15Mo3、A335P1 1、P22、P91、T91、钢研102、ST45.8-111、A106B制造工艺1.热轧(挤压无缝钢管):圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→矫直→水压试验(或探伤)→标记→入库2.冷拔(轧)无缝钢管:圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库合金管重量计算公式[(外径-壁厚)*壁厚]*0.02466=kg/米(每米的重量)本公司常年生产和经营宝钢、成钢、天钢、包钢、鞍钢、西钢、冶钢、安钢、衡钢、常钢等十大钢厂及德国、日本、俄罗斯等进口生产的大中型各种无缝钢管、锅炉管、化肥高压管、电力用管及建材、型材、板材、不锈钢管材、板材等...主要执行标准有:10#、20#、35#、45#、20G高压锅炉管、GB5310-95、St45.8-Ⅲ、GB/T8162-1999、GB/T8163-1999、GB3087-1999、 GB9948-88、GB6479-86、GB5312-99、GB/T9711.1-97、16Mn、27simn、1 5crmo、15CrMoG.35crmo、cr5mo、40cr、10CrMo910、12Cr1MoVG、A335P22、D240、D250、L245、L290、L 320、L360、L390、N80、15mnv、A335p91.等。

ASME常用材料标准

ASME常用材料标准

F-2 F-12 F-16 SB-381 钛和钛合金锻件
Ti2 Ti12 Ti16
WPT2 WPT12 WPT16 SB-363 无缝和焊接的非合 金钛和钛合金焊接管配件
N04400
400
SB-127 镍-铜合金(UNS N04400)板材、薄板和带材

SB-465 镍-铜合金(UNS N04400)无缝公称管和管子
ASME常用材料标准
ASME 材料 UNS 代号 S30400 S30403 S30409 S31600 S31603 S31254 S31700 S31703 S32100 型号 304 304L 304H 316 316L ∕ 317 317L 321 SA-240/SA-240M 压力容器 和一般用途耐热铬及铬镍不 锈钢板、薄板和钢带 标准号 型号 TP304 TP304L TP304H TP316 TP316L ∕ TP317 TP317L TP321 SB-677 UNS N08904无缝公 称管和管子 SB-673 UNS N08904焊接公 称管 SB674 UNS N08904焊接管子 SA-213/SA-213M 锅炉、过 热器和换热器用无缝铁素体 和奥氏体合金钢管子 SA-249/SA-249M 锅炉、过 热器、换热器和冷凝器用焊 接奥氏体钢管子 SA-312/SA-312M 无缝和焊 接奥氏体不锈钢公称管 标准号 型号 F304 F304L F304H F316 F316L F44 F317 F317L F321 SA-182/SA-182M 高温用锻 制或轧制合金钢和不锈钢公 称管道法兰、锻制管配件、 阀门和零件 标准号 型号 304 304L 304H 316 316L ∕ 317 317L 321 SA-276 不锈钢棒材和型材 SA-479/SA-479M 锅炉和其 它压力容器用不锈钢棒材和 型材 标准号 型号 WP304 WP304L WP304H WP316 WP316L WP S31254 WP317 WP317L WP321 SA-403/SA-403M 锻轧奥氏 体不锈钢制管配件 标准号 板材 管件 锻件 棒材 管配件

ASTM A335标准解释

ASTM A335标准解释
2、分析的结果应向采购方或其代表报告。并与 规定的要求相符合。
3、P91钢管的含碳量可偏离规定有-0.01%和 +0.02%。
4、若试验中的一根不合格,则应自同炉同批的 每一个钢坯或每要公称管进行分析,符合要求 的每个钢坯或公称管应可以接受。
拉伸和硬度要求
1、抗拉强度和屈服强度符合如下要求:
P1 P2
6、P23级钢的最终热处理应在最低1040 ℃下正火,和在 最低730 ℃下回火。
化学成份
见表1
工艺质量、表面质量和外观
1、钢管厂应探足够数量的可见表面缺陷进行测定,以保 证对缺陷 的深度做过适当评估,不必查出所有的表面 进行测定,但需保证与下一条的要求相符。
2、当表面缺陷穿透深度越过12.5%公称壁厚或侵犯最小 壁厚时,应认为是有害缺陷,带有这类缺陷的管子应 按下列方法这一处理:
订货须知
6、长度(分定尺和不定尺) 7、端部加工。 8、选用要求(水压及允许重量偏差)。 9、要求的试验报告(见A530)。 10、标准号。 11特殊要求或任何选用的补充要求。
一般要求
按本标准提供的材料,除在这里另有规定 外,应符合现行版本的A530/ A530M标准 的适用要求。
材料及制造
一、公称钢管可为热精整或冷拔的,并经过标准所要求 的最终热处理。
二、P2、P12级钢,该两个级别钢应采用粗晶熔化工艺制 造,若在晶粒度或脱氧工艺上有特殊 可要求限定时, 应由采购主和钢厂商定。
三、热处理
1、除P5C、P23、P91、P92、P122和P911级钢以及按规 定外,所有级别的公称管应经再次加热,并以完全退 火,等温退火或正火加回火状态下供货。如以正火加 回火状态下供货,对P5、P5B、P9、P21及P22级钢的 最低回火温度应是675℃对于P1、P2、P11、P12及P15 级钢的最低回火温度应是650 ℃

ASTM A335 A335M-03《高温作业用铁素体合金钢无缝钢管》

ASTM A335 A335M-03《高温作业用铁素体合金钢无缝钢管》

0.30~ 0.61
0.025 0.025
≤ 0.50
0.80~ 1.25
P15
0.05~ 0.15
0.30~ 0.60
0.025
0.025
1.15~ 1.65
-
牌号及化 2 学成份
P21
0.05~ 0.15
0.30~ 0.60
0.025 0.025
≤ 0.50
(%)
P22
0.05~ 0.15
0.30~ 0.60
12 标志
除ASTM A999/A999M标准规定的标志外,还应标明下列内容:
1、长度;
2、符合补充要求时,标上字母“S”;
3、壁厚等级号(如果管子按壁厚等级号定货);
4、炉号;
5、试验方法代号
试验方法
标志
作水压不作无损
试验压力
作无损不作水压
NDE
不作水压也不作无损
NH
既作水压又作无损
试验压力/NDE
得超过钢管规定公称壁厚的12.5%或0.1mm中的较大者,缺口宽度不得超过深度,长度
不超过25.4mm。
8 无损检验 涡流检验时,钻孔直径应符合下列要求:
D≤21.3mm
1.0mm
D>21.3~42.2mm
1.4mm
D>42.2~60.3mm
1.8mm
D>60.3~141.3mm
2.2mm
D>141.3mm
≤ 0.12
0.30~ 0.60
0.025 0.025
≤ 0.50
4.00~ 6.00
P9
≤ 0.15
0.30~ 0.60
0.025
0.025
0.25~ 1.00

ASME锅炉及压力容器规范

ASME锅炉及压力容器规范

ASME锅炉及压力容器规范 A篇铁基材料SA-6/SA-6M 轧制结构钢棒材、钢板、型材和薄板板桩的通用要求。

SA-20/SA-20M 压力容器用钢板通用要求。

SA-29/SA-29M 热加工与冷精整碳钢和合金钢棒材通用要求。

SA-36/SA-36M 碳素结构钢。

SA-47/SA-47M 铁素体可锻铸铁件。

SA-53/A-53M 无镀层及热浸镀锌焊接与无缝公称钢管。

SA-105/SA105M 管道元件用碳钢锻件。

SA-106 高温用无缝碳钢公称管。

SA-134 电弧溶焊公称钢管。

(规格不小于NPS16)SA-135 电阻焊公称钢管。

SA-178/SA-178M 电阻焊碳钢和碳锰钢锅炉及过热器管子。

SA-179/SA-179M 换热器及冷凝器用无缝冷拔低碳钢管子。

SA-181/SA-181M 一般管道用碳钢锻件。

SA-182/SA-182M 高温用锻制或轧制合金钢公称管道法兰、锻制管配件、阀门和零件。

SA-192/SA-192M 高压用无缝碳钢锅炉管子。

SA-193/SA-193M 高温用合金钢和不锈钢螺栓材料。

SA-194/SA-194M 高温高压螺栓用碳钢和合金钢螺母。

SA-202/SA-202M 压力容器用铬锰硅合金钢板。

SA-203/SA-203M 压力容器用镍合金钢板。

SA-204/SA-204M 压力容器用钼合金钢板。

SA-209/SA-209M 锅炉和过热器用无缝碳钼合金钢管子。

SA-210/SA-210M 锅炉和过热器用无缝中碳钢管子。

SA-213/SA-213M 锅炉、过热器和换热器用无缝铁素体和奥氏体合金钢管子。

SA-214/SA-214M 换热器和冷凝器用电阻焊碳钢管子。

SA-216/SA-216M 可溶焊高温用碳钢铸件。

SA-217/SA-217M 高温承压零件用马氏体不锈钢和合金钢铸件。

SA-225/SA-225M 压力容器用锰钒镍合金钢板。

SA-231/SA-231M 铬钒合金钢弹簧钢丝。

《燃煤电厂四大管道设计选用导则》

《燃煤电厂四大管道设计选用导则》

企业标准Q/CPI ××—20××代替Q/CPI ××—20××燃煤电厂四大管道设计选用导则20××—××—××发布 20××—××—××实施中国电力投资集团公司发布目录前言11范围22规范性引用文件23定义与术语34符号、代号和缩略语45设计参数46管道材质规格选型4附录A(资料性附录)四大管道特性数据7附录B(规范性附录)火力发电厂推荐四大管道材质和规格系列10前言随着火力发电技术的不断发展,中国电力投资集团公司(以下简称集团公司)新建火力发电机组已经从300MW、600MW管道发展机组亚临界参数发展到600MW超临界、600MW超超临界、1000MW超超临界参数,四大管道材质和规格系列也随着不断变化,新的材料、新的管道规格设计选型不断出现。

通过对四大管道的材质和规格系列进行统一,可以充分发挥集团公司集中打捆招标采购的优势,并为项目间四大管道调剂使用创造条件,也可使前期项目剩余的管道能够在后期的电厂建设中得到利用,从而有利于减低项目工程造价和节省建设成本。

集团公司曾于2004年4月、2007年3月、2008年3月和2009年5月四次主持召开了在建工程四大管道设计协调会,形成并不断完善了集团公司四大管道材质和规格系列。

并在上述四次会议成果的基础上编制了《中国电力投资集团公司火力发电机组四大管道设计选用指导意见》。

随着新的机型和设计参数不断出现,新材料的运用和使用经验的不断积累,各种类型机组四大管道材质和规格系列将根据需要进一步完善。

本导则由集团公司火电部组织编制,是集团公司企业技术标准系列之一本导则由集团火电部提出。

本导则由集团火电部起草。

本导则由集团火电部归口。

本导则主要起草人:×××。

耐热钢A335-P22材质在施工现场的焊接

耐热钢A335-P22材质在施工现场的焊接

耐热钢A335-P22材质在施工现场的焊接本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March耐热钢A335-P22材质在施工现场的焊接摘要 A335-P22(化学成分为-1Mo)是ASME规范的表示方法,在国内表示为12Cr2Mo,属于高温铁素体合金耐热钢。

特点是工艺性能良好,对热处理的加热温度不太敏感,焊接性能也较好,具有良好的塑性,具有抗高温、难腐蚀。

最大的缺点在焊接工艺中具有淬硬性和再热裂纹倾向。

目前,广泛应用于电力、石化行业的超高压蒸汽管道生产工艺中。

以天津石化100万吨/年乙烯装置超高压管道为例,对A335-P22材质的合金耐热钢焊接工艺进行分析,以指导现场焊接施工。

关键词耐热钢管道焊接性能焊接工艺1工程概况天津石化100万吨/年乙烯工程100万吨/年乙烯装置,为全国首套大乙烯工程,具有工程量大、施工工期短、施工难度大、技术,质量要求严格等特点。

其超高压蒸汽管道采用A335-P22无缝钢管,设计温度538℃,操作温度520℃,设计压力1 ,操作压力11MPa。

超高压蒸汽管道主管线贯穿街区主管廊,分散于热区、压缩区、急冷区、冷区,裂解炉区,共计管道延长米公里,共计焊口3300多道。

管道规格:Φ*~Φ610*。

焊接工作主要为A335-P22同材质焊接。

耐热钢焊接作业时间、热处理周期长。

高压管道坡口加工、焊接和安装是整个乙烯装置的重点和难点。

2焊接准备工作材料检验A335-P22无缝钢管在注明标示外,外观与普通的碳钢无缝钢管是一样的,所以在材料的验收、入库、保管、发放,必须严格执行国家的、行业的相关标准、规范及公司的相关规定,认真核对材料的质量证明文件。

材料验收、核对材料证明文件需参照表1和表2数值。

必须做到材料实物与材料证明相符合,并做上合格标记。

根据SH3501的要求,对合金钢管道组成件主体的关键合金部分应采用光谱分析等进行复查。

阀体材质——精选推荐

阀体材质——精选推荐

阀体材质正常惯例要求控制阀⽤户规定阀体材料,特别是特殊⼯况或严重⼯况⽤阀。

许多常见⼯况的阀门被规定使⽤普通基本材料,例如碳钢和不锈钢。

⼤多数情况下,要求的阀体材料是与管线材料相同,主要是碳钢、不锈钢、铬钼钢(通常叫铬钼)。

碳钢或许是阀门使⽤的最主要的通⽤材料。

总值,它是⾮腐蚀流体的理想材料。

碳钢也⼴泛⽤于整齐和冷凝操作。

它较优的⾼温性能可在⾼到800℉(425℃)下连续⼯作,甚⾄可在⾼达1000℉(535℃)或更⾼的⾼温⼯况。

它的造价⽐提⾼略⾼,但较其他的钢合⾦便宜。

铬钼钢是个好材料,其性能位于碳钢和不锈钢之间。

它较碳钢能耐较⾼的压⼒和温度,使它能进⾏处理⾼压蒸汽和冲洗冷凝的操作。

它的强度胜过碳钢并⼏乎与不锈钢相同,但铬钼钢耐腐蚀性不如不锈钢。

特殊合⾦被规定⽤于特殊⼯况或严重⼯况的阀门。

例如选⽤哈⽒合⾦B和C或钛,以避免和流体不协调,如⾼酸性流体。

另外的情况下,可选⽤蒙纳尔或青铜⽤于纯氧⼯况,此处因安全原因选⽤打⽕花的材料是危险的。

表2.9列出若⼲常⽤阀门材料及其温度限制。

阀体是由铸造、锻造或棒料制成,或可由管线三通和法兰制造。

由于制造商采⽤的⼯艺和较⼤的批量⽣产,制造费⽤是最低的。

对特殊材料和/或较⾼额定压⼒则需要短见,录⼊ANSI1500级(PN250)、2500级(PN400)或4500级(PN700)。

对于输送危险性流通⽽不能使⽤铸造或锻造阀体时,或结构整体性需要时,则要⽤棒料制造阀体。

对⼤的⾓阀需要制造的阀体。

作为⼀个通则,阀盖或阀盖帽(⽤来密封阀体部件顶部部分)要⽤和阀体相同的材料制造。

虽然⼤多数使⽤棒料代替铸造来制造。

通则的⼀个例外是抵压铬钼阀门,它在阀门尺⼨为6in(DN150)或更⼩时,经常要⽤不锈钢阀盖。

度范围:-30oC⾄+425oCLCB低温碳钢ASTM A352低温应⽤,温度低⾄-46oC不能⽤于温度⾼于+340oC的场合LC33.5%镍钢ASTM A352低温应⽤,温度低⾄-101oC不能⽤于温度⾼于+340oC的场合WC61.25%铬0.5%钼钢ASTM A217⽆腐蚀性应⽤,包括⽔,油和⽓,温度范围:-30oC⾄+593oCWC92.25铬ASTM A217⽆腐蚀性应⽤,包括⽔,油等级WC9和⽓,温度范围:-30oC⾄+593oCC55%铬0.5%钼ASTM A217轻度腐蚀性或侵蚀性应⽤及⽆腐蚀性应⽤,温度范围:-30oC⾄+649oC C129%铬1%钼ASTM A217轻度腐蚀性或侵蚀性应⽤及⽆腐蚀性应⽤,温度范围:-30oC⾄+649oC CA6NM(4)12%铬钢ASTM A487腐蚀性应⽤,温度范围:-30oC⾄+482oCCA15(4)12%铬ASTM A217腐蚀性应⽤,温度范围⾼达+704oCCF8M 316不锈钢ASTM A351腐蚀性或超低温或⾼温⽆腐蚀性应⽤,温度范围:-268oC⾄+649oC,温度+425oC以上要指定碳含量0.04%及以上CF8C347不锈钢ASTM A351主要⽤于⾼温,腐蚀性应⽤,温度范围:-268oC⾄+649oC,温度+540oC以上要指定碳含量0.04%及以上CF8304不锈钢ASTM A351腐蚀性或超低温或⾼温⽆腐蚀性应⽤,温度范围:-268oC⾄+649oC,温度+425oC以上要指定碳含量0.04%及以上CF3304L不锈钢ASTM A351腐蚀性或⽆腐蚀性应⽤,温度范围⾼达+425oCCF3M316L不锈钢ASTM A351腐蚀性或⽆腐蚀性应⽤,温度范围⾼达+454oCCN7M合⾦钢ASTM A351具有很好的抗热硫酸腐蚀性能,温度⾼达+425oCM35-1蒙乃尔ASTM A494可焊接等级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档