建筑 给排水 外文翻译 英文文献 多层住宅建筑给排水设计的几个问题
多层住宅建筑给排水设计的几个问题
多层住宅建筑给排水设计的几个问题摘要:本文就多层住所修建给排水描绘中给水管材的选用,管道的敷设办法,水表出户设置,家用热水器的设置及空调冷凝水排放等疑问进行讨论,并提出一些详细观点。
关键字:多层住所给水管材管道敷设水表太阳能热水器多层住所以其配套设备简略,造价低,物业办理便利等特色,很受中小城市房地产开发商和广阔居民的欢送。
怎么按2000年小康住所科技产业工程寓居区计划描绘导则的需求,进步住所的描绘水平,为每个住户营建出一个舒服的日子空间,是每个描绘人员的职责所在。
作为住所的心脏――厨房、清洗间,是功用杂乱,清洗、安全和舒服度需求高,营建冗杂,技能需求高的空间。
因而,描绘人员有必要以全体描绘的观念和办法,归纳思考厨房、清洗间给排水管道和设备的装置等。
下面就多层住所给排水描绘中给水管材的选用、管道的敷设、水表出户设置、家用热水器的设置和空调冷凝水排放等疑问与同行们一同讨论。
(一)给水管材选用疑问传统的给水管材通常选用镀锌钢管,因为镀锌钢管易锈蚀,运用寿命短,用于运送日子用水不能满意水质清洗标准等缺陷,建设部正大力推行塑料给水管的运用。
许多地市已明文规定:制止描绘运用镀锌钢管,推行运用塑料给水管。
塑料给水管与金属管道比拟,具有重量轻,耐压强度好,运送液体阻力小,耐化学腐蚀功用强,装置便利,省钢节能,运用寿命长等长处。
给水用塑料管道首要有:硬聚氯乙烯(PVC -U)、高密度聚乙烯(HDPE)、交联聚乙烯(PEX)、改性聚丙烯(PP-R ,PP-C)、聚丁烯(PB)、铝塑复合管(PE-AL-PE,PEX-AL-PEX)和钢塑复合管等。
下表是几种修建给水管材功用的比拟。
管材功用长处缺陷长期运用温度短期运用温度硬聚氯乙烯管(PVC-U)抗腐蚀能力强,质地坚固,施工简洁有UPVC单体和添加剂渗出,管接头粘合技能需求高,固化时间长≤400C――改性聚丙烯(EN-US)PP -R,PP-C)耐温功用好,抗蠕变功用好,施工简洁只有用金属管件衔接;水流部分水头丢失大,不能收回重复运用900C950C铝塑复合管(PEX-AL-PEX)耐温功用好,保温功用好(EN-US)在平等压力和介质温度的条件下,管壁最厚,选用热熔衔接,需用专门衔接东西≤600C≤900C铝塑复合管(PE-AL-PE)易曲折成形,彻底消防氧浸透,线膨胀系数小,施工简洁管壁厚薄不均匀,管路衔接选用铜管件,水流部分水头丢失大≤400C――注:1)长期运用温度系指管道在此温度规模内运用寿命达30~50年2)短期运用温度系指管道在此温度规模运用寿命达10~20年管材的挑选是经济技能的比拟进程,技能上应从压力、温度、运用环境、装置办法等方面进行思考,一起联系业主的需求和住所的层次,进行经济技能归纳思考后断定。
建筑给排水英文文章
建筑给排水英文文章一、IntroductionIn the field of architecture, plumbing systems play a crucial role in providing clean water and removing waste from a building. Effective and efficient building plumbing systems are essential for the health and safety of occupants. This article will explore the various aspects of building plumbing systems, including design principles, materials used, installation methods, and maintenance requirements.二、Design PrinciplesA well-designed plumbing system in a building relies on several key principles:1. Water Supply DesignThe design of a water supply system involves determining the source of water, calculating the required flow rate, and sizing the pipes accordingly. Factors such as building size, occupancy, and water demand must be considered. Additionally, backflow prevention devices are installed to prevent contamination of the water supply.2. Drainage System DesignThe drainage system design focuses on removing wastewater from the building and ensuring proper disposal. Gravity is commonly used to move wastewater through a series of pipes and drains. Proper slope, pipe diameter, and venting are important considerations to prevent blockages, odors, and sewer gas leaks.3. Fixture LayoutThe layout of plumbing fixtures, such as sinks, toilets, and showers, should be carefully planned to optimize water usage, convenience, andaccessibility. Adequate space and accessibility for maintenance should be considered during the design phase.三、Materials UsedVarious materials are used in the construction of plumbing systems. The choice of materials depends on factors such as the type of water supply, budget, and local regulations. Common materials used include:1. PipesPipes are typically made of materials such as copper, galvanized steel, PVC (polyvinyl chloride), and PEX (cross-linked polyethylene). Each material has its advantages and disadvantages, such as durability, cost, ease of installation, and resistance to corrosion.2. Fittings and ValvesFittings and valves connect and control the flow of water within the plumbing system. They are available in materials like brass, copper, and plastic. The choice of fittings and valves depends on the specific requirements of the system and its intended use.四、Installation MethodsProper installation of plumbing systems is crucial to ensure their functionality and longevity. Different installation methods are used depending on the building structure and plumbing system design. Some common installation methods include:1. Traditional Open-Cut MethodThis method involves excavating trenches for the placement of pipes. It allows for easy access and repair but can be time-consuming and disruptive, especially in existing buildings.2. Trenchless TechnologyTrenchless technology, such as pipe bursting and pipe lining, is gaining popularity due to its minimal disruption and cost-effectiveness. It involves using specialized equipment to repair or replace pipes without the need for extensive excavation.五、Maintenance RequirementsRegular maintenance is essential to keep building plumbing systems in optimal condition. Neglecting maintenance can lead to leaks, blockages, and water damage. Some important maintenance requirements include:1. Regular InspectionsPeriodic inspections of the plumbing system can help identify any potential issues before they escalate into costly repairs. Inspections should include checking for leaks, proper drainage flow, and functioning of valves and fixtures.2. Clearing BlockagesBlockages in drains and pipes should be promptly cleared to prevent backups and plumbing system failures. This may involve using mechanical tools or chemicals, depending on the nature of the blockage.3. Water Heater MaintenanceWater heaters should be inspected and serviced regularly to ensure efficient and safe operation. This includes checking for leaks, sediment buildup, and testing the pressure relief valve.六、ConclusionBuilding plumbing systems are vital for the functionality and comfort of a building. Proper design, choice of materials, installation methods, and regular maintenance are key factors in ensuring the performance and longevity of these systems. By following the principles discussed inthis article, architects, engineers, and building owners can createreliable and efficient plumbing systems that meet the needs of occupants while adhering to relevant regulations.。
浅谈建筑给排水施工中的常见问题及解决(中英文互译)
Discussion on building water supply and drainage construction of commonproblems and Solutions浅谈建筑给排水施工中的常见问题及解决孙峰Abstract:Building water supply and drainage construction quality directly affects the building use function. In this paper, combined with the supervision of water supply and drainage engineering practice, for building water supply and drainage of common problems in construction were summarized and analyzed.Key words: building water supply and drainage construction qualityOur country national economy actual strength increases ceaselessly, construction industry develops rapidly, and constantly improve the level of overall construction of buildings. Construction equipment perfection degree and design level is the embodiment of building construction quality and an important symbol of modernization level, inside of the building water supply and drainage engineering is an important part of construction equipment, its technical level and advanced directly affects the using function of building, and people life, health, the environment, security. With the improvement of people's living standard, people in addition to the building safety, durability and economy have certain requirements, at the same time on the construction of the comfort, use requirements are also more attention, especially for the residential building energy saving and new energy utilization, Chuwei technology, pipeline technology, environment and security technology etc have higher requirements, these requirements in addition to the design and materials, equipment selection, construction greatly need assurance of installation quality. The quality of construction quality, directly affects the normal operation of the building water supply and drainage system. China's economic construction and development, various types of residential lots, building water supply and drainage technology of rapid development. However, with the increase of water supply and drainage engineering, also appeared some problems needed to be paid attention to, if not handled properly, will give householder brings a lot of unnecessary trouble. Therefore, the study on how to avoid water supply and drainage construction problems easy to occur is verynecessary. In the actual construction of water supply and drainage engineering construction, except in the raw materials and so on the objective factor to control the quality of water supply and sewerage works, improve employees' professional level, in strict accordance with the rules and regulations, standard operation, can be less problems, control of water supply and drainage project construction quality. Due to the level of management of construction enterprises, construction of personnel quality, building water supply and drainage construction quality is put in very big difference. Here in the construction process should pay attention to the problem is discussed:1 Living water supply systemAt present construction is widely used in aluminum-plastic composite pipe and polypropylene random copolymerization polypropylene ( PP - R ) tube. Plastic pipe has the advantages of light weight, no rust, scale, manufacturing, low energy consumption, smooth inner wall, hydraulic condition is superior, quality health, no pipeline two pollution, low labor intensity, saving installation of comprehensive construction cost advantages. PP - R water pipe connecting method is the use of fusion welding, aluminum-plastic composite pipe made of copper connection. The former applies for surface mounting, the latter applies to the dark. But there are some problems in the construction of which need special attention.(1) In the vertical tube lead-out branch tube three through parts arranged at the supporting point, the intermediate support is still in accordance with the provisions set. In the installation of pipelines should be considered in the pipeline of linear expansion, PP - R plastic water supply pipe expansion coefficient than the metal tube, wall concealed piping due to wall finally with cement mortar cement mortar filling pipeline, friction and plastic pipe special good creep effect, so that the shaft extension into radial change, therefore, block wall pipeline, can be considered linear expansion. For the pipeline, when the distance is longer, should consider adopting a telescopic device and the angle of natural compensation(2) Outdoor installed plastic water supply pipe must have reliable shading or heat preservation measures, through the pipeline settlement joints for compensating treatment. Because plastic pipe anti aging performance have certain limit, when exposed to install, long-term sun exposure can accelerate aging of plastic material, it should be considered to take effective shading or insulation measures. In addition the pipeline settlement joints shall be taken compensation measures, or easy to make pipeline rupture, appeared the phenomenonof water leakage(3)In the kitchen, Wei bovine apparatus for concentrating bathrooms, should adopt the water separator. Using plastic tube as a cold, hot water pipe concealed in floor slab of concrete in plastic pipe, due to the linear expansion coefficient of metal pipe to relatively large, because the water temperature or the ambient temperature changes, the expansion and contraction of the length change of large value. For branch pipe or pipe joint pipe, the higher chance of leakage. Water separator is a kind of multiple branch joint water distribution, it uses multiple unidirectional cloth tube, each a water distribution pipe through the water and sanitary ware and the tap connection, to reduce or cancel the concealed pipes used in branch pipe or pipe joint.(4) pipeline crossing roof slab should be set casing, through the roof should be used when the metal casing, height must meet the standard requirements. The casing and the cracks without perfusion of fine stone concrete, shall not use the asphalt in Yau Ma Tei wire packing seal. Otherwise, if the floor area of water sewage easily along the pipe wall infiltration into the submucosa.(5) the role of automatic exhaust valve. In no time delay self-closing valve of the squat toilet building water supply system, such as schools, hotels, office buildings and other force in water supply pipe system, if the top with self-closing valve can well control the flow of water, but not very good control of airflow. When the system is cut off, water pipes often accumulate a large amount of air. System after water supply pipe, air may be compressed to the tube at the top of water to form a compressed air zone. When someone is pressed delay self-closing valve button, then the compressed air with water gushing out of the closet, often within the dirt blowing to above ground, even spilled onto the clothes closet.2 Drainage system(1)The UPVC pipe wall is white, very susceptible to pollution, so the use of the process should pay attention to protection, in the pipeline in place should be promptly after the plastic packaging bag, to be removed after the completion of the project.(2) Drainage pipe out door horizontal pipe and vertical pipe connection should be used when the two45. Elbow instead of90. Elbow, which is beneficial to the drainage. There are also some engineering design for the three plus examination export method. In some projects, product quality, leading to the three links are often damaged, inconvenient repair. So in thevertical pipe and main pipe is connected with the fixed support, parts. Vertical pipe through floor roof should be fixed as supporting points, and with sheath.(3) In the legislative branch, floor, to do the protection work. For UPVC tube light weight, should be timely plugging holes in floors, planted bracket. There are a number of projects, because there was no time to fill the hole plugging holes, civil engineering, causing destruction and pipeline slope and verticality of affected. The correct approach is to stand pipe after completion of construction, straightening and planted bracket, with a good fine stone concrete plugging hole. Branch floor, planted set hanger and plugging holes. Because the floor, floor drain and the straight tube exposed to the ground, easily damaged, precautions should be taken. The specific approach is: in the floor drain and the straight tube around the100arm UPVC tube saw small short circle in the floor drain and straight around, with a fine stone concrete protection, height of not more than civil screed. For ease of maintenance, pipe water trap should be above the floor slab, for apparatus with water storing bend. Because the UPVC pipeline is light weight, thin tube wall, should pay attention to using a muffler noise reduction function fitting.(4)Installed to meet the requirements. The interior floor is mounted high above the surface, will cause the water leakage is too low, on the ground to form a pit, affect the surface clean and inconvenience in walking.(5)Air nozzle shall be located in a building ( such as eaves cornice took part, balcony and canopy ) above, otherwise cause odor accumulation. In accordance with the relevant standard requirements, the people often activity of roof, roof vent pipe extends the height of not less than 2m, and try to set bracket.(6)High-rise building in the UPVC ~ B pipe, without taking the measures to prevent fire from spreading. According to the" hard vinyl chloride building drainage pipeline engineering" ( cJJ / T29 - 98) Regulations: high-rise buildings indoor drainage pipelines that apply settings and big diameter or equal to 11Omm, in vertical pipe through the floor should be set to fire the casing or fire blocking ring, to prevent the fire spreading to the upper layer through a pipeline.(7)The floor drain and trap with. No provisions for floor drain must set up a trap, but it can affect users. The general water supply and drainage standard atlas will take seal circular bell type floor drain to a, B, C, Ding Si, although the standard of water seal section height to makespecific provision, but there is a water storage, water due to water evaporation and destroyed. Manufacture and installation and often fails to meet the design requirements. All indoor undertake a fecal sewage drainage floor drain, shall be set the trap, this can effectively prevent odor phenomenon.(8) Sewage emergency discharge tube. For kitchen and toilet adjacent residential, kitchen, toilet is if separate drainage system, is straight at the bottom of two system for emergency discharge unicom. The correct approach is to lead a floor drain from the kitchen and toilet pipe or by a toilet to kitchen pipe system. Its purpose is to once - side discharge pipe suddenly jam, still discharge sewage overflows when the ground floor drain into another system from the outside, but not to the other indoor room large area sewage soaks inundates.3 Fire water supply system(1) The design of automatic sprinkler system for pipeline connection made the trench should be used to clamp connections, or wire joint, flange connection. The current widespread use of the automatic sprinkler system, generally with galvanized steel pipe galvanized pipe, and larger in diameter than the5Omm, pipe parts of poor quality, construction difficulty. Diameter of1OOmm welding work, will destroy the galvanized layer, causing the two galvanized, the effect is not ideal. As the hoop connection parts, to avoid the above problem, and the construction is simple, without welding, and the grooves can be precast. Now the groove type clamps connecting piece is stereotypes products, mature technology, spare parts complete, quality assurance. When the proposed pipeline diameter is larger than 50mm, the groove type clamps connecting piece.(2) As the applicator interface diameter is 15mm, so some construction spaces using15ram galvanized steel pipe small vertical tube connected with the nozzle, effects of fire extinguishing water ability, should adopt the25mm diameter pipe with different diameter pipe hoop. Some engineering support, support installation is not standardized, not according to the specified distance setting, defenseless and Akira bracket, directly affect water effect, should be strictly in accordance with the relevant standard, set Branch hanger.(3) Network to carry out maintenance and leakage test of strength test is performed in two steps. Some construction unit only to the network leakage test or test the pressure does not meet the requirements of design and codes, this will give the normal operation of the system brings hidden trouble.(4) Banned the use of plastic water supply pipe for fire water supply pipe, or in a building plastic water supply pipeline and fire water supply pipeline. Because plastic pipe heating after reduced intensity, fire will cause the pipeline damage, will not play the role of fire water supply. Plastic water supply pipe and fire pipes, fire, damage to the plastic pipe, easy leakage, there is no guarantee that a fire water and hydraulic pressure.(5) Must be in conformity with the requirements of fire hydrant installation. Some concealed in brick wall of fire hydrant boxes above the hole without lintel, by loading body is deformed, causing the box door is open. In addition the construction of some units to randomly change the fire hydrant at the end position of a preformed hole, and welding and cutting hole, leading to the installation, hydrant mouth can not be with the wall into 45or 90degree angle; or with the surrounding distance is too small, causing the fire hose cannot be installed to a fire hydrant or the tape to form bending effect of water.4 Water supply and drainage noise solutionIn addition to the requirements of water supply and drainage pipe and equipment layout should be consistent and building structure, water supply and drainage noise reduction. During construction, attention to details, can effectively reduce the noise generation.(1) In order to reduce the water hammer occurrence possibility, the outlet valve Shuizui and not using the rapid opening and closing of the water supply fittings.(2) In order to reduce the flow induced vibration noise, according to the condition of the water supply pipe and selection of density of sanitary ware, and according to the standard setting of pipe support and hanger. Different pipes with different support spacing requirements; design pipeline fixing bracket, also should consider from pipeline temperature changes caused by the expansion and contraction force.(3) To reduce the cavitation noise of ascending and descending pipe, for heating system of water distribution pipe top and to elevation of the pipe section should be equipped with automatic exhaust valve; downfeed system can use the highest water distribution point when a branch is deflated splitting meter, in the water vertical tube top with automatic exhaust valve.(4) Drainage system reduces the vertical pipe and horizontal branch connection angle, or a branch connecting the upper part special parts, reduce the horizontal branch pipe to water flow, to avoid the water jump phenomenon, thereby reducing the drainage noise.(5) Drainage pipe and drainage standpipe connection should be45 degrees,60 degreeselbow, three links, or set up a special accessories. Connections of the elbow should be composed of 2to 45 degrees elbow, and shall be on the elbows set supporting pier or bracket. In this way, can slow down the drain pipe and the drain pipe of the water flow in the water flow and vertical draining pipe wall impact noise.(6) To increase the horizontal trunk pipe and vertical pipe and horizontal trunk pipe connecting bend radius of curvature, or installed with reduced height of hydraulic jump, stable drainage pipe pressure function lower special accessories, to improve the horizontal trunk pipe drainage condition.5 Conclusion:Living, live as the mankind indispensable material conditions, is restricted by social productivity, at the same time, is also the social productivity development level indicates one of. From the initial human ancestor looking for natural caves and trees do sacrifice body are today a multi-storey and high-rise residential buildings and supporting a full range of public facilities of residential area, residential construction technology, marked the social productive forces to a new level. Today, our life has stridden to well-off, residential construction quality, indoor and outdoor environment improvement, so that our country's housing situation in recent years have varying degrees of change. In residential construction, although our country starts later, but the government has pledged, formulate corresponding policies, government departments to organize and mobilize all aspects involved in residential development plan, planning, design, construction and management. No doubt, this is a huge task, need government, the construction industry and the vast majority of the practitioners, down-to-earth to make unremitting efforts. Upgrade and improvement of our people 's living environment and living conditions. With the water supply and drainage pipe of continuous improvement, we should constantly sum up the design and installation of the experience lesson in the process, improve the general level of the installation. Professional supervision engineer shall be in this play a greater role in the. In the new century, building water supply and drainage will shoulder the historical responsibility, facing new challenges. Building water supply and drainage will be more prominent in the people-oriented principle, and will focus on the adjustment to the civil and industrial construction to pay equal attention to both, public buildings and residential buildings, water supply and water supply and water, water pressure, and water quality to pay equal attention to, direction, into a comprehensive, balanced,practical, safe development road.References[1] Li Wenqing, Shao Zhuang. Building fire water supply and some problems in construction. Heilongjiang water conservancy science and technology,2006(4).[2] Chen Zhentie. Building water supply and drainage specialty on the coordination [J ]. Water supply and drainage, l996(11).[3] king growth. Building water supply and sewerage engineering ( Fifth Edition ) [ M]. Beijing: China Building Industry Press,2005[4] GBJ242 82heating and sanitary engineering code for construction and acceptance of.[5] CJJ / T29 - 98building drainage pipeline project technical specification of hard vinyl chloride.[6] GB5026l96automatic sprinkler systems code for construction and acceptance of.浅谈建筑给排水施工中的常见问题及解决孙峰摘要:建筑给排水施工质量的好坏直接影响建筑物的使用。
多层住宅建筑给排水设计的几个问题
多层住宅建筑给排水设计的几个问题摘要:本文就多层住宅建筑给排水设计中给水管材的选用,管道的敷设方式,水表出户设置,家用热水器的设置及空调冷凝水排放等问题进行探讨,并提出一些具体看法。
Abstract: this paper discussed some questions about selection of service pip laying methods,pipeline,water meter out of account settings,setting domestichot-water heater,and air-conditioning condensate emissions of ultilayer-WPM, and gave some specific advices.关键词:多层住宅给水管材管道敷设水表太阳能热水器Keyword: multilayer buildings, PPR, piping, water meter, solar water heater正文:多层住宅以其配套设施简单,造价低,物业管理方便等特点,很受中小城市房地产开发商和广大居民的欢迎。
如何按2000年小康住宅科技产业工程居住区规划设计导则的要求,提高住宅的设计水平,为每个住户营造出一个舒适的生活空间,是每个设计人员的职责所在。
作为住宅的心脏――厨房、卫生间,是功能复杂,卫生、安全和舒适度要求高,营造繁杂,技术要求高的空间。
因此,设计人员必须以整体设计的观念和方法,综合考虑厨房、卫生间给排水管道和设备的安装等。
下面就多层住宅给排水设计中给水管材的选用、管道的敷设、水表出户设置、家用热水器的设置和空调冷凝水排放等问题与同行们一起探讨。
(一)给水管材选用问题随着人们的生活质量不断提高,对自来水的水质要求也日趋提高。
据大量水质监测数据表明,导致管网水质恶化的主要原因是建筑物内供水管道采用传统的镀锌钢管的锈蚀所致。
试论建筑给排水设计中若干问题
试论建筑给排水设计中若干问题摘要:随着我国住宅建筑的崛起,建筑给排水专业也迅速发展,建筑给排水系统已成为现代建筑物的重要组成部分。
人们对居住环境的要求越来越高,对居住建筑内一些设施的布置、材料的选用、噪声的污染、节能环保等的要求也越来越高。
笔者结合在设计过程中的一些经验与体会,针对设计几个常见问题谈谈给排水设计中的一些特点,对存在的问题提出了一些解决办法,以供同行们参考。
关键词:建筑设计给排水问题分析措施Abstract: along with the rise of residential buildings in our country, construction drainage major also rapid development, construction drainage system has become an important part of the modern buildings. People living environment to demand more and more, to live within the building of some facilities layout, the material selection, noise pollution, energy conservation and environmental protection requirements of such as more and more is also high. The author in the design process of some of the experience and the experience, in view of the design of common problems talk about some of the drainage design characteristics, the existing problems and put forward some solutions, with reference to colleagues.Keywords: building water supply and drainage design problem analysis measures一、给水系统的压力问题高层建筑的给水系统按竖向分区分为高区供水和低区供水,低区供水一般采用带气压罐的变频供水系统,有的也采用高位水箱供水。
给水排水中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North ChinaAbstract The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are tomaintain long-term dynamic balance between input and output of theground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve theproblem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,insustuial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.Keywords combination system of water drainage,water supply and eco-environment protection,optimal combination,resourcification of mine water.1Analyses of necessity for the combinationThere are three related problems in the basin.It is well known that the major mine-hydrogeological characteristics of the coal accumulated basin in North China display a stereo water-filling structure,which is formed by multi-layer aquifers connected hydraulically together with various kinds of inner or outer boundaries.Mine water hazards have seriously restricted the healthy development of coal industry in China because of more water-filling sources and stronger water-filling capacity in coal mines of the basin.Coal reserves in the basin are threatened by the water hazards.In Fengfeng,Xingtai,Jiaozuo,Zibao,Huaibei and Huainan coal mine districts,for example,it is estimatedthat coal reserves are threatened by the water hazards up to 52%,71.%40,%,60%,48%and 90%of total prospecting reserves respectively.It is obvious that un-mining phenomenon caused by the water hazards is serious.Water-bursting accidents under coal layers have seriously influenced safe production.Some statistical data show that there were 17 water-bursting accidents with over 1 m3/s inflow from 1985.Water drainage is an increasing burden on coal mines threatened by water hazards:high cost of water drainage raises coal prices and reduces profits of the enterprise.On the other hand,it is more and more difficult to meet the demand of water supply in coal mine districts in the basin.The reasons are not only arid and semi-arid weather conditions,but also a large amount of water drainage with deep drawdown in coal mines and irrational water exploitation.The deterioration of eco-environment is another problem.Phenomena of land surface karst collapse can be found.Many famous karst springs,which are discharge points for the whole karst groundwater syatem,stop flowing or their discharge rates decrease on a large scale.Desert cremophytes in large areas in west China die because of falling groundwater level.These three problems are related and contradictory.In order to solve the problems while ensuring safe mining,meeting water resource demands and slowing down the pace of eco-environment deterioration,it is necessary to study the optimum combination of water drainage,water supply and eco-environment protection in the basin.2The state of the art of research and the problemsAlthough research into the combination of water drainage and water supply started much earlier in some countries,their conception is simple and some shortcomings remain in their study on the theory and pattern of combination.China’s research history on the combination can be divided into three stages.The first stage is the utilization of mine water.A century ago mine water started to be used as water supply for mines.But the utilization scale and efficiency were quite limited at that time.The second stage is a comprehensive one:mine water was used while water hazards were harnessed.Great progress was made both in theory and practice of the combination.For example,the combination of water drainage and water supply not only means the utilization of mine water,but also means that it is a technique of preventing water hazards.It is unfortunate,however,that the combination research in this stage offered less sense ofeco-environment protection.Optimum combination management of water drainage,water supply and eco-environment protection is the third stage.Main features in this stage are to widen traditional research,and to establish an economic-hydraulic management model,in which safe mining,eco-environment protection and sustainable development demands,etc.are simultaneously considered as constraint conditions.3Trinity systemThe trinity system combines water drainage,water supply and eco-environment quality protection.The water-collecting structures of the system consist of land surface pumping wells in the mines,shallow land surface well in groundwater recharge areas and artificial relief wells under the mines.Both integration and coordination for the trinity system are distinguished according to the combination.The integration for the system means to utilize drainage water under the mines and pump water onto the land surface as water supply for different purposes without harming the eco-environmental quality.The coal mines are not only drainage sites,but also water supply sources.The purpose of drilling pumping wells on the land surface is to eliminate special influences on different consumers,which are caused by terminating drainage processes under the mines due to unexpected accidents in mining.The coordination for the system means to bulid some water supply sources for different consumers while ensuring eco-environmental quality in groundwater recharge positions,where pumping groundwater is quite effective on lowering groundwater heads in the mine areas.Itintercepts in advance the recharging groundwater flow towards the mines,which may not only provide consumers with good quality groundwater,achieve the goal of dropping down groundwater heads in the mines,but also effectively reduce the high costs of drainage and water treatment,which are needed by traditional dewatering measures with large drainage flow rates under the mines.The coordination changes the traditional passive pattern of preventing and controlling groundwater hazards under the mines into that of active surface interception.Both very developed karst flow belts and accumulated groundwater recharge ones under the ground are relatively ideal interceptive coordination positions in the system.For the integration of the trinity system,artificial relief wells under the mines and the land surface pumping wells mainly penetrate into direct thin bedded karst aquifers interbedded with the mining coal layers,while for the coordination of the system,the shallow land surface wells mainly penetrate into very thick karst aquifer.Therefore,hydrogeological conceptual model for the system involves the multi-layer aquifers connected hydraulically by different inner boundaries.Setting up stereo hydrogeological conceptual models and corresponding mathematical models is a prerequisite for solving the managemental problems for the system.Management of the trinity system not only considers the effects of lowering groundwater heads and safe operation for water drainage subsystem,but also pays attention to the water demands for water supply subsystem and quality changes for eco-environment protection subsystem.They play the same important role in the whole combination system.It controls the groundwater heads in each aquifer to satisfy the conditions of safe mining with certain water head pressures in the mines,and to guarantee a certain amount of water supply for the mines and near areas,but the maximum drawdown of groundwater must not be ex ceded,which may result in lowering eco-environmental quality.4Economic-hydraulic management modelIn the trinity system management,groundwater resources in the mines and nearby areas,which are assessed on the premise of eco-environment qualities and safe operation in the mines,may be provided as water supply prices,drainage costs,transportation costs(including pipeline and purchasing the land costs)and groundwater quality treatment costs for the three different waterconsumers,the optimum management models may automatically allocate to each consumer a certain amount of groundwater resources and a concrete water supply scenario based on comparisons of each consumer’s economic contribution to the whole system in objective function.Therefore the management studies on the optimal combination among water drainage,water supply and eco-environment protection involve both the management of groundwater hydraulic techniques and the economic evaluations,eco-environment quality protection and industrial structure programs.In addition to realizing an economic operation,they also guarantee a safe operation which is a key point for the combination of the whole system.5The management model for the trinity system can reach water supply goals with drainage water under the mines and the land surface pumping water on the premise of ensuring eco-environmental quality.And it can make use of one model to lay down comprehensively optimum management scenarios for each subsystem by means of selecting proper constraints and maximum economic benefit objective produced by multiple water consumers.The model can raise the security and reliability of operation for the whole trinity system,and the drainage water can be forecast for the mines and the management of water supply resource and the evaluation of eco-environment quality can be performed at the same time so as to respectively stop the separate or closed management,of departments of drainage water,water supply and eco-environment protection from geological survey stage to management evaluation.This,in economic aspect,can not only avoid much geological survery and special assessment work which are often repeated by the three departments,and save a lot of funds,but also ,in technical aspect,make use of one model to simultaneously consider interference and influence on each other for different groundwater seepage fields so as to guarantee calculating precision of the forecast,the management and the evaluation work.The economic-hydraulic management model can be expressed as follows.6 A case studyA typical sector is chosen.It is located in the east of Jiaozuo coal mine,Henan Province,China.Itconsists of three mines:Hanwang Mine,Yanmazhuang Mine and Jiulishan Mine.The land surface is flat,and the whole area is about 30 km2.An intermittent river Shanmen flows through the sector from the north to the south.Average annual precipitation in the sector is about 662.3mm.Theprecipitation mainly concentrates inJune,July,August and September each year.Strata in the sector consist of very thick limestone in Middle Ordovician,coal-bearing rock series in Permo Carboniferous and loose deposits in Quaternary.There are four groups of faulted structures.The first is in northeast-southwest direction such as F3 and F1..The second is in the northwest-southeast direction such as Fangzhuang fault.The third is in the east-west direction such as Fenghuangling fault.The last is almost in north-south.These faults are all found to be normal faults with a high degree of dip angle.Four major aquifers have been found in the sector.The top one is a semi-confined porous aquifer.The next one is a very thin bedded limeston aquifer.The third is a thin bedded limestone aquifer.The last one at the bottom is a very thick limestone aquifer.Objective function of the management model is designed to be maximum economic benefit produced by domestic,industrial and agricultural water supply.Policy making variables of the model are considered as the domestic,industrial and agricultural groundwater supply rates in every management time step,and they are supplied by artificial relief flow wells under the mines,the land surface pumping wells in the mines and the shallow land surface wells in the groundwater recharge areas.All the 135 policy making variables are chosen in the model,27 for drainage wells under the mines in aquifer,27 for the land surface pumping wells in the mine districts in aquifer 27 in aquifer 27 in aquifer O2 27 for the shallow land surface wells in aquifer O2Based on the problems,the following constraint conditions should be considered:(1)Safe mining constraint with groundwater pressure in aquifer L8.There are altogether three coalmines in the typical sector,i.e.Hanwang Mine,Yanmazhuang Mine and Jiulishan Mine.Elevations of mining level for these mines are different because it is about 88-150 m in the second mining level for Hanwang Mine,and -200m in the second mining level for Yanmazhuang Mine,and-225 m in the first mining level for Jiulishan Mine.According to mining experiences,pressure-loaded heights for groundwater heads in safe mining state are considered as about 100-130m.Therefore,the groundwater level drawdowns in the three management time steps for aquifer L8 at three mines have to be equivalent to safe drawdown values at least in order to pervert groundwater hazards under the mines and to guarantee their safe operation.(2)Geological eco-environment quality constraint.In order to prevernt groundwater leakage fromupper contaminater porous aquifer into bottom one and then to seepage further down to contaminate the thin bedded limestone aquifer in the position of buried outcrop,the groundwater heads in the bottom porous aquifer must keep a certain height,i.e.the groundwater drawdowns in it are not allowed to exceed maximum values.(3)Groundwater head constraint at the shallow land surface wells in aquifer O2,The shallow landsurface wells should penetrate in aquifer O2 in order to avoid geological environment hazards,such as karst collapse and deep karst groundwater contamination.Groundwater head drawdowns in aquifer O2 for the shallow land surface wells are not allowed to exceed criticalvalues.(4)Industrial water supply constraint for the groundwater source in aquifer O2 .The rate ofindustrial water supply needed by the planned thermal power plant in the north of the sectoris designed to be 1.5 m3/s according to the comprehensive design of the system in thesector.In order to meet the demands of water,the rate industrial water supply for thegroundwater source in aquifer O2 in every management time step must be equivalent at leastto 1.5 m3/s.(5)Maximum amount constraint of groundwater resource available for abstraction.In order tomaintain the balance of the groundwater system in the sector for a long time and to avoid anyharmful results caused by continuous falling of groundwater head,the sum of groundwaterabstraction in each management time step is not allowed to exceed the maximum amount ofgroundwater resource available for abstraction.Since there is not only water drainage in the mines,but also water supply in the whole combination system,management period for the model is selected from June 1,1978 to May 31,1979,in which annual average rate of precipitation is about 50%.Management time steps for the period are divided into three.The first one is from June to September,the second from October to next January,and the last one from next February to May.According to comprehensive information about actual economic ability,economic development program and industrial structure adjustment in the sector at present and in the near future,and different association forms of water collecting structures among the land surface pumping wells,the shallow land surface wells and artificial relief flow wells under the mines,this paper designs 12 management scenarious,all of which take the safe operation in the trinity system as the most important condition.After making comparisons of optimum calculation results for the 12 scenarious,this paper comes to a conclusion that scenarios is the most ideal and applicable one for the typical sector.This scenario not only considers the effective dewatering advantage of the artificial relief flow wells under the mines and safe stable water supply advantage of the land surface pumping wells,but also pays attention to the disadvantage of low safe guaranty rate for the relief flow wells under the mines for water supply and of large drilling investment in the land surface pumping wells.Meanwhile,eh shallow land surface wells inaquifer O2in this scenario would not only provide water supply for the thermal power plant as planned,but also play an important role in dewatering the bottom aquifer,which is major recharge source of groundwater for the mines.If the drainage subsystem under the mines runs normally,this scenario could fully offer the effective dewatering functions of the artificial relief flow wells under the mines,and makes the trinity system operate normally.But if the drainage subsystem has to stop suddenly because of unexpected accidents,the scenario could still fully utilize the land surface pumping wells and the shallow land surface wells,and increae their pumping rates in order to make up for temporary shortage of water supply for the trinity system and to make its economic losses reduced to a minimum extent.Increasing groundwater abstraction rate for the land surface pumping wells and the shallow land surface wells,in fact,is very favorable for harnessing the water-accidents under the mines and for recovery production of the mines.To sum up,this scenario sets up a new pattern for the combination of water drainage,water supply and eco-environment protection.It solves quite well the conflicts between the low safe guaranty rate and the effective dewatering result for the artificial relief flow wells under the mines.It makes full use of beneficial aspect of the conflicts,and meanwhile compensates for the unbeneficial one by arranging the land surface pumping wells in the coal mine districts.Therefore,this scenario should be comprehensive and feasible.In this scenario,Hanwan Mine,Yanmazhuang Mine and Jiulishan Mine are distributed optimally for certain amount of domestic and industrial water supply,but not for much agricultural water supply.The land surface pumping wells are also distributed for different purposes of water supply.The water supply for the thermal power plant (1.5 m3/s) is provided by the shallow land surface prehensive effects,produced by the above three kinds of water collecting structures,completely satisfy all of the constraint conditions in the management model,and achieve an extremely good economic objective of 16.520551million RMB yuan per year.In order to examine the uncertainty of the management model,12management scenarios are all tested with sensitive analysis.7Conclusion(1)The optimum combination research among water drainage,water supply and eco-environmentprotection is of great theoretical significance and application value in the basin of North China for solving unbalanced relation between water supply and demands,developing new potential water supply sources and protecting weak eco-environment.(2)The combination research is concerned not only with hydraulic technique management but alsowith constraints of economic benefits,society,ecology,environment quality,safe mining and sustainable development in the coal mines.(3)The combination model,for the first time,breaks up the closed situation existing for a longtime,under which the government departments of drainage water,water supply and eco-environment protection from geological survey stage to management evaluation work respectively.Economically,it can spare the repeated geological survey and special assessment work done by the three departments and save a lot of funds;technically,one model is made use of to cover the interference and influence each other for different groundwater seepage fields soas to guarantee a high calculating precision of the forecast,the management and the evaluation work.(4)The management scenario presented in the case study is the most ideal and applicable for thetypical sector.This scenario not only makes full use of the effective dewatering advantages of the artificial relief flow wells under the mines and safe stable water supply advantages of the land surface pumping wells,but also pays attention to the disadvantages of low safe guaranty rate for the relief flow wells under the mines for water supply and of large drilling investment for the land surface pumping wells.References1.Investigation team on mine-hydrogeology and engineering geology in the Ministry ofGeology and Mineral Resources.Investigation Report on Karst-water-filling Mines(inChinese).Beijing:Geological Publishing House,19962.Liu Qiren,Lin Pengqi,Y u Pei,Investigation comments on mine-hydrogeological conditionsfor national karst-water-filling mines,Journal of Hydrogeology and Engineering Geology(in Chinese),19793.Wang Mengyu,Technology development on preventing and curing mine water in coalmines in foreign countries,Science and Technology in Coal(in Chinese),19834.Coldewey,W.G.Semrau.L.Mine water in the Ruhr Area(Federal Republic of Germany),inProceedings of 5th International Mine Water Congress,Leicestershire:Quorn SelectiveRepro Limited,19945.Sivakumar,M.Morten,S,Singh,RN,Case history analysis of mine water pollution,inProceedings of 5th International Mine Water Congress,Leicestershire;Quorn SelectiveRepro Limited,19946.Ye Guijun.Zhang Dao,Features of Karst-water-filling mines and combination betweenwater drainage and water supply in China,Journal of Hydrogeology and EngineeringGeology(in China),19887.Tan Jiwen,Shao Aijun,Prospect analyses on Combination between water drainage andwater supply in karst water basin in northern China,Jounnal of Hebei College ofGeology(in Chinese),19858.Xin Kuide,Yu Pei,Combination between water drainage and water for seriouskarst-water-filling mines in northern China,Journal of Hydrogeology and Engineering Geology(in Chinese),19869.Wu Qiang,Luo Yuanhua,Sun Weijiang et al.Resourcification of mine water andenvironment protection,Geological Comments(in Chinese),199710.Gao Honglian,Lin Zhengping,Regional characteristics of mine-hydrogeological conditionsof coal deposits in China,Journal of Hydrogeology and Engineering Geology(in Chinese),198511.Jiang Ben,A tentative plan for preventing and curing measures on mine water in coal minesin northern China,Geology and Prospecting for Coaofield(in Chinese),1993中国北方煤炭积聚区的最佳组合排水,供水和生态环境保护摘要为了开采中国北方煤炭资源丰富的区域,不合理的排水使排水、供水和保护生态环境之间的冲突日趋严重。
关于住宅小区建筑给排水设计中的问题探讨
关于住宅小区建筑给排水设计中的问题探讨摘要:给排水系统作为建筑工程的“血液”系统,对建筑的品质提升有着至关重要的作用,这就要求设计人员在设计过程中,在符合有关设计规范的基础上,充分考虑需求。
本文着重分析了给排水设计中存在的问题,并结合个人多年工作经验提出了在给排水设计中需要注意的问题和解决对策。
关键词:住宅小区;给排水设计;问题与对策Abstract: water supply and drainage system as building project “blood” system, improve the quality of the buildings have a vital role, this requires design personnel in the design process, in accord with the relevant design code, and on the basis of full consideration of the demand. This article mainly analyses the problems existing in the design of water supply and drainage, and connecting with the personal years of work experience in water supply and drainage design put forward the problems to be pay attention to and the countermeasures to solve problems.Keywords: residential district; Water supply and drainage design; Problems and countermeasures经济全球化的加剧,我国社会主义经济建设的发展速度日益提高,这使得人们的物质生活水平也得到显著性的提升,人们对与其日常生活相关的任何事物都有了更高的要求。
建筑工程及给排水专业中英文对照翻译
建筑工程及给排水专业中英文对照翻译Laminar and Turbulent FlowObservation shows that two entirely different types of fluid flow exist. This was demon- strated by Osborne Reynolds in 1883 through an experiment in which water was discharged from a tank through a glass tube. The rate of flow could be controlled by a valve at the outlet, and a fine filament of dye injected at the entrance to the tube. At low velocities, it was found that the dye filament remained intact throughout the length of the tube, showing that the particles of water moved in parallel lines. This type of flow is known as laminar, viscous or streamline, the particles of fluid moving in an orderly manner and retaining the same relative positions in successive cross- sections.As the velocity in the tube was increased by opening the outlet valve, a point was eventually reached at which the dye filament at first began to oscillate and then broke up so that the colour was diffused over the whole cross-section, showing that the particles of fluid no longer moved in an orderly manner but occupied different relative position in successive cross-sections. This type of flow is known as turbulent and is characterized by continuous small fluctuations in the magnitude and direction of the velocity of the fluid particles, which are accompanied by corresponding small fluctuations of pressure.When the motion of a fluid particle in a stream is disturbed, its inertiawill tend to carry it on in the new direction, but the viscous forces due to the surrounding fluid will tend to make it conform to the motion of the rest of the stream. In viscous flow, the viscous shear stresses are sufficient to eliminate the effects of anydeviation, but in turbulent flow they are inadequate. The criterion which determines whether flow will be viscous of turbulent is therefore the ratio of the inertial force to the viscous force acting on the particle. The ratioμρvl const force Viscous force Inertial ?= Thus, the criter ion which determines whether flow is viscous or turbulent is the quantity ρvl /μ, known as the Reynolds number. It is a ratio of forces and, therefore, a pure number and may also be written as ul /v where is the kinematic viscosity (v=μ/ρ).Experiments carried out with a number of different fluids in straight pipes of different diameters have established that if the Reynolds number is calculated by making 1 equal to the pipe diameter and using the mean velocity v , then, below a critical value of ρvd /μ = 2000, flow will normally be laminar (viscous), any tendency to turbulence being damped out by viscous friction. This value of the Reynolds number applies only to flow in pipes, but critical values of the Reynolds number can be established for other types of flow, choosing a suitable characteristic length such as the chord of an aerofoil in place of the pipe diameter. For a given fluid flowing in a pipe of a given diameter, there will be a critical velocity of flow corresponding to the critical value of the Reynolds number, below which flow will be viscous.In pipes, at values of the Reynolds number > 2000, flow will not necessarily be turbulent. Laminar flow has been maintained up to Re = 50,000, but conditions are unstable and any disturbance will cause reversion to normal turbulent flow. In straight pipes of constant diameter, flow can be assumed to be turbulent if the Reynolds number exceeds 4000.Pipe NetworksAn extension of compound pipes in parallel is a case frequently encountered in municipal distribution system, in which the pipes are interconnected so that the flow to a given outlet may come by several different paths. Indeed, it is frequently impossible to tell by inspection which way the flow travels. Nevertheless, the flow in any networks, however complicated, must satisfy the basic relations of continuity and energy as follows:1. The flow into any junction must equal the flow out of it.2. The flow in each pipe must satisfy the pipe-friction laws for flow in a single pipe.3. The algebraic sum of the head losses around any closed circuit must be zero.Pipe networks are generally too complicated to solve analytically, as was possible in the simpler cases of parallel pipes.A practical procedure is the method of successive approximations, introduced by Cross. It consists of the following elements, in order:1. By careful inspection assume the most reasonable distribution of flows that satisfies condition 1.2. Write condition 2 for each pipe in the formh L = KQ n(7.5) where K is a constant for each pipe. For example, the standard pipe-friction equation would yield K= 1/C2and n= 2 for constant f. Minor losses within any circuit may be included, but minor losses at the junction points are neglected.3. To investigate condition 3, compute the algebraic sum of the head losses around each elementary circuit. ∑h L= ∑KQ n. Consider losses from clockwise flows as positive, counterclockwise negative. Only by good luck will these add tozero on the first trial.4. Adjust the flow in each circuit by a correction, ΔQ , to balance the head in that circuit and give ∑KQ n = 0. The heart of this method lies in the determination of ΔQ . For any pipe we may writeQ = Q 0 +ΔQwhere Q is the correct discharge and Q 0 is the assumed discharge. Then, for a circuit100/Q h n h Q Kn Q K Q L L n n ∑∑∑∑?-=-=- (7.6) It must be emphasized again that the numerator of Eq. (7.6) is to be summed algebraically, with due account of sign, while the denominator is summed arithmetically. The negative sign in Eq.(7.6) indicates that when there is an excess of head loss around a loop in the clockwise direction, the ΔQ must be subtracted from clockwise Q 0’s and added to counterclockwise ones. The reverse is true if there is a deficiency of head loss around a loop in the clockwise direction.5. After each circuit is given a first correction, the losses will still not balance because of the interaction of one circuit upon another (pipes which are common to two circuits receive two independent corrections, one for each circuit). The procedure is repeated, arriving at a second correction, and so on, until the corrections become negligible.Either form of Eq. (7.6) may be used to find ΔQ . As values of K appear in both numerator and denominator of the first form, values proportional to the actual K may be used to find the distribution. Thesecond form will be found most convenient for use with pipe-friction diagrams for water pipes.An attractive feature of the approximation method is thaterrors in computation have the same effect as errors in judgment and will eventually be corrected by the process.The pipe-networks problem lends itself well to solution by use of a digital computer. Programming takes time and care, but once set up, there is great flexibility and many man-hours of labor can be saved.The Future of Plastic Pipe at Higher PressuresParticipants in an AGA meeting panel on plastic pipe discussed the possibility of using polyethylene gas pipe at higher pressures. Topics included the design equation, including work being done by ISO on an updated version, and the evaluation of rapid crack propagation in a PE pipe resin. This is of critical importance because as pipe is used at higher pressure and in larger diameters, the possibility of RCP increases.Se veral years ago, AGA’s Plastic Pipe Design Equation Task Group reviewed the design equation to determine if higher operating pressurescould be used in plastic piping systems. Members felt the performance of our pipe resins was not truly reflected by the design equation. It was generally accepted that the long-term properties of modern resins far surpassed those of older resins. Major considerations were new equations being developed and selection of an appropriate design factor.Improved pipe performanceMany utilities monitored the performance of plastic pipe resins. Here are some of the long-term tests used and the kinds of performance change they have shown for typical gas pipe resins.Elevated temperature burst testThey used tests like the Elevated Temperature Burst T est, inwhich the long-term performance of the pipe is checked by measuring the time required for formation of brittle cracks in the pipe wall under high temperatures and pressures (often 80 degrees C and around 4 to 5-MPa hoop stress). At Consumers Gas we expected early resins to last at least 170 hrs. at 80 degrees C and a hoop stress of 3 MPa. Extrapolation showed that resins passing these limits should have a life expectancy of more than 50 yrs. Quality control testing on shipments of pipe made fromthese resins sometimes resulted in product rejection for failure to meet this criterion.At the same temperature, today’s resins last thousands of hours at hoop stresses of 4.6 MPa. Tests performed on pipe made from new resins have been terminated with no failure at times exceeding 5,700 hrs. These results were performed on samples that were squeezed off before testing. Such stresses were never applied in early testing. When extrapolated to operating conditions, this difference in test performance is equivalent to an increase in lifetime of hundreds (and in some cases even thousands) of years.Environmental stress crack resistance testSome companies also used the Environmental Stress Crack Resistance test which measured brittle crack formation in pipes but which used stress cracking agents to shorten test times.This test has also shown dramatic improvement in resistance brittle failure. For example, at my company a test time of more than 20 hrs. at 50 degrees C was required on our early resins. Today’s resins last well above 1,000 hrs. with no failure.Notch testsNotch tests, which are quickly run, measure brittle crack formation in notched pipe or molded coupon samples. This isimportant for the newer resins since some other tests to failure can take very long times. Notch test results show that while early resins lasted for test times ranging between 1,000 to 10,000 min., current resins usually last for longer than 200,000 min.All of our tests demonstrated the same thing. Newer resins are much more resistant to the growth of brittle crack than their predecessors. Since brittle failure is considered to be the ultimate failure mechanism in polyethylene pipes, we know that new materials will last much longer than the old. This is especially reassuring to the gas industry since many of these older resins have performed very well in the field for the past 25 yrs. with minimal detectable change in properties.While the tests showed greatly improved performance, the equation used to establish the pressure rating of the pipe is still identical to the original except for a change in 1978 to a single design factor for all class locations.To many it seemed that the methods used to pressure rate our pipe were now unduly conservative and that a new design equation was needed. At this time we became aware of a new equation being balloted atISO. The methodology being used seemed to be a more technically correct method of analyzing the data and offered a number of advantages.Thermal Expansion of Piping and Its CompensationA very relevant consideration requiring careful attention is the fact that with temperature of a length of pipe raised or lowered, there is a corresponding increase or decrease in its length and cross-sectional area because of the inherent coefficient of thermal expansion for the particular pipe material. The coefficient of expansion for carbon steel is 0.012 mm/m?Cand for copper 0.0168mm/m?C. Respective module of elasticity a re for steel E = 207×1.06kN/m2 and for copper E = 103×106 kN/m2. As an example, assuming a base temperature for water conducting piping at 0?C, a steel pipe of any diameter if heated to 120?C would experience a linear extension of 1.4 mm and a similarly if heated to copper pipe would extend by 2.016 mm for each meter of their respective lengths. The unit axial force in the steel pipe however would be 39% greater than for copper. The change in pipe diameter is of no practical consequence to linear extension but the axial forces created by expansion or contractionare con- siderable and capable of fracturing any fitments which may tend to impose a restraint;the magnitude of such forces is related to pipe size. As an example,in straight pipes of same length but different diameters, rigidly held at both ends and with temperature raised by say 100?C, total magnitude of linear forces against fixed points would be near enough proportionate to the respective diameters.It is therefore essential that design of any piping layout makes adequate com- pensatory provision for such thermal influence by relieving the system of linear stresses which would be directly related to length of pipework between fixed points and the range of operational temperatures.Compensation for forces due to thermal expansion. The ideal pipework as far as expansion is concerned, is one where maximum free movement with the minimum of restraint is possible. Hence the simplest and most economical way to ensure com- pensation and relief of forces is to take advantage of changes in direction, or where this is not part of the layout and long straight runs are involved it may be feasible to introducedeliberate dog-leg offset changes in direction at suitable intervals.As an alternative,at calculated intervals in a straight pipe run specially designed expansion loops or “U” bends should be inserted. Depending upon design and space availability, expansion bends within a straight pipe run can feature the so called double offset “U” band or thehorseshoe typ e or “lyre” loop.The last named are seldom used for large heating networks; they can be supplied in manufacturers’ standard units but require elaborate constructional works for underground installation.Anchored thermal movement in underground piping would normally be absorbed by three basic types of expansion bends and these include the “U”bend, the “L”bend and the “Z”bend.In cases of 90 changes indirection the “L” and “Z”bends are used.Principles involved in the design of provision for expansion between anchor points are virtually the same for all three types of compensator. The offset “U” bend is usually made up from four 90° elbows and straight pipes; it permits good thermal displacement and imposes smaller anchor loads than the other type of loop. This shape of expansion bend is the standardised pattern for prefabricated pipe-in-pipe systems.All thermal compensators are installed to accommodate an equal amount of expansion or contraction; therefore to obtain full advantage of the length of thermal movement it is necessary to extend the unit during installation thus opening up the loop by an extent roughly equal the half the overall calculated thermal movement.This is done by “cold-pull” or other mechanical means. The total amount of extension between two fixed pointshas to be calculated on basis of ambient temperature prevailing and operational design temperatures so that distribution of stresses and reactions at lower and higher temperatures are controlledwithin permissible limits. Pre-stressing does not affect the fatigue life of piping therefore it does not feature in calculation of pipework stresses .There are numerous specialist publication dealing with design and stressing calculations for piping and especially for proprietary piping and expansion units; comprehensive experience back design data as well as charts and graphs may be obtained in manufacturers’publications, offering solutions for every kind of pipe stressing problem.As an alternative to above mentioned methods of compensation for thermal expansion and useable in places where space is restricted, is the more expensive bellows or telescopic type mechanical compensator. There are many proprietary types and models on the market and the following types of compensators are generally used.The bellows type expansion unit in form of an axial compensator provides for expansion movement in a pipe along its axis; motion in this bellows is due to tension or compression only.There are also articulated bellows units restrained which combine angular and lateral movement; they consist of double compensator units restrained by straps pinned over the center of each bellowsor double tied thus being restrained over its length.Such compensators are suitable for accommodating very pipeline expansion and also for combinations of angular and lateral movements.层流与紊流有两种完全不同的流体流动形式存在,这一点在1883年就由Osborne Reynolds 用试验演示证明。
给排水工程外文翻译
给排水工程外文翻译 Final approval draft on November 22, 2020Short and Long Term Advantage roof drainage design performanceDecade has witnessed great changes in the design of the roof drainage system recently, particularly, siphon rainwater drainage system has been gradually improved, and there is likely to be the key application. At the same time these changes, urban drainage system design has undergone tremendous changes, because the scope of a wider urban drainage system design for sustainable development, as well as people for climate change flooding more attention. The main contents of this article is how to design roof drainage systems and make a good performance. Special attention is how to get rid of bad habits already formed the design, but also need to consider innovative roof drainage system, such as green roofs and rainwater harvesting systems.Practical application: In the past few years, the design of the roof rainwater drainage system has undergone tremendous changes. On large buildings, siphon rainwater drainage technology has been very common, as well as green roofs because it is conducive to green development, being more and more applications. Taking into account the ongoing research, this article focuses on how to effectively design a variety of roof rainwater drainage system, and make it achieve the desired design effect.1. IntroductionIn the past decade, the city and the water drainage system design has been widely accepted thinking about sustainable urban drainage system, or the optimal management direction. The main principles of the design of these systems is both a local level in line with the quality of development, but also to create some economic benefits for the investors. This principle has led to the development of new changes in the sump. Although the application of such a device is gradually reduced, but the urban environment relatively high demand areas still require 100% waterproof and rapid drainage, such as the roof. Typically roof drainage system in the design, construction and maintenance has not been given due attention. Although the drainage system investment costs account for only a small portion of the total construction investment, but not able to judge the loss caused by poor design.There are two different forms of roof drainage system design methods, namely the traditional and siphon method. Traditional systems rely on atmospheric pressure work, the drive ram affectedsink flow depth. Therefore, the conventional roof drainage systems require a relatively large diameter vertical drop tube, prior to discharge, all devices must be connected to the groundwatercollection pipe network. In contrast, siphonic roof drainage pipe systems are generally designed to full flow (turbulent flow meansthat require less exhaust pipe), which will form a negative pressure, the larger the higher flow rate and pressure head. Typically siphon system requires less down pipe work under negative pressure to the water distribution network can mean higher altitude work, thereby reducing the amount of underground pipe network.Both systems consists of three parts: the roof, rainwater collection pipes, pipe network.All of these elements are able to change the water pressure distribution system. This section focuses on the role and performance of each part. Due to the principle of siphon system has not been well understood, resulting argument is relatively small, this article will highlight siphon system.2. RoofThe roof is usually designed by the architect, designer and not by the drainage design. There are three main roof.2.1 Flat roofFlat roofs are used in industrial buildings less rainfall regions and countries. This roof is not completely flat, but lower than the minimum roof slope may require. For example, the United Kingdom require maximum slope of 10 °. Setting minimum slope in order to avoid any unnecessary water.Despite the flat roof if it is not properly maintained will have more problems, but it will reduce the dead zone within the building, and the ratio of sloping roofs in favor of indoor air.2.2 sloping roofsMost residential and commercial buildings are pitched roof, inclined roof is the biggest advantage can quickly drain, thereby reducing leakage. In temperate regions, we need to consider carrying roof snow load. Once it rains, rainfall through the sloping roofs can be determined by calculation. When rainfall data can be used, you can use the kinematic theory to solve such problems.2.3 green roof (flat or inclined)It can prove roof is the oldest green roofs, including rainfall can reduce or disperse roof planted with plants. It can be planted with trees and shrubs roof garden, it can also be a vegetated roof light carpet. Wherein the latter technique has been widely used. Some of these applications tend to focus on aesthetic requirements and are often used in green development. Since the aesthetic requirements and pressure requirements, as well as green roofs thermal insulation function, reduce the heat island effect, silencer effect, extend the life of the roof.Green roofs in Germany, the most widely used, followed in North America, but to consider the impact on the aesthetics. Germany is by far the most experienced countries in the 19th century have practical application, then as an alternative to reduce the risk of fire tarroof an option in urban areas. Germany is currently the main research question on the cultivation of other issues to consider smaller cities. A study from 1987 to 1989, was found packed with 70 mm thick green roof can be reduced by 60% -80% of heat loss. In a Canadianwork computer model based on the roof indicates that as long as the sump, the area can reach 70% of the roof area can be reduced by 60 percent in one year, the same model was also used for artificial rainfall, which the results indicate that rainfall in the catchment season helps to drain away rainwater.However, none of these studies show that green roofs can play a useful role in the rainfall season, or how high collection efficiency of water supply. The United States did some tests, as long as the green roofs regular watering, can reduce 65 percent of the runoff ina rainfall. America's most authoritative green roof guidelines by the New Jersey state environmental agencies promulgated. The mainprinciple is to solve the structural problems of light, and how can the normal drainage after two years.Rainfall period is based on the probability of failure is determined. The system is typically based on rainfall during rainstorms two minutes, two minutes, have a choice. Although this model will get more traffic, but there is no other better alternative. Studies have shown that the traditional model is applied to study green roofs are premature.Loss factor than traditional roof records should be small, about 98.7%.Peak flow will be reduced, although not penetrate, the surface roughness but also have a significant impact.Concentrated rainfall than two minutes for a long time,especially for large roof areas, such as public buildings, commercial buildings, industrial buildings.Urban drainage design should also consider other factors, for a complex system, a green roof in a rain is not enough. Water flow duration curve shows a longer than traditional systems. And two independent and will affect between is possible, which requires a more precise time period.3. Rainwater CollectorBasic requirements rainwater collector is designed to be able to accommodate rainfall rainstorms. Although it is possible to make a slightly inclined roof drainage purposes, but the nature of the construction industry and building settlement will become flat roofTypically, the tank is placed in a horizontal, sectional view of the water is outwardly inclined, which the role of hydrostatic.3.1 drain outletAnalyzing rainwater collector has sufficient volume is the key to the sump outlet external setting conditions. Also affect the flow rate into the storm water drainage system piping, but also affect the depth of the water catchment. Although the depth of the sump will not bring any particular problems, but too deep can cause excessive sump.Numerous studies in the 1980s showed that the flow of conventional roof drainage system outlet can be divided into two cases. It depends on the size of the depth and size of the outlet. When the water depth is less than half the diameter of the outlet, the flow of the first type, and the outlet of the flow can be calculated by an appropriate equation; water depth increases, exports are slowly clogging the flow will become another form forms, at the same time, the flow of exports can be obtained through other equations. While conventional roof drainage systems are designed to be free-draining, but may cause limitations encountered in the design of the flow is not free. In this case, it will require additional depth.Siphon roof drainage systems, the outlet is designed to be submerged stream. In this case, the depth of the outlet of the decision is more complicated, because the design of the sump depends on the flow. Recent studies have shown that conventional roof drainage systems use a variety of non-standard catchment, their depth and height, bigger than the diameter of the outlet. This will eventually result in a siphon effect. For a given catchment, the flow depends on the starting end of the drop tube diameter. A similar phenomenon has also been used to study the standard catchment, in these circumstances, only limited siphon action occurs within relatively close distance from the exit.3.2 tank flow classificationIn the complex flow sump outlet flow classification, can be seen from Table 2a, the flow will be uniform layering, regardless of whether the same inlet flow. Table 2b and 2c show, exportdistribution will greatly influence the flow.When the outlet is not a free jet, sump outlet complex flow classification is difficult to describe. Because each catchment tank pressures are likely to be merged. For example, the siphon tube system design point is at near full jet outlet flow classification depends on the energy loss of each branch.3.3 hydrostatic sectionalSump shape of the water surface in the canal can be classified according to the flow equation. In most cases, a low flow rate meansthat there is less friction loss, if exports are free jet, thefriction loss is negligible cross-section through the hydrostatic equation 1 to determine the horizontal distance.Where Q-- flow (m3 / s)T- surface width (m)g- acceleration of gravity (m / s2)F- flow area (m2)Equation 1 can not be ignored when the friction required to correct (or very long pipe velocity is large), or not a free jet.3.4 The current design methodsThe previous discussion has highlighted the main factors that should be considered with sink design. However, without the help of a certain number of models, computing hydrostatic sectional roof drainage system, the volume of the sump is possible. This large commercial and manufacturing industry, is a development opportunity, you can merge several kilometers of water routes. Thus, the conventional drainage system sump design methods are mainly based on experience, and assume that exports are free jet.Sump location in the building, it may cause the example to fail. Different interface sumpExcept in the case cited above, but also allows designers to use empirical data.3.5 Digital ModelLarge number of digital models can be used to accurately describe the flow of any form of catchment tank, regardless of whether the roof flows stable. An example of this model is a combination of roof space model. This model enables users to classify different aspects of the data indicated, includes: details of the rains, the roof surface drainage and other details. Kinematics have also been used to study rainwater tank to flow from the research collection. A typical method is based on open system to solve a basic problem of spatial mobility. This model automatically resolve the sump outlet flow situation, but also to deal with the case of free jet can also be simulated space limited mobility and submerged discharge. Output values include depth and flow rate.Currently, the model is essentially just a variety of research tools, but also through practical engineering test. However, we should face up to the various role models.4 pipe systems groupComposition in the form and scope of the tube group determinesthe roof drainage system relies mainly on the traditional system or siphon action.4.1 Traditional stormwater systemsConventional roof drainage systems, the ground plane is generally vertical pipe-line network, connected to the sump outlet and underground drainage systems, critical systems as well as compensating tube. It should be emphasized that the angle between the ground and the compensating tube is less than 10 °. Capacity of the entire system relies mainly on the outlet tube instead of down.Flow vertical tube is usually free-flowing, full of only 33%, the efficiency depends on the excess length of the tube. If the drop tube long enough (typically greater than 5m), there may be an annular flow. Similarly, under normal circumstances flow compensation pipe is free-flowing, full of up to 70%. Such designed process both for the design, various equations can also be used.4.2 Siphon roof drainage systemIn contrast with the traditional drainage systems, Siphon roof drainage system relies on air flow outside the system, and the tubeis full pipe flow stream.The designs are usually made on the assumption that the design of heavy rain, the system can quickly siphon discharge rainwater. This assumption allows the application of hydrostatic siphon system theory. Often used steady flow energy equation. While this approach ignores the small amount of energy loss at the entrance, but after the experiment showed that there are still conducive to practical use.However, steady-state design methods in the siphon system is exposed to rain when the system does not meet the standard requirements or changes in rainfall intensity is large is not applied. In the first case, there will be some mixing of air quality, annular flow occurs. These problems are not integrated in the system when more serious. Because usually designed rains are common, it is clear now design methodology over time may not apply to siphon system. This is a major disadvantage, because the design of the main problem isthe noise and vibration problems.Despite the disadvantages of the prior design approach, but a lot of the world's very few engineering failure reports. When a failure occurs, most likely for the following reasons:An incorrect understanding of the operation pointsSubstandard materials listInstallation defectsMaintenance mismanagementTo overcome these disadvantages, we have recently launched aseries of research projects, to discuss the siphon system, and the development of digital models. From this work we learn a lot.In contrast with conventional design methods of some assumptions, siphon system mainly has the following aspects:1) non-flow system of full flow2) levels of certain pipe-flowing full pipe flow3) full pipe flow downstream propagation through a vertical pipe, riser, etc.4) the inner tube flow occurs over the vertical section, the system to reduce the pressure5) downward tube is full pipe flow, there will be air lock6) appears completely siphon action until well into the air system is lower than a certain levelTable 4a column data indicate that below the design point, the system will siphon unstable flow, depth of the water collecting tank is insufficient to maintain the siphon action. Table 4b show that the unsteady flow in siphon system when it will appear.Table 5 lists the data output of a digital model. It can be seen that the model can accurately describe the siphon action, siphon and steady state, the data also show that the model can accurately describe the complex siphon action.5 ConclusionThis article has illustrated the critical roof drainage systems, but these are often overlooked in the urban drainage system design. This article also shows that the design process is a complex process, rely mainly on the performance of exports. The following conclusions are based on the design summed up:1) Run depend on three interacting parts: the roof, sump, water pipes2) Green roofs can reduce traffic and beautify the city3) the export performance of the system is essential4) siphon drainage system have a greater advantage in large-scale projects, but must be considered high maintenance costs5) Design siphon drainage system should consider additional capacity and operational issuesAlthough the green roof is a more attractive option, but the traditional roof of a building in the country will continue to dominate. Green roofs will be gradually developed, and gradually been widely accepted. Similarly, the roof drainage system shown effective that it will continue to play a huge role in the commercial building drainage systems.Roof drainage system of the greatest threats from climate change, existing systems tend to be not simply aging; rainfall patterns of change will result in inefficient operation, self-cleaning rate will be reduced. Changes in wind speed and the roof will also accelerate the aging of the roof, it is necessary to carry out maintenance. Taking into account the climate change, the increase in materials, roof collected rainwater will be more extensive. Currently, the amount of rain around the globe per person per day 7-300 liters in the UK, with an average consumption of 145L / h / d, of which onlyabout one liter is used by people, about 30 per cent of the toilet, study shows If water shortage, rainwater collected on the roof of developed and developing countries are recommended approach.屋顶排水设计性能的近期与远期优势最近十年见证了屋顶排水系统设计方面的巨大变化,特别的是,虹吸雨水排水系统已经得到逐步改善,并且有可能得到重点应用。
建筑给水排水基本术语中英对照翻译
建筑给水排水基本术语中英对照翻译建筑给水排水基本术语中英对照翻译中德工程建筑设施智能技术093132 张伟)1、给水工程water supply engineering 原水取集和处理以及成品水输配工程。
2、排水工程sewerage ,wastewater engineering 收集、输送、处理和处置废水工程。
3、给水系统water supply system 给水取水、输水、水质处理和配水等设施以一定方式组合成总体。
4、排水系统sewerage system 排水收集、输送、水质处理和排放等设施以一定方式组合成总体。
5、给水水源water source 给水工程所取用原水水体。
6、原水raw water 由水源地取来原料水。
7、地表水surface water 存在于地壳表面,暴露于大气水。
8、地下水ground water 存在于地壳岩石裂缝或土壤空隙中水。
9、苦咸水(碱性水) brackish water ,alkaline water 碱度大于硬度水,并含大量中性盐,PH 值大于7。
10、淡水fresh water 含盐量小于500mg/L 水。
11、冷却水cooling water 用以降低被冷却对象温度水。
12、废水wastewater 居民活动过程中排出水及径流雨水总称。
它包括生活污水、工业废水和初雨径流以及流入排水管渠其它水。
13、污水sewage ,wastewater 受一定污染来自生活和生产排出水。
14、用水量water consumption 用水对象实际使用水量。
15、污水量wastewater flow ,sewage flow 排水对象排入污水系统水量。
16、用水定额water flow norm 对不同排水对象,在一定时期内制订相对合理单位排水量数值。
17、排水定额wastewater flow norm 对不同排水对象,在一定时期内制订相对合理单位排水量数值。
土木工程给水排水英文文献及翻译-英语论文
土木工程给水排水英文文献及翻译-英语论文土木工程给水排水英文文献及翻译Building drainage of water-saving techniquesWith people's quality of life,the quality and quantity of water are constantly expanding. Implement sustainable water use and protection of water resources from destruction. And access to healthy water, recycling of water, has become the government and the broad masses of the people the focus of attention. All this gave to the construction of drainage works on the design of the many new requirements, water supply advanced technology of the urgent need to accelerate the pace. This paper will explore more of the building for drainage of water-saving technology; we hope to arouse the awareness of water conservation to build water-saving city efforts.Construction of a water-saving project, in addition to the water saving should formulate laws and regulations to strengthen the management and day-to-day publicity and education use price leverage to promote water conservation work, but also take effective measures, to ensure that the construction of water-saving work carried out in-depth and comprehensive. We are aware that the water supply network's coverage, the extension of transmission mains and the construction of the building because arisingfrom the difference in height, will be used to increase the water pressure before the end of ways to protect the most disadvantaged water points will be adequate water supply, This will be a large number of regional supply of high pressure water supply is. Therefore accessories before the water hydrostatic head greater than outflow, the flow was greater than the rated flow capacity. Beyond the rated flow capacity of that part of the normal flow did not have the use efficiency is a waste of water. As a result of this water is being wasted is not easy to detect and understand, it could be called a "stealth" wasting water.It has been in a different type of floor, the building 67 water distribution points so the overpressure from the measured flow analysis, Statistical results are 55% of the iron spiral movements - taps (hereinafter referred to as "ordinary water") and 61% of the ceramic valve - leading the flow of water-saving more than their rated flow, the super-flow pressure from the state. Two endings the largest flow out of the rated flow capacity of about three times [1]. This shows that in our existing buildings, water supply system overpressure out-flow phenomenon is widespread and it is a fairly serious. In distribution point pressure As overpressure flow out of the "invisible" water is not wasted paid enough attention to, So in our existing "building water supply and drainage design" and "construction water supply and drainage design GBJ15-20 00 draft "(hereinafter referred to as" draft "), although the wateraccessories and home support the greatest pressure certain restrictive provisions in [2], but this is only to prevent water from the high pressure parts will lead to damage to the point of consideration, not prevent excess pressure from the out-flow point of view, the pressure is too lenient restrictions on the flow overpressure no fundamental role. Therefore, in accordance with the water supply system overpressure flow from the actual situation, the pressure on the water supply system to make reasonable limit.1.2 measures taken decompressionWater supply system in a reasonable allocation of decompression device is to control pressure within the limits required to reduce excess pressure from the flow of technical support.1.2.1 Jangled nervesRelief valve is a good decompression device, can be divided into proportional (lower left) of direct action and the type (Photo) The former is based on the ratio of the area to determine the proportion of decompression, which can be set under pressure prior decompression, When the water-stop water, you can also be controlling the vacuum tube pressure is not increased, Decompression can achieve dynamic can achieve static decompression.1.2.2 Decompression orifice and conserving Cypriots1106土木工程给水排水英文文献及翻译Orifice decompression compared with jangled nerves example, the system is relatively simple, less investment, easy management. The practice of some units, water-saving effects are fairly obvious, If Shanghai Jiao tong University in the school bathroom water pipe installation aperture of 5 mm orifice, water-saving about 43%. But decompression orifice only by the dynamic pressure, static pressure can be reduced and the pressure downstream with the upstream pressure and the flow is changed, is not stable enough. In addition, the vacuum orifice plug easy. In better water quality and water pressure more stable, by using [3]. Cutting expenditure and the role of Cypriot advantages and decompression orifice basically are the same. Suitable for the small diameter and accessories installed to use [3].1.3 adopt water-saving leadingA trial showed that the leading Practical water-saving taps and the general state of the full, flow out of the former than the latter out of the flow. That is the same pressure, the leading water conservation has good water saving, water-saving volume in 20% ~ 30% between. And the higher the pressure ordinary tap water from the larger, water-saving is leading the greater the volume of water-saving. Therefore, should the building (especially in the standard water pressure in water distribution points) leading installation of water-saving, reduce water wastage. In 1999 theMinistry of Construction, State Economic and Trade Commission, State Bureau of Building materials apparatuses jointly issued a document "on the elimination of residential buildings behind the products notified" require large and medium-sized cities in new residential prohibit the use of helical-style cast iron nozzle movements, actively adopt "ceramic cartridge faucets" and "common faucet technical conditions of the ceramic cartridge faucets [4]. Since the main building of our school building earlier in the toilet faucet is still an ordinary spiral movement - iron taps. We have often seen leading loosening and tightening the leading difficulty caused by the leakage phenomenon. In fact, there is such a faucet overpressure caused by the "invisible" huge waste of water. Schools should arouse the concern of the relevant departments, from the long-term interests for the use of water-saving new leader, reduce unnecessary losses.2 vigorously develop the construction of water facilities, "watercourse." As the name suggests is not delivered on the waterways clean water is not sullied by sewage contamination. Residents put a wash, bathing, washing clothes and other water washing and flushing water together, after CO., filtration and disinfection, Sterilization, which imported waterway network, for toilet flushing, washing cars, and pouring green, onto the road and other non-drinking purposes. China therefore waterway is also known as miscellaneous water Road. With a watercourse which cubic metersof water, equivalent to the use of one cubic meters of clean water, emit less nearly a cubic meter of sewage and kill two birds with one stone. Water-saving achieved nearly 50% [3]. Therefore, the channel has many of the world's water shortage in cities used extensively.2.1 full use washing wastewater and other quality miscellaneous drainage The existing water facilities built in most hotels, colleges, and the basic source for the bathroom bathing wastewater. For some small units, smaller than bathing wastewater, and discharge time is too concentrated, Water facilities are not stable and adequate source of water. And washing with water wastewater, the use of time more evenly, water treatment and the advantages of relatively good, as a water source, to be fully exploited.2.2 Develop and implement as soon as possible the return to the new water quality standardsThe current construction of water reused implementation of the existing “life miscellaneous water quality standards.” The total coli form standards and the requirements of "sanitary standard for drinking water," the same, compared to the developed countries and the Chinese water standards apply to the swim-minus III also strict standards. This has led to two problems: First, many of the existing water works is less than the standard; 2 are fulfilled with a certain degree of difficulty, improvethe water project investment and processing cost. So should develop appropriate indicators of the value of water works to promote the spread土木工程给水排水英文文献及翻译and popularize. Water Saving water is not limiting, or even prevents the water. But reasonable people to water, efficient use of water and not waste. As long as we pay attention to fit the family's bad habits, we will be able to water-saving around 70% [3]. Water and waste a lot of the habits, such as: flush toilets single wash cigarette butts and broken fine waste; to access a cup of cold water. Many people will not venting water; spend the potatoes, carrots after peeling, washing or after the optional vegetables; when the water stopped (open access customers, answer the phone, change TV channels), not turning off the tap; During the suspension, forget turning off the tap; toilets, wash, brush, let the water has been flowing; Before sleep, go out, do not check the faucet; equipment leaks, not promptly repaired. From the following table, we can see in many parts of life as long as we interested to note that the conservation of water is very impressive.3 to promote the use of water-saving devicesIn addition to the family of water-saving attention to cultivate good habits of water, using water-saving devices is very important and also the most effective. Some people prefer laissez-faire, but also refusedto replace water-saving devices, in fact, so much water is a long time down the uneconomical. Thus vigorously promote the use of water-saving devices is the construction of water-saving important ways and means.3.1Water-saving taps3.1.1 Water Saving leading CeramicsCurrently most of the water-saving taps used Ceramics taps. Such taps compared with ordinary taps, water was typically up to 20% ~ 30%; and other types of water-saving compared to the leading and cheap [3]. Therefore, in the residential buildings of architectural vigorously promote the use of such water-saving lead. We taught the fifth floor of the dormitory building and are used by such leading.3.1.2 Closed since delay tapsSince the delay in the water taps closed after a certain time, shut down automatically to avoid Changliushui phenomenon. Water timing to be in a certain range adjustment, both for the convenience of Health has complied with the water-saving requirements suitable for washing in public places with.3.1.3 Photoelectric controlled tapsClosed since the delay of water-saving taps but water while fixed time and meet the different requirements of the use of the object. Photoelectric controlled taps will be able to overcome the above drawbacks, such as the latest one of the type of infrared device control wash, Thefirst installation will be self-inspection of the device in front of or below the fixed reflectors (for example, vanity) and based on the reflectors adjust their distance from work to avoid the past because of automatic water obstacles closer to the front of regular water, Such intelligent device can wash your hands although below action without washing their hands without water. a long time will wash water and do not have long-term can also regularly flush Water Seal failure to avoid a supply shortage ahead of the police [3].3.2The total water-saving flush3.2.1 Use of small volume cisterns commodeChina is promoting the use of water tanks 6 L fecal water-saving devices, and have flushing water to 4.5 L or even less, stood on the stool available. However, we should also pay attention to the drainage system to ensure the normal work of the use of small volume cisterns commode, otherwise they will be brought to plug the pipeline, not a net wash, and other issues. Two respectively flushing cisterns in urine, flushing water for 4 L (or less); Washing stool, Chong stood at 9 L (or less) [3]. (Map is a two-valve I-Yuan annually to the water tanks, to open the stool below the drain urine when opened above the drain Pictured left is the two-block cisterns switch several forms) Israel's construction regulations require all new buildings to install two respectively wash cisterns. China should also vigorously promoted two respectively cisterns, because one day, thenumber is far higher than the urine stool frequency. To three homes as an example, per person per day for a meeting of feces, urine four times and the use of existing water tanks L 9, day to 135 L of water; 6 L of water use, 90 L of water a day;土木工程给水排水英文文献及翻译and the use of cisterns two respectively, 75 L of water a day, can be seen using two respectively cisterns 9 L 6 L than using more water-saving cisterns [3]. 6 L Yuan annually to the use of water-saving cisterns better results. The use of tanks in two trances another advantage is not right and the replacement of the total drainage system to carry out reform therefore particularly applicable to existing buildings the total replacement of water tanks.3.2.2-washing UrinalThe United States launched the Urinal-washing, which is not water, the stench from the toilets without using utensils, In fact, only in one end Urinal add special "trap" devices, but because the economic, health, water effectively, So popular station.3.2.3Photoelectric control UrinalUrinal photoelectric controls in a number of public buildings installations.3.2.4 Delayed flushing valve closedIt is the use of guide-work principle, water officials directly connected with the water pressure high enough circumstances, can protect the instantaneous flushing commode needs to replace tanks and accessories, installation is simple and easy to use, health, low prices, Water-saving effect of the obvious characteristics [3]. We carpentry center is used for such cleaning.3.3 in hot water systems installed in various forms of water-saving devicesIf installed in public bathrooms limited flow orifice, in the cold, hot water imported pressure balance between the installation of equipment; Installation of low-flow plumbing. Inflatable hot water thermostat and cooling, hot water mixed hydrants.3.4 to further develop various forms of water-saving devices3.4.1 Development of different water taps outSome countries, in different places with different water out of taps, Singapore provides water for washing vegetables pots 6 L / min, shower water 9 L / min; China's Taiwan Province launched the spray-wash special taps, the flow was 1 L / min. In China, various taps most of the rated flow capacity of 0.2 L / s, that is 12 L / min, excessive [4]. Therefore be reasonable to develop taps the rated flow, and gradually installed in different places different from water taps.3.4.2 Vacuum water-saving techniquesTo ensure that sanitary ware and sewer cleaning effect of vacuum technology can be applied to drainage works Most of the air instead of using water, relying on the vacuum of high-speed gas-water mixture, and rapid disposal of the sewage, dirt-gully clean and save water and drain away the effects of dirty air. A complete vacuum drainage system, including: vacuum valve and with a magnitude of suction devices occupants, the closed aqueduct, vacuum collection containers. Vacuum pumps, control equipment and channels and so on. Together with the vacuum generated 40 ~ 5min the negative pressure of sewage pumped to the collection containers, then will collect sewage pump effluent into the municipal sewer. Different types of construction in the use of vacuum technology, the average water-saving exceed 40%. The use of the office building water-saving will rate-70% [2].3.4.3 Development zone leading to the wash waterIn Japan, many families use with the leading water wash, wash all the wastewater into water tanks for back flushing. If the water tank, they can directly turn on the water faucet open. Irrigation water use, it can not only save water but also reduce the costs. At present, the water in China has sales.土木工程给水排水英文文献及翻译随着人民生活质量的提高,对供水量和质的要求正不断扩展.同时实施水的可持续利用和保护,使水资源不受破坏,并能进入良性的水质、水量再生循环,也已成为政府和广大人民群众关注的焦点。
多层住宅建筑给排水设计的几个问题
多层住宅建筑给排水设计的几个问题
随着城市化进程的不断推进,多层住宅建筑的建设量不断增加。
然而,在设计和施工的过程中,给排水系统是一个非常重要的问题,设计不良会给住宅楼的居民带来严重的不便和安全隐患。
因此,多层住宅建筑的给排水设计需要注意以下几个问题。
首先,为了保证住宅楼的居民的生活用水安全和便利,给水系统需要满足水质要求和供水稳定性。
在设计时,需要考虑到住宅楼的层数和负荷量,选择合适的水泵、水箱和配管,保证供水稳定。
同时,给水系统的管路应避免与污水管路交叉,以防止交叉感染。
其次,排水系统的设计也是多层住宅建筑的一个重要问题。
在设计时,需要考虑到住宅楼内的污水和雨水的排放问题。
污水和雨水需要分开收集并排放到相应的处理设施中。
为了避免污水管道出现堵塞、漏水等问题,排水管道需要保证斜率和口径合适,并设置相应的检查口和清洗口,以便检查和维护。
第三,多层住宅建筑的绿化和庭院设计也需要考虑到给排水系统的问题。
绿化和庭院需要合理设计雨水的排放和收集,以充分利用降雨资源,并减少排放过程中可能带来的环境污染。
最后,考虑到多层住宅建筑的层数较高,安全问题也需要重点考虑。
例如,消防水系统需要按照相关法规和标准进行设计和安装,并在平时进行定期维护和检查,以保证在发生火灾等紧急情况时消防水系统能够正常运行。
综上所述,多层住宅建筑的给排水设计需要充分考虑居民的生活用水需求、排放水质规范和验收要求、消防应急安全,并融入绿化和庭院设计中。
只有这样,才能确保多层住宅建筑的供排水系统能够高效、安全、可靠地运行,为居民创造一个舒适、健康的居住环境。
中英文对照的建筑给排水设计说明
中英文对照的建筑给排水设计说明MECHANICAL PRELIMINARY DESIGN REPORTSTADIUM1.给排水设计饮用水和污水1.Sanitary DesignWater and sewage water.设计基础- 甲方提供的设计任务书和市政管网综合图- 建筑专业提供的条件图- 国家现行的设计规范及有关规定设计简章.Design basesDesign Brief and Municipal integrated network drawing offered by the client. Condition drawings from architectural discipline.Current national design codes and related stipulations2. 给水系统通过一根DN200的进水管将水引入.水表安装在进水管上,离红线1米处.供水管在红线内连成环路管网,并接到供应楼的消防水池和给排水水池.由环路管网向必需的室外消火栓和绿化带的喷淋器供水.2. Water supply systemFor water supply of this project, DN200 water intake pipes are led in. Water meters are installed on the intake pipes 1.0 m away from the red line. The water supply pipes are connected into loop networks in the red line and then led to the fire pool and sanitary water pool in the supply buildings respectively. Necessary number of outdoor hydrants and sprinklers for green area will be provided on the loop networks. 设计范围包括红线内的饮用水,污水,雨水,建筑消防.Design scopeDesign scope of this project includes water, sewage water, rainwater, fire-protection in the building, and water and sewage water within the red line. 给排水水池与消防水池分开,容量为100m3 .体操馆供水管埋地敷设.Sanitary water pool is separated from fire water pool, volume of sanitary water pool is 100m3. Water supply pipes for the stadium will be laid in the earth.3.用水量标准- 体育馆: 15升/顾客·日 K=2.0- 宾馆: 150升/人·日 K=2.0- 餐厅: 50升/顾客·日 K=2.0- 工作人员: 25升/人·日 K=2.0- 地面冲洗用水: 3升/m2日- 冷却塔补水量:按用水量的2%计- 未预见水量: 按日用水量20%计- 消防用水:消火栓:室内40升/秒,室外30升/秒,火灾延续时间为3小时;自动喷洒按22升/秒,火灾延续时间为1小时卷帘水幕用水0.5升/秒·米,火灾延续时间为3小时;Water consumption standard- Stadium: 15L/visitor·day K=2.0- Hotel: 150L/visitor·day K=2.0- Restaurant: 50L/customer·day K=2.0- Staff 25L/perso n·day K=2.0- Floor cleaning: 3L/m2·dayMake-up water for cooling tower: 2% of theactual cold water consumption.Unforeseen water consumption: 20% of the dailywater consumption.Water for fire protectionHydrant: 40L/s indoor, 30L/s outdoor, fireduration time is 3h;Sprinkler: 22L/s, fire duration time is 1h;Drencher for rolling shutter: 0.5L/s·m, fire duration time is 3h;在适当的位置设置饮用水机,在主进口为残障人设置两个饮用水机.为此饮用水系统安装循环泵.机房设在地下室的水除了机房.当饮用水机不被使用时,应排空,以免水质腐败.在客房和餐厅内设置电热水器,同时亦为热水供应设置循环泵.在更衣间旁设置电热水器,为淋浴和洗盥供应热水.为楼板清洁安装一定数量的水龙头.Some suitable places are supplied with portable water drinking units, two drinking units for disable people are provided at main entrances, for this portable water system, circulating pumps are adopted, the equipment room is located in water treatment center in the basement. When there is no use, portable water will be drained completely to avoid deterioration.Electric water heaters are installed in guest rooms and restaurant, also hot watercirculating pumps will be provided for supplying hot water.Electric water heaters are installed near the changing and clothing rooms for supplying hot water for shower and washing.Certain number of water taps are installed for floor-cleaning.4.用水量最大日用水量:2.200m3/日最大时用水量:220m3/时Water consumption demandMaximum daily water consumption: 2.200m3/dayMaximum hourly water consumption: 220m3/hour却循环系统冷却水循环系统采用机械循环系统.总冷却水用量为460m3/h.在供应楼顶设置三台超低噪音冷却塔(230 m3/h, 2x 115 m3/h).进水温度37Co,出水温度32Co .补充水量9,6 m3/h.补充水由市政供水网直接提供.Cooling water circulation systemThere are cooling water circulation system in this project, cooling water for the refrigerators adopts mechanical circulation system. Total water consumption of cooling towers is 460m3/h. On roof of the supply building there are 3 ultra-low noise cooling towers (230 m3/h, 2x 115 m3/h), inlet temperature of 37Co, outlet temperature of 32Co, with make-up water of 9,6 m3/h. Make-up water of the cooling towers will be supplied directly by the municipal network.在消防泵房内有消火栓泵(一个运行,一个备用),喷淋泵(一个运行,一个备用),卷帘雨淋泵(一个运行,一个备用).用于地下车库的泡沫喷淋设备,如报警阀,泡沫压缩罐,化学药剂泵安装在消防设备中心.30.0m3 消防水箱和消防稳压装置分别安装在车库的四面墙.In the fire water pump room, there are hydrant pumps (one operation, one standby), sprinkler pumps (one operation, one standby) and rolling shutter drencher pumps (one operation, one standby).Fire equipment, which are used for the foam sprinkler system in underground garage, such as fire alarm valves, foam concentrated tank and chemical dosing pump, etc. are provided in fire equipment centers. Four 30.0m3 fire water tanks and fire protection stabilized pressure devices are respectively located at four sides next to the garages.消防用水消火栓:室内按40升/秒,室外按30升/秒,火灾延续时间按3个小时计自动喷洒按22升/秒,火灾延续时间按1小时计卷帘水幕用水量 0.5升/秒·米,火灾延续时间按3个小时计消火栓:室内,室外用水量皆为756m3;自动喷洒用水量为79.2 m3;卷帘水幕用水量为 270m3;一次火灾用水量为1.861,2;Water for fire protectionWater consumption standard for fire protectionHydrant: 40L/s indoor, 30L/s outdoor, fire duration is 3hSprinkler: 22L/s, fire duration is 1hDrencher for rolling shutter: 0.5L/s·m, fire duration is 3hWater consumption for fire protectionHydrant: indoor and outdoor water consumptions are 756m3 respectively Sprinkler: 79.2 m3Drencher for rolling shutter: 270m3Water consumption for one fire: 1.105,2 m3消火栓的布置在整个建筑物内沿墙,沿柱,沿走廊,风塔上及楼梯附近设有必要数量的室内消火栓,消火栓间距小于30米.消火栓管网水平,竖向皆成环状布置,消火栓箱内配有DN65消火栓一支,25米衬胶水龙带一条,φ19毫米喷咀水枪一支,并配消防卷盘(DN25消火栓一支,30米胶管,φ9毫米喷咀水枪一支)且设有可直接启动消火栓泵的按钮;在室内消火栓箱下设有磷酸铵盐手提式灭火器箱.室内消火栓系统在室外设有三组水泵接合器.Hydrant arrangementNecessary number of hydrants are installed indoors along the wall, columns, corridors, and staircases, at intervals of less than 30m. Hydrant networks are connected as a loop both horizontally and vertically. Inside each hydrant box, a DN65 hydrant, a 25m long rubber lined hose, a water nozzle of φ19mm, hose reel (a DN25 hydrant, a 30m long rubber lined hose and a water nozzle ofφ9mm), and a direct starting button for the hydrant pump are provided.Under each indoor hydrant box, a portable ammonium phosphate powder extinguisher box is installed. There are three sets of pump adopters being installed outdoors for the indoor hydrant system.消防系统防水泵房及消防水池供水管DN200在红线内连成环路管网,管网上安装一定数量的消火栓.两根DN200供水管分别引入供应楼内两个消防泵房内的消防水池.消防水池总容量不应小于4000m3, 每个为2.000m3.Fire protection systemWater pump room and water pool for fire protectionThe lead-in pipes (DN200) are connected as a loop inside the red line, on the loop, certain number of hydrants are installed.Two water supply pipes (DN200) are led into the fire water pools at each fire water pump room in supplybuilding. In consideration of the importance of the project, the volume of the fire water pools should be not less than 4000m3, each is 2.000m3.自动喷淋系统自动喷淋系统安装在全建筑范围,除了室外和高于10 米的房间.喷淋泵安装在地下的消防泵房内.报警阀设置在地下的消防泵房内和中间的消防设备中心内,水流显示器设在每个防火分区内.Sprinkler systemSprinkler systems will be provided inside the whole building except outside areas and roomshigher than 10m, with sprinkler pumps installed in the underground fire water pump rooms. Alarming valves installed in underground fire water pump rooms and four fire equipment centers in the middle, water flow indicators are installed by fire compartments.除了安装一个封闭喷淋系统,将为地下车库设置一个泡沫喷淋系统.餐厅内安装93oC启动的自动喷淋头,但在其它房间,仅安装93oC启动的普通和快速反应自动喷淋头.三组泵接合器安装在室外.Besides an enclosed sprinkler system, a foam sprinkler system composed of a proportioning mixer and a foam concentrated tank is provided for the underground garage. Sprinkler actuated at 93oC are provided in the restaurants, but in other rooms, only ordinary sprinklers and fast response sprinklers actuated at 68oC are provided.Three sets of pump adaptors for this system will be installed outdoors.排水系统为排水系统设置污水主立管和特别垂直排气管.排气管与污水管在每层连接,污水排出体操馆.餐厅的污水首先在油脂分离池中处理,然后排入室外排水网.给排水污水将被在化粪池收集和处理,然后排入市政排水管网.化粪池在输送区旁.最大天排水量为870m3/天.9. Drainage systemMain vertical sewage pipes and special vertical vent pipes are provided for the drainage system. The vent pipes are connected with sewage pipe at each floor; sewage water is drained out of stadium. Sewage water in the restaurants and garage are treated in the grease and oil separation tank, and then discharged into the outdoor drainage networks. Sanitary sewage water is collected and treated in the septic tank,then drained into the municipal drainage. The septic tanks are located besides the deliverycircle. Maximum daily drainage amount is 870m3/day.卷帘水幕系统地下车库设置有卷帘水幕系统.水幕泵安装在消防水泵房内,采用开式雨淋头,电动或手动控制.十组泵接合器安装在室外Drencher system for rolling shuttersRolling shutter protected by drenchers are provided for the underground garage, the drencher pumps are installed in the fire water pump rooms, open drencher heads are selected, and are controlled both by electrically and manually. Ten pump adapters will be installed outdoors for this system.地下室内污水设有污水坑,废水设有废水坑,生活污水,废水经潜污泵提升排至室外排水管网,潜污泵的启停皆由磁性浮球控制器的控制.地下汽车库废水设有废水坑,废水经潜污泵提升排至室外,经隔油池处理后排入室外雨水管网.There are cesspits for sewage water and wastewater pits for wastewater in the basement, the sewage and wastewater is sucked up and drained to the outdoor drainage networks by submerged sewage pumps.Operation of the pumps is controlled by the magnetic floating ball controllers. Wastewater pits are provided for the underground garage, wastewater is sucked up and drained to outdoor oil separation tank by submerged sewage pumps, after treated, wastewater is drained to the outdoors rainwater networks.在柴油发电机房,变配电房和通讯设备机房设低压二氧化碳气体灭火系统.Low pressure CO2 extinguisher systems are provided in diesel generator rooms, transformer substations and telecommunication equipment rooms.在本建筑内按"建筑灭火器配置设计规范"在每个消火栓箱下设手提式灭火器箱,箱内设有必要数量的磷酸铵盐手提式灭火器.According to the Code for Design of Extinguisher Disposition in Buildings, portable fire extinguisher box, in which there are necessary number of portable ammonium phosphate powder extinguishers, will be installed under every hydrant box.在每个消防电梯井底旁设有消防排水坑,废水经潜污泵提升排至室外.Fire water drain pit is provided at side of bottom of each fire elevator well, waste water will be sucked up and drained out by the pumps.雨水系统雨水排水屋顶采用压力流排水.雨水设计重现期按P=10年计算,降雨历时为5分钟,暴雨强度公式按Q=998.002(1+0.568lgP)/(t+1.983)0.465计算.沿柱在屋面设置雨水沟.雨水通过雨水沟收集,然后进入雨水头和下排管,然后到室外雨水观察井.10. Rainwater systemPressurized drainage system is adopted for roof rainwater drainage system. Here, return period P=10 years, rainfall duration is 5 minutes, stormwater amount is calculated by the following formula:Q=998.002(1+0.568lgT)/(t+1.983)0.465Rainwater gutters are provided on roof along columns, skylight. Rainwater is collected in the gutter, then to rainwater heads and downpipes, and to the outdoors rainwater inspection wells.11.管材- 生活给水管,冷却塔补水管采用铜管,氩弧焊接.- 直饮水管采用不锈管.- 消火栓管,冷却循环管,水幕管,水泵吸水管采用焊接钢管,焊接.- 自动喷洒水管,雨淋水管采用热镀锌钢管,丝扣连接或卡压连接.-二氧化碳管采用无缝钢管焊接.- 地下车库泡沫喷淋水管采用不锈钢管,卡压连接.Pipe materialCopper pipes connected by argon arc welding are adopted for the sanitary water pipes, make-up water pipes for cooling towers.Stainless stell pipes are adopted for portable water pipes.Welded steel pipes connected by welding are selected for hydrant pipes, cooling circulating pipes, drencher pipes, pump suction pipes.Hot-galvanized steel pipes connected by threads or compression-seizing are selected for sprinkler and deluge sprinler pipes.Seamless steel pipes connected by welding are selected for CO2 pipes. Stainless steel pipes connected by pressed clamp is selected for the pipes of foam sprinklers in the underground garage.当雨水两超出雨水沟设计量时,雨水可沿屋檐自由排放.雨水被收集,然后排入市政集水池. When the amount of rainwater is more than the design value of the gutters, water is discharged naturally along the eaves. Rainwater is collected, and then drained to the municipal catch basins.围绕体育馆的循环池将用于喷洒运动场和作为室外绿化带的储水池.此池将作为一个循环过滤设施,可容水约7.500 m .喷洒压力设备和其它必须的过滤设备安装在供应楼里.The circular senic pool surround stadium will be used for spraying sportsfield andas reservoir for outdoor greening.The pool will be used as a circular filtering facility and will be adopted with a water volume of about 7.500 m .The spray water pressurizing equipment as well as further necessary filtering equipment will be adopted in the supply building.2.0 制冷2.0 Cooling冷源:空调冷负荷(估算):本工程建筑面积共50.000平方米,包括观众区,休息室,更衣室,小会议室,餐厅,办公室和其它附属房.空调设计日峰值冷负荷为2.4MW,设计日总冷负荷为3 kW.Refrigerating sourceCooling load of air conditioning systemTotal floor area for this building is 50,000sqm, which includes spectator areas, lounges, Clothing and changing rooms small meeting rooms, restaurant, office and other auxiliary rooms. Designed dayly peak cooling load is 2,4MW, designed total dayly cooling load is 3kW.每台1200kW制冷机配一台流量为206m3/h离心泵.各配一台备用泵一次泵采用压差旁路控制.通过埋地敷管,向游泳体操馆供应冷冻水.A centrifugal pump with a flow rate of 103m3/h is provided for each 1200kW chiller. One operation pump with a standby corresponds to one chiller.Pressure difference branch control is adopted for primary pumpVia earth laid pipes from supply building to gymnasium chilled water supply will be deliverded.冷源的选择:根据建筑的实际情况,3台制冷机将安装在供应楼内的冷冻机房.设计容量为4800kW. 为了实现能量的效率化使用,设计方案为,1台制冷机的出力为总设计容量的50%.而另2 台.每台出力为总设计容量的25%.冷冻水系统的主要设备包括3台电动制冷机,一级冷冻泵,二级冷冻泵,自动控制阀等等.冷冻水的供/回水温度为-7/ 12°C.Selection of refrigerating sourceAccording to the real condition of the building, 3 chillers are located in the refrigerating plant rooms in the supply building, designed capacity is 2400kW. For actuing in an energy efficient way one chiller about 50% of total capacity (1.200 kW) and two chillers with 25% of total (600 kW each)capacity each are adopted.Main equipment of chilled water system includes 3 electrical chiller, primary cool water pump, secondary chilled water pump and automatic controlled valve, etc. supply/return temperature of the chiller is-7/ 12°C.二次泵系统:根据使用功能,各制冷机房又分成不同的循环支路.二次泵采用变频调速控制.根据负荷侧供回水管的压差,控制水泵的转速.二次泵循环支路的管道采用异程式.Secondary pump system:Each refrigerating plant room is subdivided into different circulation branch loops according to use functions.Variable-frequency speed-regulating control is adopted for secondary pumps. The rotating speed of a water pump is controlled according to the pressure difference between water supply and return pipes.Direct return system is adopted for the pipes of circulating branch of secondary pumps空调冷冻水系统由于本工程占地面积大,功能复杂,有连续使用,也有间歇使用,为了达到运行灵活,节能的目的,空调冷冻水系统采用两管制二次泵系统.Chilled water systemDue to the large occupied area of this project, the complicated functions and the combination of continuous utilization and intermittent utilization, in order to accomplish the purpose of flexible operation and energy saving, the chilled water system is of two-pipe secondary pump system.管材:水管采用焊接钢管及无缝钢管.本工程的风管除土建风道外,均采用镀锌铁皮咬口制作.每节风管之间用法兰连接.Pipe and duct materialsThe water pipes adopt welded steel pipes and seamless steel pipes.Air ducts for this project are made of galvanized sheet steel by seaming except ducts by civil construction. Air ducts are connected together by flanges.一次泵系统:供应楼冷冻机房2400kW制冷机配一台离心泵, 流量为412m3/h.配一台备用泵.Primary pump system:Chiller room supply buildingA centrifugal pump with a flow rate of 412m3/h is provided for 1200kW chiller. Oneoperation pump with a standby corresponds to one chiller.保温材料:空调供,回水管,冷凝水管采用酚醛管壳保温.空调送,回风管以及处理后的新风管采用外贴铝箔的离心玻璃棉板保温.- 管道穿防火墙的空隙处采用岩棉材料等非燃材料填充.Thermal materialsphenolic pipes are adopted for thermal insulation of water supply and return pipes for air conditioning, as well as air-conditioning condensate pipes.Aluminum foil faced glass fiber boards are adopted for thermal insulation of air-conditioning air supply and return ducts as well as fresh air ducts after chillers.Non-flammable material will be selected to fill the interspace in the fire protection wall where the ducts go through.消声与隔振:冷水机组,水泵等设备采用减振台座,弹簧减振器或橡胶减振垫减振降噪.在空调机组,新风机组,通风机的进出口采用涂胶帆布软管连接.- 水泵进出水管上采用可曲挠橡胶接头,使设备振动与配管隔离.Noise reduction and vibration isolationShock absorption bases, spring shock absorbers on rubber shock absorption pads are adopted for equipment, such as water chiller units, pumps, etc to reduce vibration and lower noise.Flexible rubber-coated canvas hoses are adopted far connections of inlets and outlets of air-conditioning units, fresh air handling units and ventilators. Flexible rubber couplings are adopted for the water intake and delivery pipes of the pumps to isolate equipment vibration from their pipes.3.0空调和通风系统3.0 Air Conditioning and Ventilation Systems方案设计范围Scope of schematic design空调设计Air Conditioning Design在体育馆内,一些区域设置空调系统.这些区域划分为:西侧地下二层的贵宾休息室东侧地下二层酒店门廊地下一层的输送区,技术机房,运动员更衣间,医务服务,热身区,裁判区,健身中心,酒店大堂,会议室,厨房,特许区和贵宾大堂混合区.首层的酒店大堂,酒店区,贵宾门廊,急救In the stadium, in some ranges air conditioning systems are used. These ranges subdividethemselves as follows:VIP – Lobby in West of levelel -2Hotel lobby in the east of level –2Delivary Circle, technical Plantrooms, Changingrooms for the athletes, Medical Service and warm up area, Judges Area, Fitness Center, Hotel Lobby, Conferenz, Kitchen and Concession, Vip lobby- Mixed Zone in level -1Hotel lobby, Hotel area, Vip lobby, Vip Area, First aid in 0空调和通风机组设置于靠近地下一层楼梯底部的机防.新风从楼梯底的风室被引入机房而被空调处理器吸入.从此,通过水平和垂直风道送至使用区.用于以上区域的空调机组分为12 台暖通空调机组,具有以下特点The air conditioning and ventilation units for the using ranges are placed in die mechanical plantroom nearby the stairs in the bottom of the stadium in Level -1. The outside air will be brought into the Plantrooms from fresh air chambers under these stairs and let to the air handling units. From here, the will be led via horizontal an vertical duct to the using ranges.The air conditioning units for the ranges specified above will be devided into 12 HV AC- units (drawings) with the following characteristics:以下区域仅设置排风系统:地下二层停车区域地下二层电气机房地下一层卫生间首层卫生间一层卫生间宾馆客房设置分散式风机盘管加新风系统.贵宾室设置风机盘管.For the following ranges, only exhaust air systems are planed:Parking area in Level –2Electrical Plantrooms in Level –2Toilets in Level –1Toilets in Level 0Toilets in Level +1For the guestrooms of the Hotel decentralized Fancoil Units with ourside air connection are planed. The VIP- boxes will be equiped with Fancoil Units.AC1, AC6, AC7, AC12地下一层的附属用房(储存,机房,楼层,观众区 )换气次数 2 – 6 次/小时; 新风100%, 通过螺旋风口送出双风机,全空气系统排风机同时作为机械排烟用AC1, AC6, AC7, AC12Siderooms ( Storage, Plantrooms, Floors, Spectaors area) in Level -1Air Changing rate 2- 4 times/ h; supply via spiral outlets, outdoor air 100% Dual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 2地下一层的医务服务,热身区,运动员更衣间,裁判区换气次数 2 – 4 次/小时; 新风100%, 通过螺旋风口送出夏季最高室内温度29°C, 相对湿度 65 %冬季最高室内温度 22 –24°C室内发热量:- 照明 20 W/m- 机器 10 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 2Medival Service Area, Warm up Area, Changing rooms Athletes, Judges Are in Level- 1Air Changing rate 2- 4 times/ h; supply via spiral outlets, outdoor air 100% Room temperature 29°C max, 65 % humidityin SummerRoomtemperatur 22 –24 °C in WinterIndoor heat loadLighting 20 W/mMachines 10 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 4地下一层的医务中心,办公室换气次数 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 4Media Center, Offices in Level –1Air Changing rate 4 times/ h; supply via spiral outlets, outdoor air 100% Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 3地下二层的贵宾休息室,地下一层的贵宾大堂,混合区,首层的贵宾办公室和贵宾区换气次数 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 20 W/m- 机器 10 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 3VIP Lobby in Level –2, VIP Lobby, Mixed zone in Level –1, VIP Offices and VIP area in Level 0Air Changing rate 4 times/ h; supply via spiral outlets, outdoor air 100% Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 20 W/mMachines 10 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.AC 5地下一层的厨房,服务和特许区厨房的换气次数 100m /m 小时,新风100%, 通过螺旋风口送出服务和特许区的换气次2-4数次/小时, 新风100%, 通过螺旋风口送出双风机,全空气系统最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 80 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 5Kitchen, Service and Concession area in Level -1Air Changing rate 100 m /m h for the Kitchen; supply via spiral outlets, outdoor air 100%Air Changing rate 2-4 times/h for the Service and Concession area; supply via spiral outlets, outdoor air 100%Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 80 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smokeAC 8地下一层的健身中心,员工更衣间,特许区换气次数 2 – 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 80 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 8Fitness Center, Changingrooms Staff, Concessio in Level -1Air Changing rate 2-4 times/h; Fitness Center 6 times/ h; supply via spiral outlets, outdoor air 100%Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 80 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smokeAC 10地下二层地的宾馆走廊,地下一层的宾馆走廊和餐厅,首层的宾馆区换气次数 4 次/小时; 新风100%, 通过螺旋风口送出最高室内温度29°C, 相对湿度 65 %室内发热量:- 照明 35 W/m- 机器 30 W/ m- 人员 50 W/ m双风机,全空气系统排风机同时作为机械排烟用AC 10可能亦用于人防区的送风.此部分的设计由人防技术设备设计工程师审核.AC 10Hotel Lobby in Level- 2, Hotel Lobby and Restaurant in Level -1, Hotel area in Level 0Air Changing rate 4 times/h; Restaurant 8 times/h;supply via spiral outlets, outdoor air 100%Room temperature 29°C max, 65 % humidityIndoor heat loadLighting 35 W/mMachines 30 W/ mPersonnel 50 W/ mDual- fan- all- air system.Exhaust air fan is also be used for mechanical removal of smoke.The AC- unit No. 10 might also be used as a supply air unit for the shelter. This has to be checked by the engeneers who will plan the technical equipment for the shelter.AC 9通风地下车库:设计一个换气次数 6次/小时的排气排烟通风系统.由地下一层的空调机组送风,送风经过车库顶棚的垂直风口进入水平风道,然后送至各处.输送区:输送区设置一个隧道通风系统.空气通过北侧被吸入建筑物,然后通过轴流风机输送到输送区.空气通过南侧的就近道路排出.VentilationUnderground Garage:For the underground garage an air exhaust an smoke exhaust ventilation system with an air exchange rate of 6 times/h is provided. The supply air for the garage will be delivered from the AC- Units in Level- 1 an brougt into the garage via vertical openings in the ceiling of the garage and distributed over horizontal ducts. Delivery Circle:For the delivery circle a tunnel ventilation system is installed. Air is sucked at the south side of the stadium into the building and transported by axial jet fan through the delivery zone.各功能区的规划包括水平管道和竖井.各区域无异味和污染物的排风将被作为送风送入车库. 剩余的排风和排烟将通过一个地下风道送到供应楼,并通过屋顶排出.排烟内部区域均设置机械排烟.通风系统的管道亦即排烟道. 在空调机房内,烟气通过一条旁通风道送至车库排风机,亦为排烟机(300°/ 30 分).The development of the functional areas is made by horizontal ducts and vertical pits. The exhaust air from ranges which are not smell-loaded or contained pollutants are brought as supply air into the garage.The remaining exhaust air and the removal of smoke exhaust air are led over an underground channel to the supplying building and blown out there over roof. Smoke ExhaustionAll ranges on the inside are exhaustet from smoke mechanically.The duct system of the existing ventilation systems is used. In the HVAC plant rooms, the flue gases are led over a bypass channel to the exhaust air fan for the garage, which have to be designed to be used as smoke- exhaust fan (300°/ 30 min).室内储存和技术房:此区内,设置简单的送排通风系统.卫生间:地下一层和首层的卫生间由临近区域的通风系统供应新风.一层卫生间通过向外开口进风.地下一层卫生间排气排入输送区.首层和一层卫生间将通过独立的排气扇将废气排入在看台下部.Indoor storing and technical plant rooms:For this ranges simple supply- and exhaust ventilationsystem will be installed Toilets:The WCs in level -1 and level 0 are supplied with fresh air by the ventilation systems of the adjacent ranges.The WCs in level +1 receive the fresh air over opening to the outside.The WC in level -1 is aired out separately into the range of the delivary circle. The exhaust air of the WC ranges in level 0 and level +1 will be led by separate exhaust fans into the ranges underneath the grandstand.车库的排气和烟气被加压,通过地下风道送至供应楼,而通过其屋顶排出.停车场有烟雾时,空调机组的送风量是不足的.在这种情况下,新风将通过阀门从新风室(在体育馆底层楼梯下)直接向车库进风.The exhaust air of the garage and the smoke will be pressed through the circularly air duct and then through the underground channel to the supplying building and will there be led over roof into the free.In case that smoke is detected in Parking garage, the supply air from the AC- Units which is normaly used for the supply of the garage is not sufficient.In this case the fresh air will be brought directly into the garage via dampers from the freshair chamber, placed underneath the stairs in the bottom of the stadium. 主送风和回风道均设防火阀. 当温度超过70°C, 防火阀将自动关闭,同时风机停止运行,关闭信号将被传送.自动转换防火阀安装于排风排烟共用系统.Both, the main air supply and return ducts of all AHUs are provided with fire dampers. Then a temperature over 70°C happens, the fire dampers wil l be closed automatically and at the same time the fan stops operation and cut-off signal is transmitted. Automatic changeover fire damper is provided for the system used both return air and smoke exhaust.空调和通风系统的电力供应控制与消防控制中心相连. 当某个防火分区火灾报警, 而且消防中心对此信号经过分析确认后,此防火分区内的通风系统停止运行,而同时排烟系统和加压送风系统启动.The power supply controls for the air conditioning and ventilation systems are connected to the fire control center. When fire alarm occurs in a certain fire compartment, the ventilation system in this fire compartment stops operation and at the same time the smoke exhaust system and pressurized air supply system are started after judgement and confirmation by the fire control center.被其它房间包围的楼梯间将设置有加压通风系统.The staircases that are surounded by other rooms will be provided with overpressure ventilation systems.空调机组的详细技术参数集合在被报告末的技术数据报告.The exact technical datas of the AC- units are summarized in the " Technivcal Data Report at the end of the Report.。
建筑给排水外文翻译外文文献英文文献多层住宅建筑给排水设计的几个问题
建筑给排水外文翻译外文文献英文文献多层住宅建筑给排水设计的几个问题建筑给排水外文翻译外文文献英文文献多层住宅建筑给排水设计的几个问题译文来源:美国PE杂志建筑给排水工程师2010年第10期The multilevel residential housing is given and drains off water several questions designedSummary : This text give and drain off water on multilevelresidential housing design supply water the exertion of the tubular product , Way of laying of pipeline, water gauge produce family set up, establishment and air conditioner condensation water of pot-type boiler discharge issue goes on the discussion , And put forward some concrete views.Keyword: Skyscraper, supply water the tubular product , the pipeline is laid, The water gauge, the solar water heater The skyscraper is simple with its auxiliary facility, thefabrication cost is low, the characteristic such as being convenient of estate management, Receive the welcomes of the real estate developer and vast resident of small and medium-sized cities very much. How project planning and design of inhabited region, scientific and technological industry of comfortable house, lead the request according to 2000, Improve the design level of the house, build out a comfortable living space for each household, It is each designers duty. As the heart of the house --The kitchen, bathroom, is that the function is complicated, hygiene, safe and comfortable degree are expected much, It ismiscellaneous to build, the space expecting much in technology. So, the designer must consider synthetically with theidea and method of global design that the kitchen, bathroom give installation of the drainage pipeline and equipment,etc. . Give and drain off water on skyscraper design supply water exertion, to lay pipeline of tubular product, water gauge produce family set up, establishment and empty of pot-type boiler now Transfer condensation water discharge issue discuss together with colleagues.( 1)supply water tubular product select problem for use Traditional watersupply tubular product adopt zinc-plated steel tube generally, because zinc-plated steel tube exchange the corrosion, Use short-lived , use for and send domestic water can satisfied with water qualitysanitary standard shortcoming, Ministry of Construction is popularizing the application of the feed pipe of plastics energetically . A lot of districts and cities have already expressed regulations: Forbiddesigning and using the zinc-plated steel tube , use widely the feedpipe of plastics. The plastics supply water In charge of compared with metal pipeline, light, it is fine to able to bear the intensity of keeping, Send obstruction little liquid , able to bear chemistry better to corrode performance, it is convenient to install, The steel energy-conservation of the province, merit of having long performance life etc.. Supply water and use plastics pipeline: Hard polyvinyl chloride( PVC-U), high density polyethylene( HDPE), pay and unite polyethylene( PEX) , modify the polypropylene( PP-R, PP-C), gather butene( PB),aluminium mould and compound and in charge of and the steel is moulded and compound and is managed etc.. Choice of tubular product economic comparative course of technology,technology should from pressure, temperature, environment for use, install method,etc. go on and consider, Combine owners at the same time request and the house of grade,carry on and fix after being consider synthetically technology not economic. The above plastics supply water tubular product can supply water tubular product as house life. The economic and functional house conciliating Strand room in the face of the masses of with low- and medium-level incomes resident, can select for use hygiene grades of hard polyvinyl chloride in charge of as feed pipe mainly, In order to reduce the fabrication cost; Medium-to-high grade commodity apartment available aluminium Mould and compound and in charge of or other plastics supply water the tubular product as the feed pipe. House mix hot water temperature that water order exceed 600 C, so above-mentioned tubular product in charge of except hard polyvinyl chloride and aluminium plastics compound and in charge of( PE-AL-PE), Mostly the tubular product can be regarded as the hot water pipeline of the house.( 2) pipeline lay problem 1. give and drain off water it set up there arent one that in charge of1)Will install it in the corner place of the kitchen, bathroom tomorrow. Adopting this kind of way of laying more in the design of house in the past, it is convenient for it to construct, But will reveal the pipeline and hinder the room beautifully tomorrow Watch, thehouseholds will mostly be hidden with the light quality material in the equipment two times.2)Will install it in the overcast angle place of the outer wall of the building tomorrow. Way this suitable for southern weather warm district only, the minimum temperature in winter cant belower than zero degrees Centigrade, In case water pipe water-logging freeze ice is bloated to split pipeline, influence household use. Pipeline lay in outer wall, influence building to be beautiful, too inconvenient on manage and maintain in the future.3)Lay it in the pipeline well. This way makes the room clean and beautiful , but the pipeline well has taken up the area of the bathroom, And pipeline construct, maintain relatively more difficult. Bathroom set up concentrate pipeline well, concentrate pipeline on assign in the well feed pipe, drain pipe, This is that the civilized importance lives in the kitchen of comfortable house, bathroom Embodiment. I think : Should consider the establishment of the pipeline well of the bathroom in the medium-to-high grade building conceptual design of commodity apartment, Improve quality of using of bathroom promptly so , can solve hard polyvinyl chloride drain pipe rivers noise heavy problem, Improve the environmental quality level of the room; Whether for bathroom in the areas for little economic and functional house and Overcome difficulties room, warm area give and drain off water and set up and in charge of and can consider and lay in the outer wall in the South, In order to increase using the space of the bathroom; Pipeline install and in theroom, should influence kitchen, bathroom every sanitary equipment use of function tomorrow2. supply water and prop up there arent tube House supply water prop up and in1charge of pipe diameter one ? 32mm, de of battle,, little plastics feed pipe of pipe diameter is the crooked state, So the house supplies water and is propped up and in charge of beingrecommended and adopted and set up secretly. Supply water to prop up to manage darkly There are thes way had:1)Set up in the brick wall secretly. Wall turn on and in charge of trough in brick when constructing, in charge of trough width tube +20 mm, de of external diameter,, degree of depth tube external diameter de, The pipeline is imbedded and managed directly Trough, and with in charge of card fix in trough of inning charge of son.2)Whether pipe diameter supply water and prop up and last de ?20mm,can setup at floor secretly piece make level by layer. Turn on and in charge of trough in floor( ground) the board when constructing, it wides trough have to be de +10 mm deeply 1/2 of the de, Half pipeline imbedand in charge of trough, and with in charge of card fix in trough of inning charge of tube. Aluminium mould compound and in charge of and pay and unite polypropylene in charge of pipeline adopt metal pipe fittings connection, Must strengthen and in charge of trough size when adoptingand set up secretly, and rivers some flood peak loss relatively heavy. Assign the relative house that concentrated to the kitchen, bathroom interior hygiene utensil, Can adopt and divide Water device go on andjoin , divide water device whether one more than branch in charge of and connect, every hygiene utensil supply water and prop up and in charge of and connects and publishes from the water dividing device separately. Can already prevent the tube burying the pipeline secretly from being connected like this Permeate the question. Can reduce some flood peak lost,decrease the fabrication cost of pipe networks3)Drain off water and prop up the tube to lay House room drain off water and in charge of and should set up at the time of inning this each, drain off water and in charge of permeating sideways like this canning prevent the sewage from waiting for the pollutant to enter the neighbor family sideways, Will not influence the neighbor either when thepipeline is maintained Normal life of one. Kitchen wash water drainageof basin propped up and in charge of generallying inserts draining off water to stand to manage this layer of floor sideways; Floor drain drain off water propped up and in charge of laying the room of lower floor. A lot of colleagues think now: Whether kitchen the ground it lay ceramic tile of,whose name is clean in when need develop with water,not strongin meaning to set up floor drain, So kitchen set up ground floor drain, avoid and drain off water and prop up and in charge of and enterneighbor family sideways already so, Can increase using the space of thekitchen . Bathroom drain off water and prop up and in charge of and lay concrete measure have in this layer sideways inside:1)Improve the bathroom ground . Ground tendency high 150mm, adopt back row type take stool pot, washing basin, bath tub, water drainage of floor drain in charge of and bury in cushion layer secretly sideways.2)Adopt the sinking type bathroom. Bathroom sink 350mm the floor, hygiene utensil drain off water and in charge of and bury on sinking space secretly sidewaysTwo method these can realize water drainage of bathroomprop up and in charge of earths surface to bury underground this one without entering the neighbor2family sideways. Bury pipeline when installing, construction quality must check on strictly, can construct bathroom ground after confirming qualified secretly, So as not to leave the hidden danger in giving in the future using. Bathroom ground construct and can pack coal ash light quality material , also can adopt and lay bricks impracticable to lay plate making construct ground, Ground must make waterproof to deal with, method can waterproof to deal with according to roofing, make two oil one rubber and plastic ointment waterproof cloth.3) water gauge the open air set up problem The water gauge is had indoors, not only the work load of checking meter is very heavy , but also make the security and privacy of the house reduce greatly . So house divide into households of water gauge or divide households offigure of water gauge Show that should be set up in the open air. Skyscraper water gauge the open air set up following several kinds of forms: Whether 1.adopt far it pass by water gauge Change the ordinary water gauge into and pass the water gauge far, is joined the water gauge and data gathering machine by a signal line, And then reach intelligence to manage( the computer). Its merit lies in saving a large amount of people Strength comes to check meter, the data are accurate, the shortcoming is that the fabrication cost is high. Whether 2.adopt magnetic stripe card of by water gauge Users buy the electronic card of the running water Company in advance , then insert it in the storing device of the water gauge, Card amount of money deduct automatically on the water, this way user need to prepay the water rate, Theprice of the water gauge is relatively high.3. adopt it set up at the open air water gauge not ordinary1)The water gauge is set up in the stair have a rest in the alcoveof the platform. Household watersupply to prop up and manage and enter the kitchen, bathroom after the water gauge is measured. Way thisrealize water gauge produce room set up, equivalence low project have , supply water and set up and in charge of and set up with water gauge office results in aesthetic problems in stair. It suitable for the South warm district kitchen, bathroom assign close to the houses of positions of staircase.2)The water gauge concentrates on being set up among the water gauges( meter box). Person who give when supplying water, set up watergauge in ground floor( meter box) on falling, every household watersupply to prop up and is in charge of applying having in the pipeline well, Southern area can overcast horn place lay along the outer wall in building too; Person who give when supplying water, can set up water gauge in roof( meter box) under upgoing. This way increases and supplies water to prop up In charge of and lay length, pipeline lay and influence building to be beautiful along outer wall. Water gauge produce way choice that family assign, must combine house kitchen, bathroom plane assign characteristic and concrete request of developer, Carry on to several feasibility scheme the above economic technology fix after comparing. Property well-managed medium-to-high grade commodity apartment of housing district, can adopt and pass the water gauge far , It is that the water gauge will use the developing direction in the future; Estate management perfect medium- to-high grade commodity apartment of housing district, can adopt magnetic stripe card water gauge( Company have this kind district of business can design in running water) Or concentrate on setting up it among the water gauges( case); Southern area 3unit type house can set up rest platform office in stair with ordinary water gauge, In order to reduce the fabrication cost.4) establishment question of the pot-type boiler Should reserve and install hot water supply terms of facility, set up hot water supply facilities with when the design of house. Have and concentrate housethat hot water supply on , should consider house assign with installation position and cold hot water pipeline of hot water device. The pot-type boiler generally has three kinds, such as gas, electricity, solar energy,etc.. Whether last kitchen gas heater and electric heater or Bathroom inside, give when draining off water design shoulding reserve installation position and cold hot water interface of pipeline of water heater in advance in building, Install by oneself when convenient users fit up. Solar energy and hot water It is simple and convenient and safe for device to use, need fuel and electric power is low to run the expenses, Have long performance life, pollution-free, received by the masses of users favourably very much, Many houses have been small in recent years The district all install the solar water heater at the time of designing and construct. Solar water heaterinstall and at the roof, need to set up the cold hot water pipeline among bathroom and water heater of the roofing like this generally, Consider installation of solar water heater when the design of house, household can only lay cold and hot pipeline along the building outer wall when installing in the future,Increase household degree of difficulty when installing like this , increase pipeline make the investment, influence building beautiful. Give when draining off water the design needing to solicit the developers suggestion first in building, Interconnected system one design, construct the solar water heater in unison; Reserve solar water heater and cold hot water installation position of pipeline in advance only. The cold hot water pipeline of the solar water heater can be laid In the pipeline well; Set up pipeline house of well , can set up one UPVC drain pipe of de110 as solar water heater hot water sleeve pipe of pipeline close to corner of person who take a shower in bathroom, Set up a de110 *75 three direct links in each hygiene interval ground, as connecting the entry of cold and hot water pipe ( 5) air conditioner condensation ink discharge the issue In recent years, air conditioner enter huge numbers of families gradually, condensation water amorphous to discharge the building outer wall of pollution air conditioner have, Have influenced a beautiful important problem of biotope already. Building give when draining off water design shoulding consider air conditioner condensation ink discharge in a organized way. Concrete method can machine set up the water drain pipe of the condensation by the position outside reserving air conditioner, Drain off water and set up and in charge of and select PVC-U drain pipe de40 for use , reserve three direct links of draining off water highly in each air conditioner, It is convenient for air conditioner to drain off water hose insert directly.4多层住宅建筑给排水设计的几个问题摘要:本文就多层住宅建筑给排水设计中给水管材的选用,管道的敷设方式,水表出户设置,家用热水器的设置及空调冷凝水排放等问题进行探讨,并提出一些具体看关键词:多层住宅,给水管材,管道敷设,水表,太阳能热水器多层住宅以其配套设施简单,造价低,物业管理方便等特点,很受中小城市房地产开发商和广大居民的欢迎。
建筑给排水中英文对照外文翻译文献_图文03
建筑给排水中英文对照外文翻译文献_图文03 建筑给排水中英文对照外文翻译文献_图文03建筑给排水中英文对照外文翻译文献(文档含英文原文和中文翻译)外文:Sealed building drainage and vent systems—an application of active air pressure transient control andsuppression AbstractThe introduction of sealed building drainage and vent systems is considered a viable proposition for complex buildings due to the use of active pressure transient control and suppression in the form of air admittance valves and positive air pressure attenuators coupled with the interconnection of thenetwork's vertical stacks.This paper presents a simulation based on a four-stack network that illustrates flow mechanisms within the pipework following both appliance discharge generated, and sewer imposed, transients. This simulation identifies the role of the active air pressure control devices in maintaining system pressures at levels that do not deplete trap seals.Further simulation exercises would be necessary to provide proof of concept, and it would be advantageous to parallel these with laboratory, and possibly site, trials for validation purposes. Despite this cautionthe initial results are highly encouraging and are sufficient to confirm the potential to provide definite benefits in terms of enhanced system security as well as increased reliability and reduced installation and material costs.Keywords: Active control; Trap retention; Transient propagationNomenclatureC+-——characteristic equationsc——wave speed, m/sD——branch or stack diameter, mf——friction factor, UK definition via Darcy Δh=4fLu2/2Dgg——acceleration due to gravity, m/s2K——loss coefficientL——pipe length, mp——air pressure, N/m2t——time, su——mean air velocity, m/sx——distance, mγ——ratio specific heatsΔh——head loss, mΔp——pressure difference, N/m2Δt——time step, sΔx——internodal length, mρ——density, kg/m3Article OutlineNomenclature1. Introduction—air pressure transient control and suppression2. Mathematical basis for the simulation of transient propagation in multi-stack building drainage networks3. Role of diversity in system operation4. Simulation of the operation of a multi-stack sealed building drainage and vent system5. Simulation sign conventions6. Water discharge to the network7. Surcharge at base of stack 18. Sewer imposed transients9. Trap seal oscillation and retention10. Conclusion—viability of a sealed building drainage and ventsystem1.Air pressure transients generated within building drainage andvent systems as a natural consequence of system operation may be responsible for trap seal depletion and cross contamination of habitable space [1]. Traditional modes of trap seal protection, based on the Victorian engineer's obsession with odour exclusion [2], [3] and [4], depend predominantly on passive solutions where reliance is placed on cross connections and vertical stacks vented toatmosphere [5] and [6]. This approach, while both proven and traditional, has inherent weaknesses, including the remoteness of the vent terminations [7], leading to delays in the arrival of relievingreflections, and the multiplicity of open roof level stack terminations inherent within complex buildings. The complexity of the vent system required also has significant cost and space implications [8].The development of air admittance valves (AAVs) over the past two decades provides the designer with a means of alleviating negative transients generated as random appliance dischargescontribute to the time dependent water-flow conditions within the system. AAVs represent an active control solution as they respond directly to the local pressure conditions, opening as pressure falls to allow a relief air inflow and hence limit the pressure excursions experienced by the appliance trap seal [9].However, AAVs do not address the problems of positive air pressure transient propagation within building drainage and vent systems as a result of intermittent closure of the free airpath through the network or the arrival of positive transients generated remotely within the sewer system, possibly by some surcharge event downstream—including heavy rainfall incombined sewer applications.The development of variable volume containment attenuators [10] that are designed to absorb airflow driven by positive air pressure transients completes the necessary device provision to allow active air pressure transient control and suppression to be introduced into the design of building drainage and vent systems, for both ‘standard’ buildings and those requiring particularattention to be paid to the security implications of multiple roof level open stack terminations. The positive air pressure attenuator (PAPA) consists of a variable volume bag that expands under theinfluence of a positive transient and therefore allows system airflowsto attenuate gradually, therefore reducing the level of positive transients generated. Together with the use of AAVs the introduction of the PAPA device allowsconsideration of a fully sealed building drainage and vent system. illustrates both AAV and PAPA devices, note that the waterless sheath trap acts as an AAFig. 1. Active air pressure transient suppression devices to control both positive and negative surges. Active air pressure transient suppressionand control therefore allows for localized intervention to protect trap seals from both positive and negative pressure excursions. This has distinct advantages over the traditional passive approach. The time delay inherent in awaiting the return of a relievingreflection from a vent open to atmosphere is removed and the effectof the transient on all the other system traps passed during its propagation is avoided.2.Mathematical basis for the simulation of transient propagation in multi-stack building drainage networks.The propagation of air pressure transients within building drainage and vent systems belongs to a well understood family of unsteady flowconditions defined by the St Venant equations of continuity and momentum, and solvable via a finite difference scheme utilizing the method of characteristics technique. Air pressure transient generation and propagation within the system as a result of air entrainment by thefalling annular water in the system vertical stacks and the reflection and transmission of these transients at the system boundaries, including open terminations, connections to the sewer, appliance trap seals and both AAV and PAPA active control devices, may be simulated with proven accuracy. The simulation [11] provides local air pressure, velocity and wave speed information throughout a network at time and distanceintervals as short as 0.001 s and 300 mm. In addition, the simulation replicates localappliance trap seal oscillations and the operation of active control devices, thereby yielding data on network airflows and identifying system failures and consequences. While the simulation has been extensively validated [10], its use to independently confirm the mechanism of SARS virus spread within the Amoy Gardens outbreak in 2003 has provided further confidence in its predictions [12].Air pressure transient propagation depends upon the rate of changeof the system conditions. Increasing annular downflow generates an enhanced entrained airflow and lowers the system pressure. Retarding the entrained airflow generates positive transients. External events mayalso propagate both positive and negative transients into the network.The annular water flow in the ‘wet’ stack entrains an airflowdue to the condition of ‘no slip’ established between theannular water and air core surfaces and generates the expected pressure variation down a vertical stack. Pressure falls from atmospheric above the stack entry due to friction and the effects of drawing air through the water curtains formed at discharging branch junctions. In the lower wet stack the pressure recovers to above atmospheric due to the traction forces exerted on the airflow prior to falling across the water curtain at the stack base.The application of the method of characteristics to the modelling of unsteady flows was first recognized in the 1960s [13]. The relationships defined by Jack [14] allows the simulation to model the traction force exerted on the entrained air. Extensive experimental data allowed the definition of a ‘pseudo-frictionfactor’ applicable in the wet stack and operable acro ss the water annular flow/entrained air core interface to allow combined discharge flows and their effect on air。
多层住宅建筑给排水设计中的问题及对策研究
建筑设计Architectural Design– 60 –建筑施工里,住宅建筑给排水属于基础性工程的一种,和大众日常生活联系紧密。
随着大众生活质量的提升,大众对住宅的设施日渐重视。
因此,在具体住宅建筑给排水工程里,需要对施工存在的问题予以重视,同时总结经验,应用适配的策略保证住宅建筑给排水的施工质量。
1 住宅建筑给排水设计常见问题与解决对策1.1 排水立管设计不当。
设计师在整个厨房排水立管设计的全过程里,可能对燃气管的布置位置考虑不够,一般而言,燃气管道需要合理设置在烟道排烟口周遭的墙角位置。
一旦涉及不注意设置到对应的位置,那么会对之后燃气管的布置有所影响。
解决策略:厨房的排水立管需要合理设置在和烟道位置中的墙角处较远的地方,从而为燃气管道预留出充足的安装空间。
1.2 漏设雨水管和溢流措施。
整个设计过程里,针对门厅雨棚或是较小面积的露台,建筑专业漏设需要设计排水坡度、排水口等,使得给排水无法在对用的区域设置好雨水管,致使对应区域的雨水不能顺利排出去。
此外,对应区域中,因为汇水面积比较小,一般仅仅用1根雨水管,而给排水专业没能设置对应的溢流策略,一旦出现管道堵塞,雨水就不能顺势排出,形成积水、渗水、漏水等问题,这样就会给住宅建筑带来不良影响,影响人们生活的品质。
解决策略:给排水需要对建筑供应的条件图详加检查,对于各个天面雨水口位置详尽核对,针对存在雨水排放有要求的区域,要求在对应的位置合理设置好雨水管,同时需要科学设置好溢流策略,往往会设置好溢流孔模式。
2 地漏的设置问题以及解决对策2.1 厨房地漏的问题。
现阶段,厨房能不能设置地漏备受争议。
原因是厨房地面往往无法排水,因此设计的时候一般不会选择在厨房设置地漏。
装修的时候,部分业主会在厨房铺设木地板,也不适合装地漏。
不过实际生活中,总会有厨房洗菜盆下水管漏水或是出现堵塞问题,无法有效排出水,进而对业主形成不便。
倘若铺设木地板就可能形成较大损失。
此外由于常规情况下,厨房地漏水排出较少,一般的地漏水封可能会由于蒸腾而丧失原本的效用,致使排水管道出现返臭。
建筑给水排水外文翻译文献
建筑给水排水外文翻译文献(文档含中英文对照即英文原文和中文翻译)原文:Supplying and draining waterin hospital constructionWith the fact that modern medicine science promptness develops,new technique , the new armamentarium are continuing without end , modernized medical treatment thereby consonant with that is building a hospital , are also are confronted with new design idea and new technology applying. Disregarding secondary hospital building function , what whose gets along environment, still , finclause the hospital builds equipment and is equipped with system, the request is without exception higher and higher. Because of it is to ensure daily work living not only need the rapid and intense life relevance recovering from the illness , avoiding crippling , rescuing, and promote with giving treatment to a patient. Not only the design accomplishing to the special field draining away water need to satisfy the request being unlike a function in hospital building on equipment , but also safety is be obliged to reliable. Following is built according to the hospital.一HOSPITAL GIVES A SEWERAGE1) Modernized hospital equipment and equipment system content is numerous , the function is peculiar , the request is very high. Except demanding to swear to continue supplying with the use water according with quality level sufficiently, need more according to demand of different medical treatment instrument and different administrative or tehcnical office to water quality , water pressure , the water temperature, classify setting up water treatment system and be in progress to system to increase pressure reduction.2) The hospital operating rooms , the delivery room operation the water hygiene, saliva washing hands by shower bath water , the dentistry dentistry chair ought to adopt the water purifying degassing. In the homeland few are large-scale , the high rank hospital centre supplies a room, the centre disinfecting has also adopted to purify the water disinfecting, now that swear to there be no dust , the sterility , to remove the pathopoiesia source , to avoid the blockage infecting , cutting down equipment microtubule.3) Hospital preparation rooms preparation uses water to adopt distilled water, and sets up in making distilled water system to have part pressure boost facilities. The handicraft responds to according to different hospital preparation handicraft but fixes concrete system distilled water, should satisfy demand of whose handicraft to water quality , water yield , water pressure act in close coordination that the preparation handicraft reserves corresponding to drain-pipe and allocation chilled water circulatory system by the special field draining away water.4) Hospital operating rooms , delivery rooms , baby rooms , supply rooms , medical treatment of the dermatological department wards, door emergency call, cures skill every administrative or tehcnical office and the request difference that the staff and worker logistics branch supplies to hot water need to set up hot water respectively supplying system more. Ordinary circumstances door emergency call, cures skill administrative or tehcnical office , centre supply a room , the staff and worker logistics branch supplies hot water to water supply the regular time, the comparison supplying time is consistent. The hospital is based on major part at present financial resources, ward building hot water supplies basic to the regular time , ought to be that 24 hs supply hot water judging from long-term angle but. Operating room , the delivery room operation wash hands, the hygiene h by the fact that the shower bath ought to be 24 supplies hot water, moreover the block of wood5) Considers beautification to the environment , is inadvisable to adopt the steam boiled waterstove , completely eradicates occurrence aroused the ward building pantry inner floor moistness , avoided interior wall mustiness phenomenon by leak or sparse steam water implement aerofluxus thereby. The hospital disregards size , boiled water supplies to should adopt automation volume or the electricity boiled water stove, a general disease area considers one , volume ascertains that according to using condition. The first easy to protect labor is managed, two is supplying ensuring that to the patient , improves the internal environment of ward at the same time.6)Especially infecting the section ward every door emergency call administrative or tehcnical office, every consulting room , the hand movement water curing a room , washing a basin should set up mistake chew , may adopt elbow style , knee style or dyadic switch of pedal. If using the dyadic switch of pedal to must use the product guarding against leakage, the floor is to avoid using a place often damp , makes the patient , the medical personnel slip down , an accident happened. Operation waits for the operating room , the delivery room to wash hands should adopt the constant temperature muddy water valve , the constant temperature to produce water, taking as an example infrared ray induced electromagnetic valve control mode for fine. Cure skill part control laboratory , laboratory of administrative or tehcnical office have the peculiar request , water chews the form should ascertain whose water according to every administrative or tehcnical office coming functional request chewing.7)Many administrative or tehcnical office, especially downstream pipelines such as pickling bath , the pool disinfecting , develop pool in administrative or tehcnical office such as checking the room , the control laboratory , emitting section responds to of hospitals are adopt to be able to bear the rotten PVC2U draining off silent stock tube.8) Pair of filth , waste water of all kinds must classify strictly according to the country in connection with the effluent standard , the field carrying out a pertinency with different treatment handicraft deals with and handles.9) Uses a function to need since the modern hospital needs to be satisfied with not only , wants to think that the interior outside environment is beautiful too at the same time. The building needs especially door emergency call, cures skill sometimes because of medical treatment function , give the horizontal stroke draining away water , erect a tube arrange to lie scattered comparatively, more bright dew is in interior, warm the pipeline exchanging special field up in addition sometimes , make the pipeline that the room inner clearly shows more than the correct or required number , both inelegant, and affect hygiene. This demands right away in the process ofengineering design , the rational arrangement the structure form should fully utilize not being the same as is carried out, needs to make the various pipeline conceal arrangement to the full according to the function , pays attention to beautiful befitting one's position or suited to the occasion under not affecting the premise being put into use. Certainly, these require that building structure special field is dense. Tier of furred ceilings and the basement top sometimes are every special field pipeline aggregation field , every special field norm and request having every special field , each sometimes arranges if the building designs middle in the ward,whose result either increase building storey height, or cannot attend to one thing without neglecting another. For overcoming this one abuse, should think in general that bigger flue pipe arrangement be in the most superjacent, it's on the down part is that several special field arrangement props up the public space being in charge of , down part is to arrange to give draining off , driving force , strong , weak electricity every system to do a tube again. Such is arranged than form arrangement is other comparatively economical , pragmatic.10) Exchangers forms choice. In the system the tradition hospital hot water is supplied, people adopt volume mainly dyadic exchanger. Have been to think that what be provided steam amounts and hot water supplies the adjustment amounts dispatching value between maximum value mainly , have diminished a steam boiler designing amounts , have decreased by boiler room Zhan field area , have saved one time investment. People demands but more highly, and more highly, especially the example discovering army group bacterium pathopoiesia in life hot water to water quality now , the altitude arousing people takes seriously. Be a bacterium mainly because of in the water 55 ~C is the easiest to breed an army group in 30 ~C ~, WHO (WHO) is recommended by for this purpose: "Hot water responds to in 60 ~C use And cycle at least above 50 ~C. Come if some users, need to fall to 40 ~C or 50 ~C or so with the faucet water temperature, to come true being able to use a thermoregulation to blend a valve at this time. The growth being a temperature Bu Li Yu pneumonia diplococcus swear to store water, is a regulating valve's turn to should set up the place closing down and suspending operation of point in drawing near". This be especially important to the hospital. Because of being in hospital the weak having disease,if bacterium of army group happened within the hospital is to be harmful for patient to treat and recover from the illness,the hospital has a grave responsibility. At present small hospital within the hospital especially a little condition is relatively poor , include the part area level hospital, 24 unable hs supply hot water, and volume the dyadic converter inner water temperature is to useechelon in inside of exchanger, the water temperature very difficult to make keeps in 60 ~C or so. Thereby, lead to volume produce the bacterium of army group in the pipeline supplying hot water system within dyadic exchanger , change a hospital using the exchanger form to respond to be a task of top priority. Adopt half to be to heat up style or be a dyadic hot exchanger , make whose hot water supply the system water temperature keeping the water supply being in progress in all above 60 ~C area all the time, occurrence propagating , completely eradicating the bacterium of army group in order to avoiding the bacterium of army group.二MULTILAYER WATER SUPPL Y SYSTEMAt present, great majority cities municipal administration pipe network pressure can maintain above 2 kilograms in the homeland , take place individual small town water pressure can reach 4 kilograms even. The pressure therefore, building the municipal administration pipe network's to the same multilayer has been already sufficient , has been in a small town especially since but municipal administration pipe network water yield supplying water , water pressure fluctuation are bigger. Have several kinds the following types mainly for overcome these shortcomings , multilayer water supply system design.1) Direct water supply type is that pressure , direct water supply , sort making use of municipal administration pipe network directly apply to slightly high area of municipal administration pipe network pressure or higher range of water works vicinity pressure inner. The shortcoming it is water yield , water pressure to be able to not ensure that. This water supply scheme economy function is very good but, to less pipe network of scale , does not need any other equipment or measure.2) Water box water supply types have led municipal administration pipe network water to roof water box , discrepancy in elevation , gravity depending on a water box and using the water appliance have supplied water , have overcome water pressure water yield block of wood stability and then. Since but, secondary pollution, moreover, water box volume that the water box there exists in possibility is bigger,this way does not encourage therefore.3) Water boxes , pipe networks ally self with a type when the ordinary time water yield water pressure is sufficient , unnecessary water enters the roof water box when covering water supply , overpressure as with a net directly from municipal administration, think that the water box supplies water to the consumer by gravity automation when pressure or the water yield is insufficient. The main force who is that regular directness supplies water on physics structurestretches the top cut-over water box , sets up and one exhalent siphon from the water box. Owe a scheme the volume having diminished a water box, and make water not need to enter a water box staying this one step , hygiene reliability increase by. The problem is (that the municipal administration now pipe network can accomplish) but if longtime stabilivolt supplies water , the water sojourn time in water box is on the contrary greatly increase by , easier to be contaminated. And, the water box all must readjust oneself to a certain extent in the building in all usage water boxes system most higher place, attractive looks being able to affect a building in some occasion , the physical design building even.4) Pressure jars supply water since insecure water box factor , reason why use the jar sealing off reliable pressure to replace, and the pressure jar does not need, high position lay down, attractive looks and structure not affecting a building bearing , go down well very much over the past few years. Pressure jar system requires that the water pump and autocontrol system have to fit but , feasible cost increases by to some extent. However, in the late years whose market price already lets many consumers be able to choose.Systematic pressure jar principle is to make use of a water pump water compression to be sent to receive the pipe network building the inside , thinks that water enters the pressure jar , reaches certain pressure time , water pump motor stoppage or reduces the speed when pressure is too big,While pressure is smaller than regulation value, the pressure jar conveys water to the outside and starts the water pump or acceleration at the same time (frequency conversion water pump).5) Two time of compression types can make do for to small-scale consumer ,if the building , the pressure jar are only systematic. The direction that the dwelling house spends at present to housing estate develops but, shows for the cluster arrangement that multilayer builds , concentrates stabilivolt mainly. The ability can not satisfy a request with pressure jar volume , the water pump concentrates compression therefore having appeared give first place to, pressure jar stabilivolt (remove the system water hammer) is subsidiary way. Economy cost rises only , also needs the specially-assigned person upkeep. Besides, pipe network system belongs to low pressure since tier of numbers are not many, pipeline, the direct cut-over without exception with layers consumer is be OK , comparatively simple. The steel tube prepares pipeline material with low pressure low pressure PPR silent stock tube give first place to.译文:医院建筑给水排水随着现代医学科学的迅速发展,新技术、新医疗设备层出不穷,从而与之相符的现代化医疗建筑———医院,也面临着新的设计理念和新技术的运用。
住宅建筑给排水设计常见问题
住宅建筑给排水设计常见问题摘要:目前越来越多的建筑施工正在紧锣密鼓的进行中,不管是大型的城市型建筑还是小型的私人住宅建筑其建筑设计都是不可忽视的一个方面。
建筑设计不仅仅讲求美观,还讲求实用性和安全性,而建筑设计中的给排水设计正是如此。
本文主要针对住宅建筑给排水中的一些主要问题进行了探讨,指出了其中常见的一些问题,并给出了自己的一些注意措施。
关键词:住宅建筑设计;给排水设计;常见问题;解决措施Abstract: currently, more and more construction are has been engaged in the process of, whether large or small type city building private residential building the building design is not neglectable. Architecture design not only to be particular about is beautiful, also pragmatic and security, and building design of the water supply and drainage design is so. This article mainly aims at building water supply house in some major problems is discussed, and points out some problems of common, and gives some of his own note measures.Keywords: residential building design; Water supply and drainage design; Common problem; measures众所周知,在住宅建筑设计中,给排水的设计是至关重要的,因为在我们的日常生活中对于水资源的需要和排放是最常见的,而厨房和卫生间这两个一直被建筑设计者作为住宅心脏的建筑更是离不开水资源的供给和排放。
给排水专业英文文献翻译
Sewage treatmentAbstract:Sewage treatment, or domestic wastewater treatment, is the process of removing contaminants from wastewater and household sewage, both runoff (effluents) and domestic. It includes physical, chemical, and biological processes to remove physical, chemical and biological contaminants. Its objective is to produce a waste stream (or treated effluent) and a solid waste or sludge suitable for discharge or reuse back into the environment. This material is often inadvertently contaminated with many toxic organic and inorganic compounds.Key words: Sewage treatment,fixed-film and suspended-growth, Activated sludge Origins of sewageSewage is created by residences, institutions, and commercial and industrial establishments. Raw influent (sewage) includes household waste liquid from toilets, baths, showers, kitchens, sinks, and so forth that is disposed of via sewers. In many areas, sewage also includes liquid waste from industry and commerce. The separation and draining of household waste into greywater and blackwater is becoming more common in the developed world, with greywater being permitted to be used for watering plants or recycled for flushing toilets. A lot of sewage also includes some surface water from roofs or hard-standing areas. Municipal wastewater therefore includes residential, commercial, and industrial liquid waste discharges, and may include stormwater runoff. Sewage systems capable of handling stormwater are known as combined systems or combined sewers. Such systems are usually avoided since they complicate and thereby reduce the efficiency of sewage treatment plants owing to their seasonality. The variability in flow also leads to often larger than necessary, and subsequently more expensive, treatment facilities. In addition, heavy storms that contribute more flows than the treatment plant can handle may overwhelm the sewage treatment system, causing a spill or overflow. It is preferable to have a separate storm drain system for stormwater in areas that are developed with sewer systems.As rainfall runs over the surface of roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. Some jurisdictions require stormwaterto receive some level of treatment before being discharged directly into waterways. Examples of treatment processes used for stormwater include sedimentation basins, wetlands, buried concrete vaults with various kinds of filters, and vortex separators (to remove coarse solids).Process overviewSewage can be treated close to where it is created (in septic tanks, biofilters or aerobic treatment systems), or collected and transported via a network of pipes and pump stations to a municipal treatment plant (see sewerage and pipes and infrastructure). Sewage collection and treatment is typically subject to local, state and federal regulations and standards. Industrial sources of wastewater often require specialized treatment processes (see Industrial wastewater treatment).Conventional sewage treatment may involve three stages, called primary, secondary and tertiary treatment. Primary treatment consists of temporarily holding the sewage in a quiescent basin where heavy solids can settle to the bottom while oil, grease and lighter solids float to the surface. The settled and floating materials are removed and the remaining liquid may be discharged or subjected to secondary treatment. Secondary treatment removes dissolved and suspended biological matter. Secondary treatment is typically performed by indigenous, water-bornemicro-organisms in a managed habitat. Secondary treatment may require a separation process to remove the micro-organisms from the treated water prior to discharge or tertiary treatment. Tertiary treatment is sometimes defined as anything more than primary and secondary treatment. Treated water is sometimes disinfected chemically or physically (for example by lagoons and microfiltration) prior to discharge into a stream, river, bay, lagoon or wetland, or it can be used for the irrigation of a golf course, green way or park. If it is sufficiently clean, it can also be used for groundwater recharge or agricultural purposes.Pre-treatmentPre-treatment removes materials that can be easily collected from the raw wastewater before they damage or clog the pumps and skimmers of primary treatment clarifiers (trash, tree limbs, leaves, etc).ScreeningThe influent sewage water is strained to remove all large objects carried in the sewage stream. This is most commonly done with an automated mechanically raked bar screen in modern plants serving large populations, whilst in smaller or less modern plants a manually cleaned screen may be used. The raking action of a mechanical bar screen is typically paced according to the accumulation on the bar screens and/or flow rate. The solids are collected and later disposed in a landfill or incinerated.Grit removalPre-treatment may include a sand or grit channel or chamber where the velocity of the incoming wastewater is carefully controlled to allow sand, grit and stones to settle.Primary treatmentIn the primary sedimentation stage, sewage flows through large tanks, commonly called "primary clarifiers" or "primary sedimentation tanks". The tanks are large enough that sludge can settle and floating material such as grease and oils can rise to the surface and be skimmed off. The main purpose of the primary sedimentation stage is to produce both a generally homogeneous liquid capable of being treated biologically and a sludge that can be separately treated or processed. Primary settling tanks are usually equipped with mechanically driven scrapers that continually drive the collected sludge towards a hopper in the base of the tank from where it can be pumped to further sludge treatment stages. Grease and oil from the floating material can sometimes be recovered for saponification.Secondary treatmentSecondary treatment is designed to substantially degrade the biological content of the sewage which are derived from human waste, food waste, soaps and detergent. The majority of municipal plants treat the settled sewage liquor using aerobic biological processes. For this to be effective, the biota require both oxygen and a substrate on which to live. There are a number of ways in which this is done. In all these methods, the bacteria and protozoa consume biodegradable soluble organiccontaminants (e.g. sugars, fats, organic short-chain carbon molecules, etc.) and bind much of the less soluble fractions into floc. Secondary treatment systems are classified asfixed-film and suspended-growth.Fixed-film OR attached growth system treatment process including trickling filter and rotating biological contactors where the biomass grows on media and the sewage passes over its surface.In suspended-growth systems, such as activated sludge, the biomass is well mixed with the sewage and can be operated in a smaller space than fixed-film systems that treat the same amount of water. However, fixed-film systems are more able to cope with drastic changes in the amount of biological material and can provide higher removal rates for organic material and suspended solids than suspended growth systems.Roughing filters are intended to treat particularly strong or variable organic loads, typically industrial, to allow them to then be treated by conventional secondary treatment processes. Characteristics include typically tall, circular filters filled with open synthetic filter media to which wastewater is applied at a relatively high rate. They are designed to allow high hydraulic loading and a high flow-through of air. On larger installations, air is forced through the media using blowers. The resultant wastewater is usually within the normal range for conventional treatment processes. Activated sludgeMain article: Activated sludgeIn general, activated sludge plants encompass a variety of mechanisms and processes that use dissolved oxygen to promote the growth of biological floc that substantially removes organic material.The process traps particulate material and can, under ideal conditions, convert ammonia to nitrite and nitrate and ultimately to nitrogen gas, (see also denitrification).Surface-aerated basinsMost biological oxidation processes for treating industrial wastewaters have in common the use of oxygen (or air) and microbial action. Surface-aerated basins achieve 80 to 90% removal of Biochemical Oxygen Demand with retention times of 1 to 10 days. The basins may range in depth from 1.5 to 5.0 metres and usemotor-driven aerators floating on the surface of the wastewater.In an aerated basin system, the aerators provide two functions: they transfer air into the basins required by the biological oxidation reactions, and they provide the mixing required for dispersing the air and for contacting the reactants (that is, oxygen, wastewater and microbes). Typically, the floating surface aerators are rated to deliver the amount of air equivalent to 1.8 to 2.7 kg O2/kW·h. However, they do not provide as good mixing as is normally achieved in activated sludge systems and therefore aerated basins do not achieve the same performance level as activated sludge units.Biological oxidation processes are sensitive to temperature and, between 0 °C and 40 °C, the rate of biological reactions increase with temperature. Most surface aerated vessels operate at between 4 °C and 32 °C.Filter beds (oxidizing beds)Main article: Trickling filterIn older plants and plants receiving more variable loads, trickling filter beds are used where the settled sewage liquor is spread onto the surface of a deep bed made up of coke (carbonized coal), limestone chips or specially fabricated plastic media. Such media must have high surface areas to support the biofilms that form. The liquor is distributed through perforated rotating arms radiating from a central pivot. The distributed liquor trickles through this bed and is collected in drains at the base. These drains also provide a source of air which percolates up through the bed, keeping it aerobic. Biological films of bacteria, protozoa and fungi form on the media’s s urfaces and eat or otherwise reduce the organic content. This biofilm is grazed by insect larvae and worms which help maintain an optimal thickness. Overloading of beds increases the thickness of the film leading to clogging of the filter media and ponding on the surface.Biological aerated filtersBiological Aerated (or Anoxic) Filter (BAF) or Biofilters combine filtration with biological carbon reduction, nitrification or denitrification. BAF usually includes a reactor filled with a filter media. The media is either in suspension or supported by a gravel layer at the foot of the filter. The dual purpose of this media is to support highly active biomass that is attached to it and to filter suspended solids. Carbon reduction and ammonia conversion occurs in aerobic mode and sometime achieved in a single reactor while nitrate conversion occurs in anoxic mode. BAF is operated either in upflow or downflow configuration depending on design specified by manufacturer.Membrane bioreactorsMembrane bioreactors (MBR) combine activated sludge treatment with a membrane liquid-solid separation process. The membrane component uses low pressure microfiltration or ultra filtration membranes and eliminates the need for clarification and tertiary filtration. The membranes are typically immersed in the aeration tank; however, some applications utilize a separate membrane tank. One of the key benefits of an MBR system is that it effectively overcomes the limitations associated with poor settling of sludge in conventional activated sludge (CAS) processes. The technology permits bioreactor operation with considerably higher mixed liquor suspended solids (MLSS) concentration than CAS systems, which are limited by sludge settling. The process is typically operated at MLSS in the range of 8,000–12,000 mg/L, while CAS are operated in the range of 2,000–3,000 mg/L. The elevated biomass concentration in the MBR process allows for very effective removal of both soluble and particulate biodegradable materials at higher loading rates. Thus increased Sludge Retention Times (SRTs) — usually exceeding 15 days — ensure complete nitrification even in extremely cold weather.The cost of building and operating an MBR is usually higher than conventional wastewater treatment. Membrane filters can be blinded with grease or abraded by suspended grit and lack a clarifier's flexibility to pass peak flows. The technology has become increasingly popular for reliably pretreated waste streams and has gainedwider acceptance where infiltration and inflow have been controlled, however, and the life-cycle costs have been steadily decreasing. The small footprint of MBR systems, and the high quality effluent produced, make them particularly useful for water reuse applications.There are MBR plants being built throughout the world, including North Librty, Iowa, Georgia, and Canada.Secondary sedimentationThe final step in the secondary treatment stage is to settle out the biological floc or filter material and produce sewage water containing very low levels of organic material and suspended matter.Rotating biological contactorsMain article: Rotating biological contactorRotating biological contactors (RBCs) are mechanical secondary treatment systems, which are robust and capable of withstanding surges in organic load. RBCs were first installed in Germany in 1960 and have since been developed and refined into a reliable operating unit. The rotating disks support the growth of bacteria and micro-organisms present in the sewage, which breakdown and stabilise organic pollutants. To be successful, micro-organisms need both oxygen to live and food to grow. Oxygen is obtained from the atmosphere as the disks rotate. As themicro-organisms grow, they build up on the media until they are sloughed off due to shear forces provided by the rotating discs in the sewage. Effluent from the RBC is then passed through final clarifiers where the micro-organisms in suspension settle as a sludge. The sludge is withdrawn from the clarifier for further treatment.A functionally similar biological filtering system has become popular as part of home aquarium filtration and purification. The aquarium water is drawn up out of the tank and then cascaded over a freely spinning corrugated fiber-mesh wheel before passing through a media filter and back into the aquarium. The spinning mesh wheel develops a biofilm coating of microorganisms that feed on the suspended wastes in the aquarium water and are also exposed to the atmosphere as the wheel rotates. This is especially good at removing waste urea and ammonia urinated into the aquariumwater by the fish and other animals.污水处理摘要自然或生活污水处理,是指清除包括家庭排放的和地面径流在内的污水废水和地面污染物的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
译文来源:美国PE杂志建筑给排水工程师2010年第10期The multilevel residential housing is given and drains off water several questions designedSummary : This text give and drain off water on multilevel residential housing design supply water the exertion of the tubular product , Way of laying of pipeline, water gauge produce family set up, establishment and air conditioner condensation water of pot-type boiler discharge issue goes on the discussion , And put forward some concrete views.Keyword: Skyscraper, supply water the tubular product , the pipeline is laid, The water gauge, the solar water heaterThe skyscraper is simple with its auxiliary facility, the fabrication cost is low, the characteristic such as being convenient of estate management, Receive the welcomes of the real estate developer and vast resident of small and medium-sized cities very much. How project planning and design of inhabited region, scientific and technological industry of comfortable house, lead the request according to 2000, Improve the design level of the house, build out a comfortable living space for each household, It is each designers duty. As the heart of the house --The kitchen, bathroom, is that the function is complicated, hygiene, safe and comfortable degree are expected much, It is miscellaneous to build, the space expecting much in technology. So, the designer must consider synthetically with the idea and method of global design that the kitchen, bathroom give installation of the drainage pipeline and equipment,etc. . Give and drain off water on skyscraper design supply water exertion, to lay pipeline of tubular product, water gauge produce family set up, establishment and empty of pot-type boiler now Transfer condensation water discharge issue discuss together with colleagues.( 1)supply water tubular product select problem for use Traditional watersupply tubular product adopt zinc-plated steel tube generally, because zinc-plated steel tube exchange the corrosion, Use short-lived , use for and send domestic water can satisfied with water quality sanitary standard shortcoming, Ministry of Construction is popularizing the application of the feed pipe of plastics energetically . A lot of districts and cities have already expressed regulations: Forbid designing and using the zinc-plated steel tube , use widely the feed pipe of plastics. The plastics supply water In charge of compared with metal pipeline, light, it is fine to able to bear the intensity of keeping, Send obstruction little liquid , able to bear chemistry better to corrode performance, it is convenient to install, The steel energy-conservation of the province, merit of having long performance life etc.. Supply water and use plastics pipeline: Hard polyvinyl chloride( PVC-U), high density polyethylene( HDPE), pay and unite polyethylene( PEX) , modify the polypropylene( PP-R, PP-C), gather butene( PB), aluminium mould and compound and in charge of and the steel is moulded and compound and is managed etc.. Choice of tubular product economic comparativecourse of technology, technology should from pressure, temperature, environment for use, install method,etc. go on and consider, Combine owners at the same time request and the house of grade,carry on and fix after being consider synthetically technology not economic. The above plastics supply water tubular product can supply water tubular product as house life. The economic and functional house conciliating Strand room in the face of the masses of with low- and medium-level incomes resident, can select for use hygiene grades of hard polyvinyl chloride in charge of as feed pipe mainly, In order to reduce the fabrication cost; Medium-to-high grade commodity apartment available aluminium Mould and compound and in charge of or other plastics supply water the tubular product as the feed pipe. House mix hot water temperature that water order exceed 600 C, so above-mentioned tubular product in charge of except hard polyvinyl chloride and aluminium plastics compound and in charge of( PE-AL-PE), Mostly the tubular product can be regarded as the hot water pipeline of the house.( 2) pipeline lay problem 1. give and drain off water it set up there arent one that in charge of1)Will install it in the corner place of the kitchen, bathroom tomorrow. Adopting this kind of way of laying more in the design of house in the past, it is convenient for it to construct, But will reveal the pipeline and hinder the room beautifully tomorrow Watch, the households will mostly be hidden with the light quality material in the equipment two times.2)Will install it in the overcast angle place of the outer wall of the building tomorrow. Way this suitable for southern weather warm district only, the minimum temperature in winter cant be lower than zero degrees Centigrade, In case water pipe water-logging freeze ice is bloated to split pipeline, influence household use. Pipeline lay in outer wall, influence building to be beautiful, too inconvenient on manage and maintain in the future.3)Lay it in the pipeline well. This way makes the room clean and beautiful , but the pipeline well has taken up the area of the bathroom, And pipeline construct, maintain relatively more difficult. Bathroom set up concentrate pipeline well, concentrate pipeline on assign in the well feed pipe, drain pipe, This is that the civilized importance lives in the kitchen of comfortable house, bathroom Embodiment.I think : Should consider the establishment of the pipeline well of the bathroom in the medium-to-high grade building conceptual design of commodity apartment, Improve quality of using of bathroom promptly so , can solve hard polyvinyl chloride drain pipe rivers noise heavy problem, Improve the environmental quality level of the room; Whether for bathroom in the areas for little economic and functional house and Overcome difficulties room, warm area give and drain off water and set up and in charge of and can consider and lay in the outer wall in the South, In order to increase using the space of the bathroom; Pipeline install and in the room, should influence kitchen, bathroom every sanitary equipment use of function tomorrow2. supply water and prop up there arent tube House supply water prop up and in charge of pipe diameter one ≤ 32mm, de of battle,, little plastics feed pipe of pipe diameter is the crooked state, So the house supplies water and is propped up and incharge of being recommended and adopted and set up secretly. Supply water to prop up to manage darkly There are thes way had:1)Set up in the brick wall secretly. Wall turn on and in charge of trough in brick when constructing, in charge of trough width tube +20 mm, de of external diameter,, degree of depth tube external diameter de, The pipeline is imbedded and managed directly Trough, and with in charge of card fix in trough of inning charge of son.2)Whether pipe diameter supply water and prop up and last de ≤ 20mm,can set up at floor secretly piece make level by layer. Turn on and in charge of trough in floor( ground) the board when constructing, it wides trough have to be de +10 mm deeply 1/2 of the de, Half pipeline imbed and in charge of trough, and with in charge of card fix in trough of inning charge of tube. Aluminium mould compound and in charge of and pay and unite polypropylene in charge of pipeline adopt metal pipe fittings connection, Must strengthen and in charge of trough size when adopting and set up secretly, and rivers some flood peak loss relatively heavy. Assign the relative house that concentrated to the kitchen, bathroom interior hygiene utensil, Can adopt and divide Water device go on and join , divide water device whether one more than branch in charge of and connect, every hygiene utensil supply water and prop up and in charge of and connects and publishes from the water dividing device separately. Can already prevent the tube burying the pipeline secretly from being connected like this Permeate the question. Can reduce some flood peak lost, decrease the fabrication cost of pipe networks3)Drain off water and prop up the tube to lay House room drain off water and in charge of and should set up at the time of inning this each, drain off water and in charge of permeating sideways like this canning prevent the sewage from waiting for the pollutant to enter the neighbor family sideways, Will not influence the neighbor either when the pipeline is maintained Normal life of one. Kitchen wash water drainage of basin propped up and in charge of generallying inserts draining off water to stand to manage this layer of floor sideways; Floor drain drain off water propped up and in charge of laying the room of lower floor. A lot of colleagues think now: Whether kitchen the ground it lay ceramic tile of,whose name is clean in when need develop with water,not strong in meaning to set up floor drain, So kitchen set up ground floor drain, avoid and drain off water and prop up and in charge of and enter neighbor family sideways already so, Can increase using the space of the kitchen . Bathroom drain off water and prop up and in charge of and lay concrete measure have in this layer sideways inside:1)Improve the bathroom ground . Ground tendency high 150mm, adopt back row type take stool pot, washing basin, bath tub, water drainage of floor drain in charge of and bury in cushion layer secretly sideways.2)Adopt the sinking type bathroom. Bathroom sink 350mm the floor, hygiene utensil drain off water and in charge of and bury on sinking space secretly sideways Two method these can realize water drainage of bathroom prop up and in charge of earths surface to bury underground this one without entering the neighbor family sideways. Bury pipeline when installing, construction quality must check on strictly, can construct bathroom ground after confirming qualified secretly, So as notto leave the hidden danger in giving in the future using. Bathroom ground construct and can pack coal ash light quality material , also can adopt and lay bricks impracticable to lay plate making construct ground, Ground must make waterproof to deal with, method can waterproof to deal with according to roofing, make two oil one rubber and plastic ointment waterproof cloth.3) water gauge the open air set up problem The water gauge is had indoors, not only the work load of checking meter is very heavy , but also make the security and privacy of the house reduce greatly . So house divide into households of water gauge or divide households of figure of water gauge Show that should be set up in the open air. Skyscraper water gauge the open air set up following several kinds of forms: Whether 1.adopt far it pass by water gauge Change the ordinary water gauge into and pass the water gauge far, is joined the water gauge and data gathering machine by a signal line, And then reach intelligence to manage( the computer). Its merit lies in saving a large amount of people Strength comes to check meter, the data are accurate, the shortcoming is that the fabrication cost is high. Whether 2.adopt magnetic stripe card of by water gauge Users buy the electronic card of the running water Company in advance , then insert it in the storing device of the water gauge, Card amount of money deduct automatically on the water, this way user need to prepay the water rate, The price of the water gauge is relatively high.3. adopt it set up at the open air water gauge not ordinary1)The water gauge is set up in the stair have a rest in the alcove of the platform. Household watersupply to prop up and manage and enter the kitchen, bathroom after the water gauge is measured. Way this realize water gauge produce room set up, equivalence low project have , supply water and set up and in charge of and set up with water gauge office results in aesthetic problems in stair. It suitable for the South warm district kitchen, bathroom assign close to the houses of positions of staircase.2)The water gauge concentrates on being set up among the water gauges( meter box). Person who give when supplying water, set up water gauge in ground floor( meter box) on falling, every household watersupply to prop up and is in charge of applying having in the pipeline well, Southern area can overcast horn place lay along the outer wall in building too; Person who give when supplying water, can set up water gauge in roof( meter box) under upgoing. This way increases and supplies water to prop up In charge of and lay length, pipeline lay and influence building to be beautiful along outer wall. Water gauge produce way choice that family assign, must combine house kitchen, bathroom plane assign characteristic and concrete request of developer, Carry on to several feasibility scheme the above economic technology fix after comparing. Property well-managed medium-to-high grade commodity apartment of housing district, can adopt and pass the water gauge far , It is that the water gauge will use the developing direction in the future; Estate management perfect medium- to-high grade commodity apartment of housing district, can adopt magnetic stripe card water gauge( Company have this kind district of business can design in running water) Or concentrate on setting up it among the water gauges( case); Southern area unit type house can set up rest platform office in stair with ordinary water gauge, In order to reduce the fabrication cost.4) establishment question of the pot-type boiler Should reserve and install hot water supply terms of facility, set up hot water supply facilities with when the design of house. Have and concentrate house that hot water supply on , should consider house assign with installation position and cold hot water pipeline of hot water device. The pot-type boiler generally has three kinds, such as gas, electricity, solar energy,etc.. Whether last kitchen gas heater and electric heater or Bathroom inside, give when draining off water design shoulding reserve installation position and cold hot water interface of pipeline of water heater in advance in building, Install by oneself when convenient users fit up. Solar energy and hot water It is simple and convenient and safe for device to use, need fuel and electric power is low to run the expenses, Have long performance life, pollution-free, received by the masses of users favourably very much, Many houses have been small in recent years The district all install the solar water heater at the time of designing and construct. Solar water heater install and at the roof, need to set up the cold hot water pipeline among bathroom and water heater of the roofing like this generally, Consider installation of solar water heater when the design of house, household can only lay cold and hot pipeline along the building outer wall when installing in the future, Increase household degree of difficulty when installing like this , increase pipeline make the investment, influence building beautiful. Give when draining off water the design needing to solicit the developers suggestion first in building, Interconnected system one design, construct the solar water heater in unison; Reserve solar water heater and cold hot water installation position of pipeline in advance only. The cold hot water pipeline of the solar water heater can be laid In the pipeline well; Set up pipeline house of well , can set up one UPVC drain pipe of de110 as solar water heater hot water sleeve pipe of pipeline close to corner of person who take a shower in bathroom, Set up a de110 *75 three direct links in each hygiene interval ground, as connecting the entry of cold and hot water pipe( 5) air conditioner condensation ink discharge the issue In recent years, air conditioner enter huge numbers of families gradually, condensation water amorphous to discharge the building outer wall of pollution air conditioner have, Have influenced a beautiful important problem of biotope already. Building give when draining off water design shoulding consider air conditioner condensation ink discharge in a organized way. Concrete method can machine set up the water drain pipe of the condensation by the position outside reserving air conditioner, Drain off water and set up and in charge of and select PVC-U drain pipe de40 for use , reserve three direct links of draining off water highly in each air conditioner, It is convenient for air conditioner to drain off water hose insert directly.译文来源:美国PE杂志建筑给排水工程师2010年第10期多层住宅建筑给排水设计的几个问题摘要:本文就多层住宅建筑给排水设计中给水管材的选用,管道的敷设方式,水表出户设置,家用热水器的设置及空调冷凝水排放等问题进行探讨,并提出一些具体看法。