利用基本不等式求三角函数中边长问题
利用正余弦定理、基本不等式解决三角形面积的最值问题
利用正余弦定理解决三角形面积的范围/最值问题题型一:已知一角和对边例1、△ABC中,角A,B,C的对边分别为a,b,c, 已知A=π3, a=2,求△ABC面积的取值范围.解法一:利用正弦定理、两角和的正弦公式、二倍角公式及辅助角公式,转化为三角函数求范围/最值.因为S=12bcsinA=√34bc=√34(asinA)2sinBsinC=4√33sinBsinC =4√3sinBsin(π+B)=4√3(√3sinBcosB+1sin2B) =sin2B−√3cos2B+√3=2√3sin (2B−π6)+√3又∵A=π3∴B∈(0,2π3) ∴2B−π6∈(−π6,7π6) ∴sin (2B−π6)∈(−12,1]因此,S∈(0,√3].解法二:利用余弦定理和基本不等式,进而求范围/最值.因为S=12bcsinA=√34bc由余弦定理cosA=b 2+c2−a22bc=12得b2+c2−a2=bc又b2+c2≥2bc(当且仅当b=c时取等号),故b2+c2−a2=bc≥2bc−a2,即bc≤a2=4故S=√34bc≤√3. 又S>0, 从而S∈(0,√3].解法三:借助三角形的外接圆进行观察,进而求范围/最值.A'由左图可知,在A靠近B、C的过程中,S逐渐变小;A 当A趋近B、C时,S趋近于0;当A运动到A'位置时,S取最大值.B C (此时△ABC为等边三角形)变式:锐角△ABC中,角A,B,C的对边分别为a,b,c, 已知A=π3, a=2,求△ABC面积的取值范围.解法一:由例1知S=2√33sin (2B−π6)+√33又∵A =π3且△ABC 为锐角三角形 ∴B ∈(π6,π2) ∴2B −π∈(π6,5π6)∴sin (2B −π6)∈(12,1] 因此,S ∈(2√33,√3]. 解法二:借助三角形的外接圆进行观察,进而求范围/最值. A ' 如图,AC ⊥BC 时AC =2√33,S=12×2×2√33=2√33;A 当A 运动到A '位置时,S 取最大值√3.(此时△ABC 为等边三角形)B DC 因此,S ∈(2√33,√3]. 题型二:已知一角和邻边例2、 锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c , 已知A =π3, b =2,求△ABC 面积 的取值范围.解法一:利用正弦定理及两角和的正弦公式,转化为三角函数求范围/最值.因为S =12bcsinA =√32c =√32bsinBsinC =√3sinCsinB =√3sin(π3+B)sinB=3√32+12sinB sinB =√3(√32tanB +12)=32tanB +√32又∵A =π3且△ABC 为锐角三角形 ∴B ∈(π6,π2) ∴tanB ∈(√33,+∞], 1tanB ∈(0,√3) 因此,S ∈(√32,2√3).解法二:寻找临界位置(直角三角形)C 如图, 当点B 在B 1位置时∠CB 1A =90°,AB 1=1,S =√32; 当点B 在B 2位置时∠ACB 2=90°,B 2C=2√3,S =2√3;A B 1 B B 2 显然点B 位于B 1与B 2之间, 故S ∈(√32,2√3).巩固练习1、△ABC 中,角A,B,C 的对边分别为a,b,c ,且sin 2B−C 2+sinBsinC =34.(1)求角A ;(2)若a =4,且△ABC 为锐角三角形,求△ABC 面积的取值范围; (3)若c =4,且△ABC 为锐角三角形,求△ABC 面积的取值范围.2、△ABC 中,角A,B,C 的对边分别为a,b,c .且√3asinAcosB −bcos 2A +b =0. (1)求角B ;(2)若b =6,求BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的最小值; (3)若b =2√3,求△ABC 面积的最大值. 3、设双曲线x 2−y 23=1的左、右焦点分别为F 1、F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是 4、锐角△ABC 的内角A,B,C 的对边分别为a,b,c .已知sin A+C 5=bsinA a, BA ⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =2√2c , 则△ABC 面积的取值范围是( ) A.(13,43) B.(√3,4√33) C.(√3,2√3) D.(1,2)参考答案 1. (1)A =π3;(2) (8√33,4√3];(3)( 2√3,8√3)2. (1)B =2π3;(2)﹣6;(3) √33. (2√7,8)4. B。
求解三角不等式
求解三角不等式不等式是数学中一种常见的表达方式,用来表示两个或多个数的大小关系。
而三角不等式则是一类特殊的不等式,涉及三角函数的性质和大小关系。
三角不等式可以分为两种情况讨论:一种是涉及到正弦函数(sin)的不等式,另一种是涉及到余弦函数(cos)的不等式。
下面将详细讨论这两种情况。
一、涉及到正弦函数的不等式对于三角函数sin(x),我们知道它的取值范围是[-1, 1],即-1≤sin(x)≤1。
基于这一性质,我们可以得出一系列的三角不等式。
1. sin(x)≤1这是最基本的三角不等式之一。
由于sin(x)的取值范围不能超过1,所以当x为任意实数时,sin(x)≤1始终成立。
2. sin(x)≥-1与上一个不等式类似,sin(x)的取值范围不能小于-1,所以当x为任意实数时,sin(x)≥-1恒成立。
3. -1≤sin(x)≤1这是sin(x)函数的取值范围,也是最常见的三角不等式之一。
根据定义,对于任何实数x,都有-1≤sin(x)≤1。
4. sin(x)≥sin(y)当x > y时,sin(x) ≥ sin(y)。
这是由于对于角度而言,正弦函数是单调递增的。
5. sin(x)≤sin(y)当x < y时,sin(x)≤sin(y)。
同样地,因为正弦函数是单调递增的,当x < y时,sin(x) ≤ sin(y)。
二、涉及到余弦函数的不等式对于三角函数cos(x),也有类似的不等式规则。
1. cos(x)≤1余弦函数cos(x)的取值范围不能超过1,所以对于任意实数x,cos(x)≤1。
2. cos(x)≥-1同样地,余弦函数cos(x)的取值范围不能小于-1,所以对于任意实数x,cos(x)≥-1。
3. -1≤cos(x)≤1与正弦函数类似,余弦函数cos(x)的取值范围也是-1≤cos(x)≤1。
4. cos(x)≥cos(y)当x > y时,cos(x) ≥ cos(y)。
三角函数的综合应用+课件-2025届高三数学一轮复习
(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
三角函数ω的取值范围及解三角形中的范围与最值问题(学生版)-高中数学
三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.832(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,833(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.44(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞B.32,73∪52,+∞C.136,3 ∪196,+∞ D.12,+∞ 02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.3(2024·宁夏银川·二模)已知平面四边形ABCD中,∠A+∠C=180°,BC=3.(1)若AB=6,AD=3,CD=4,求BD;(2)若∠ABC=120°,△ABC的面积为932,求四边形ABCD周长的取值范围.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C=3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.3(2024·河北衡水·一模)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,三角形面积为S ,若D 为AC 边上一点,满足AB ⊥BD ,BD =2,且a 2=-233S +ab cos C .(1)求角B ;(2)求2AD+1CD 的取值范围.4(2024·陕西安康·模拟预测)已知锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a =8,ac =1+sin 2A -sin 2C sin 2B ,且a ≠c .(1)求证:B =2C ;(2)已知点M 在线段AC 上,且∠ABM =∠CBM ,求BM 的取值范围.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,62已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163 ;则正确的个数为()A.0B.1C.2D.33设函数f x =sin 2ωx -cos 2ωx +23sin ωx cos ωx ω>0 ,当x ∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,133B.73,133C.83,143D.83,1434将函数f x =sin ωx -cos ωx (ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.565已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为() A.23B.13C.1D.126(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+37已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.9已知函数f x =sin ωx +φ ω>0 满足f x ≥f π12,且f x 在区间-π3,π3 上恰有两个最值,则实数ω的取值范围为.10已知函数f (x )=-sin ωx -π4(ω>0)在区间π3,π 上单调递减,则ω的取值范围是.11若函数f x =cos ωx -π6ω>0 在区间π3,2π3 内单调递减,则ω的最大值为.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.13在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B ;(2)求sin A +sin C 的取值范围.15在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2b sin A -3a =0.(1)求角B 的大小;(2)求cos A +cos C 的取值范围.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求cb的取值范围.20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n.(1)求B ;(2)求b 2a 2+c 2的最小值.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.。
应用基本不等式,破解三角形最值
2024年3月上半月㊀学习指导㊀㊀㊀㊀应用基本不等式,破解三角形最值◉河南省固始县高级中学㊀沈玉洁㊀㊀利用基本不等式破解三角形中的角㊁边㊁周长㊁面积以及相应代数式等的最值及其综合应用问题,一直是高考命题中的一个重点与难点,交汇点多,综合性强,难度较大,灵活多样,备受各方关注.本文中结合实例,合理通过基本不等式的巧妙放缩,得以确定相应的最值.1角的最值问题利用基本不等式求解三角形中角的最值问题,是高考的一个考点.解决这类问题的关键是,利用正㊁余弦定理及基本不等式求出三角形中相应内角的某一三角函数值的取值范围或进一步利用三角函数的单调性求出角的最值等.例1㊀在әA B C 中,已知0<A <π2,0<B <π2,2s i n A =c o s (A +B )s i n B ,则t a n A 的最大值为.解析:由2s i n A =c o s (A +B )s i n B =-c o s C s i n B 及正弦定理和余弦定理,可得2a =-a 2+b 2-c22a bˑb ,化简可得5a 2+b 2=c 2.而t a n 2A =s i n 2A c o s 2A =1c o s 2A-1,又A 为锐角,可得c o s A >0,t a n A >0,因此只要求出c o s A 的最小值,就可求得t a n A 的最大值.结合基本不等式,利用余弦定理有c o s A =b 2+c 2-a 22b c =3b 2+2c 25b c ȡ23b 2ˑ2c 25b c =265,当且仅当3b 2=2c2,即c =62b 时等号成立,所以t a n 2A =1c o s 2A -1ɤ1(265)2-1=124,解得t a n A ɤ612,则t a n A 的最大值为612.点评:解决本题的关键是利用正弦定理㊁余弦定理化角为边的关系式,并结合基本不等式与余弦定理求出角A 的余弦值的取值范围,然后利用三角关系式的变形与转化,以及不等式的性质来确定角A 的正切值的平方的最值,进而获解.2边的最值问题求解三角形中边(或对应的线段长度等)的最值问题是高考的一个基本考点,解决这类问题的关键是利用余弦定理表示出所要求的边,然后利用基本不等式或三角形的三边关系等条件求出边的最值.例2㊀在әA B C 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3a c o s C -a s i n C =3b .(1)求角A 的大小;(2)若D 为B C 的中点,且A D =2,求a 的最大值.解析:(1)由3a c o s C -a s i n C =3b ,结合正弦定理,可得3s i n A c o s C -s i n A s i n C =3s i n B =3s i n (A +C ),整理可得-s i n A s i n C =3c o s A s i n C ,即t a n A =-3.又A ɪ(0,π),所以A =2π3.(2)由于D 为B C 的中点,可得2A D ң=A B ң+A C ң,式子两边同时平方,有4A D ң2=AB ң2+2A Bң A C ң+A C ң2,又A D =2,所以16=c 2+b 2+2b c c o s A =c 2+b 2-b c ,即b 2+c 2=16+b c .而结合余弦定理,可得a 2=b 2+c 2-2b c c o s A =b 2+c 2+b c =16+2b c .由基本不等式,可得2b c ɤb 2+c 2=16+b c ,解得b c ɤ16,当且仅当b =c 时等号成立,所以2b c +16ɤ48,即a 2=16+2b c ɤ48,解得a ɤ43,当且仅当b =c ,即әA B C为等腰三角形时,等号成立.所以a 的最大值为43.点评:利用平面向量的线性关系的两边平方处理以及余弦定理的应用,用b 2+c 2及b c 的线性关系式表示出a 2是解决本题的关键,同时注意利用基本不等式来合理放缩b 2+c 2与b c 之间的不等关系,为确定边的最值奠定基础.3三角形周长的最值问题三角形周长的最值问题是高考的一个热点与常见题型,这类问题一般可以求出一条边(或已知一边),然后利用余弦定理表示出另两条边满足的关系式,最后利用基本不等式求出周长的最值.例3㊀在әA B C 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知c o s B a b +c o s C a c +2c o s Ab c=0.54学习指导2024年3月上半月㊀㊀㊀(1)求A ;(2)若a =23,求әA B C 周长的取值范围.解析:(1)由c o s B a b +c o s C a c +2c o s Ab c=0及正弦定理,可得c o s B s i n A s i n B +c o s C s i n A s i n C +2c o s A s i n B s i n C=0.整理得s i n C c o s B +s i n B c o s C +2s i n A c o s A =0,即s i n (B +C )=-2s i n A c o s A .在әA B C 中,s i n (B +C )=s i n A ʂ0,所以可得c o s A =-12,而A ɪ(0,π),可得A =2π3.(2)由(1)及余弦定理可得a 2=b 2+c 2-2b c c o s A =(b +c )2-2b c +b c =(b +c )2-b c ,合理变形并结合基本不等式,可得(b +c )2=a 2+b c ɤa 2+(b +c2)2,当且仅当b =c 时等号成立,所以(b +c )2ɤ43a 2=43ˑ(23)2=16,解得b +c ɤ4.又利用三角形的基本性质有b +c >a =23,即b +c ɪ(23,4].所以әA B C 周长的取值范围为(43,4+23].点评:涉及三角形周长的最值问题,经常在已知或已求得其中一边的基础上,通过另外两边之和的最值转化来综合,而这时往往需要借助基本不等式来合理放缩与应用,同时也离不开三角形的基本性质等.4三角形面积的最值问题三角形面积的最值问题一直是高考命题的一个热点,解决这类问题的关键是找出两边(这两边的夹角往往已知或可求)之积满足的不等关系式,借助基本不等式合理放缩,再利用三角形面积公式解决问题.例4㊀在әA B C 中,D ,E 分别是线段A C ,B D 的中点,øB A C =120ʎ,A E =4,则әA B C 面积的最大值为.(323)解析:略.点评:解决本题的关键是利用余弦定理,或利用平面向量中的线性运算,或利用坐标运算等表示出b ,c 满足的关系式,然后利用基本不等式求出b c 满足的不等关系,最后利用三角形面积公式解决问题.5涉及角或边的代数式的最值问题关于三角形中的边长或角的代数式的最值问题是新课标高考的一个新趋向,创新新颖,变化多端,解决这类问题的关键是消元 消边或消角,对元素进行统一化处理,然后利用基本不等式求出最值即可.例5㊀记әA B C 的内角A ,B ,C 的对边分别为a ,b ,c ,已知c o s A 1+s i n A =s i n 2B1+c o s 2B.(1)若C =2π3,求B ;(2)求a 2+b 2c2的最小值.解析:(1)利用二倍角公式,可得c o s A1+s i n A=s i n 2B 1+c o s 2B =2s i n B c o s B 2c o s 2B =s i n Bc o s B ,则有s i n B =c o s A c o s B -s i n A s i n B =c o s (A +B )=-c o s C =-c o s 2π3=12,而0<B <π3,所以B =π6.(2)由(1)可得-c o s C =s i n B >0,则知c o s C <0,则有C ɪ(π2,π),于是有B =C -π2,可得s i n A =s i n (B +C )=s i n (2C -π2)=-c o s 2C .结合基本不等式,利用正弦定理可得㊀㊀㊀㊀a 2+b 2c 2=s i n 2A +s i n 2Bs i n 2C=c o s 22C +c o s 2C s i n 2C=(1-2s i n 2C )2+(1-s i n 2C )s i n 2C=4s i n 4C -5s i n 2C +2s i n 2C=4s i n 2C +2s i n 2C-5ȡ24s i n 2C ˑ2s i n 2C -5=42-5,当且仅当4s i n 2C =2s i n 2C ,即s i n C =142时,等号成立.所以a 2+b 2c 2的最小值为42-5.点评:解决本题中涉及边的代数式的最值问题的关键在于利用正弦定理化边为角,结合诱导公式与二倍角公式的转化,综合三角关系式的恒等变形,利用基本不等式来确定相应的最值问题.当然,除了巧妙利用基本不等式的放缩来确定三角形中的角㊁边㊁周长㊁面积以及相应的代数式等的最值及其综合应用,还可以利用平面几何图形的直观性质㊁三角函数的有界性㊁函数与方程的基本性质以及导数等相关知识来解决.而这当中基本不等式的放缩与应用是最简单有效的一种方法,也是最常见的,要结合问题的实质加以合理转化,巧妙构建 一正㊁二定㊁三相等 的条件,为利用基本不等式来处理三角形最值问题提供条件.Z64。
三角方程与三角不等式的解法
三角方程与三角不等式的解法三角方程和三角不等式是在三角函数的基础上建立的方程和不等式,它们在数学中具有广泛的应用。
本文将介绍三角方程和三角不等式的解法,以帮助读者更好地理解和应用这些概念。
一、三角方程的解法三角方程是含有三角函数的方程,常见的三角方程类型包括:sinθ=a、cosθ=b、tanθ=c等。
下面将分别介绍几种常见三角方程的解法。
1. sinθ=a的解法:当a的取值范围在[-1,1]时,可以利用反三角函数来求解。
即令θ= arcsin(a) + 2kπ 或θ = π - arcsin(a) + k2π,其中k为整数。
2. cosθ=b的解法:当b的取值范围在[-1,1]时,可以利用反三角函数来求解。
即令θ= arccos(b) + 2kπ 或θ = -arccos(b) + k2π,其中k为整数。
3. tanθ=c的解法:当c没有限制时,可以利用反三角函数来求解。
即令θ = arctan(c) +kπ,其中k为整数。
二、三角不等式的解法三角不等式是关于三角函数的不等式,常见形式如:sinθ < a、cosθ > b、tanθ ≠ c等。
下面将介绍几种常见三角不等式的解法。
1. sinθ < a的解法:首先求解基本解,即sinθ = a的解法,然后根据sinθ的周期性,再根据周期性解得sinθ < a的解。
2. cosθ > b的解法:首先求解基本解,即cosθ = b的解法,然后根据cosθ的周期性,再根据周期性解得cosθ > b的解。
3. tanθ ≠ c的解法:tanθ ≠ c可以转化为tanθ < c或tanθ > c的形式,再利用反三角函数求解。
三、三角方程与三角不等式的应用三角方程与三角不等式在实际问题和计算中有广泛应用。
以下是几个例子:1. 三角方程的应用:在物理学和工程学领域中,三角方程常被用来描述交流电流、振动系统等的周期性和波动性质。
三角函数的不等式与最值
三角函数的不等式与最值三角函数是数学中重要的一类函数,它们在不等式求解和最值问题中具有广泛的应用。
本文将介绍三角函数的不等式求解方法以及如何找到三角函数的最值。
1. 正弦函数的不等式与最值1.1 不等式求解方法对于不等式sin(x)>0,我们需要找到使得正弦函数大于零的x的取值范围。
由于正弦函数在单位圆上的坐标表示sin(x)=y,因此正弦函数大于零的范围可以表示为y>0。
在单位圆上,y>0对应着角度在0到π之间的位置。
因此,不等式sin(x)>0的解集为x∈(0, π)。
1.2 最值求解方法最值问题通常需要找到函数的最大值或最小值。
对于正弦函数sin(x),它的最大值为1,最小值为-1。
这是因为正弦函数在单位圆上的y坐标的范围是[-1, 1]。
因此,最大值为1,最小值为-1。
2. 余弦函数的不等式与最值2.1 不等式求解方法对于不等式cos(x)<0,我们需要找到使得余弦函数小于零的x的取值范围。
由于余弦函数在单位圆上的坐标表示cos(x)=x,因此余弦函数小于零的范围可以表示为x<0。
在单位圆上,x<0对应着角度在π/2到3π/2之间的位置。
因此,不等式cos(x)<0的解集为x∈(π/2, 3π/2)。
2.2 最值求解方法对于余弦函数cos(x),它的最大值为1,最小值为-1。
这是因为余弦函数在单位圆上的x坐标的范围是[-1, 1]。
因此,最大值为1,最小值为-1。
3. 正切函数的不等式与最值3.1 不等式求解方法对于不等式tan(x)>0,我们需要找到使得正切函数大于零的x的取值范围。
正切函数可表示为tan(x)=sin(x)/cos(x)。
根据正切函数的性质,当sin(x)和cos(x)的符号相同时,tan(x)大于零;当它们的符号不同时,tan(x)小于零。
因此,正切函数大于零的范围可以表示为sin(x)和cos(x)同号。
在单位圆上,sin(x)>0且cos(x)>0的范围对应着角度在0到π/2之间和角度在2π到5π/2之间的位置。
不等式与三角函数综合应用
不等式与三角函数综合应用在数学中,不等式和三角函数是两个重要的概念。
不等式是数学中用来描述数之间大小关系的表达式,而三角函数则是用来描述角度和边长之间关系的函数。
本文将探讨不等式与三角函数的综合应用,以及它们在实际问题中的应用。
一、不等式的基本性质和解法不等式是数学中常见的一种关系表达式,它可以描述数之间的大小关系。
常见的不等式有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号。
解不等式的方法主要有图像法、代数法和递推法等。
下面我们通过一个例子来说明不等式的解法。
例子:解不等式2x + 3 > 5。
解法:我们首先将不等式转化为等价的形式,得到2x > 2。
然后通过除以2的方式得到x > 1。
因此不等式2x + 3 > 5的解集为{x | x > 1}。
二、三角函数的基本性质和公式三角函数是数学中用来描述角度和边长之间关系的函数。
常见的三角函数有正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
三角函数的取值范围一般是[-1, 1],并且它们之间存在一些重要的性质和公式。
下面我们通过一个例子来说明三角函数的应用。
例子:已知一个角的正弦值为0.6,求这个角的余弦值和正切值。
解法:根据正弦函数的定义,可以得到sinθ = 0.6。
由此可以得到θ ≈ 36.87°。
然后根据余弦函数和正切函数的定义,可以得到cosθ ≈ 0.8,tanθ ≈ 0.75。
因此这个角的余弦值为0.8,正切值为0.75。
三、不等式与三角函数的综合应用不等式与三角函数在实际问题中常常需要综合应用,通过建立不等式和利用三角函数的性质来解决实际问题。
下面我们通过一个例子来说明不等式与三角函数的综合应用。
例子:已知一座山峰的斜率为k,角度为θ,山顶距离地面的垂直高度为h。
如果山顶处禁止爬升的角度不超过α度,那么k和h之间的关系是怎样的?解法:我们可以首先利用三角函数的性质,得到tanθ = h / k。
解答三角形最值问题的几种措施
三角形最值问题对同学们的运算以及逻辑推理能力有较高的要求.此类问题通常侧重于考查正余弦定理、三角函数的定义、三角函数的单调性、基本不等式等.本文结合一道三角形最值问题,谈一谈解答此类问题的常用措施.例题:已知在ΔABC 中,点D 在边BC 上,BD =2CD ,AD =BD ,求tan A cos 2B 的最大值.一、利用基本不等式我们知道,若a 、b >0,则a +b ≥2ab ,该式称为基本不等式.而运用基本不等式求最值,往往要确保:(1)两个数均为正数;(2)两数的和或积为定值;(3)当且仅当a =b 时取等号.在解答三角形最值问题时,要先灵活运用正余弦定理进行边角互化,把目标式化为只含边或角的式子;然后运用一些配凑技巧,如凑系数、添项、去常数项、平方等,配凑出两式的和或积,并使其中之一为定值,即可运用基本不等式求得最值.解法1.如图1所示,过点D 作DE ⊥AB ,垂足为E ,过点C 作CF ⊥AB ,垂足为F ,由AD =BD ,DE ⊥AB 可得E 为AB 的中点.因为BD =2CD ,AD =BD ,所以DE ∥CF ,所以AE =BE =2EF ,所以F 为AE 的中点.可得BE =2AF ,即AF =12BE .所以DE CF =BD BC =23,所以CF =32DE .在RtΔACF 中,tan A =CF AF =3DE BE.在RtΔBDE 中,DE 2+BE 2=BD 2,所以BD 2≥2DE ⋅BE ,而cos B =BE BD ,所以tan A cos 2B =3DE BE ⋅(BE BD)2=3DE ⋅BE BD 2≤3DE ⋅BE 2DE ⋅BE =32,当且仅当DE =BE ,即B =45°时不等式取等号,故tan A cos 2B 的最大值为32.先添加辅助线,根据等腰三角形三线合一的性质和平行线的性质,建立各边之间的比例关系,从而求得tan A 、cos B 的表达式,得出tan A cos 2B =3DE ⋅BEBD 2.而在RtΔBDE 中,DE 2+BE 2=BD 2,由基本不等式可得BD 2≥2DE ⋅BE ,通过约分即可求得目标式的最值.二、利用三角函数的性质三角函数具有有界性和单调性,而这两种性质是求三角函数最值的重要依据.在解答三角形最值问题时,可先根据正余弦定理将边角关系化为关于角的关系式,并用角的三角函数式表示出目标式,将问题转化为三角函数最值问题;然后利用三角函数中的诱导公式、二倍角公式、辅助角公式等进行恒等变形,将目标式化为只含有一种三角函数名称的式子,进而利用三角函数的有界性和单调性求最值.解法2.设ΔABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,CD =m (m >0),则AD =BD =2m ,因为∠ADB 与∠ADC 互为邻补角,所以cos∠ADB =-cos∠ADC .在ΔABD 中,由余弦定理得c 2=4m 2+4m 2-2×2m ×2m cos∠ADB ,化简得c 2=8m 2-8m 2cos∠ADB ,即c 2=8m 2+8m 2cos∠ADC ①;在ΔACD 中,由余弦定理得b 2=4m 2+m 2-2×2m ×m cos∠ADC ,化简得b 2=5m 2-4m 2cos∠ADC ,所以2b 2=10m 2-8m 2cos∠ADC ②.将①+②得c 2+2b 2=18m 2,又因为a =3m ,所以c 2+2b 2=2a 2.在ΔABC 中,由余弦定理得cos B =a 2+c 2-b 22ac=a 2+c 2-(a 2-12c 2)2ac =3c4a,由正弦定理可得cos B =3c 4a =3sin C 4sin A,所以4sin A cos B =3sin C =3sin(A +B )=3sin A cos B +3cos A sin B ,整理得sin A cos B =3cos A sin B ,所以tan A =3tan B .所以tan A cos 2B =3tan B cos 2B =3sin B cos B =32sin2B ≤32,思路探寻图149当sin2B =1,即B =45°时,tan A cos 2B 取最大值32.我们先根据余弦定理求得tan A 、cos B 的表达式,得出tan A cos 2B 的表达式,并根据tan B =sin Bcos B以及二倍角公式sin2B =2sin B cos B ,将目标式化为只含有正弦函数的式子,即可运用正弦函数的有界性求得目标式的最值.解法3.因为BD =2CD ,AD =BD ,所以AD =2CD .因为AD =BD ,所以∠BAD =∠B ,所以∠DAC =∠A -BAD =∠A -∠B .在ΔACD 中,由正弦定理得AD sin C =CDsin∠DAC,即2CD sin(A +B )=CDsin(A -B ),所以2sin(A -B )=sin(A +B ),可得2sin A cos B -2cos A sin B =sin A cos B +cos A sin B ,整理得sin A cos B =3cos A sin B ,所以tan A =3tan B .以下同解法2,具体过程略.该解法主要运用了正弦定理,根据角之间的关系进行三角恒等变换,得到tan A =3tan B ,再根据正弦函数的有界性求得最值.我们还也可以根据正切函数的定义和勾股定理,在RtΔBDE 中,求得tan B =DE BE =CF3AF,在RtΔACF 中,求得tan A =CF AF ,从而得出tan B =13tan A ,再根据正弦函数的有界性求得最值.利用三角函数的性质求解三角形最值问题,关键是将目标式化为关于角的三角函数式,并将其化简为只含有一种三角函数名称的式子,就能根据三角函数的有界性和单调性顺利求得最值.三、构建坐标系运用坐标法求解三角形最值问题,需先根据三角形的特征,建立合适的平面直角坐标系:可以三角形的一条底边为坐标轴,以一个顶点或底边的中点为原点;也可以三角形底边为x 轴,底边的中垂线为y 轴来建立坐标系.在建立坐标系后,求得各个点的坐标,再运用两点间的距离公式、直线的斜率公式和方程、三角函数的定义来求得角、边长以及目标式,最后运用函数的性质、三角函数的性质、基本不等式求最值.解法4.如图2所示,以D 为原点,DC 为x 轴,建立平面直角坐标系xDy ,设CD =m (m >0),∠ADB =θ,则点C (m ,0),B (-2m ,0),A (-2m cos θ,2m sin θ),所以tan B =k AB =2m sin θ-2m cos θ+2m =sin θ1-cos θ,tan C =-k AC =2m sin θ2m cos θ+m =2sin θ2cos θ+1.可得cos 2B =11+tan 2B=1-cos θ2,tan A =-tan(B +C )=tan B +tan Ctan B tan C -1=(sin θ1-cos θ+2sin θ2cos θ+1)÷(sin θ1-cos θ⋅2sin θ2cos θ+1-1)=3sin θ1-cos θ.所以tan A cos 2B =3sin θ1-cos θ⋅1-cos θ2=32sin θ≤32,当sin θ=1,即θ=90°时,AD ⊥BC ,不等式取等号,故tan A cos 2B 的最大值为32.为了便于求得各点的坐标,以D 为原点,DC 为x 轴,建立平面直角坐标系xDy ,并设∠ADB =θ,用θ表示出cos 2B 、tan A 以及tan A cos 2B ,即可利用正弦函数的有界性求得最值.解法5.因为AD =BD ,过O 作DO ⊥AB ,以O 为原点,AB 为x 轴,OD 为y 轴建立如图3所示的平面直角坐标系xOy .设CD =m (m >0),易知AD =BD =2m ,所以点C (-m cos B ,3m sin B ),A (-2m cos B ,0),可得tan A =k AC =3m sin Bm cos B=3tan B .所以tan A cos 2B =3tan B cos 2B=3sin B cos B =32sin2B ≤32,当sin2B =1,即B =45°时,tan A cos 2B 取最大值32.根据等腰三角形三线合一的性质,过点O 作DO ⊥AB ,以O 为原点,AB 为x 轴,OD 为y 轴建立平面直角坐标系xOy ,即可快速求得D 、C 的坐标.再用角B 的三角函数表示出tan A cos 2B ,便可根据正弦函数的有界性求得问题的答案.求解三角形最值问题的思路较多,无论运用哪种思路解题,都需灵活运用正余弦定理进行边角互化,求得目标式,然后根据目标式的结构特征,选用合适的方法求最值.(作者单位:山东省牟平第一中学)图3思路探寻图250。
解三角形中的最值或范围问题
解法探究2023年12月上半月㊀㊀㊀解三角形中的最值或范围问题◉哈尔滨师范大学教师教育学院㊀李鸿媛㊀㊀摘要:解三角形的最值或范围问题是高考考查的热点内容之一,并且对解三角形的命题设计,不只局限于解三角形,而是通常利用正余弦定理㊁三角形面积公式等求解三角形的边㊁角㊁周长和面积的最值等问题.这类问题的解法主要是将边角互化转化为三角函数的最值问题,或利用基本不等式求最值.本文中对这类问题加以归类解析,以提升学生的解题能力.关键词:解三角形;最值;范围1与边有关的最值或范围问题例1㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,角B =π3,若a +c =4,则b 的取值范围为.解析:由a +c =4,B =π3,由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=(a +c )2-2a c -2a c c o s π3,即b 2=16-3a c .由a +c ȡ2a c ,得4ȡ2a c ,即0<a c ɤ4,于是4ɤb 2<16,所以2ɤb <4.评析:本题利用已知条件结合余弦定理,借助基本不等式求三角形边的取值范围[1],渗透了逻辑推理㊁数学运算等数学核心素养.例2㊀在әA B C 中,角A ,32B ,C 成等差数列,且әA B C 的面积为1+2,则A C 边长的最小值是.解析:由A ,32B ,C 成等差数列,得A +C =3B .又A +B +C =π,所以B =π4.设角A ,B ,C 所对的边分别为a ,b ,c ,则由S әA B C =12a c s i n B =1+2,可得a c =22+4.由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=a 2+c 2-2a c .又a 2+c 2ȡ2a c ,则b 2ȡ(2-2)a c ,即b 2ȡ(2-2)(22+4),所以b ȡ2(当且仅当a =c 时,等号成立).故A C 边长的最小值为2.评析:本题考查了学生对等差数列的概念㊁三角形内角和定理㊁三角形面积公式㊁余弦定理等的掌握情况.解题的关键是将余弦定理与不等式相结合,进而求出三角形一边的最值.2与角有关的最值或范围问题例3㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ʂπ2,s i n C +s i n (B -A )=2s i n2A ,则角A 的取值范围为.解法一:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,得b =2a ,则A 为锐角.又s i n B =2s i n A ɪ(0,1],于是可得s i n A ɪ(0,22],故A ɪ(0,π4].评析:解法一利用三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理与三角函数的性质等知识,对学生的推理能力㊁运算能力和直观想象能力进行了考查.解法二:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,可得b =2a .结合余弦定理,可以得到c o s A =b 2+c 2-a 22b c =12b 2+c 22b c ȡ212b 2 c 22b c =22,当且仅当c =22b 时,等号成立,故A ɪ(0,π4].评析:解法二考查了三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理㊁余弦定理㊁基本不等式等知识.这种解题方法需要学生灵活运用两个正数的和与积的关系,充分体现学生的数学运算能力和数据分析能力.3与周长有关的最值或范围问题例4㊀әA B C 为锐角三角形,角A ,B ,C 所对的472023年12月上半月㊀解法探究㊀㊀㊀㊀边分别为a ,b ,c ,已知33b s i n C +c c o s B =a ,且c =2,求әA B C 周长的最大值.解析:由33b s i n C +c c o s B =a ,根据正弦定理,得33s i n B s i n C +s i n C c o s B =s i n A .由A =π-(B +C ),得s i n A =s i n (B +C ).所以33s i n B s i n C +s i n C c o s B =s i n (B +C ),即33s i n B s i n C =s i n B c o s C .由s i n B ʂ0,得33s i n C =c o s C .又c o s C ʂ0,所以t a n C =3.而0<C <π,则C =π3.根据正弦定理,得a =433s i n A ,b =433s i n B ,则a +b +c =433s i n A +433s i n B +2=433s i n A +433s i n (2π3-A )+2=433(32s i n A +32c o s A )+2=4s i n (A +π6)+2.由әA B C 为锐角三角形,可知0<A <π2,0<2π3-A <π2,ìîíïïïï解得π6<A <π2.所以π3<A +π6<2π3.因此32<s i n (A +π6)ɤ1.故23+2<4s i n (A +π6)+2ɤ6.因此әA B C 周长的最大值为6.评析:这道题解题的关键是利用正弦定理将边化为角,转化为求三角函数的最值问题[2],考查了逻辑推理和数学运算等核心素养.4与面积有关的最值或范围问题例5㊀әA B C 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知2(c -a c o s B )=3b .(1)求角A ;(2)若a =2,求әA B C 面积的取值范围.解法一:(1)略.(2)由(1)知A =π6,又a =2,根据正弦定理,可得b =4s i n B ,c =4s i n C .由C =π-A -B =5π6-B ,得s i n C =s i n (5π6-B ).所以,S әA B C =12b c s i n A =14b c =4s i n B s i n C =4s i n B s i n(5π6-B )=4s i n B (12c o s B +32s i n B )=2s i n B c o s B +23s i n 2B =s i n2B -3c o s 2B +3=2s i n (2B -π3)+3.由0<B <5π6,得-π3<2B -π3<4π3,所以可知-32<s i n (2B -π3)ɤ1,故0<S әA B C ɤ2+3,即әA B C 面积的取值范围为(0,2+3].解法二:(1)略.(2)由(1)知A =π6,a =2,则S әA B C =14b c .由c o s A =b 2+c 2-a 22b c =b 2+c 2-42b c =32,可得b 2+c 2-4=3b c .又b 2+c 2ȡ2b c ,则0<b c ɤ42-3=4(2+3),所以0<S әA B C ɤ2+3.故әA B C 面积的取值范围为(0,2+3].评析:本题求解三角形面积的取值范围,解法一通过正弦定理将边转化为角,再利用三角函数的性质,求解三角形面积的取值范围.解法二先利用余弦定理,结合不等式b 2+c 2ȡ2b c ,求解b c 的取值范围,接着利用三角形面积S әA B C =12b c s i n A 求出面积的取值范围[3].这两种解法都考查了数学运算㊁逻辑推理等数学核心素养.数学这门学科需要学生具备较强的逻辑推理能力㊁运算能力㊁直观想象能力等.针对解三角形最值或范围问题,学生需要熟练掌握三角形的面积公式㊁同角三角函数的基本关系㊁正弦定理㊁余弦定理㊁基本不等式等知识,并能够进行综合运用.参考文献:[1]刘海涛.谈解三角形中有关求范围或最值的解题策略[J ].数理化学习(高中版),2022(7):3G7.[2]张露梅.解三角形中的范围或最值问题[J ].中学生数理化(高二数学),2021(11):35G36.[3]玉素贞.解三角形最值问题的两种转化策略分析[J ].考试周刊,2021(49):85G86.Z57。
三角形中的最值或范围问题
三角形中的最值或范围问题在解三角形时,往往会遇到求边、角、周长、面积等问题的最值或范围,我们只需综合运用正余弦定理、三角恒等变换、面积公式,结合基本不等式与三角函数等知识求解即可.一、角的范围或最值[解析]:因为2b ac =,又由余弦定理知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,所以03B π<≤,又7sin cos )44412B B B B ππππ+=+<+<且,)4B π+∈,即sin cos B B +的取值范围是.[解析]:由BA BC ⋅=,得1cos sin 2ca B ac B =,即cos B B =, 又22cos sin 1B B +=,所以3cos 4B =. 221cos 21cos 2sin sin 22A C A C --+=+=1cos[()()]2A C A C -++-+1cos[()()]2A C A C -+--=cos()cos()1A C A C +-+=cos cos()1B A C -+=3cos()14A C -+.因为0A B π<<-,0C B π<<-,所以B A C B ππ-<-<-, 所以当A C =时,max cos()1A C -=,当A C B π-=-或A C B π-=-时,min 3cos()cos 4A CB -=-=-,所以737cos()11644A C <-+≤, 即22sin sin A C +的取值范围是77(,]164.点评:求角的范围问题一般是转化为利用三角函数的范围来求.二、边的范围或最值【例2】:在锐角△ABC 中,A=2B ,则cb的取值范围是 .[解析]:由0222A B C A B πππ<=<<=--<且0,得64B ππ<<,所以2sin sin 3sin 2cos cos 2sin 4cos 1sin sin sin c C B B B B B B b B B B+====-,又23cos (,)22B ∈所以24cos 1(1,2)cB b=-∈. 【变式】:在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且BC 边上的高为a 63,则cb bc + 的最大值是( )A.8B. 6C.23D.4[解析]:由已知得,在△ABC 中,A bc a a sin 216321=⋅, 即A bc a sin 322=,又由余弦定理得A bc c b a cos 2222-+=,即222cos 2c b A bc a +=+,所以4)6sin(4cos 2sin 32cos 2sin 3222≤+=+=+=+=+πA A A bc A bc A bc bc c b c b b c . 故选D.点评:把边的问题转化为角的问题,化多元为一元,体现了解题的通性通法.下面这道高考题只需运用正弦定理即可,能想到方法就很简单,想不到就太难了,不愧是高考题!【好题欣赏】:(2015·新课标I )在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .[解析]: 如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =, 由正弦定理可得o osin 30sin 75BC BE=,解得BE =6+2; 平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=, 由正弦定理知o osin 30sin 75BF BC=,解得62BF =-, 所以AB 的取值范围为(62,6+2)-.三、周长的范围或最值【例3】: 已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,cos 3sin 0a C a C b c +--=. (1)求A 的大小;(2)若a =7,求△ABC 的周长的取值范围.[解析]:(1)由已知及正弦定理得:C B C A C A sin sin sin sin 3cos sin +=+, 即C C A C A C A sin )sin(sin sin 3cos sin ++=-,化简得,1cos sin 3=-A A ,所以21)6sin(=-πA ,所以66ππ=-A ,解得3π=A ;(2)由已知:0b >,0c >,7b c a +>=,由余弦定理22222231492cos()3()()()344b c bc b c bc b c b c b c π=+-=+-≥+-+=+ 当且仅当b =c =7时等号成立,∴2()449b c +≤⨯,又∵b +c >7,∴7<b +c ≤14, 从而△ABC 的周长的取值范围是(14,21].【变式】: 在△ABC 中,角A,B,C 的对边分别为a,b,c ,且cos cos 2cos a C c A b B +=. (1)求B 的大小.(2)若b=5,求△ABC 周长的取值范围.[解析]:(1)因为cos cos 2cos a C c A b B +=,由正弦定理得sin cos sin cos 2sin cos A C C A B B +=,所以sin()2sin cos A C B B +=,于是1cos ,23B B π==.(2)由正弦定理10sin sin sin 3a b c A B C ===, 所以101010210sin 5sin 5sin()sin 510sin()363333a b c A C A A A ππ++=++=+-+=++又由02A π<<得2663A πππ<+<, 所以510sin()(10,15]6a b c A π++=++∈.点评:例4是运用余弦定理结合基本不等式求周长的范围,而变式是运用正弦定理结合三角函数求周长的范围,各有千秋,好好体会.四、面积的范围与最值【例4】:在△ABC 中,22223a b c ab +=+,若△ABC 的外接圆半径为322,则△ABC 的面积的最大值为 .[解析]:由22223a b c ab +=+及余弦定理得2221cos 23a b c C ab +-==,所以22sin 3C =,又由于2sin 4c R C ==,所以2222cos c a b ab C =+-,即2221623ab a b ab +=+≥,所以12ab ≤,又由于12sin 4223S ab C ab ==≤, 故当且仅当23a b ==时,ABC 的面积取最大值42.【变式】: 如图,在等腰直角三角形OPQ 中,∠POQ =90°,22=OP ,点M 在线段PQ 上. (1)若5OM =,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时, △OMN 的面积最小?并求出面积的最小值.[分析]:第(2)题求△OMN 的面积最小值,前面的要求也很明确:以∠POM 为自变量,因此,本题主要是如何将△OMN 的面积表示为∠POM 的函数关系式,进而利用函数最值求解.其中,利用正弦定理将OM 和ON 的长表示为∠POM 的函数是关键.[解析]:(1)在OMP ∆中,45OPM ∠=︒,OM =OP =, 由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒, 得2430MP MP -+=, 解得1MP =或3MP =. (2)设POM α∠=,060α︒≤≤︒, 在OMP ∆中,由正弦定理,得sin sin OM OPOPM OMP=∠∠,所以()sin 45sin 45OP OM α︒=︒+, 同理()sin 45sin 75OP ON α︒=︒+故1sin 2OMNS OM ON MON ∆=⨯⨯⨯∠()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+ ()()1sin 45sin 4530αα=︒+︒++︒=⎣⎦====因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值. 即30POM ∠=︒时,△OMN 的面积的最小值为8-点评:面积问题是边长与角问题的综合,在例5中,知道角的具体值,就考虑边的变化,利用余弦定理结合基本不等式来求,而在变式中,不知道角的具体值,就考虑角的变化,利用三角函数范围求解.巩固训练:[解析]:设,,AB c AC b BC a ===,由余弦定理的推论222cos 2a c b B ac+-=,所以2223a c ac b +-==, 因为由正弦定理得2233sin sin sin ====BbC c A a ,所以C c sin 2=,A a sin 2=, 所以)sin 2(sin 2sin 22sin 22A C A R C R a c +=⨯+=+⎪⎭⎫ ⎝⎛-+=)32sin(2sin 2C C π ()α+=+=C C C sin 72)cos 3sin 2(272≤,(其中23tan =α), 另解:本题也可以用换元法设2c a m +=,代入上式得227530a am m -+-=,因为28430m =-≥,故m ≤当m =,此时a c ==符合题意,因此最大值为.[解析]:(1)由余弦定理知:2221cos 22b c a A bc +-==,∴3A π∠=; (2)由正弦定理得:2sin sin sin b c aB C A====,∴2sin b B =,2sin c C =, ∴22224(sin sin )b c B C +=+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=-+-=B B C B 322cos 22cos 24)2cos 12cos 1(2π⎪⎭⎫⎝⎛---=B B 234cos 22cos 24π)62sin(242sin 32cos 4π-+=+-=B B B ,又∵203B π<<0,∴72666B πππ-<-<,∴12sin(2)26B π-<-≤, ∴2236b c <+≤.3.己知在锐角三角形中,角A ,B ,C 所对的边分别为a ,b ,c ,且222tan abC a b c =+-,(1)求角C 大小;(2)当c=1时,求ab 的取值范围.[解析]:(1)由已知及余弦定理,得sin 1,sin ,cos 2cos 2C ab C C ab C ==因为C 为锐角,所以 30=C , (2)由正弦定理,得121sin sin sin 2a b c A B C ====, 2sin ,2sin 2sin(30).a A b B A ∴===+︒4sin sin 4sin sin()6ab A B A A π==+2314sin (sin cos )23sin 2sin cos 22A A A A A A =+=+3sin 23cos2A A =+-32sin(2)3A π=+- 由090,015090A A ︒<<︒⎧⎨︒<︒-<︒⎩得6090.A ︒<<︒60260120,A ∴︒<-︒<︒3sin(2)123A π<-≤ 2332ab ∴<≤+.4.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且2sin (2)sin (2)sin a A b c B c b C =+++. (Ⅰ)求角A ;(Ⅱ)若a=2,求△ABC 周长的取值范围.[解析]:(1)由正弦定理sin sin sin a b cA B C==可将2sin (2)sin (2)sin a A b c B c b C =+++变形为22(2)(2)a b c b c b c =+++, 整理可得222a b c bc =++,222b c a bc ∴+-=-,2221cos 222b c a bc A bc bc +--∴===-,0180A <<,∴120A =;(2) 由正弦定理得334sin sin ==C c B b , ∴[])60sin(sin 334)sin (sin 334B B C B c b -+=+=+ )sin 60cos cos 60sin (sin 334B B B -+= )60sin(334cos 23sin 21334+=⎪⎪⎭⎫ ⎝⎛+=B B B ,∵ 120=A ,∴() 60,0∈B ,∴() 120,6060∈+B ,∴⎥⎦⎤ ⎝⎛∈+1,23)60sin( B ,∴⎥⎦⎤ ⎝⎛∈+334,2)60sin(334B ,即⎥⎦⎤ ⎝⎛∈+334,2c b , ∴周长⎥⎦⎤⎝⎛+∈++3342,4c b a[解析]:由2a =且 (2)(sin sin )()sin b A B c b C +-=-, 即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=, ∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤故答案为3.6. 在一个六角形体育馆的一角MAN 内,用长为a 的围栏设置一个运动器材存储区域(如图所示),已知0120A ∠=,B 是墙角线AM 上的一点,C 是墙角线AN 上的一点. (1)若BC=a=20,求存储区域面积的最大值;(2)若AB+AC=10,在折线MBCN 内选一点D,使BD+DC=20,求四边形存储区域DBAC 的最大面积.[解析]:(1)设AB x =,AC y =,0,0x y >>. 由22200202cos12022cos120x y xy xy xy =+-≥-,得22020202022cos1204sin 60xy ≤=-, ∴22020002000112020cos 60201003sin1202sin 60cos 60224sin 604sin 604tan 60S xy =≤⨯⨯===即四边形DBAC 面积的最大值为10033,当且仅当x y =时取到. (2)由20=+DC DB ,知点D 在以B,C 为焦点的椭圆上,∵32523101021=⨯⨯⨯=∆ABC S , ∴要使四边形DBAC 面积最大,只需△DBC 的面积最大,此时点D 到BC 的距离最大,即D 为椭圆短轴顶点,由310=BC ,得短半轴长5=b ,()325531021max =⨯⨯=∆BCD S ,因此,四边形ACDB 的面积的最大值为350.7.已知3()3f x x x m =-+,在区间[0,2]上任取三个数a,b,c,均存在以()()(),,f a f b f c 为边长的三角形,则m 的取值范围是( )出函数在区间[0,2]上的最小值与最大值,从而可得不等式,即可求解.[解析]:由0)1)(1(333)('2=-+=-=x x x x f 得到1,121-==x x (舍去), ∵函数的定义域为[0,2],∴函数在(0,1)上0)('<x f ,在(1,2)上0)('>x f , ∴函数)(x f 在区间(0,1)单调递减,在区间(1,2)单调递增, 则,)0(,2)2()(,2)1()(max min m f m f x f m f x f =+==-== 由题意知,02)1(>-=m f ①;)2()1()1(f f f >+,即m m +>+-224②;由①②得6>m 为所求,故选B.。
解三角形中的范围(最值)问题教案-2022届高三数学二轮复习微专题复习
微专题:解三角形中的范围(最值)问题教学设计一、教学内容分析在高中数学知识体系中,解三角形是一个基础知识点,也是高考的一个必考点。
在解三角形的题型中,考查正弦定理和余弦定理的应用,涉及最值和范围的问题相对较难,综合性也较强。
解三角形问题是高考高频考点,在解三角形中的求最值或范围问题是高三复习中的难点,这类问题常常在知识的交汇点处命题,其涵盖及关联三角函数、平面向量、平面几何、基本不等式、导数等多领域的知识。
近几年的高考突出以能力立意,加强对知识综合性的考查,故常常在知识的交汇处设计问题。
主要考查“三基”(基本知识、基本技能、基本思想和方法)以及综合能力,对正弦定理和余弦定理的考查较为灵活,题型多变,以选择题、填空题、解答题体现。
试题难度多为容易题和中档题,主要考查灵活变式求解计算能力,推理论证能力,数学应用意识,数形结合思想等。
而在解三角形中求解某个量(式子)最值或范围是命题的热点,又是一个重点,本节课通过近几年高考试题及模拟试题进行分析,对解三角形的范围(最值)进行优化归纳,并给出针对性巩固练习,以期求得热点难点的突破。
二、学情诊断分析授课对象为高三平行班学生。
本节课之前,学生已经学习了正余弦定理、基本不等式、三角函数、导数等有关内容,但是对于知识前后间联系、理解、应用综合性强的题有一定难度,学习起来比较吃力。
题目稍作变形就不会,独立分析、解决问题的能力有限。
但对一些简单数学规律和基本数学方法的学习,具有一定的基础。
本节课是针对他们在做此类型题目中能做但不能得全对的情形下做的一个探究归纳,使学生对此类问题有一个更高更深刻的认识掌握,解题能力有一个提升。
三、教学目标分析1.巩固正弦、余弦定理的应用,学会利用均值不等式、三角函数有界性和导数在处理范围问题中的应用;2.强化转化与化归的数学思想以及数形结合的数学思想,提高学生研究问题,分析问题与解决问题的能力。
四.教学重难点分析重点:正弦定理和余弦定理及三角形面积公式的运用,能运用正弦余弦和差角公式进行简单的三角函数的恒等变换,理解基本不等式、三角函数的图像与性质和导数简单应用。
解三角形的最值和范围问题 (学生版)-高中数学
解三角形的最值和范围问题【新高考专用】【题型1三角形、四边形面积的最值或范围问题】【题型2三角形边长的最值或范围问题】【题型3三角形周长的最值或范围问题】【题型4三角形的角(角的三角函数值)的最值或范围问题】【题型5利用基本不等式求最值(范围)】【题型6转化为三角函数求最值(范围)】【题型7转化为其他函数求最值(范围)】【题型8“坐标法”求最值(范围)】【题型9与平面向量有关的最值(范围)问题】1、解三角形的最值和范围问题解三角形中的最值或范围问题,通常涉及与边长、周长有关的范围问题,与面积有关的范围问题,或与角度有关的范围问题,一直是高考的热点与重点,有时也会与三角函数、平面向量等知识综合考查,主要是利用三角函数、正余弦定理、三角形面积公式、基本不等式等工具研究三角形问题,解决此类问题的关键是建立起角与边的数量关系.【知识点1三角形中的最值和范围问题】1.三角形中的最值(范围)问题的常见解题方法:(1)利用正、余弦定理结合三角形中的不等关系求最值(范围);(2)利用基本不等式求最值(范围);(3)转化为三角函数求最值(范围);(4)转化为其他函数求最值(范围);(5)坐标法求最值(范围).2.三角形中的最值(范围)问题的解题策略:(1)正、余弦定理是求解三角形的边长、周长或面积的最值(范围)问题的核心,要牢牢掌握并灵活运用.解题时要结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等研究其最值(范围).(2)转化为三角函数求最值(范围)问题的解题策略三角形中最值(范围)问题,如果三角形为锐角三角形,或其他的限制,一般采用正弦定理边化角,利用三角函数的范围求出最值或范围.(3)坐标法求最值(范围)求最值(范围)问题的解题策略“坐标法”也是解决三角形最值问题的一种重要方法.解题时,要充分利用题设条件中所提供的特殊边角关系,建立合适的直角坐标系,正确求出关键点的坐标,将所要求的目标式表示出来并合理化简,再结合三角函数、基本不等式等知识求其最值.【题型1三角形、四边形面积的最值或范围问题】1.(2024·河北石家庄·三模)在△ABC中,角A、B、C所对的边分别为a、b、c,c=4,ab=9.(1)若sin C=23,求sin A⋅sin B的值;(2)求△ABC面积的最大值.2.(2024·全国·模拟预测)记锐角三角形ABC的内角A,B,C的对边分别为a,b,c,已知b cos A=3-a cos B,2a sin C=3.(1)求A.(2)求△ABC面积的取值范围.3.(2024·辽宁·模拟预测)如图,在平面内,四边形ABCD满足B,D点在AC的两侧,AB=1,BC=2,△ACD为正三角形,设∠ABC=α.(1)当α=π3时,求AC;(2)当α变化时,求四边形ABCD面积的最大值.4.(2024·上海·三模)已知△ABC的内角A,B,C的对边分别为a,b,c,且3a=2c sin A.(1)求sin C的值;(2)若c=3,求△ABC面积S的最大值.【题型2三角形边长的最值或范围问题】1.(2024·四川·三模)在△ABC中,内角A,B,C的对边分别为a,b,c,且满足2c sin B cos A=b sin A cos B+cos A sin B.(1)求A;(2)若△ABC的面积为163,D为AC的中点,求BD的最小值.2.(2024·江西·模拟预测)在△ABC中,角A,B,C所对的边分别记为a,b,c,且tan A=cos B-sin Ccos C+sin B.(1)若B=π6,求C的大小.(2)若a=2,求b+c的取值范围.3.(2024·广东广州·三模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c=b sin A2+a cos B.(1)求A;(2)若D是边BC上一点(不包括端点),且∠ABD=∠BAD,求CDBD的取值范围.4.(2024·江西鹰潭·二模)△ABC的内角A,B,C的对边分别为a,b,c,满足1-sin Acos A =sin B cos B.(1)求证:A+2B=π2;(2)求a2+b2c2的最小值.【题型3三角形周长的最值或范围问题】1.(2024·安徽淮北·二模)记△ABC的内角A,B,C的对边分别为a,b,c,已知c-b=2c sin2A2(1)试判断△ABC的形状;(2)若c=1,求△ABC周长的最大值.2.(2024·四川绵阳·模拟预测)已知在△ABC中,D为BC边的中点,且AD=5.(1)若△ABC的面积为2,cos∠ADC=55,求B;(2)若AB2+AC2=18,求△ABC的周长的最大值.3.(2024·云南曲靖·二模)在△ABC中,角A,B,C的对边分别为a,b,c,且a cos C+3c sin A=b+c.(1)求角B的取值范围;(2)已知△ABC内切圆的半径等于32,求△ABC周长的取值范围.=2b.4.(2024·湖南常德·一模)已知△ABC的内角A,B,C的对边分别是a,b,c,且acos C(1)判断△ABC的形状;(2)若△ABC的外接圆半径为2,求△ABC周长的最大值.【题型4三角形的角(角的三角函数值)的最值或范围问题】1.(2024·内蒙古呼和浩特·一模)记△ABC的内角A,B,C的对边分别为a,b,c.若a=3,b=2,则B+C的取值范围是()A.2π3,5π6B.2π3,πC.5π6,πD.π2,5π62.(2024·内蒙古呼和浩特·二模)在△ABC中,角A、B、C的对边分别为a、b、c,若1b2+54a2=c2a2b2,则tan A-1tan C的最小值为()A.13B.23C.29D.193.(2024·陕西宝鸡·二模)△ABC中,D为BC边的中点,AD=1.(1)若△ABC的面积为23,且∠ADC=2π3,求sin C的值;(2)若BC=4,求cos∠BAC的取值范围.4.(2024·北京石景山·一模)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【题型5利用基本不等式求最值(范围)】1.(2024·山西太原·三模)已知△ABC中,A=120°,D是BC的中点,且AD=1,则△ABC面积的最大值()A.3B.23C.1D.22.(2024·黑龙江哈尔滨·三模)已知△ABC的内角A,B,C的对边分别为a,b,c,且a=3,BC边上中线AD长为1,则bc最大值为()A.74B.72C.3D.233.(2024·安徽合肥·二模)记△ABC的内角A,B,C的对边分别为a,b,c,已知c=2,1tan A +1tan B+1tan A tan B=1.则△ABC面积的最大值为()A.1+2B.1+3C.22D.234.(2024·浙江台州·二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若a cos C=2c cos A,则bca2的最大值为()A.3B.32C.32D.3【题型6转化为三角函数求最值(范围)】1.(2024·辽宁沈阳·模拟预测)在△ABC中,内角A,B,C所对的边分别为a,b,c,且sin2C-sin C sin Bcos2B-cos2A=1.(1)求角A的大小;(2)若△ABC为锐角三角形,点F为△ABC的垂心,AF=6,求CF+BF的取值范围.2.(2024·辽宁·模拟预测)已知△ABC的内角A,B,C的对边分别为a,b,c,c-3bsin C= a-bsin A+sin B.(1)求A;(2)若△ABC为锐角三角形,且b=6,求△ABC的周长l的取值范围.3.(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.4.(2024·福建漳州·模拟预测)如图,在四边形ABCD中,∠DAB=π2,B=π6,且△ABC的外接圆半径为4.(1)若BC=42,AD=22,求△ACD的面积;(2)若D=2π3,求BC-AD的最大值.【题型7转化为其他函数求最值(范围)】1.(2024·四川成都·模拟预测)设锐角△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且c =2,B =2C ,则a +b 的取值范围为()A.2,10B.2+22,10C.2+22,4+23D.4+23,102.(2024·全国·模拟预测)已知△ABC 是锐角三角形,内角A ,B ,C 所对应的边分别为a ,b ,c .若a 2-b 2=bc ,则b a +c的取值范围是()A.33,22B.2-3,1C.2-3,2-1D.2+1,3+23.(2023·全国·模拟预测)已知△ABC 为锐角三角形,其内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =cos2A .(1)求ba的取值范围;(2)若a =1,求△ABC 周长的取值范围.4.(2024·全国·模拟预测)已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S △ABC =b 2-c 2+164⋅tan C .(1)求a 的值;(2)若D 为线段BC 上一点且满足BD =1,DA 平分∠BAC ,求△ABC 的面积的取值范围.【题型8“坐标法”求最值(范围)】1.(23-24高一下·四川宜宾·期末)如图,在平面四边形ABCD 中,AB ⊥BC ,∠BCD =60°,∠ADC =150°,BE =3EC ,CD =233,BE =3,若点F 为边AD 上的动点,则EF ⋅BF 的最小值为()A.1B.1516C.3132D.22.(2023·安徽马鞍山·模拟预测)已知平行四边形ABCD 中,∠ADC =60°,E ,F 分别为边AB ,BC 的中点,若DE ⋅DF=13,则四边形ABCD 面积的最大值为()A.2B.23C.4D.433.(2023·全国·模拟预测)在等腰△ABC 中,角A ,B ,C 所对应的边为a ,b ,c ,B =C =π6,a =23,P 是△ABC 外接圆上一点,则P A ⋅PB +PB ⋅PC +PC ⋅P A的取值范围是()A.-3,23B.-1,33C.-2,30D.-4,204.(2024·江西南昌·三模)如图,在扇形OAB 中,半径OA =4,∠AOB =90°,C 在半径OB 上,D 在半径OA 上,E 是扇形弧上的动点(不包含端点),则平行四边形BCDE 的周长的取值范围是()A.8,12B.82,12C.8,82D.4,82【题型9与平面向量有关的最值(范围)问题】1.(2023·河南开封·三模)已知e 1 、e 2 为单位向量,e 1 -e 2 =3,非零向量a 满足a-2e 2 =1,则e 1 -a 的最小值为()A.7B.7-1C.3D.3-12.(23-24高三上·北京通州·期末)在菱形ABCD 中,AB =2,∠BAD =60°,E 是BC 的中点,F 是CD 上一点(不与C ,D 重合),DE 与AF 交于G ,则AG ⋅DG的取值范围是()A.0,23B.0,43C.0,2D.0,33.(2024·福建泉州·模拟预测)已知平行四边形ABCD 中,AB =2,BC =4,B =2π3,若以C 为圆心的圆与对角线BD 相切,P 是圆C 上的一点,则BD ⋅CP -CB的最小值是()A.8-23B.4+23C.12-43D.6+234.(2023·福建厦门·二模)在△AOB 中,已知OB =2,AB=1,∠AOB =45°,若OP =λOA +μOB,且λ+2μ=2,μ∈0,1 ,则OA 在OP 上的投影向量为me (e为与OP 同向的单位向量),则m 的取值范围是()A.-22,1B.22,1C.-22,1D.22,1一、单选题1.(2024·江苏连云港·模拟预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,b cos A =1+cos B ,则边b 的取值范围为()A.0,1B.1,2C.0,2D.2,32.(2024·安徽合肥·模拟预测)已知△ABC 角A 、B 、C 的对边分别为a 、b 、c 满足2b a -c =sin A +sin Csin B ,则角B 的最大值为()A.π6B.π4C.π3D.2π33.(2024·广东东莞·模拟预测)已知在同一平面内的三个点A ,B ,C 满足AB =2,CA CA -CBCB≥1,则AC +BC的取值范围是()A.0,1 B.0,2 C.0,3 D.0,234.(2024·河南·三模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A+b cos B =3ccos C ,则tan A +tan C 的最小值是()A.43B.83C.23D.45.(2024·河南·模拟预测)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足b 3+c 3b +c=a 2.若a =23,则b 2+c 2的取值范围为()A.12,24B.20,24C.12,24D.20,246.(2024·江西·二模)在△ABC 中,若sin A =2cos B cos C ,则cos 2B +cos 2C 的取值范围为()A.1,65B.1,2+12C.65,2D.2+12,2 7.(2024·全国·二模)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a cos A =b cos C +c cos B ,且a =4sin A ,则△ABC 周长的最大值为()A.42B.62C.43D.638.(2024·陕西咸阳·三模)为了进一步提升城市形象,满足群众就近健身和休闲的需求,2023年某市政府在市区多地规划建设了“口袋公园”.如图,在扇形“口袋公园”OPQ 中,准备修一条三角形健身步道OAB ,已知扇形的半径OP =3,圆心角∠POQ =π3,A 是扇形弧上的动点,B 是半径OQ 上的动点,AB ⎳OP ,则△OAB 面积的最大值为()A.334B.34C.335D.35二、多选题9.(2024·江苏南京·二模)已知△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,O 为△ABC 的重心,cos A =15,AO =2,则()A.AO =13AB +13ACB.AB ⋅AC ≤3C.△ABC 的面积的最大值为36D.a 的最小值为2510.(2024·湖南·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c =b 2cos A +1 ,则下列结论正确的有()A.A =2BB.若a =3b ,则△ABC 为直角三角形C.若△ABC 为锐角三角形,1tan B -1tan A 的最小值为1D.若△ABC 为锐角三角形,则c a 的取值范围为22,23311.(2024·河北邯郸·三模)已知△ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,面积为34a 2+c 2-b 2,则下列说法正确的是()A.cos A cos C 的取值范围是-12,14B.若D 为边AC 的中点,且BD =1,则△ABC 的面积的最大值为33C.若△ABC 是锐角三角形,则a c 的取值范围是12,2 D.若角B 的平分线BE 与边AC 相交于点E ,且BE =3,则a +4c 的最小值为10三、填空题12.(2024·北京·三模)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且a +c =2b ,则角B 的取值范围为0,π3 .13.(2024·陕西安康·模拟预测)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,2a cos C=2cos B +c cos C ,则2a +c 的最大值为4213.14.(2024·江苏盐城·一模)在△ABC 中,已知AB =2,BC =3,点P 在△ABC 内,且满足CP =2,∠APC +∠ABC =π,则四边形ABCP 面积的最大值为.四、解答题15.(2024·山东菏泽·模拟预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知AB ⋅AC -BA ⋅BC =λAB 2(1)若λ=1,判断△ABC 的形状;(2)若λ=12,求tan B -A 的最大值.16.(2024·江苏盐城·模拟预测)在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,a sin 2B 2+b sin 2A 2=3ab2a +b +c.(1)求角C 的大小;(2)若△ABC 为锐角三角形,求a +bc的取值范围.17.(2024·重庆渝中·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足3ca-sin B =tan A ⋅cos B .(1)求角A 的大小;(2)若△ABC 为锐角三角形且a =26,求△ABC 面积的取值范围.18.(2024·四川南充·模拟预测)在△ABC中,sin Csin A+sin B =sin A-sin B sin B+sin C.(1)求A;(2)若BC=3,求△ABC周长的最大值.19.(2024·陕西商洛·模拟预测)在锐角△ABC中.内角A,B,C所对的边分别是a,b,c,已知a-2c cos B=c.(1)求证:B=2C;(2)求sin B+23cos2C的取值范围.。
解三角形中的最值与范围问题(解析版)
专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.【分析】设220CDBD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】[方法一]:余弦定理 设220CDBD m ==>, 则在ABD △中,2222cos 42AB BD AD BD AD ADB m m =+⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+−⋅∠=+−, 所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++−++−===−+++++++44≥=−当且仅当311m m +=+即1m =−时,等号成立,所以当ACAB取最小值时,1m =−.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD −+−+∴===−≥−++++++++==当且仅当即时等号成立。
解三角形中的最值与范围问题-高考数学复习
∴f(x)=x+122-54∈(1,5), ∴bc22+bc-1∈(1,5), ∴a+b c的取值范围是(1,5).
课时精练
一、单项选择题 1.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 B=π3,a=4,且
三角形有两解,则 b 的取值范围是
A.(2 3,+∞)
√B.(2 3,4)
(2)求a+b c的取值范围.
由(1)知,c2=b2+ab, ∴a=c2-b b2,c>b, 由三角形三边关系可得ab+ +bc>>ac, ,
代入化简可得b<c<2b,
∴a+b c=c2-bb22+bc=bc22+bc-1, 令 x=bc,则 x∈(1,2),f(x)=x2+x-1,1<x<2,
以a12+b12的最大值为2156.
解决此类题目,一是利用正余弦定理,转化成边的函数,或转化成关于 正弦、余弦或正切的函数,根据函数的单调性求解;二是利用三角恒等 变换构造关于正弦、余弦或正切的函数,根据函数的单调性求解.
跟踪训练 3 (2023·浙江联考)已知△ABC 中,内角 A,B,C 所对的边分别
所以1b=sin A=sin 2C,
所以a12+b12=sin2C+sin22C=1-c2os 2C+(1-cos22C)=-cos22C-
1 2cos
2C+32,
因为△ABC为锐角三角形,且B=C,
则有π4<C<π2,得π2<2C<π,所以-1<cos 2C<0, 由二次函数的性质可得,当 cos 2C=-14时,a12+b12取得最大值1265,所
解三角形中的最值与范围问题
重点解读
解三角形中的最值或范围问题,通常涉及与边长、周长有关的 范围问题,与面积有关的范围问题,或与角度有关的范围问题, 一直是高考的热点与重点,主要是利用三角函数、正余弦定理、 三角形面积公式、基本不等式等工具研究三角形问题,解决此 类问题的关键是建立起角与边的数量关系.
借助基本不等式,解决三角形最值问题
所以b +c =433s i n B +s i n 2π3-B=432s i n B +12c o s B =4s i n B +π6 ㊂由于π6<B <π2,则有π3<B +π6<2π3,可得32<s i n B +π6ɤ1,所以b +c =4s i n B +π6ɪ23,4 ㊂所以әA B C 周长的取值范围为(2+23,6]㊂点评:解决涉及三角函数与平面向量的综合问题的常见方式有:利用平面向量的概念㊁公式等合理构建对应的关系式,将向量问题三角化,进而通过三角函数的恒等变换及图像性质等来分析与解决问题㊂在实际解决三角函数模块的解答题时,审清题意是解决问题的关键㊂合理挖掘具体的问题条件,创设解题的主要材料,联系并构建条件间的内在联系,特别是相关的角㊁相关的三角关系式等之间的联系是解题的必经之路㊂审视条件要充分挖掘每一个条件的内涵和隐含信息,发掘条件的内在联系,进而借助对应的三角恒等变换公式㊁解三角形中的定理,以及平面向量中的公式等加以巧妙转化与综合应用,考查 四基 与基本能力等,成为高考命题的一个重要题型与考查方向㊂(责任编辑 王福华)ʏ江苏省苏州市桃坞高级中学校 甄 艳解三角形中的最值(或范围)问题是高考中最为常见的一类综合应用问题,也是一个热点与重点问题㊂基本不等式是破解三角形中的最值(或范围)问题的一个重点与基本点,特别在涉及解三角形的解答题中加以合理创设,综合性强,难度较大,且与其相关的问题灵活多样,备受各方关注㊂一、角的最值问题在解三角形的解答题中,利用基本不等式求角的最值问题是高考的一个考点,解决这类问题的关键是利用正㊁余弦定理及基本不等式求出角的某一三角函数值的范围,然后利用三角函数的单调性求出角的最值㊂例1 在әA B C中,内角A ,B ,C 所对的边分别为a ,b ,c ,且s i n C c o sB2=233-c o s Cs i n B 2㊂(1)当B =π3时,求s i n C +s i n A 的值;(2)求B 的最大值㊂分析:(1)根据题设条件,将角代入构建对应的三角关系式,通过所求关系式的诱导公式变形与两角和正弦公式的应用,合理转化得以求解;(2)利用三角关系式两边同乘以2c o s B 2进行恒等变形,合理化简并利用正弦定理化角为边,利用余弦定理确定c o s B 的表达式,通过基本不等式的应用来确定c o s B 的最值,并利用余弦函数的图像与性质来确定角B 的最大值㊂解:(1)由题意,可得s i n C c o sπ6=233-c o s Cs i n π6,即32s i n C +12c o s C =33㊂所以s i n C +s i n A =s i n C +s i n (π-C -B )=s i n C +s i n C +π3=32s i n C +32c o s C =332s i n C +12c o s C=1㊂51解题篇 创新题追根溯源 高考数学 2024年1月(2)在s i n C c o s B 2=233-c o s C㊃s i n B 2的两边同乘以2c o s B 2,得2s i n C c o s2B 2=233-c o s C㊃2s i n B 2c o s B 2,即s i n C ㊃(1+c o s B )=233-c o s Csi n B ,化简整理得s i n C +s i n A =233s i n B ,由正弦定理可得a +c =233b ㊂在әA B C 中,由余弦定理可得c o s B =a 2+c 2-b 22ac =(a +c )2-b 2-2a c 2a c =b26a c-1,利用基本不等式有a c ɤa +c22=13b 2,当且仅当a =c 时等号成立,此时c o s B =b 26a c-1ȡ-12㊂由于B ɪ(0,π),而y =c o s x 在(0,π)上单调递减,故B 的最大值为2π3㊂点评:解决本题第(2)问的关键是利用倍角公式㊁余弦定理及基本不等式求出角B 的余弦值的范围,然后利用余弦函数的单调性求出角B 的最大值㊂结合三角形的应用场景,合理确定与角有关的三角函数,借助三角函数的单调性来确定相应角的最值(或范围),这是解决问题的理论依据所在㊂二㊁边的最值问题在解三角形的解答题中,涉及求边的最值问题是高考的一个考点,解决这类问题的关键是利用余弦定理表示出所要求的边,然后利用基本不等式或相关的变式,以及三角形三边的关系求出边的最值(或范围)等㊂例2 记әA B C 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知c o s C +(c o s B -22s i n B )c o s A =0㊂(1)求c o s A 的值;(2)若b +c =1,求a 的取值范围㊂分析:(1)将题设等式的第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据s i n A 不为0构建涉及s i n A 与c o s A 与关系式,结合平方关系联立方程组,通过方程组的求解得以确定c o s A 的值;(2)由b +c =1,利用余弦定理和基本不等式可求a 的取值范围㊂解:(1)因为c o s C +(c o s B -22㊃s i n B )c o s A =0,而c o s C =c o s (π-A -B )=-c o s (A +B )=-c o s A c o s B +s i n A ㊃s i n B ,所以-c o s A c o s B +s i n A s i n B +c o s A c o s B -22s i n B c o s A =0,化简得s i n A s i n B -22s i n B c o s A =0㊂又0<A <π,0<B <π,所以s i n B ʂ0,s i n A >0,所以s i n A =22c o s A >0,所以c o s A >0,所以A 为锐角㊂联立s i n A =22c o s A ,s i n 2A +c o s 2A =1,可得9c o s 2A=1,所以c o s A =13㊂(2)由余弦定理可知a 2=b 2+c 2-2b c c o s A =(b +c )2-83b c ,利用基本不等式有b c ɤb +c22,所以a 2ȡ13(b +c )2=13,解得a ȡ33,当且仅当b =c =12时等号成立㊂由三角形的基本性质知a <b +c =1㊂综上可得,a 的取值范围为33,1㊂点评:利用余弦定理用(b +c )2表示出a 2是解决本题的关键,另外,在利用基本不等式求出a 的下界后,还要注意利用三角形三边的关系求出a 的上界,从而求出a 的取值范围㊂在求解三角形中边的最值(或范围)问题时,要注意充分利用条件确定相关的上界与下界,这里往往离不开基本不等式及三角形的基本性质㊂三㊁周长的最值问题在解三角形的解答题中,三角形周长的最值问题是高考的一个热点,这类问题一般可以求出一条边,然后利用余弦定理表示出另两条边满足的关系式,最后利用基本不等61 解题篇 创新题追根溯源 高考数学 2024年1月式求出周长的最值㊂例3 在әA B C中,内角A ,B ,C 所对的边分别为a ,b ,c ,若A B ң㊃A C ң=92,b s i n A =4(s i n A c o s C +c o s A s i n C )㊂(1)求a 的长度;(2)求әA B C 周长的最大值㊂分析:(1)根据题设条件,利用正弦函数两角和公式与三角函数诱导公式将已知条件化解为b s i n A =4s i n B ,再利用正弦定理将其转化即可求解;(2)通过向量数量积公式与余弦定理可得b 2+c 2=25,再利用基本不等式即可求得b +c 的最大值,进而得以求解әA B C 周长的最大值㊂解:(1)由b s i n A =4(s i n A c o s C +c o s A s i n C )得b s i n A =4s i n B ㊂由正弦定理得a b =4b ,解得a =4㊂(2)由A B ң㊃A C ң=92得b c c o s A =92㊂利用余弦定理得b c ㊃b 2+c 2-162b c =92,整理得b 2+c 2=25,由基本不等式得25=b 2+c 2ȡ(b +c )22,所以b +c ɤ52,当且仅当b =c =522时等号成立㊂所以әA B C 周长的最大值为4+52㊂点评:解决本题第(2)问的关键就是构建两边平方和的关系b 2+c 2=25,进而利用基本不等式的变形公式加以转化,得以求解b +c 的最大值,为进一步确定三角形的周长的最值提供条件㊂在解决涉及三角形的周长的最值(或范围)问题时,要注意三角形的三边中相应的常量与变量,合理构建变量的线性关系式加以综合与应用㊂四、面积的最值问题在解三角形的解答题中,三角形面积的最值(或范围)问题是高考的一个热点,解决这类问题的关键是找出两边之积满足的不等关系式,然后利用三角形面积公式解决问题㊂这里比较常用的思维是利用基本不等式思维来转化与应用㊂例4 在әA B C中,内角A ,B ,C 所对的边分别为a ,b ,c ,且3a s i n B -b c o s A=b ㊂(1)求角A 的大小;(2)若a =2,求әA B C 面积的最大值㊂分析:(1)由题中的关系式利用正弦定理转化为涉及角的关系式,通过恒等变形,并结合辅助角公式(或范围),利用角的取值范围加以分析与求解;(2)通过余弦定理构建对应的关系式,利用基本不等式得以确定b c 的最大值,进一步确定әA B C 面积的最大值㊂解:(1)依题意,利用正弦定理可得3s i n A s i n B -s i n B c o s A =s i n B ,又s i n B ʂ0,所以3s i n A -c o s A =1,所以32s i n A -12c o s A =12,即s i n A -π6=12㊂又因为A ɪ(0,π),所以A -π6ɪ-π6,5π6,所以A -π6=π6,即A =π3㊂(2)利用余弦定理可得a 2=b 2+c 2-2b c c o s A ,即4=b 2+c 2-b c ,结合基本不等式可得4=b 2+c 2-b c ȡ2b c -b c =b c ,即b c ɤ4,当且仅当b =c =2时等号成立㊂所以S =12b c s i n A ɤ12ˑ4ˑ32=3,即әA B C 面积的最大值为3㊂点评:解决本题第(2)问的关键是利用余弦定理表示出b ,c 满足的关系式,然后利用基本不等式求出b c 满足的不等关系,最后利用三角形的面积公式解决问题㊂注意在确定三角形面积的最值(或范围)时,往往在定角背景下两夹边的乘积的最值确定,或是两边定值背景下夹角的正弦值的最值确定㊂借助基本不等式思维确定三角形中的最值(或范围)问题,主要是利用三角形中的角㊁边㊁周长㊁面积等的关系式的 定和 或 定积 的结构特征,利用基本不等式来确定最值㊂解题的关键是利用解三角形进行统一化处理,或统一化边,或统一化角,结合仅含边或角的关系式的变形与应用来达到目的㊂(责任编辑 王福华)71解题篇 创新题追根溯源 高考数学 2024年1月。
压轴题05 三角函数与解三角形范围与最值问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)
压轴题05三角函数与解三角形范围与最值问题三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.考向一:ω取值与范围问题考向二:面积与周长的最值与范围问题考向三:长度的范围与最值问题1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin222S ab C ac B bc A===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.一、单选题1.(2023·浙江金华·模拟预测)已知函数π()sin cos (0)6f x x x ωωω⎛⎫=-+> ⎪⎝⎭在[0,π]上有且仅有2个零点,则ω的取值范围是()A .131,6⎡⎤⎢⎥⎣⎦B .713,66⎡⎫⎪⎢⎣⎭C .7,26⎡⎫⎪⎢⎣⎭D .131,6⎡⎫⎪⎢⎣⎭【答案】B【解析】π1()sin cos sin sin 62f x x x x x x ωωωωω⎫⎛⎫=-+=--⎪ ⎪⎪⎝⎭⎝⎭3sin cos 22x x ωω=-1sin cos 22x x ωω⎫=-⎪⎪⎭π6x ω⎛⎫=- ⎪⎝⎭因为()f x 在 [0,π]上仅有2个零点,当 [0,π]x ∈时,πππ,π666x ωω⎡⎤-∈--⎢⎥⎣⎦(0ω>),所以πππ6ππ2π6ωω⎧-≥⎪⎪⎨⎪-<⎪⎩,解得71366ω≤<.故选:B.2.(2023·吉林长春·统考三模)已知函数()π2cos 13f x x ω⎛⎫=-+ ⎪⎝⎭,(0ω>)的图象在区间()0,2π内至多存在3条对称轴,则ω的取值范围是()A .50,3⎛⎤ ⎥⎝⎦B .25,33⎛⎤ ⎥⎝⎦C .57,36⎡⎫⎪⎢⎣⎭D .5,3⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为()0,2πx ∈,0ω>,所以πππ,2π333x ωω⎛⎫-∈-- ⎪⎝⎭,画出2cos 1y z =+的图象,要想图象在区间()0,2π内至多存在3条对称轴,则ππ2π,3π33ω⎛⎤-∈- ⎥⎝⎦,解得50,3ω⎛⎤∈ ⎥⎝⎦.故选:A3.(2023·河南·许昌实验中学校联考二模)已知函数())π2sin 06f x x ωω⎛⎫=-> ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个零点,则ω的取值范围是()A .75,93⎛⎤⎥⎝⎦B .75,93⎡⎫⎪⎢⎣⎭C .1010,93⎡⎫⎪⎢⎣⎭D .1010,93⎛⎤⎥⎝⎦【答案】C【解析】由题意知π3sin 62x ω⎛⎫-= ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个解.因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以ππ3ππ,6646x ωω⎡⎤-∈--⎢⎥⎣⎦,则需2π3ππ7π3463ω≤-<,解得101093ω≤<.故选:C4.(2023·广西·统考一模)定义平面凸四边形为平面上每个内角度数都小于180︒的四边形.已知在平面凸四边形ABCD 中,30,105,2A B AB AD ∠=︒==︒∠=,则CD 的取值范围是()A .⎫⎪⎪⎣⎭B .⎣⎭C .⎣⎭D .212⎫⎪⎢⎪⎣⎭【答案】A【解析】在ABD △中,由余弦定理得:2222cos 3422cos301BD AB AD AB AD A =+-⋅=+-⨯=,显然2224AB BD AD +==,即90ABD ∠=o ,60ADB ∠=o ,在BCD △中,1BD =,15CBD ∠= ,因为ABCD 为平面凸四边形,则有0120BDC <∠< ,因此45165BCD <∠< ,而62sin165sin15sin(4530)sin 45cos30cos 45sin 302==-=-=,由正弦定理sin sin CD BD CBD BCD =∠∠得:sin 62sin 4sin BD CBD CD BCD BCD∠==∠∠,当4590BCD <∠≤ 时,sin 12BCD <∠≤,当90165BCD <∠< 时,sin 1BCD <∠<,sin 1BCD <∠≤,11sin BCD ≤<∠1CD ≤<,所以CD 的取值范围是62[4.故选:A5.(2023·全国·校联考二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b =,若2222b a c =+,则△ABC 面积的最大值为()A .2B .34C .1D .32【答案】D【解析】因为2222b a c =+,所以()222cos ,0,π22a c b aB B ac c+-==-∈,所以sin B =42c=,所以△ABC 的面积14sin 24ABCS ac B == =222194122a c a +-⨯()22421122a c +=⨯32=,当且仅当22249c a a -=,即a c ==ABC 面积的最大值为32.故选:D6.(2023·广西柳州·柳州高级中学校联考模拟预测)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知60B = ,4b =,则ABC 面积的最大值为()A .B .C .D .6【答案】B【解析】由余弦定理可得22222162cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=,即16ac ≤,当且仅当4a c ==时,等号成立,故1sin 162ABC S ac B ac =⨯= .因此,ABC面积的最大值为故选:B.7.(2023·全国·模拟预测)已知函数()sin()(0)f x x ωϕω=+>是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数,其图象关于直线π36x =-对称,且f (x )的一个零点是7π72x =,则ω的最小值为()A .2B .12C .4D .8【答案】C【解析】因为函数()()sin f x x ωϕ=+的图象关于直线π36x =-对称,所以πππ362n ωϕ-⋅+=+,n ∈Z ,所以ϕ=1π236n ω⎛⎫++ ⎪⎝⎭,n ∈Z ,根据π5π1836x <<,则π5π1836x ωωω<<,所以π5π1836x ωωϕωϕϕ+<+<+,因为()()sin f x x ωϕ=+是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数.所以ππ2π,1825π3π2π,362k k k k ωϕωϕ⎧+≥+∈⎪⎪⎨⎪+≤+∈⎪⎩Z Z ,所以π1ππ2π,,1823625π13ππ2π,,362362n k n k n k n k ωωωω⎧⎛⎫+++≥+∈∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++≤+∈∈ ⎪⎪⎝⎭⎩Z Z Z Z ,即112,,1823625132,,362362n k n k n k n k ωωωω⎧⎛⎫+++≥+∈∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++≤+∈∈ ⎪⎪⎝⎭⎩Z Z Z Z ,解得()()122621k n k n ω-≤≤-+,n ∈Z ,k ∈Z ,因为0ω>,所以20k n -=或21k n -=,当20k n -=时,06ω<≤,当21k n -=时,1212ω≤≤;由于π7π5π187236<<,且f (x )的一个零点是7π72x =,所以()7π21π72m ωϕ⨯+=+,m ∈Z ,所以()7π1π21π72236n m ωω⎛⎫⨯+++=+ ⎪⎝⎭,m ∈Z ,n ∈Z ,即()824m n ω=-+,m ∈Z ,n ∈Z .根据06ω<≤或1212ω≤≤,可得4ω=,或12ω=,所以ω的最小值为4.故选:C.二、多选题8.(2023·安徽滁州·统考二模)在平面直角坐标系xOy 中,△OAB 为等腰三角形,顶角OAB θ∠=,点()3,0D 为AB 的中点,记△OAB 的面积()S f θ=,则()A .()18sin 54cos f θθθ=-B .S 的最大值为6C .AB 的最大值为6D .点B 的轨迹方程是()22400x y x y +-=≠【答案】ABD【解析】由OAB θ∠=,OA AB =,()3,0D 为AB 的中点,若(,)A x y 且0y ≠,则(6,)B x y --,故222222(62)(2)4(3)4x y x y x y +=-+-=-+,整理得:22(4)4x y -+=,则A 轨迹是圆心为(4,0),半径为2的圆(去掉与x 轴交点),如下图,由圆的对称性,不妨令A 在轨迹圆的上半部分,即02A y <≤,令22OA AB AD a ===,则222||||2cos OD OA AD OA AD θ=+-,所以2254cos 9a a θ-=,则2954cos a θ=-,所以2118sin sin 2sin 254cos OAB OAD OBD S S S OA AB a θθθθ=+===- ,A 正确;由113(0,6]22OAB OAD OBD A B A S S S y OD y OD y =+=⋅+⋅=∈ ,则S 的最大值为6,B 正确;由下图知:(2,6)OA AB =∈,所以AB 无最大值,C 错误;令(,)B m n ,则60A A x my n =-⎧⎨=-≠⎩代入A 轨迹得22(2)4m n -+=,即2240m m n -+=,所以B 轨迹为2240x x y -+=且0y ≠,D正确;故选:ABD三、填空题9.(2023·青海·校联考模拟预测)在锐角ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,且()2sin 2sin cos sin 2c B A a A B b A -=+,则ca的取值范围是______.【答案】()1,2【解析】由正弦定理和正弦二倍角公式可得()2sin sin 2sin sin cos sin sin 2C B A A A B B A-=+()2sin sin cos 2sin sin cos 2sin sin cos sin cos A A B B A A A A B B A =+=+()2sin sin A A B =+,因为π0<<,π2C C A B -=+,所以()()0s s in s in πin C A C B =-=≠+,可得()sin sin B A A -=,因为ππ0022A B <<<<,,所以ππ22B A -<-<,所以2B A =,π3C A =-,由202πB A <=<,203ππC A <<=-可得ππ64A <<,cos 22A <<,213cos 24A <<,由正弦定理得()sin 2sin sin 3sin 2cos cos 2sin sin sin sin sin A A c C A A A A Aa A A A A++====()222cos cos 24cos 11,2A A A =+=-∈.故答案为:()1,2.10.(2023·上海金山·统考二模)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.【答案】506ω<≤【解析】因为0ω>,()0,πx ∈,所以ππππ333x ωω-<-<-,又因为函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,所以πππ32ω-≤,解得506ω<≤,所以ω的取值范围是506ω<≤故答案为:506ω<≤.11.(2023·全国·校联考二模)设锐角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin b B a A a C =+,则3b ca-的取值范围是______.【答案】132,]4【解析】由sin sin sin b B a A a C =+,得22b a ac =+,由余弦定理得2222cos 222b c a c ac a cA bc bc b+-++===,由正弦定理得sin sin cos 22sin a c A C A b B++==,即s sin 2sin c i o n s C B A A +=,又()sin sin C A B =+,所以sin sin cos cos sin 2cos sin A A B A B A B ++=,即sin sin os sin cos A Bc A A B =-,所以()sin sin A B A =-,因为,A B 为ABC 的内角,所以πB A A -+=(舍去)或B A A -=,所以2B A =.由正弦定理得33sin sin 3sin 2sin()3sin 2sin 3sin sin sin b c B C A B A A Aa A A A---+-===因为()2sin 3sin 2sin 2cos cos 2sin 2sin cos cos 2sin A A A A A A A A A A A =+=+=+,又(0,π),sin 0A A ∈≠,所以236sin cos 2sin cos cos 2sin sin b c A A A A A Aa A---=2226cos 2cos cos 26cos 2cos 2cos 1A A A A A A =--=--+223134cos 6cos 14(cos )44A A A =-++=--+,由于π2(0,)2B A =∈得π(0,)4A ∈,由πππ3(0,)2C A B A =--=-∈,得ππ(,)63A ∈,则ππ(,)64A ∈,所以2cos 2A ∈,当3cos 4A =时,23134(cos )44A --+取最大值134,当cos A =23134(cos )44A --+等于2,当cos A =23134(cos )44A --+等于1,而21>,所以3b ca -取值范围是132,]4,故答案为:132,]412.(2023·上海嘉定·统考二模)如图,线段AB 的长为8,点C 在线段AB 上,2AC =.点P 为线段CB 上任意一点,点A 绕着点C 顺时针旋转,点B 绕着点P 逆时针旋转.若它们恰重合于点D ,则CDP △的面积的最大值为__________.【答案】【解析】由题意可知,6C AB C B A =-=,即6PC PB +=.在CDP △中,有CD AC 2==,DP PB =,所以6PC DP +=.由余弦定理可得,()222224cos 22PC DP PC DP PC DP CD CPD PC DP PC DP+-⋅-+-∠==⋅⋅3624162PC DP PC DP PC DP PC DP-⋅--⋅==⋅⋅,所以22sin 1cos CPD CPD ∠=-∠2161PC DP PC DP -⋅⎛⎫=- ⎪⋅⎝⎭2221632PC DP PC DP -+⋅=⋅,所以有221sin 2CDPS PC PD CPD ⎛⎫=⋅∠ ⎪⎝⎭△22221256324PC DPPC DP PC DP -+⋅=⋅⋅⋅⋅864PC DP =⋅-2864896482PC DP +⎛⎫≤-=⨯-= ⎪⎝⎭,当且仅当3PC PB ==时,等号成立.所以,28CDP S ≤△,所以,CDP S ≤△CDP △的面积的最大值为故答案为:四、解答题13.(2023·湖南益阳·统考模拟预测)ABC 中,角,,A B C 的对边分别为,,a b c ,从下列三个条件中任选一个作为已知条件,并解答问题.①sin sin 2B Cc a C +=;②sin 1cos a C A=-;③ABC )222b c a +-.(1)求角A 的大小;(2)求sin sin B C 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)选择①:由正弦定理可得,sin cossin sin 2AC A C =,因为(0,π),sin 0C C ∈>,所以cossin 2A A =,即cos 2sin cos 222A A A =,因为π022A <<,所以cos 02A >,所以1sin 22A =,所以π26A =,即π3A =;选择②sin 1cos a CA=-,则sin cos a C A =,由正弦定理得sin sin cos A C C C A =-,因为(0,π),sin 0C C ∈>,所以sin A A =,即π3sin 32A ⎛⎫+= ⎪⎝⎭,因为0πA <<,所以ππ4π333A <+<,所以π2π33A +=,即π3A =;选择③:由()2221sin 42ABC S b c a bc A =+-= ,222sin 2b c a A bc+-=sin A A =,所以tan A =0πA <<,故π3A =.(2)方法一:πsin sin sin sin 3B C B B ⎛⎫=⋅+ ⎪⎝⎭1sin sin cos 22B B B ⎛⎫=+ ⎪ ⎪⎝⎭21sin sin cos 22B B B =+11cos244B B =-11πsin 2426B ⎛⎫=+- ⎪⎝⎭因为2π03B <<,所以ππ7π2666B -<-<,所以1πsin 2126B ⎛⎫-<-≤ ⎪⎝⎭,所以11π3024264B ⎛⎫<+-≤ ⎪⎝⎭,即sin sin B C 的取值范围为30,4⎛⎤⎥⎝⎦.方法二:由余弦定理,222222cos a b c bc A b c bc =+-=+-,再由正弦定理,222sin sin sin sin sin A B C B C =+-,因为π3A =,所以223sin sin sin sin 2sin sin sin sin 4B C B C B C B C =+-≥-,即3sin sin 4B C ≥,当且仅当sin sin 2B C ==时“=”成立.又因为sin 0B >,sin 0C >,所以30sin sin 4B C <≤,即sin sin B C 的取值范围为30,4⎛⎤⎥⎝⎦.14.(2023·陕西榆林·统考三模)已知,,a b c 分别为ABC 的内角,,A B C 所对的边,4AB AC ⋅=,且sin 8sin ac B A =.(1)求A ;(2)求sin sin sin A B C 的取值范围.【解析】(1)cos 4AB AC bc A ⋅==,由sin 8sin ac B A =及正弦定理,得8abc a =,得8bc =,代入cos 4bc A =得1cos 2A =,又因为(0,π)A ∈,所以π3A =.(2)由(1)知π3A =,所以2ππ3C A B B =--=-.所以2ππsin sin sin sin sin 33A B C B B B B ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭213cos sin sin cos sin 22244B B B B B B ⎛⎫=+=+ ⎪ ⎪⎝⎭3sin 228B B =+π2468B ⎛⎫=-+ ⎪⎝⎭,因为2π03B <<,所以ππ7π2666B -<-<,所以1πsin 2126B ⎛⎫-<-≤ ⎪⎝⎭,所以3π333024688B ⎛⎫<-+ ⎪⎝⎭,故sin sin sin A B C 的取值范围是⎛ ⎝⎦.15.(2023·上海浦东新·统考二模)已知,0R ωω∈>,函数cos y x x ωω-在区间[0,2]上有唯一的最小值-2,则ω的取值范围为______________.【解析】πcos 2sin 6y x x x ωωω⎛⎫=-=- ⎪⎝⎭,因为[]0,2x ∈,0ω>,所以πππ,2666x ωω⎡⎤-∈--⎢⎥⎣⎦,因为函数π2sin 6y x ω⎛⎫=- ⎪⎝⎭在[]0,2x ∈上有唯一的最小值-2,所以π3π7π2,622ω⎡⎫-∈⎪⎢⎣⎭,解得5π11π,66ω⎡⎫∈⎪⎢⎣⎭,故ω的取值范围是5π11π,66⎡⎫⎪⎢⎣⎭.故答案为:5π11π,66⎡⎫⎪⎢⎣⎭16.(2023·浙江金华·模拟预测)在ABC 中,角A ,B ,C 所对应的边为a ,b ,c .已知ABC 的面积4ac S =,其外接圆半径2R =,且()224cos cos ()sin A B b B -=.(1)求sin A ;(2)若A 为钝角,P 为ABC 外接圆上的一点,求PA PB PB PC PC PA ⋅+⋅+⋅的取值范围.【解析】(1)由1sin 42ac S ac B ==,得1sin 2B =,()()()()2222224cos cos 41sin 1sin 4sin sin A B A B B A ⎡⎤-=---=-⎣⎦,由正弦定理24sin sin a bR A B===,4sin ,4sin a A b B ==,则2()sin 4sin 4sin b B B A B =-,由()224cos cos ()sin A B b B -=,得()2224sin sin 4sin 4sin B A B A B -=-,化简得2sin sin A A B =,由()0,πA ∈,sin 0A ≠,解得sin A B =,因此sin A =.(2)由(1)得,若A 为钝角,则120A =o ,则3030B C == ,,如图建立平面直角坐标系,则(0,2),(A B C ,设(2cos ,2sin )P θθ.则(2cos ,22sin )PA θθ=-- ,(2cos ,12sin )PB θθ=- ,2cos ,12sin )PC θθ=-,有66sin PA PB θθ⋅=-+ ,66sin PA PC θθ⋅=-- ,24sin PB PC θ⋅=-,则1416sin PA PB PA PC PB PC ⋅+⋅+⋅=-θ.由sin [1,1]θ∈-,则1416sin [2,30]-∈-θ,所以PA PB PB PC PC PA ⋅+⋅+⋅的取值范围为[2,30]-.17.(2023·山西·校联考模拟预测)已知函数()()()sin 0,0f x A x A ωϕω=+>>的图象是由π2sin 6y x ω⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度得到的.(1)若()f x 的最小正周期为π,求()f x 的图象与y 轴距离最近的对称轴方程;(2)若()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,求ω的取值范围.【解析】(1)由2ππω=,得2ω=,所以()πππ2sin 22sin 2666f x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令ππ2π62x k -=+,k ∈Z ,解得ππ23k x =+,k ∈Z ,取0k =,得π3x =,取1k =-,得π6x =-,因为ππ63-<,所以与y 轴距离最近的对称轴方程为π6x =-.(2)由已知得()()1πππ2sin 2sin666f x x x ωωω-⎡⎤⎡⎤⎛⎫=-+=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦,令()1ππ6x k ωω-+=,k ∈Z ,解得61π6k x ωω+-=,k ∈Z .因为()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,所以π613ππ26267ππ<62653ππ>62k k k ωωωωωω+-⎧≤≤⎪⎪+-⎪⎨⎪++⎪⎪⎩()k ∈Z 所以616182676528k k k k ωω--⎧≤≤⎪⎪⎨-+⎪<<⎪⎩.因为0ω>,所以616102861026567082k k k k k --⎧-≥⎪⎪⎪->⎨⎪⎪+-->⎪⎩,解得133618k <<,k ∈Z ,所以1k =,解得51188ω≤<,即ω的取值范围为511,88⎡⎫⎪⎢⎣⎭.18.(2023·山东德州·统考一模)在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos c b A b -=.(1)求证:2A B =;(2)若A 的角平分线交BC 于D ,且2c =,求ABD △面积的取值范围.【解析】(1)因为2cos c b A b -=,由正弦定理得sin 2sin cos sin C B A B -=又πA B C ++=,所以()()sin 2sin cos sin cos cos sin sin sin A B B A A B A B A B B+-=-=-=因为ABC 为锐角三角形,所以π0,2A ⎛⎫∈ ⎪⎝⎭,π0,2B ⎛⎫∈ ⎪⎝⎭,ππ,22A B ⎛⎫-∈- ⎪⎝⎭又sin y x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以A B B -=,即2A B =;(2)由(1)可知,2A B =,所以在ABD △中,ABC BAD ∠=∠,由正弦定理得:()2sin sin π2sin2AD AB B B B ==-,所以1cos AD BD B==,所以1sin sin tan 2cos ABD BS AB AD B B B=⨯⨯⨯== .又因为ABC 为锐角三角形,所以π02B <<,0π22B <<,0π3π2B <-<,解得π6π4B <<,所以tan B ⎫∈⎪⎪⎝⎭,即ABD △面积的取值范围为⎫⎪⎪⎝⎭.19.(2023·江西吉安·统考一模)在直角坐标系xOy 中,M 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩(θ为参数),直线:sin 4l πρθ⎛⎫+= ⎪⎝⎭(1)求M 的普通方程;(2)若D 为M 上一动点,求D 到l 距离的取值范围.【解析】(1)由22sin cos 1θθ+=得M 的普通方程为2214y x +=.(2)直线l 即sin cos 4ρθρθ+=,由cos ,sin x y ρθρθ==得直线l 的普通方程为40x y +-=,设(cos ,2sin )D θθ,则d =其中cos ϕϕ==因为cos()[1,1]θϕ-∈-,⎤⎥⎣⎦,所以D 到l 距离的取值范围为4210421022⎡⎢⎣⎦.20.(2023·江西九江·统考二模)在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,已知()()0a b c a b c ab -+--+=,sin 3cos 3cos bc C c A a C =+.(1)求c ;(2)求a b +的取值范围.【解析】(1)()()0a b c a b c ab -+--+= ,222a b c ab ∴+-=,即222122a b c ab +-=,1cos 2C ∴=,又0πC << ,π3C ∴=,sin C ∴=,sin 3cos 3cos bc C c A a C =+,sin C=sin 3(sin cos sin cos )3sin()3sin 2B cC A A C A C B∴⋅⋅=+=+=,0πB << ,即sin 0B ≠,32c =,解得c =.(2)由正弦定理得,4sin sin sin a b c A B C ===,∴4sin a A =,4sin b B =,∴4sin 4sin a b A B +=+,πA B C ++=,π3C =,∴2π3B A =-则2π4sin 4sin 3a b A A ⎛⎫+=+-⎪⎝⎭14(sin cos sin )2A A A =+6sin A A=+π6A ⎛⎫=+ ⎪⎝⎭,ABC 为锐角三角形,∴π0,2A ⎛⎫∈ ⎪⎝⎭,π0,2B ⎛⎫∈ ⎪⎝⎭∴ππ,62A ⎛⎫∈ ⎪⎝⎭∴ππ2π,633A ⎛⎫+∈ ⎪⎝⎭,∴πsin ,162A ⎛⎤⎛⎫+∈⎥ ⎪ ⎝⎭⎝⎦,∴(π6,6A ⎛⎫+∈ ⎪⎝⎭,即(6,a b +∈.21.(2023·广东汕头·金山中学校考模拟预测)在锐角ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sin sin sin B A Cb c b a-=-+.(1)求角A 的值;(2)若2c =,求a b +的取值范围.【解析】(1)由正弦定理sin sin sin a b cA B C==得:b a cb c b a-=-+,整理得:222b c a bc +-=,由余弦定理得:2221cos 222b c a bc A bc bc +-===,∵(0,π)A ∈,则π3A =.(2)由(1)可得:π3A =,且2c =,锐角ABC 中,由正弦定理得:sin sin sin a b cA B C==,可得π2sin sin sin 31sin sin sin C c A c B a b C C C ⎛⎫+ ⎪⋅⋅⎝⎭====则)21cos 21111sin 2sin cos tan 222CC a b C C C C ++=++=+=+∵ABC 锐角三角形,且π3A =,则π02π02C B ⎧<<⎪⎪⎨⎪<<⎪⎩,即π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ62C <<,即ππ1224C <<,且ππtantanπππ34tan tan 2ππ12341tan tan 34-⎛⎫=-==- ⎪⎝⎭+⋅可得()tan 22C ∈,则(114tan 2C++,故a b +的范围是(14+.22.(2023·湖南长沙·湖南师大附中校考一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知7b =,且sin sin sin sin a b A Cc A B+-=-.(1)求ABC 的外接圆半径R ;(2)求ABC 内切圆半径r 的取值范围.【解析】(1)由正弦定理,sin sin sin sin a b A C a cc A B a b+--==--,可得222,b a c ac =+-再由余弦定理,1cos 2B =,又()0,πB ∈,所以π3B =.因为2sin3bRB==,所以3R=.(2)由(1)可知:2249a c ac+-=,则2()493a c ac+=+.()11sin22ABCS ac B a b c r==++⋅则)23()497277ac a cr a ca c a c+-===+-++++.在ABC中,由正弦定理,sin sin sina c bA C B===,sina A c C,则)1431432πsin sin sin sin333a c A C A A⎡⎤⎛⎫+=+=+-⎪⎢⎥⎝⎭⎣⎦14331sin cos sin322A A A⎛⎫=+⎪⎪⎝⎭31πsin cos14sin cos14sin226A A A A A⎫⎛⎫⎛⎫==+⋅=+⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,又ππ2π0,,333A⎛⎫⎛⎫∈⋃⎪ ⎪⎝⎭⎝⎭,所以ππππ5π,,66226A⎛⎫⎛⎫+∈⋃⎪⎝⎭⎝⎭,所以π1sin,162A⎛⎫⎛⎫+∈⎪ ⎪⎝⎭⎝⎭,()π14sin7,146A⎛⎫+∈⎪⎝⎭,所以r⎛∈⎝⎭.23.(2023·黑龙江哈尔滨·哈尔滨市第六中学校校考一模)在锐角ABC中,设边,,a b c 所对的角分别为,,A B C,且22a b bc-=.(1)求角B的取值范围;(2)若4c=,求ABC中AB边上的高h的取值范围.【解析】(1)因为22a b bc-=,所以2222cos 222b c a c bc c bA bc bc b+---===,所以2cos c b b A -=,sin sin 2sin cos C B B A -=,又()πC A B =-+,所以()sin sin 2sin cos A B B B A =+-,整理可得()sin sin A B B -=,所以A B B -=或πA B B -+=(舍去),所以2A B =,又ABC 为锐角三角形,所以π02π022π0π32B A B C B ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,所以64ππ,B ⎛⎫∈ ⎪⎝⎭;(2)由题可知11sin 22S ch ac B ==,即sin h a B =,又()sin 2sin sin π3a b cB B B ==-,所以4sin 2sin 3Ba B=,所以4sin 2sin 4sin 2sin sin sin 3sin 2cos cos 2sin B B B Bh a B B B B B B===+248tan 81133tan tan tan tan 2tan B B B B B B===-+-,由64ππ,B ⎛⎫∈ ⎪⎝⎭,可得tan B ⎫∈⎪⎪⎝⎭,所以3tan tan B B ⎛-∈ ⎝⎭,所以)4h ∈,即ABC 中AB 边上的高h 的取值范围是)4.24.(2023·辽宁鞍山·统考二模)请从①2sin cos cos cos a B B C B =;②()22sin sin sin sin sin A C B A C -=-;③sin 1cos Aa B=+这三个条件中任选一个,补充在下面问题中,并加以解答(如未作出选择,则按照选择①评分.选择的编号请填写到答题卡对应位置上)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若___________,(1)求角B 的大小;(2)若△ABC 为锐角三角形,1c =,求22a b +的取值范围.【解析】(1)若选①因为2sin cos cos cos a B B C B =,由正弦定理得2sin sin cos cos cos A B B B C C B =,即sin sin (sin cos sin cos )A B B B C C B +sin()B B C =+,所以sin sin sin A B B A =,由(0,π)A ∈,得sin 0A ≠,所以sin B B =,即tan B =因为(0,π)B ∈,所以π3B =.若选②由22(sin sin )sin sin sin A C B A C -=-,化简得222sin sin sin sin sin A C B A C +-=.由正弦定理得:222a cb ac +-=,即222122a cb ac +-=,所以1cos 2B =.因为(0,π)B ∈,所以π3B =.若选③sin A =sin sin (1cos )B A A B =+,因为0πA <<,所以sin 0A ≠,1cos B B =+,所以π1sin 62B ⎛⎫-= ⎪⎝⎭,又因为ππ5π666B -<-<,所以π3B =.(2)在ABC 中,由正弦定理sin sin a c A C =,得sin sin c A a C =,sin sin 2sin c B b C C ==由(1)知:π3B =,又с=1代入上式得:222223sin 3sin 3sin()22cos 12()cos 1cos 1cos sin sin sin sin A A B C a b c ab C C C CC C C C ++=+=+⨯=+=+22π1sin()3321cos 1cos 1sin 2tan C C C C C +=+==+因为ABC 为锐角三角形,所以π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ,62C ⎛⎫∈ ⎪⎝⎭,所以tan C1tan C ∴∈,所以()2222331711,72tan 2tan 2tan 68a b C C C ⎛+=++=++∈ ⎝⎭.25.(2023·福建·统考模拟预测)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且π2sin 6b c A ⎛⎫=+ ⎪⎝⎭.(1)求C ;(2)若1c =,D 为ABC 的外接圆上的点,2BA BD BA ⋅=,求四边形ABCD 面积的最大值.【解析】(1)因为π2sin 6b c A ⎛⎫=+ ⎪⎝⎭,在ABC 中,由正弦定理得,i s n in 2sin πs 6B AC ⎛⎫=+ ⎪⎝⎭.又因为()()sin sin πsin B A C A C =--=+,所以()πsin 2s n sin i 6A C A C ⎛⎫+=+⎪⎝⎭,展开得sin cos cos sin sin sin cos 122A C A C C A A ⎫+=+⎪⎪⎝⎭,即sin cos 0n sin A C C A =,因为sin 0A ≠,故cos C C =,即tan C =又因为()0,πC ∈,所以π6C =.(2)解法一:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅=,所以DA BA ⊥,故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,AD =.设四边形ABCD 的面积为S ,BC x =,CD y =,则224x y +=,ABD CBD S S S =+△△111222AB BC xyAD CD =+⋅=⋅22112222x y +≤+⋅=,当且仅当x y ==时,等号成立.所以四边形ABCD1+.解法二:如图1设ABC 的外接圆的圆心为O ,半径为R ,BD 在BA上的投影向量为BA λ ,所以()2BA BD BA BA BA λλ⋅=⋅= .又22BA BD BA BA ⋅== ,所以1λ=,所以BD 在BA 上的投影向量为BA ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =,在ABD △中,AD =.设四边形ABCD 的面积为S ,CBD θ∠=,π0,2θ⎛⎫∈ ⎪⎝⎭,则2cos CB θ=,2sin CD θ=,所以ABD CBD S S S =+△△1122B AD CD AB C =⋅⋅+sin 22θ=+,当π22θ=时,S 最大,所以四边形ABCD1.解法三:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅= ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,AD =.设四边形ABCD 的面积为S ,点C 到BD 的距离为h ,则ABD CBD S S S =+△△1122AD h AB BD ⋅+⋅=2h =+,当1h R ==时,S 最大,所以四边形ABCD1.解法四:设ABC 的外接圆的圆心为O ,半径为R ,在ABC 中,1c =,122πsin sin 6c A R BC =∠==,故ABC 外接圆O 的半径1R =.即1OA OB AB ===,所以π3AOB ∠=.如图2,以ABC 外接圆的圆心为原点,OB 所在直线为x 轴,建立平面直角坐标系xOy ,则12A ⎛ ⎝⎭,()10B ,.因为C ,D 为单位圆上的点,设()cos ,sin C αα,()cos ,sin D ββ,其中()0,2πα∈,()0,2πβ∈.所以122BA ⎛⎫=- ⎪ ⎪⎝⎭,()cos 1,sin BD ββ=- ,代入2BA BD BA ⋅= ,即1BA BD ⋅=,可得11cos 122ββ-+=,即π1sin 62β⎛⎫-= ⎪⎝⎭.由()0,2πβ∈可知ππ11π,666β⎛⎫-∈- ⎪⎝⎭,所以解得ππ66β-=或π5π66β-=,即π3β=或πβ=.当π3β=时,A ,D 重合,舍去;当πβ=时,BD 是O 的直径.设四边形ABCD 的面积为S ,则11sin sin 2222ABD CBD S S S BD BD αα=+=⋅+⋅=+△△,由()0,2πα∈知sin 1α≤,所以当3π2α=时,即C 的坐标为()0,1-时,S 最大,所以四边形ABCD 面积最大值为12+.26.(2023·山西·校联考模拟预测)如图,在四边形ABCD 中,已知2π3ABC ∠=,π3BDC ∠=,AB BC ==(1)若BD =AD 的长;(2)求ABD △面积的最大值.【解析】(1)在BCD △中,由余弦定理,得2222cos BC BD DC BD DC BDC =+-⋅⋅∠,∴222π2cos 3CD CD =+-⨯⋅,整理得2720CD --=,解得CD =CD =-∴2222221c os27BD BC CD DBC BD BC +-∠===⋅,而2π(0,)3DBC ∠∈,故sin DBC ∠=,∴2π1311cos cos cos sin 32214ABD DBC DBC DBC ⎛⎫∠=-∠=-∠+∠= ⎪⎝⎭,故在ABD △中,2222cos AD AB BD AB BD ABD=+-⋅⋅∠221125714=+-⨯=,∴AD =(2)设,2π(0,)3CBD θθ∠=∈,则在BCD △中,sin sin BC BD BDC BCD=∠∠,则2πsin()sin π314sin()2πsin 3sin 3BC BCD BD BDCθθ-∠===+∠,所以π2π11sin sin 2214sin()()33ABD S AB BD ABD θθ=+=⨯⨯∠-⋅△2π34()θ=+,当2πsin (13θ+=,即π6θ=时,ABD △面积取到最大值27.(2023·湖南·校联考二模)在ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足236sin02A Ba b b +-+=.(1)求证:3cos 0a b C +=;(2)求tan A 的最大值.【解析】(1)∵236sin02A Ba b b +-+=,∴22π36sin36cos 022C Ca b b a b b --+=-+=,∴1cos 3602Ca b b +-+⋅=,∴3cos 0a b C +=.(2)由(1)可得:sin 3sin cos 0A B C +=,且C 为钝角,即4sin cos cos sin 0B C B C +=,即4tan tan 0B C +=,tan 4tan C B =-,()2tan tan 3tan 3tan tan 11tan tan 4tan 14tan tan B C B A B C B C B B B+=-+=-==-++34=,当且仅当14tan tan B B =,即1tan 2B =时取等号.故tan A 的最大值为34.28.(2023·黑龙江大庆·铁人中学校考二模)在ABC 中,a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,且sin sin sin sin b a c A C B C-=+-.(1)求角A 的大小;(2)记ABC 的面积为S ,若12BM MC = ,求2AMS的最小值.【解析】(1)因为sin sin sin sin b a c A C B C -=+-,即sin sin sin sin B C a cA C b--=+由正弦定理可得,b c a ca c b--=+,化简可得222a b c bc =+-,且由余弦定理可得,2222cos a b c bc A =+-,所以1cos 2A =,且()0,πA ∈,所以π3A =.(2)因为12BM MC = ,则可得1233AM AC AB =+ ,所以222212144cos 33999AM AC AB AC AC AB A AB ⎛⎫=+=+⋅+ ⎪⎝⎭22142999b c =++且1sin 2S bc A ==,即2221424299999b c bc bc bcAM S+++= 当且仅当1233b c =,即2b c =时,等号成立.所以2minAM S ⎛⎫ ⎪=⎪ ⎪⎝⎭ 29.(2023·云南·统考二模)ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,π3A =.(1)若2b =,3c =.求证:tan sin a bA B+=(2)若D 为BC 边的中点,且ABC的面积为AD 长的最小值.【解析】(1)证明:π3A =Q ,2b =,3c =,由余弦定理可得22212cos 4922372a b c bc A =+-=+-⨯⨯⨯=,a ∴=ππtan sin tan sin tan sin 33a b a a A B A A ∴+=+.(2)由1sin 24ABC S bc A bc ===V 24bc =.D 为边BC 的中点,则0DB DC +=,()()2AB AC AD DB AD DC AD ∴+=+++=,所以,()222222π422cos3AD AB ACAB AC AB AC c b cb =+=++⋅=++222372b c bc bc bc bc =++≥+==,即AD ≥当且仅当b c ==AD 长的最小值为30.(2023·广西·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足(2)cos cos 0b a C c B ++=.(1)求C ;(2)若角C 的平分线交AB 于点D ,且2CD =,求2a b +的最小值.【解析】(1)因为(2)cos cos 0b a C c B ++=,由正弦定理得(sin 2sin )cos sin cos 0B A C C B ++=,即sin cos sin cos 2sin cos B C C B A C +=-,所以()sin sin 2sin cos B C A A C +==-,又()0,πA ∈,则sin 0A >,所以1cos 2C =-,又因()0,πC ∈,所以2π3C =;(2)因为角C 的平分线交AB 于点D ,所以π3ACD BCD ∠=∠=,由ABC ACD BCD S S S =+△△△,得12π1π1πsinsin sin 232323ab CD b CD a =⋅+⋅,即22a b ab +=,所以221ab+=,则()222422666b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+=+ ⎪ ⎪⎝⎭⎝⎭当且仅当24b a a b=,即2b ==时取等号,所以2a b +的最小值为6+.31.(2023·安徽宣城·统考二模)设ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知1sin 1cos 2cos sin 2A BA B--=.(1)判断ABC 的形状,并说明理由;(2)求2254cos a a c c B-的最小值.【解析】(1)ABC 为钝角三角形,证明如下:由21sin 1cos 22sin sin cos sin 22sin cos cos A B B B A B B B B--===,则有cos sin cos sin cos B A B B A -=,所以cos sin()B A B =+,因为()0,πA B +∈,所以()cos sin 0B A B =+>,则B 为锐角.所以()cos sin sin 2πB B A B ⎛⎫=-=+⎪⎝⎭,所以π2B A B -=+或()2πB A B π⎛⎫-++= ⎪⎝⎭,则22πA B +=或π2A =,由题意知cos 0A ≠,所以π2A ≠,所以22πA B +=,所以,22C πA B B πππ⎛⎫=--=+∈ ⎪⎝⎭,故ABC 为钝角三角形.(2)由(1)知22πA B +=,π2C B =+,由正弦定理,有22225sin 5sin 4cos sin 4sin cos a a A Ac c B C C B-=-22sin 25sin 222sin 4sin cos 22B B B B B ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭222cos 25cos 2cos 4cos B B B B =-222222cos 15(2cos 1)cos 4c ()os B B B B --=-42224cos 4cos 155cos 4cos 2B B B B -+=+-229134cos 4cos 2B B =+-132≥12=-当且仅当2294cos 4cos B B=时等号成立,由B 为锐角,则cos 2B =,所以当π6B =时取最小值12-.32.(2023·全国·模拟预测)已知ABC 是斜三角形,角A ,B ,C 满足cos(2)cos sin 2A B A B ++=.(1)求证:cos sin 0C B +=;(2)若角A ,B ,C 的对边分别是边a ,b ,c ,求22245a b c+的最小值,并求此时ABC 的各个内角的大小.【解析】(1)由()cos 2cos sin2A B A B ++=得cos cos2sin sin2cos sin2A B A B A B -+=,所以()()cos 1cos21sin sin2A B A B +=+,所以()22cos cos 21sin sin cos A B A B B =+.因为ABC 是斜三角形,所以cos 0B ≠,所以()cos cos 1sin sin A B A B =+,所以cos cos sin sin sin 0A B A B B --=,所以()cos sin 0A B B +-=,又A B C π++=,所以cos sin 0C B +=.(2)在ABC 中,有sin 0B >,由(1)知cos sin 0C B +=,所以cos 0C <,于是角C 为钝角,角B 为锐角,根据cos cos 2C B π⎛⎫=+⎪⎝⎭,所以2C B π=+.由正弦定理,得()2222222222224sin 25sin 4sin 5sin 454sin 5sin 22sin sin sin C C B C B a b A B c C C Cππ⎛⎫⎛⎫-+- ⎪ ⎪++++⎝⎭⎝⎭===()()2222242222412sin 55sin 4cos 25cos 16sin 21sin 9sin sin sin CCC CC C CCC-+-+-+===,22916sin 21213sin C C=+-≥=,当且仅当22916sin sin C C =,即23sin 4C =,sin 2C =时等号成立,又角C 为钝角,所以120C =︒时,等号成立,由2C B π=+,得30B =︒,由180A B C ++=︒,得30A =︒,因此22245a b c +的最小值为3,此时三角形ABC 的各个内角为30A =︒,30B =︒,120C =︒.33.(2023·吉林·统考三模)如图,圆O 为ABC 的外接圆,且O 在ABC 内部,1OA =,2π3BOC ∠=.(1)当π2AOB ∠=时,求AC ;(2)求图中阴影部分面积的最小值.【解析】(1)法一:由题意可知,π2π5π2π236AOC ∠=--=,在AOC 中,由余弦定理得2222311211cos 22AC OA OC OA O AOC C ⎛∠=+-⨯⨯⨯-=+⎭-⎝=+⋅∴622AC =.法二:在ABC 中,π2π5π2π236AOC ∠=--=,1OA =,1π24ACB AOB ∠=∠=,15π212ABC AOC ∠=∠=,AB =由正弦定理得sin sin AB ACACB ABC=∠∠,∴π5πsin sin 412AC=,5πππππππsin sin()sin cos cos sin 124646464=+=+=,∴2AC =.(2)设AOB θ∠=,则4π3AOC θ∠=-114π1π11sin 11sin sin sin 22323AOB AOC S S θθθθ⎡⎤⎛⎫⎛⎫+=⨯⨯⨯+⨯⨯⨯-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦△△13πsin sin 22226θθθ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,设阴影部分面积为S ,优弧 BC所对的扇形BOC 面积为S 扇形,则212π2π12π233S ⎛⎫=⨯⨯-= ⎪⎝⎭扇形,∴()π2πsin 263AOB AOC S S S S θ⎛⎫=-+=-+ ⎪⎝⎭扇形△△,∵点O 在ABC 内部,∴ππ3θ<<,∴ππ5π666θ<-<,当ππ62θ-=时,即2π3θ=时,min 2π3S =-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用基本不等式求三角函数中边长问题
一.解答题(共3小题)
1.在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.
(I)求角A的大小;
(II)若a=,b+c=3,求b和c的值.
2.△ABC的内角A,B,C的对边分别为a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB)(Ⅰ)求角C;
(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.
3.在锐角△ABC中,=
(1)求角A;
(2)若a=,求bc的最大值
4.在△ABC 中,角A、B、C所对的边分别为a、b、c,且cosA=.
①求的值.
②若,求△ABC的面积S的最大值.
【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,(1分)
又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)
解得,∴.(6分)
(II)由.(8分)
又.(10分)
由.(12分)
2【解答】解:(Ⅰ)由已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB)
由正弦定理,得a(a﹣b)=(c﹣b)(c+b),(2分)
即a2+b2﹣c2=ab.(3分)
所以cosC==,(5分)
又C∈(0,π),所以C=.(6分)
(Ⅱ)由(Ⅰ)知a2+b2﹣c2=ab.所以(a+b)2﹣3ab=c2=7,(8分)
又S=sinC=ab=,
所以ab=6,(9分)
所以(a+b)2=7+3ab=25,即a+b=5.(11分)
所以△ABC周长为a+b+c=5+.(12分)
3.【解答】解:(1)由余弦定理可得:a2+c2﹣b2=2accosB,
,
∴sin2A=1且,
(2)2
4.【解答】解:①∵cosA=,
∴
=
=;
②,
∴,
,
∴,,
∴,
.。