08-09(1)概率试题(B卷)答案
《概率论》08-09第二学期B答案
二、为了防止意外,某公司内同时安装了两种报警装置:B A 和。
已经每个系统单独使用时,系统A 有效的概率是0.92,系统B 有效的概率为0.93,且在系统A 失效的情况下,系统B 有效的概率为0.85,求:(1)在发生意外时,至少有一种报警系统有效的概率;(2)在系统B 失效的情况下,系统A 有效的概率。
(12分)答案:设 A ={系统A 有效}, B ={系统B 有效 }, 由已知,得93.0)(,92.0)(==B p A p ,85.0)(=A B p 。
(1) 由.988.0)85.01)(92.01(1)](1)][(1[1)(1)(1)(=---=---=-=-=A B p A p B A p B A p B A p(2) 由公式()()()()()0.9880.93()0.829()1()1()10.93p AB p A p AB p A B P B p A B p B p B p B ---=====---三、随机变量X 的密度函数为 ⎩⎨⎧≤>=-0,0)(x x Axe x p x试求 (1)系数A; (2)分布函数)(x F ; (3)概率)1(>X P 。
(18分) 答案:(1)由连续性随机变量概率密度函数的性质()1p x dx +∞-∞=⎰,得⎰+∞-=01dx Axe x ,得1=A 。
(2)0x <时,()()0xF x p x dx -∞==⎰当0≥x 时,⎰--+-==xx te x dt tex F 0)1(1)(所以 ⎩⎨⎧≥+-<=-.0)1(1,0,0)(x ex x x F x(3)112)1(-+∞-==>⎰e dx xe X P x 。
四、设随机变量X 的概率密度为⎩⎨⎧<<-=其他,010),1(6)(x x x x p .求21Y X =+的概率密度.(7分)答案:设X 的分布函数是)(x F ,则{}{}⎪⎭⎫⎝⎛-=⎭⎬⎫⎩⎨⎧-≤=≤+=≤=212112)(y F y X p y X P y Y p y F X Y 。
(完整word版)概率论和数理统计考试试题和答案解析.doc
一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
西安邮电学院2008-2009第一学期微电子自动化等专业《概率论与随机过程》期末考试试题B及答案
卷 专业、年级: 微电子 09 级等
题号 一
二
三
四
五
六
七
八
九 总分
得分
一、填空题(每小题 3 分,共 30 分)
1、0.6 ;2、0.6 ;3、1 ;4、6;5、 N(3, 20) ;6、4;7、 1 ;8、{1, 2, 3, 4, 5, 6} ;9、 N (0, 2t ), N (0, 2 (t s))
………2 分
由中心极限定理 X 近似服从 N(120, 48) .
………4 分
P{ X N } P{ X 120 N 120} { N 120} 0.999 .
48
48
48
………7 分
查标准正态分布表得 N 120 3.1 ,即 N 120 3.1 48) 141.5 48
0 1/ 2 1/ 2
6.(本小题 10 分)设齐次马氏链的一步转移概率矩阵为 P 1 / 2 0 1 / 2 ,试讨论
1/ 2 1/ 2 0
此链的遍历性,如果具有遍历性,求出极限分布;如果不具有遍历性,说明原因.
说明:用本模板出题,请将插入方式换成改写方式,除填空题、图解及特殊要求外,一般不留答题空间;装订试卷、考生答卷纸不得拆开或在框外留有任何标记,否则按零分、(本小题 8 分)解:令 B : 摸出一球是红球; Ai : 球取自 i 号箱( i 1,2,3 )
………3 分
由贝叶斯公式,有
P( A1 | B)
P( A1 )P(B | A1 ) 1
3
P( Ai )P(B | Ai )
8
i 1
………6 分
故该球取自 1 号箱的概率为 1 . 8
装
专业班级
装
(完整版)初三数学概率试题大全(含答案)
试题一一、选择题(每题3分,共30分)1. (08新疆建设兵团)下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键 3. (08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( ) A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.36个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.24 9.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.16图1图210.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题(每题3分,共24分)11.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 . 13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在4张小卡片上分别写有实数0,2,π,13,从中随机抽取一张卡片,抽到无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个.18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题(共46分)19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么?9 8 3 7 6 2 4 5 120.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数). (2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升(每题10分,共20分)25.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强… (1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)26. (08江苏宿迁)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B. 二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1100. 23.(1)P (偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16. 24.根据题意,以(m ,n )为坐标的点A 共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y =2x 图像上,所求概率是336=112,即点A 在函数y =2x 图像上的概率是112. 四、25,(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2)当田忌的马随机出阵时,双方马的对阵情况如下表:双方马的对阵中,只有一种对抗情况田忌能赢,所以田忌获胜的概率P =16. 26,【参考答案】(1)设袋中有黄球个,由题意得,解得,故袋中有黄球个; (2) ∵ ∴.(3)设小明摸到红球有次,摸到黄球有次,则摸到蓝球有次,由题意得,即∴∵、、均为自然数∴当时,;当时,;当时,.综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为次、次、次或次、次、次或次、次、次.m 21122=++m 1=m 161122)(==两次都摸到红球P x y )6(y x --20)6(35=--++y x y x 72=+y x x y 27-=x y y x --61=x 06,5=--=y x y 2=x 16,3=--=y x y 3=x 26,1=--=y x y 150231312第二次摸球第一次摸球黄红2蓝红2蓝黄红1红1红1红2黄蓝蓝黄红2红1备用题:1.在一个不透明的口袋中,装有若干个除颜色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为() A A.12个B.9个C.6个D.3个2.一名保险推销员对人们说:“人有可能得病,也有可能不得病,因此,•得病与不得病的概率各占50%”,他的说法() CA.正确B.有时正确,有时不正确C.不正确D.应根据气候等条件确定3.袋中有16个球,7个白球,3个红球,6个黄球,从中任取一个,得到红球的概率是()BA.37B.316C.12D.3134.冰柜时装有四种饮料,5瓶特种可乐,12瓶普通可乐,9瓶橘子水,6瓶啤酒,•其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是() DA.532B.38C.1532D.17325.某同学期中考试全班第一,则期末考试.(填“不可能”,“可能”或“必然”)全班第一. 可能6.在标有1,3,4,6,8的五张卡片中,随机抽取两张,和为奇数的概率为.0.67.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是 .52 8.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有 粒. 4509.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有 张.910.在中考体育达标跳绳项目测试中,1min 跳160次为达标.•小敏记录了他预测时1min 跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.2511.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。
08~09概率统计B卷
概率统计B一、填空题(每空2分,共20分)1. 0。
28, 0.122.)2,0(N ,)1(2χ3.μ,2σ 4.0.5 5.5,1.9 6.2σ 二、单项选择题(每题2分,共10分)1。
C 2. A 3.B 4.B 5。
D三、简答题(共70分)1.一个工厂有甲、乙、丙三个车间生产同一种螺钉,每个车间的产量分别占总产量的25%、35%、40%,如果每个车间成品中的次品率分别为5%、4%、2%。
(1)从全厂产品中任意抽出一个螺钉,试问它是次品的概率是多少?(2)从全厂产品中如果抽出的一个恰好是次品,试问这个次品是由甲车间生产的概率是多少?解。
设321,,A A A 分布表示甲、乙、丙三个车间生产同一种螺钉,=B “从全厂产品中任意抽出一个螺钉是次品,则321,,A A A 构成一个完备事件组,则由全概率公式 0345.002.04.004.035.005.025.0)|()()|()()|()()(332211=⨯+⨯+⨯=++=A C P A P A C P A P A C P A P B P ,……5' 0362.00345.000125.0)()|()()()()|(1111====B P A B P A P B P B A P B A P ,……10’ 2.已知随机变量X 的概率密度为⎩⎨⎧<<=otherwisex C x f ,010,)(,(1)求常数C 的值;(2)设13+=X Y ,求Y 的密度函数。
解。
(1)由规范性1d d )(10===⎰⎰+∞∞-C x C x x f ,则1=C 。
………5’ (2)由13+=x y ,当10<<x 得41<<y ,则31)31)(31()(='--=y y f y f X Y 。
……8’ 所以⎪⎩⎪⎨⎧<<=otherwisey y f Y ,041,31)(………10’.3.若)2,10(~2N X ,求)1310(<<X P ,)13(>X P ,)3|10(|<-X P (9332.0)5.1(=Φ)解。
概率统计考试试卷B(答案)
概率统计考试试卷B(答案)系(院):专业:年级及班级:姓名:学号: .密封线1、五个考签中有⼀个难签,甲、⼄、丙三个考⽣依次从中抽出⼀张考签,设他们抽到难签的概率分别为1p ,2p ,3p ,则( B ) (A)321p p p (B)1p =2p =3p (C)321p p p (D)不能排⼤⼩解:抽签概率均为51,与顺序⽆关。
故选(B )2、同时掷3枚均匀硬币,恰有两枚正⾯向上的概率为(D )(A)0.5 (B)0.25 (C)0.125 (D)0.375解:375.0832121223==??? ????? ??C ,故选(D )3 、设(),,021Φ=A A B P 则( B )成⽴(A)()01 B A P (B)()[]()()B A P B A P B A A P 2121+=+ (C)()02≠B A A P (D)()121=B A A P解:条件概率具有⼀般概率性质,当A 1A 2互斥时,和的条件概率等于条件概率之和。
故选(B )课程名称:《概率论与数理统计》试卷类别:考试形式:开卷考试时间:120 分钟适⽤层次:本科适⽤专业:阅卷须知:阅卷⽤红⾊墨⽔笔书写,⼩题得分写在相应⼩题题号前,⽤正分表⽰;⼤题得分登录在对应的分数框内;考试课程应集体阅卷,流⽔作业。
系(院):专业:年级及班级:姓名:学号: .密封线4、10张奖券中含有3张中奖的奖券,每⼈购买⼀张,则前3个的购买者中恰有1⼈中奖的概率为(D )(A)3.07.02321 解:310272313A A C C P ?==402189106733=,故选(D ) 5、每次试验成功的概率为p ,独⽴重复进⾏试验直到第n 次才取得()n r r ≤≤1次成功的概率为(B )。
(A)()rn rn p p C --1 (B)()rn rr n p p C ----111(C)()rn r p p --1 (D) ()rn r r n p pC -----1111解:rn r r n r n r r n qp C q p C p ---+-----=?1111111,故选(B )第n 次6、设随机变量X 的概率密度为)1(12x +π,则2X 的概率密度为(B ) (A))1(12x +π (B))4(22x +π (C))41(12x +π (D))x +π解:令()x g x y ==2 ()y h y x ==21 ()21='y h ()214112+=y y P Y π=()21442?+y π=()242y +π,故选(B )7、如果随机变量X 的可能值充满区间( A B ),⽽在此区间外等于零,则x sin 可能成为⼀随机变量的概率密度。
(完整)概率复习题及答案
〈概率论〉试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,.则=3.若事件A和事件B相互独立, ,则4。
将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。
5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7。
已知随机变量X的密度为,且,则________________8。
设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________ 10。
若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。
用()的联合分布函数F(x,y)表示13。
用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15。
已知,则=16.设,且与相互独立,则17。
设的概率密度为,则=18。
设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。
设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于。
22.设是来自正态总体的样本,令则当时~。
23。
设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。
《第8章 概率》试卷及答案_高中数学选择性必修第二册_苏教版_2024-2025学年
《第8章概率》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、下列事件中,不可能事件是()。
A、抛一枚硬币,正面朝上B、明天会下雨C、地球围绕太阳转D、掷一枚骰子,得点数为72、从一个装有3个红球和2个白球的袋中随机取出两个球,则取出的两球颜色相同的概率是多少?A. 1/10B. 3/10C. 2/5D. 1/23、袋中有5个红球和3个蓝球,现在从袋中随机抽取一个球,抽出红球的概率是()A、4/8B、5/8C、3/8D、1/24、从装有2个红球和2个白球的袋子中随机取出2个球,取出的两个球颜色相同的情况有()种。
A. 1B. 2C. 3D. 45、someone is rolling two fair six-sided dice. What is the probability that the sum of the two dice is 7 given that the two dice show the same number?A. 1/6B. 1/9C. 1/16D. 1/126、某班级有40名学生,其中有20名喜欢篮球,15名喜欢足球,10名既喜欢篮球又喜欢足球。
以下关于这个班级学生喜好篮球或足球的描述正确的是()A、喜欢篮球或足球的学生有35名B、喜欢篮球或足球的学生有25名C、既不喜欢篮球也不喜欢足球的学生有5名D、喜欢篮球的学生中至少有5人同时喜欢足球7、已知一袋中有4个红球和6个白球,从中任取2个球,则取出的2个球都是红球的概率是()。
A、1/15B、2/15C、1/38、一个袋子里装有5个红球和6个蓝球,从中连续摸出两个球,不放回。
若第一次摸出的是红球,则第二次摸出蓝球的概率是多少?A.511B.16C.611D.3091二、多选题(本大题有3小题,每小题6分,共18分)1、设随机变量(X)的概率分布列为:[X012 P0.20.50.3]则下列哪些选项正确?A.(E(X)=1.1)B.(D(X)=0.69)C.(P(0<X<2)=0.5)D.(P(X≥1)=0.8)2、某学校有男生和女生共500人,为了研究学生在某些方面的共同点,学校决定采用分层抽样进行调查。
(完整版)概率练习题(含答案)
概率练习题(含答案)1解答题有两颗正四周体的玩具,其四个面上分别标有数字1, 2, 3 , 4 ,下边做扔掷这两颗正四面体玩具的试验:用(x, y)表示结果,此中x 表示第 1 颗正四周体玩具出现的点数,y 表示第 2 颗正四周体玩具出现的点数.试写出:(1)试验的基本领件;(2)事件“出现点数之和大于3 ”;(3)事件“出现点数相等” .答案(1)这个试验的基本领件为:(1,1),( 1 ,2),( 1 ,3 ),( 1,4 ),(2,1),( 2 ,2),( 2 ,3 ),( 2,4 ),(3,1),( 3 ,2),( 3 ,3 ),( 3,4 ),(4,1),( 4 ,2),( 4 ,3 ),( 4,4 )(2)事件“出现点数之和大于 3”包括以下 13 个基本领件:(1,3),( 1 ,4),( 2 ,2 ),( 2,3 ),( 2, 4 ),( 3, 1 ),( 3, 2),( 3,3 ),(3,4),( 4 ,1),( 4 ,2 ),( 4,3 ),( 4, 4 )(3)事件“出现点数相等”包括以下 4 个基本领件:(1,1),( 2 ,2),( 3 ,3 ),( 4,4 )2单项选择题“概率”的英文单词是“Probability”,假如在构成该单词的所有字母中随意拿出一个字母,则取到字母“ b ”的概率是1. A.2. B.3. C.4. D.1答案C分析剖析:先数出单词的所有字母数,再让字母“ b ”的个数除以所有字母的总个数即为所求的概率.解答:“ Probability”中共11个字母,此中共 2 个“ b”,随意拿出一个字母,有11 种状况可能出现,取到字母“ b ”的可能性有两种,故其概率是;应选 C.评论:本题考察概率的求法:假如一个事件有n 种可能,并且这些事件的可能性同样,此中事件 A 出现m 种结果,那么事件 A 的概率 P(A ) =.3解答题一只口袋内装有大小同样的 5 只球,此中 3 只白球, 2 只黑球 .现从口袋中每次任取一球,每次拿出不放回,连续取两次 .问:(1)拿出的两只球都是白球的概率是多少?(2)拿出的两只球起码有一个白球的概率是多少?答案(1 )拿出的两只球都是白球的概率为3/10 ;(2 )以拿出的两只球中起码有一个白球的概率为9/10 。
初二数学概率试题答案及解析
初二数学概率试题答案及解析1.袋中共有2个红球,2个黄球,4个紫球,从中任取—个球是白球,这个事件是事件.【答案】不可能【解析】∵袋子中有2个红球,2个黄球,4个紫球,∴从中任取一个球可能出现的情况有2+2+4=8种,∵没有白球,∴是白球的概率为0.故答案为:不可能【考点】1、随机事件;2、概率的意义2.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤菱形,将卡片背面朝上洗匀,从中抽取一张,正面图形既是轴对称图形,又是中心对称图形的概率是()A.B.C.D.【答案】B【解析】从中任抽一张,正面图案有5种情况,其中正面图形既是轴对称图形,又是中心对称图形的有①线段、⑤菱形共两种,所以P(正面图形既是轴对称图形,又是中心对称图形)=;故选B【考点】概率3.下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是30米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红【答案】A.【解析】A、购买一张福利彩票,可能中奖,也可能不中奖,是随机事件,符合题意;B、一定会发生,属必然事件,不符合题意;C、一定不会发生,是不可能事件,不符合题意;D、一定不会发生,是不可能事件,不符合题意.故选A.【考点】随机事件.4.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数摸到白球的次数摸到白球的频率(1)请估计:当很大时,摸到白球的频率将会接近.(精确到0.1)(2分)(2)假如你摸一次,你摸到白球的概率.(2分)(3)试估算盒子里黑、白两种颜色的球各有多少只?(4分)【答案】(1)0.6;(2)0.6.;(3)黑球有16个,白球有24个.【解析】(1)求出所有试验得出来的频率的平均值即可;(2)摸一次的概率和大量实验得出来的概率相同;(3)根据频数=总数×频率进行计算即可.(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)∵白球的频率=0.6,∴白球个数=40×0.6=24,黑球=40-24=16.答:不透明的盒子里黑球有16个,白球有24个.【考点】利用频率估计概率.5.为了了解中学生的体能情况,抽取了某中学八年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频率分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5。
2008年高考数学概率汇编
2008年高考数学概率汇编1. (本小题满分12分)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。
某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望3E ξ=,标准差σξ (Ⅰ)求n,p 的值并写出ξ的分布列;(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率2.(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-.(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元). 3.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为12,且各局胜负相互独立.求: (Ⅰ)打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分别列与期望E ξ.4.(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者. (Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.5.(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。
【八年级】八年级数学下册第8章认识概率测试卷(苏科版含答案)
【八年级】八年级数学下册第8章认识概率测试卷(苏科版含答案)第八单元认识概率综合测试卷一、多项选择题(每题3分,共24分)1.“a是实数,iai≥0”这一事件是()a、不可避免的事件B.不确定的事件c.不可能事件d.随机事件2.在国际乒乓球单打比赛中,如果两名中国选手a和B进入决赛,那么以下项目是不可避免的()a.冠军属于中国选手b.冠军属于外国选手c、冠军属于中国选手a和D。
冠军属于中国选手B3.下列事件是随机事件的是()a、太阳绕着地球转b.小明骑车经过某个十字路口时遇到红灯c、地球的海洋面积比陆地面积大d.李刚的生日是2月30日4.购物中心进行促销抽奖,顾客只需转动转盘一次。
当转盘停止时,只有当指针指向阴影区域时,客户才能获得奖品。
下面有四个相同大小的转盘可供选择,这使得客户最有可能获得奖品()abcd5.从只包含四个红色球的袋子中随机触摸一个球。
如果接触白色球的概率为P1,则接触红色球的概率为p2,则()a、 p1=1,p2=1b,p1=0,p2=1c.p1=0,p2=d.p1=p2=6.如图所示,可自由旋转的转盘分为六个扇形区域,并涂有相应的油漆的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是()a、 b。
c.d.7.掷一个普通的立方体骰子,四名学生分别表达了以下观点:① “奇点”的概率等于“偶点”的概率;② 只要你连续投六次,就得“1分”;③ 投掷前背诵“6分”几遍,投掷结果为“6分”,投掷的可能性增加;④ 连续投掷三次,点数之和不能等于19。
正确意见的数量为()a.1个b.2个c、 3D.48.甲、乙两位同学在一次实验中统计了某一结果出现的频率,给出的统计图如图所示,则与此结果相符的实验可能是()a.掷一枚正六面体的骰子,出现5点的概率b、抛硬币时,正面朝上的概率c.任意写出一个整数,能被2整除的概率d、一个袋子里有两个红色的球和一个黄色的球,颜色不同,其他的都一样。
其中一个是黄色球的可能性二、填空题(每空2分,共24分)9.如果一个学生在期中考试中数学得了100分,那么他在期末考试中数学得了100分能”“可能"或“必然”)10.袋子里有五个红色的球和三个白色的球。
概率论与数理统计模拟试题5套带答案
06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】 ()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ;()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx ee Ax f -+=)(,求: (1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P>.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。
2008年高考数学概率汇编答案
2008年高考数学概率汇编答案1.(1)由233,()(1),2E np np p ξσξ===-=得112p -=,从而16,2n p ==ξ的分布列为ξ123456P164664156420641564664164(2)记”需要补种沙柳”为事件A, 则()(3),P A P ξ=≤得16152021(),6432P A +++==或156121()1(3)16432P A P ξ++=->=-=2.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ,则4~(10)B p ξ,.(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=,2分()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =.(Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+, 盈利的期望为 100001000050E a E ηξ=--,由43~(1010)B ξ-,知,31000010E ξ-=⨯,4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯.0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥15a ⇔≥(元).故每位投保人应交纳的最低保费为15元.3.解:令,,k k k A B C 分别表示甲、乙、丙在第k 局中获胜.(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为12312333111()().224P A C B P B C A +=+=(Ⅱ)ξ的所有可能值为2,3,4,5,6,且121222111(2)()(),222P P A A P B B ξ==+=+=12312333111(3)()().224P P A C C P B C C ξ==+=+=1234123444111(4)()().228P P A C B B P B C A A ξ==+=+=123451234555111(5)()(),2216P P A C B A A P B C A B B ξ==+=+=123451234555111(6)()(),2216P P A C B A C P B C A B C ξ==+=+=故有分布列从而111114723456248161616E ξ=⨯+⨯+⨯+⨯+⨯=(局).4.解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541()40A A P E C A==,即甲、乙两人同时参加A岗位服务的概率是140.(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541()10A P E C A==,所以,甲、乙两人不在同一岗位服务的概率是9()1()10P E P E =-=.(Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务,则235334541(2)4C A P C A ξ===.所以3(1)1(2)4P P ξξ==-==,ξ的分布列是5.解:设“科目A 第一次考试合格”为事件A 1 ,“科目A 补考合格”为事件A 2;“科目B 第一次考试合格”为事件B 1 ,“科目B 补考合格”为事件B 2. (Ⅰ)不需要补考就获得证书的事件为A 1·B 1,注意到A 1与B 1相互独立,则1111211()()()323P A B P A P B =⨯=⨯=g .答:该考生不需要补考就获得证书的概率为13.(Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得1112(2)()()P P A B P A A ξ==+g g2111114.3233399=⨯+⨯=+=112112122(3)()()()P P A B B P A B B P A A B ξ==++g g g g g g 2112111211114,3223223326699=⨯⨯+⨯⨯+⨯⨯=++=12221212(4)()()P P A A B B P A A B B ξ==+g g g g g g 12111211111,3322332218189=⨯⨯⨯+⨯⨯⨯=+= 故4418234.9993E ξ=⨯+⨯+⨯=答:该考生参加考试次数的数学期望为83.6.解:(1)ξ的所有可能取值有6,2,1,-2;126(6)0.63200P ξ===,50(2)0.25200P ξ===20(1)0.1P ξ===,4(2)0.02P ξ=-==,故ξ的分布列为:(2)60.6320.2510.1(2)0.02 4.34E ξ=⨯+⨯+⨯+-⨯= (3)设技术革新后的三等品率为x ,则此时1件产品的平均利润为()60.72(10.70.01)(2)0.01 4.76(00.29)E x x x x =⨯+⨯---+-⨯=-≤≤依题意,() 4.73E x ≥,即4.764x -≥,解得0.03x ≤所以三等品率最多为3%7.解:(Ⅰ)ξ的分布列为:∴1113101234 1.5.22010205E ξ=⨯+⨯+⨯+⨯+⨯= D 2222211131(0 1.5)(1 1.5)(2 1.5)(3 1.5)(4 1.5) 2.75.22010205ξ=-⨯+-⨯+-⨯+-⨯+-⨯=(Ⅱ)由D a D η=ξ2,得a 2×2.75=11,即 2.a =±又,E aE b η=ξ+所以,当a =2时,由1=2×1.5+b ,得b =-2;当a =-2时,由1=-2×1.5+b ,得b =4. ∴2,2a b =⎧⎨=-⎩或2,4a b =-⎧⎨=⎩即为所求.8.解用A ,B ,C 分别表示事件甲、乙、丙面试合格。
概率论与数理统计(B卷)
(3)0.5000 (4)0.954511、设随机变量)50.0,19(~b X ,那么X 最可能取到的数值为【 】。
(1)9.5 (2)10.9 (3)10 (4)912、n X X X ,,,21 是总体X~N(2,σμ)的一个样本,)1/()(212--=∑=n X X S ni i 。
那么统计量2χ= (n-1)2S /2σ~【 】.(1))n (2χ (2))1,0(N (3))1n (2-χ (4))1n (t -13、参数θ的置信区间为【1ˆθ,2ˆθ】,且P {1ˆθ〈θ〈2ˆθ}=0.99,那么置信度为【 】. (1)0。
99 (2)99 (3)0.01 (4)不能确定14、设 X 1, X 2 …,X n 是总体X ~)(λP 的样本,则 X 1, X 2 …,X n 相互独立,且【 】 。
(1)),(~2i σμN X (2)i X ~)(λP(3))(~e i λG X (4)),0(~i λU X15、下列分布中,具备“无后效性”的分布是【 】。
(1)二项分布 (2)均匀分布 (3)指数分布 (4)泊松分布二、多项选择题(从每题后所备的5个选项中,选择至少2个正确的并将代码填题后的括号内,每题1分,本题满分5分)16、如果事件A 、B 相互独立,且P(A )=0。
40,P(B )=0.30,那么【 】。
(1)P(B A -)=0.72 (2)P (A ⋃B )=0。
58 (3)P (A —B )=0.28 (4)P(AB )=0.12 (5)P (A/B )=0。
4017、设随机变量X ~b (20,0.70),那么以下正确的有【 】.(1)EX =14 (2)X 最可能取到14和13 (3)DX = 4.2 (4))0(=X P =2070.0 (5)X 最可能取到15 18、随机变量)144,10(~N X ,那么【 】。
(1)EX =12 (2)144=DX (3)12=DX (4)12=σ (5)2/1)10()10(=<=>X P X P 19、设)25(~,)15(~22χχY X ,且X 与Y 独立,则【 】。
概率论与数理统计(B)试题及答案
概率论与数理统计(B)试题及答案陕西科技⼤学2010级试题纸课程概率论与数理统计(B )班级学号姓名1、A B C 表⽰随机事件,,A B C ⾄少有⼀个不发⽣. ()2、若()1P A =,则A 是必然事件. ()3、若2~(2,1),~(2,0.5)X N Y N -,则(0)0.5P X Y >=+. ()4、X 为随机变量,当12x x <时,则有12()()P X x P X x >≤>.. ( )5、设(,)X Y 是⼆维正态随机变量,则随机变量X 与Y 独⽴的充要条件是cov(,)0X Y =. ..( )⼆、填空题(每⼩题3分,共15分) 1、设,A B 为随机事件,()0.6P A =,()0.4P B =,()0.8P A B = ,则()P B A = .2、在区间(0,1)上随机取两个数,x y ,则关于t 的⼀元⼆次⽅程220t xt y -+=有实根的概率为 .3、设随机变量~()X P λ,且3(0)P X e -==,21Y X =-,则()D Y = .4、设随机变量~(0,1),~(2,1)X N Y N ,且X ,Y 相互独⽴,设随机变量21Z X Y =-+,则Z ~ _ .5、设随机变量X~U[1,2],由切⽐雪夫不等式可得32P X ?-≥≤??.三、选择题(每⼩题3分,共15分)1、对事件,A B ,下列命题中正确的是()A 、若,AB 互斥,则,A B 也互斥. B 、若,A B 互斥,且()0,()0P A P B >>,则,A B 独⽴.C 、若,A B 不互斥,则,A B 也不互斥D 、若,A B 相互独⽴,则,A B 也相互独⽴. 2、设随机变量X 服从正态分布2(2,)N σ,则随σ的增⼤,概率(22)P X σ-<是() A 、单调增加 B 、单调减⼩ C 、保持不变 D 、⽆法判断 3、设(,)F x y 为(,)X Y 的分布函数,则以下结论不成⽴的是()A 、0(,)1F x y ≤≤B 、 (,)1F -∞+∞=C 、(,)0F -∞+∞=D 、 (,)0F -∞-∞=4、把10本书任意地放在书架上,则其中指定的3本书放在⼀起的概率为() A 、115B 、112C 、110D 、185、若121000,...X X X 是相互独⽴的随机变量,且(1,)(1,2,,1000)i X B p i = 则下列说法中不正确的是()A 、1000111000i i X p =≈∑ B 、10001()()()i i P a X b b a =<<≈Φ-Φ∑ C 、10001~(1000,)i i X B p =∑ D、10001()i i P a X b =<<≈Φ-Φ∑四、(12分)设(,)X Y 的联合概率分布如下,求:①()()E X E Y 、②()E XY 、(,)COV X Y③Z X Y =+的概率分布.五、(10分)甲、⼄、丙三⼈同时独⽴地向某⽬标射击,命中率分别为0.3、0.2、0.5,⽬标被命中⼀发⽽被击毁的概率为0.2,⽬标被命中两发⽽被击毁的概率为0.6,⽬标被被命中三发则⼀定被击毁,求三⼈在⼀次射击中击毁⽬标的概率.六、(16分)设随机变量X 的概率密度为()2,100,10Ax f x x x ?>?=??≤?,求:①A ; ②(15)P x <; ③求X 的分布函数()F x ; ④设2Y X =,求Y 的概率密度.七、(16分)设⼆维随机变量()Y X ,的概率密度为()22,01,0,0,y e x y f x y -?≤≤>=??其它求:① (2)P Y X ≥; ②关于X 与Y 的边缘概率密度; ③X 与Y 是否独⽴?为什么?④(24)E X Y +.⼋、(6分)设X 与Y 相互独⽴,其分布函数分别为()X F x 、()Y F x .证明:随机变量X 与Y 的最⼤值max(,)U X Y =分布函数为()()X Y F u F u ?.2010级概率论与数理统计(B )试题答案⼀、√; ×; ×; ×; √ ⼆、1/3; 1/3; 12;N(-1,5); 1/6 三、D ; C ; B ; A ;B 四·(,)()()()5/144COV X Y E XY E X E Y =-=-…………………………2分五、解:设A :甲击中;B :⼄击中;C :丙击中 i D :击中i 发,(1,2,3)i =;E :击毁⽬标1()()0.47P D P ABC ABC ABC =++= 2()()0.22P D P ABC ABC ABC =+++=3()()0.03P D P ABC ==………………………………………………5分31()()()0.470.20.220.60.0310.256i i i P E P D P E D ===?+?+?=∑…………………………5分5/12EX =…………………………2分1/12EY =…………………………2分②()0E XY =…………………………2分③……………………………4分六、①2101Adx x +∞=?,则A =10 ……………………………………………4分②1521010(15)1/3P x dx x <==?……………………………………………4分③ 10,()0x F x <=210101010,()()1xxx F x f x dx dx x x -∞≥===-?…………………………4分④20,()0Y y F y <=22101020,()()()2yY y y F y P Y y P X dxx ≥=≤=≤=?20,20()[()]20/,20Y Y y f y F y y y ≤?'==?>? ………………………………… 4分七、①412021(2)24yxe P Y x dx edy -+∞--≥==………………………………… 4分②1,01()(,)0,X x f x f x y dy +∞-∞≤≤?==?其它22,0()(,)0,0y Y e y f y f x y dx y -+∞-∞>==≤??…………………………… 4分③ X 与Y 独⽴. 因为(,)()()X Y f x y f x f y = …………………………… 4分④ 11(24)2424322E X Y EX EY +=+=?+?= ……………………… 4分⼋、证明:()()(max(,))(,)U F u P U u P X Y u P X u Y u =≤=≤=≤≤………… 3分()()()()X Y P X U P Y U F u F u =≤≤= ……………………… 3 分陕西科技⼤学2011级试题纸课程概率论与数理统计(B )班级学号姓名1.设()1P AB =,则事件A 必然发⽣且事件B 必然不发⽣。
08年概率B试卷
7.若随机变量 与 ,满足 ,相关系数 ,则 .
8.若随机变量 的数学期望 ,方差 ,用切比雪夫不等式估计 .
得分
二、甲组有3男生1女生,乙组有1男生3女生,今从甲组中随机抽一人编入乙组,然后再从乙组随机抽一人编入甲组,求(1)甲组仍为3男生1女生的概率;(2)甲组为4男生的概率.(10分)
得分
九、设连续型随机变量 的概率密度为: ,且 ,
求常数 和 .(6分)
得分
六、若随机变量 的分布函数为 ,
(1)求常数 ;(2)求数学期望 .(10分)
参考数据: ; ; ;
得分
七、设随机变量 服从正态分布 ,求 ,使概率 .(8分)
得分
八、某保险公司多年的资料表明,在索赔户中被盗索赔户占20% ,用 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出 的概率分布;(2)利用中心极限定理求被盗索赔户中不少于14户且不多于30户的概率近似值.(8分)
题号
一
二
三
四
五
六
七
八
九
总分
得分
阅卷
复核
得分
一、填空题(每小题4分,共32分)
1.设 是两个随机事件, ,则 =;
2.盒子中有3取相同颜色球的概率 =.
3.已知 , ,则 .
4.已知 , ,且 与 相互独立,则 .
5.若随机变量 服从泊松分布 ,则概率 =.
得分
三、一个袋中有5个球,编号为1,2,3,4,5,在其中同时取3个球,以 表示取出的3个球中的最大号码,试求 的概率分布(8分)
得分
四、设随机变量 的分布函数为 , ,
(1)求 的值;(2)求概率密度 ;(3)求概率 .(10分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州大学 2008---2009 学年第 一 学期考试卷
概率论与数理统计参考解答与评分标准
一. 填空题(每小题3分,共计15分)
1.设A ,B ,C 表示三个随机事件, 则三个事件至少有一个发生表示为A B C 2.设A 与B 互不相容,()04.P A = , ()05.P B =, 则()P A B = 09. 3.设X 为连续型随机变量, a 为某个常数, 则()P X a ==0 4.设X 服从二项分布(10,02).B ,则2()E X = 56.
5.设X 与Y 相互独立,且()3D X =,()2D Y =,则(2)D X Y += 14 二.单项选择题(每小题3分,共计15分)
1.设Y X ,为随机变量,则事件{1,1}X Y <≤的逆事件为【 A 】 (A )}1{}1{>≥Y X (B ){1,1}X Y ≥> (C ){1,1}X Y ≥≤ (D ){1,1}X Y <>
2.设A 、B 是随机事件,且B A ⊂,()0P B >,则下列式子正确的是【 B 】. (A )()(|)P A P A B < (B )()(|)P A P A B ≤
(C )()(|)P A P A B > (D )()(|)P A P A B ≥
3.设随机变量X 的分布律为()2
k c
P X k ==
,(0,1,2,3,4k =),则c =【 D 】 (A ) 12 (B ) 1615 (C ) 1 (D ) 1631
4.设甲、乙二人独立地向同一目标各射击1次, 其命中率分别为06.和05.,
则目标被击中的概率是【 C 】
(A ) 01. (B ) 03. (C ) 08. (D ) 06. 5. 设随机变量X 和Y 不相关,则下列结论中正确的是【 B 】 (A )X 与Y 相互独立 (B )()D X Y DX DY -=+ (C )()D X Y DX DY -=- (D )()D XY DX DY =⋅ 三.解答下列各题(每小题8分,共计24分)
1.设一口袋装有5只红球及2只白球,从袋中任取一只球,看过颜色后放回袋中,
再从袋中任取一只球,求下列事件的概率:
(1)第一次、第二次都取到红球 (2)取出两只球中一只是红球, 一只是白球 解:(1)设A 表示第一次、第二次都取到红球,
5525
()7749
P A ⨯=
=⨯ ……………………………………………… 4分
(2)设B 表示取出两只球中一只是红球, 一只是白球
522520
()7749
P B ⨯+⨯==⨯ ………………………………………… 8分
2.某工厂有两个车间生产同型号的家用电器,第1车间产品的合格率为085.,
第2车间的产品合格率为088.,两个车间生产的产品混合堆放在一个仓库中, 假设第1、2车间生产的成品比例为23:,今从成品仓库中随机取一件产品, 求该产品是合格品的概率
解:设1A 、2A 分别表示第1、2车间的产品,
B 表示取到的产品为合格品
则12B A B A B = 由全概率公式
2
1()()(|)k k k P B P A P B A ==∑………………………………………… 3分
23
08508855
..=⨯+⨯
0868.=…………………………………………………………8分
3.设随机变量X 服从参数为λ的泊松分布()P λ,且(1)(2)P X P X ===,
求(1)λ的值 (2)(1)P X ≥ 解:(1)X 的分布律为()(0,1,2,)!
k
P X k e k k λ
λ-==
= ……………2分
2
(1)(2)
1!
2!
e P X P X e λ
λ
λ
λ--=====
得2λ= ……………………………………………………………4分 (2)(1)1(1)P X P X ≥=-<1(0)P X =-=……………………………6分
02
22110!
e e --=-=- ………………………………………8分
四.解答下列各题(每小题8分,共计16分) 1.已知X 的分布律为
(1) 求2Y X =的分布律 (2) 求X 的数学期望与方差 解:
X
………………………………4分
(2)()21/6(1)2/601/612/61/3E X =-⨯+-⨯+⨯+⨯=-………………6分
2
2
2
2
2
()(2)1/6(1)2/601/612/64/3E X =-⨯+-⨯+⨯+⨯=
2
2
()()(())4/31/911/9D X E X E X =-=-=…………………………8分
2.设随机变量X 的密度函数为cos 02
() 0 k x x f x π<<⎧=⎨⎩其 它,
(1)求常数k (2)求X 的分布函数()F x 解:(1)/2
1()cos f x dx k xdx k π+∞-∞
===⎰
⎰
得1k =……………………………4分
(2)0 0 0
()()cos 0/2 1 /2
()x
x x F x P X x x dx x x f x dx ππ-∞
<⎧⎪⎪=≤=≤<⎨⎪≥⎪⎩=⎰⎰…………………6分
s i n 0/2 1 /2x x x x ππ<⎧⎪
=≤<⎨⎪≥⎩
…………………………………………………8分
五.(本题8分)设随机变量X 的密度函数为2100
100()0 x f x x ⎧>⎪
=⎨⎪⎩其 他
Y 表示对X 进行三次独立重复观测中事件{150}X >出现的次数
求(1)(150)P X > (2)(2)P Y < 解:(1)2150
1502
(150)3
100()P X dx f x dx x +∞+∞
>===⎰
⎰
………………………4分
(2)Y 服从二项分布(3,2/3)B
(2)(0)(1P Y P Y P Y <==+=……………………………………………6分
31
231
217()()3
3327
C =+⨯
⨯=…………………………………………8分
六.(本题12分)已知(,)X Y 的联合密度函数为8 01,0(,)0 x y x y x
f x y <<<<⎧=⎨⎩其 他
(1)求X 的边缘密度函数(2)求Y 的边缘密度函数(3)X 与Y 是否相互独立
解:(1)308 014 01
() 0 0 (,)x
X x y dy x x x f x f x y dy +∞-∞⎧⎧<<<<⎪==⎨⎨
⎩
⎪⎩=⎰⎰其 他其 他 ………4分
(2)128 014(1) 01
() 0 0 (,)y Y x y dx y y y y f y f x y dx +∞
-∞
⎧<<⎧-<<⎪
=
=⎨⎨⎩
⎪⎩=⎰⎰其 他其 他 ……8分
(3)由于12121
(1/2)(3/4)21632
X Y f f ⋅=⨯= (1/2,3/4)f =
得(1/2,3/4)(1/2)(3/4)X Y f f f ≠⋅
所以X 与Y 不相互独立 ……………………………………………………12分
七.(本题10分)公共汽车的车门高度是按男子与车门碰头的机会在1%以下来设计的,设男子身高服从2(170,6)N 的正态分布(单位:cm ), 问车门的高度应是多少?
附:标准正态分布数值表
2/2()
z u z du -Φ=⎰
解:设男子身高为X 厘米,车门高度为h 厘米,由题意2~(170,6)X N
()1%0.01P X h ><= ……………………………………………3分 ()1()1001099..P X h P X h ≤=->>-= 170
(
)0996
.h -Φ> …………………………………………………6分 查表得(2.32)0.9898Φ=,(233)099..Φ=01
所以
170
2336
.h -≥ 得623317018398..h ≥⨯+=(厘米) 车门的高度应高于18398.厘米 ……………………………………10分。