哈工大大学物理学第1章--质点运动学剖析
大一物理质点运动学知识点
大一物理质点运动学知识点物理学是一门研究物质运动与相互作用的科学。
而作为物理学的基础,运动学研究物体运动的规律和性质,其中质点运动学是运动学的一部分,专门研究质点的运动规律。
下面将对大一物理中的质点运动学知识点进行详细阐述。
一、坐标系和参考系在研究质点的运动时,我们通常需要建立适合描述问题的坐标系和参考系。
坐标系确定了质点在空间中的位置,并提供了刻画质点位置变化的数学工具。
参考系则是观察和测量质点运动的基准。
二、位移和位移矢量位移是质点运动过程中位置发生变化的表示,通常用Δx表示。
位移矢量则是用来表示位移的矢量,具有大小和方向,并用Δr表示。
三、速度和速度矢量速度是描述质点在单位时间内位移变化的物理量,通常用v表示。
速度矢量则是用来表示速度的矢量,具有大小和方向,并用v 表示。
四、加速度和加速度矢量加速度是描述质点在单位时间内速度变化的物理量,通常用a表示。
加速度矢量则是用来表示加速度的矢量,具有大小和方向,并用a表示。
五、匀速直线运动在匀速直线运动中,质点以恒定的速度沿直线运动。
在这种情况下,位移、速度和加速度都具有确定的性质,它们之间存在简单的数量关系。
六、匀加速直线运动在匀加速直线运动中,质点的加速度保持恒定,速度随着时间的变化而线性增加或减少。
在这种情况下,位移、速度和加速度的数量关系更加复杂,需要借助数学公式进行计算。
七、自由落体运动自由落体是指在重力作用下质点自由地垂直向下运动的过程。
在自由落体运动中,重力是主要的作用力,忽略其他阻碍因素,质点的运动规律可以通过运动学方程进行描述。
八、斜抛运动斜抛运动是指质点在斜向上抛的过程中,既有初速度在水平方向上的匀速运动,又有受重力作用在竖直方向上的自由落体运动。
在斜抛运动中,位移、速度和加速度都具有分解成水平和竖直两个方向的分量。
以上介绍的是大一物理中质点运动学的基本知识点。
掌握了这些知识,可以帮助我们更好地理解和分析物体的运动规律,解决与质点运动相关的问题。
大学物理第1章质点运动学
大学物理第1章质点运动学质点运动学是物理学中研究物体运动的学科,它是物理学的一个重要分支,是学习物理的基础之一。
一、质点运动学的概念质点运动学是研究质点运动的学科,它把物体看作质点,即把物体看成一个点,而不考虑其体积大小。
质点运动学的主要研究内容包括:位置、速度、加速度等运动量的描述,以及运动的曲线形状、动量、能量等方面的分析。
二、质点的运动质点的运动可以分为匀速运动和非匀速运动两种情况。
1.匀速运动匀速运动是指质点在单位时间内沿着同一直线等距离地移动的运动。
匀速运动的速度大小是恒定的,可以用速度公式v=d/t来计算。
2.非匀速运动非匀速运动是指质点在单位时间内沿任意曲线路径移动的运动。
非匀速运动中质点的速度大小是变化的,需要用微积分的方法进行分析和计算。
三、质点运动中的基本物理量在质点运动中,需要描述质点的运动状态和变化情况。
主要的量包括:1.位置位置是指质点在空间中所处的位置,通常使用坐标表示。
我们可以通过坐标系建立一个参照系,来描述质点的位置。
2.位移位移是指质点从一个位置到另一个位置的距离和方向,通常用符号Δr表示。
位移的大小可以用位移公式Δr=r2-r1来计算。
3.速度速度是指质点在单位时间内所改变的位置,通常用符号v 表示。
速度的大小可以用速度公式v=Δr/Δt来计算。
4.加速度加速度是指质点在单位时间内速度所改变的量,通常用符号a表示。
加速度的大小可以用加速度公式a=Δv/Δt来计算。
四、质点的曲线运动在质点运动中,一些运动路径可能是曲线运动。
曲线运动的路径通常可以用弧长s、曲率半径r、圆心角等来表征。
1.弧长弧长是指质点在曲线路径上所走过的曲线长度,通常用符号s表示。
弧长的大小可以用弧长公式s=rθ来计算。
2.曲率半径曲率半径是指曲线在任一点上的曲率半径,通常用符号r 表示。
曲率半径可以根据曲线的形状计算得出。
3.圆心角圆心角是指质点所在的路径所对应的圆所对应的圆心角度数,通常用符号θ表示。
大学物理第一章-质点运动学和第二章-质点动力学基础
位移的大小为
2 2 2 r x y z
z
路程是质点经过实际路径的长
度。路程是标量。
注意区分 Δ r 、r
Δr
Δr r ( A)
o x
A ΔS
B
r ( B) y
rA
o
rB
Δ
r
3. 速率和速度 速度是描述质点位置随时间变化快慢和方向的物理量。
平均速度
青年牛顿1666年6月22日至1667年3月25日两度回到乡间的老家1665年获学士学位1661年考入剑桥大学三一学院牛顿简介1667年牛顿返回剑桥大学当研究生次年获得硕士学位1669年发明了二项式定理1669年由于巴洛的推荐接受了卢卡斯数学讲座的职务全面丰收的时期16421672年进行了光谱色分析试验1672年由于制造反射望远镜的成就被接纳为伦敦皇家学会会员1680年前后提出万有引力理论1687年出版了自然哲学的数学原理牛顿简介牛顿第一定律
g
v v g
v
v g 远日点 g v
g v g g g g g v
v
近日点
v
v
思考题 质点作曲线运动,判断下列说法的正误。
r r s r
r r
s r
s r
Δr
矢量的矢积(或称叉积 、叉乘)
C A B
大小:C AB sin
方向:右手螺旋
C
B
矢积性质:A B B A A C ( A B) C A C B 可以得到:i j k , j k i , k i j . k i i 0, j j 0, k k 0
大学物理第1章质点运动学
二、位置矢量 、位移、速度、加速度
1. 位置矢量 在选定的参考系中 建立坐标系如图,在时 刻t,质点P在坐标系中 的位置可用坐标 (x,y,z) 表示,也可用矢量 r ( t ) 来表示,该矢量称位置 矢量。
y
P( x , y , z )
r( t )
j
0
k i
x
z
r x2 y2 z2
r xi y j zk
d ( xi y j zk ) dt dx dy dz i j k dt dt dt
A AB
B
0
r( t2 )
x
z
v v x v y vz
v v
称速率。
v x i v y j vz k
例1 设质点的运动方程为 r(t ) x(t )i y(t ) j ,其中
v
v a 的方向 沿半径指向圆心, 称向心加速度。a n R t 0 时 0 a vA
t 0
t
t
R
R 2
二、变速圆周运动
vA vA
在三角形CDE中,取CE上一点F,
v B 使CF = CD = vA,则FE = vB - vA
vA
C
v v B v B v A v v A v v v B A 令 令 o v v B v DF DF FE 令v n v t A FE v n vt DF FE v n v t 令 v v FE Alim v v v v B DF Av v B a nv v t t改变了速度方向 a lim 令t 0 v 令 v t 0 t lim a D 0 t v DF a lim DF v t v改变了速度大小 FE v n FE vtn nt t v t t 0 v n v t lim an at v v limvt 0 v vt at t 0t t n an v lim v t lim v na t 0 t a nt t lim a tt lim t t t a n a t v t t 0 t 0 t t a n 0 v n E v t v n t F vB lim a n av t t 0 t lim t an at
大学物理第1章质点运动学
则有
ax 2 R cost;
a y 2 R sint
加速度的大小
2 2 2 2 2 2 a ax a2 ( R cos t ) ( R sin t ) R y
根据矢量的点积运算,分别计算
v r [(R sint )i (R cost ) j ] [(R cost )i ( R sint ) j ] 0 2 2 v a [(R sint )i (R cost ) j ] [( R cost )i ( R sint ) j ] 0
大学物理
第一章 质点运动学
1.1 运动学的一些基本概念 1.1.1、参考系(reference frame)和坐标系(coordinate) 参考系:为了描述物体的运动而选取的参考标准物体。 (运动描述的相对性) 坐标系:直角坐标系、自然坐标系、极坐标系、球坐标系等. 说明 在运动学中,参考系的选择是任意的;在动力学中则不然 1.1.2、时间和空间的计量 1、时间及其计量 时间表征物理事件的顺序性和物质运动的持续性。时间测量的 标准单位是秒。1967年定义秒为铯—133原子基态的两个超精细 能级之间跃迁辐射周期的9192631770倍。量度时间范围从宇宙 年龄1018s(约200亿年)到微观粒子的最短寿命 10-24s.极限的时 间间隔为普朗克时间10-43s,小于此时间,现有的时间概念就不适 用了。
运动学中的两类问题
1、已知质点的运动学方程求质点的速度、加速度等问
题常称为运动学第一类问题.
r r (t )
微分
v, a
2、由加速度和初始条件求速度方程和运动方程的问题称 为运动学的第二类问题.
a , v0 , r0
大学物理课后习题答案解析详解
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置 : 22(48)r ti t j =+-r r r由d /d v r t =r r 则速度: 28v i tj =+r r r由d /d a v t =r r 则加速度: 8a j =r r则当t=1s 时,有 24,28,8r i j v i j a j =-=+=r r r r r rr r当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r rr r 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dtdv -= ⎰⎰-=t v v kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt e v dx t k t x -⎰⎰=000 )1(0t k e k v x --=3、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x10 m处,初速度v 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d d r t v ,d d v t v,tvd d .解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+v v v(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t=v v v 而落地所用时间 gh2t =所以 0d 2gh d r v i j t =v vd d v g j t=-v v 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+vv v ,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理第一章质点运动学
∫ d x = ∫ (2t −t )dt
2 0 0
t
质点的运动方程
13 x = t − t (m) ) 3
2
(3) 质点在前三秒内经历的路程
s = ∫ vdt = ∫ 2t − t 2 dt
0 0
3
3
令 v =2t-t 2 =0 ,得 t =2
8 s = ∫ (2t − t )dt + ∫ (t − 2t)dt = m 0 2 3
初始条件为x 初始条件为 0=0, v0=0 质点在第一秒末的速度;(2)运动方程;(3)质点在前三秒内 运动方程; 质点在前三秒内 运动方程 求 (1) 质点在第一秒末的速度 运动的路程。 运动的路程。 解 (1) 求质点在任意时刻的速度 dv dv a= = 2 − 2t 由 dt dv = (2 − 2t) dt 分离变量 两边积分
y
P点在 系和 '系的空间坐标 、 点在K系和 系的空间坐标、 点在 系和K 时间坐标的对应关系为: 时间坐标的对应关系为:
y'
r v
P
}
r r
o z
r r′
o' x x'
r R
z'
伽利略坐标变换式
2. 速度变换 r r vK、vK′ 分别表示质点在两个坐标系中的速度 r r r d r ′ d(r − vt) r r r vK′ = = = vK − v dr′ r dt t r 即 vK′ = vK − v r r r vK = vK′ + v 伽利略速度变换
dv = g − Bv dt 分离变量并两边积分
t dv ∫0 g - Bv = ∫0 dt v
g v = (1− e−Bt ) B
大学物理第1章质点运动学的描述
t0
0 2 4
t 2s 4
2
t 2s
x/m
6
-6 -4 -2
例3 如图所示, A、B 两物体由一长为 l 的刚性 细杆相连, A、B 两物体可在光滑轨道上滑行.如物体 A以恒定的速率 v 向左滑行, 当 60 时, 物体B的 速率为多少? 解 建立坐标系如图, 物体A 的速度
1. 5 arctan 56.3 1
(2) 运动方程
x(t ) (1m s )t 2m
y(t ) ( m s )t 2m
1 4 2 2
1
由运动方程消去参数
1 -1 2 y ( m ) x x 3m 4
轨迹图
t 4s
6
t 可得轨迹方程为
y/m
三、位置变化的快慢——速度
速度是描写质点位置变化快慢和方向的物理量,是矢量。
速率是描写质点运动路程随时间变化快慢的物理量,是标量。 1 平均速度 在t 时间内, 质点从点 A 运动到点 B, 其位移为
B
y
r r (t t) r (t)
r (t t)
s r
质点是经过科学抽象而形成的理想化的物理模 型 . 目的是为了突出研究对象的主要性质 , 暂不考 虑一些次要的因素 .
二、位置矢量、运动方程、位移
1 位置矢量
确定质点P某一时刻在 坐标系里的位置的物理量称 . 位置矢量, 简称位矢 r
y
y j
r xi yj zk
j k 式中 i 、 、 分别为x、y、z
xA xB xB x A
yB y A
o
x
经过时间间隔 t 后, 质点位置矢量发生变化, 由 始点 A 指向终点 B 的有向线段 AB 称为点 A 到 B 的 位移矢量 r . 位移矢量也简称位移.
大学物理第1章-质点运动学
x2 x1 x2 = l h
(h l)x2 = hx1
h l
解题思路 1. 写出几何长度关系 写出几何长度关系; 2. 确定变量 确定变量; 两边求导: 两边求导: 3. 写出求导关系式 写出求导关系式; 4. 明确求导物理意义 明确求导物理意义;
dx2 dx1 o x1 x2 x (h l) =h dt dt dx2 dx1 hv0 其中: =v , = v0 v = dt dt h l
瞬时速率: 瞬时速率:
s ds v = lim = t dt t →0
v r
B
一般情况: 一般情况: 当t→0时: → 时
v v r ≠ s 因此 v ≠ v
v v v r → dr = ds 则 v = v
1-2-4 加速度
加速度是反映速度变化的物理量 v t1时刻,质点速为 v1 时刻, v t2时刻,质点速度为 v2 时刻, t 时间内,速度增量为: 时间内,速度增量为:
大学物理学教案
第一章
质点运动学
机械运动
一个物体相对于另一个物体的空间位置 随时间发生变化; 随时间发生变化; 或一个物体的某一部分相 对于其另一部分的位置随时间而发生变化的 运动。 运动。
力学
研究物体机械运动及其规律的学科。 研究物体机械运动及其规律的学科。
运动学: 运动学:
研究物体在空间的位置随时间的变化规 律以及运动的轨道问题, 律以及运动的轨道问题,而并不涉及物体发 生机械运动的变化原因。 生机械运动的变化原因。
v tv ∫v dr = ∫ vdt
r0 t0
v0 v r
t0
匀加速运动
dv = adt ,
∫
v
v0
dv = ∫ adt
哈工大大学物理课件(马文蔚教材)-第1章力学
1-2
加速度为恒矢量时的质点运动
dv adt
瞬时速度矢量
r r0
v
v0
dv adt
0 t
t
v v0 at
由
v v0 at
dr (v0 at )dt
0
1 2 r r0 v0t at 2
位移
dr (t ) v dt
j
该式也叫质点的运动函数或运动方程。
r x2 y 2 z 2 x y z cos cos cos r r r
四.位移:
A Z z
y
P
o
r
n
A
x
B
k
M
i
B
X
S
r r (t t ) r (t ) r2 r1 ( x2 x1 )i ( y2 y1 ) j ( z2 z1 )k
dv x d 2 x ax 2 dt dt dv y d 2 y ay 2 dt dt dvz d 2 z az 2 dt dt
质点运动状态
质点运动学中的正反问题: 位矢 r (t )
{
dr ( t ) 瞬时速度矢量 v dt
质点运动状态变化
{
位移
dv d 2 r ( t ) 瞬时加速度矢量 a dt dt 2
d dx dy dz ( xi yj zk ) i j k dt dt dt dt
dx vx dt dy vy dt dz vz dt
质点运动学中: 质点运动状态
{
位矢
大学物理第一章质点运动学讲义
质点运动学的重要概念
位移
质点的位移是指质点在某一时刻相对 于参考点的位置变化量。
速度
质点的速度是指质点在某一时刻相对 于参考点的位置变化率。
加速度
质点的加速度是指质点在某一时刻相 对于参考点的速度变化率。
相对速度和相对加速度
当存在多个质点时,需要引入相对速 度和相对加速度的概念,以描述不同 质点之间的相对运动关系。
伽利略变换适用于低速运动,即速度远小于光速的情况。在 高速运动或引力场中,需要使用爱因斯坦的相对论变换。
牛顿运动定律的相对性
01
牛顿第一定律
一个质点将保持其运动状态,除非受到外力作用。在相对运动的参考系
中,牛顿第一定律速度与作用力成正比,与质量成反比。在相对运动的参考系中,
质点的描述主要包括位置、速度和加速度等基本参数,这些参数随时间变化而变 化,描述质点的运动状态。
质点运动的基本参数
位置
质点的位置可以用空间坐标来表示,通常用三维 坐标系中的坐标值描述。
速度
质点的速度是描述质点运动快慢和方向的物理量, 用矢量表示,包括大小和方向。
加速度
质点的加速度是描述质点速度变化快慢的物理量, 也是矢量,包括大小和方向。
描述一个质点相对于另一个质点的运 动速度。当两个质点相对运动时,它 们的相对速度取决于它们各自的运动 状态和方向。
相对加速度
描述一个质点相对于另一个质点的加 速度。相对加速度的大小和方向与两 个质点的相对速度有关,并影响它们 之间的相对位置和运动轨迹。
伽利略变换
伽利略变换是描述两个相对运动的惯性参考系之间关系的数 学公式。通过伽利略变换,可以计算一个质点在另一个质点 的参考系中的位置、速度和加速度。
大学物理第一章质点运动 学讲义
大学物理 第一章 质点运动学 1-1 质点运动的描述
(2)作出质点的运动轨迹图.
r(t) 求导 vv(t) 求导 a(t)
积分
积分
第一章 质点运动学
16
物理学
第五版
1-1 质点运动的描述
已知:x(t) 1.0t 2.0,y(t) 0.25t 2 2.0,
解 (1) 由题意可得
vx
dx dt
1.0, vy
dy dt
0.5t
v vx i vy j 1.0i 0.5t j
r , r ,r
的意义不同.
r
xi
yj
zk
r x2 y2 z2
r p1 p2
z
y
P1
r1
O
r P2
rp2 3 r
x
Δr r2 r1 x22 y22 z22 x12 y12 z12
op2 op1
第一章 质点运动学
6
物理学
第五版
1-1 质点运动的描述
4 路程(s)
从P1到P2:
第一章 质点运动学
19
物理学
第五版
1-1 质点运动的描述
例2(书P7例题2) y
如图A、B 两物体由一
B
长为 l 的刚性细杆相
连,A、B 两物体可在
l
光滑轨道上滑行.如
物体 A以恒定的速率 v
o
向左滑行, 当 60o
A
v x
时, 物 体B的速率为多少?
第一章 质点运动学
20
物理学
第五版
1-1 质点运动的描述
v1
a1
a2
v2
第一章 质点运动学
14
物理学
第五版
1-1 质点运动的描述
大学物理第一章质点运动学习题解详细完整
第一章 质点运动学1–1 描写质点运动状态的物理量是 ;解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”;1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动;解:匀速率;直线;匀速直线;匀速圆周;1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 )m/s 102=g ;解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________;解:将s t 1=代入t x 2=,229t y -=得2=x m,7=y ms t 1=故时质点的位置矢量为j i r 72+=m由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v m/s质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2;1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________;解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=s ;1–6 一质点作半径R =的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计;则当t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________;法向加速度为__________;解: t =2s 时,质点的角位置为=⨯+⨯=23223θ22rad由t t 323+=θ得任意时刻的角速度大小为36d d 2+==t tθω t =2s 时角速度为 =+⨯=3262ω27rad/s任意时刻的角速度大小为t t12d d ==ωα t =2s 时角加速度为 212⨯=α=24rad/s 2t =2s 时切向加速度为=⨯⨯==2120.1t αR a 24m/s 2t =2s 时法向加速度为=⨯==22n 270.1ωR a 729m/s 2;1–7 下列各种情况中,说法错误的是 ;A .一物体具有恒定的速率,但仍有变化的速度B .一物体具有恒定的速度,但仍有变化的速率C .一物体具有加速度,而其速度可以为零D .一物体速率减小,但其加速度可以增大解:一质点有恒定的速率,但速度的方向可以发生变化,故速度可以变化;一质点具有加速度,说明其速度的变化不为零,但此时的速度可以为零;当加速度的值为负时,质点的速率减小,加速度的值可以增大,所以A 、C 和D 都是正确的,只有B 是错误的,故选B;1–8 一个质点作圆周运动时,下列说法中正确的是 ;A .切向加速度一定改变,法向加速度也改变B .切向加速度可能不变,法向加速度一定改变C .切向加速度可能不变,法向加速度不变D .切向加速度一定改变,法向加速度不变解:无论质点是作匀速圆周运动或是作变速圆周运动,法向加速度a n 都是变化的,因此至少其方向在不断变化;而切向加速度a t 是否变化,要视具体情况而定;质点作匀速圆周运动时,其切向加速度为零,保持不变;当质点作匀变速圆周运动时,a t 值为不为零的恒量,但方向变化;当质点作一般的变速圆周运动时,a t 值为不为零变量,方向同样发生变化;由此可见,应选B;1–9 一运动质点某瞬时位于位置矢量),(y x r 的端点处,对其速度大小有四种意见: 1t r d d 2t d d r 3t s d d 422d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 下述判断正确的是 ;A .只有1,2正确B .只有2,3正确C .只有3,4正确D .只有1,3正确 解:tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中为质点的径向速度,是速度矢量沿径向的分量;t d d r 表示速度矢量;t s d d 是在自然坐标系中计算速度大小的公式;22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 是在真角坐标系中计算速度大小的公式;故应选C;1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=其中a 、b 为常量,则该质点作 ;A .匀速直线运动B .变速直线运动C .抛物线运动D .一般曲线运动解:由j i r 22bt at +=可计算出质点的速度为j i bt at 22+=v ,加速度为j i b a 22+=a ;因质点的速度变化,加速度的大小和方向都不变,故质点应作变速直线运动;故选B;1–11 一小球沿斜面向上运动,其运动方程为S =5+4t –t 2SI,则小球运动到最高点的时刻是 ;A .t =4sB .t =2sC .t =8sD .t =5s解:小球到最高点时,速度应为零;由其运动方程为S =5+4t –t 2,利用ts d d =v 得任意时刻的速度为 t 24-=v令024=-=t v ,得s 2=t故选B;1–12 如图1-1所示,小球位于距墙MO 和地面NO 等远的一点A ,在球的右边,紧靠小球有一点光源S 当小球以速度V 0水平抛出,恰好落在墙角O 处;当小球在空中运动时,在墙上就有球的影子由上向下运动,其影子中心的运动是 ;A .匀速直线运动B .匀加速直线运动,加速度小于gC .自由落体运动D .变加速运动解:设A 到墙之间距离为d ;小球经t 时间自A 运动至B;此时影子在竖直方向的位移为S ;t V x 0=, 221gt y = 根据三角形相似得d S x y //=,所以得影子位移为2/V gt x yd S == 由此可见影子在竖直方向作速度为02V g 的匀速直线运动;故选A;1–13 在相对地面静止的坐标系内,A 、B 二船都以2m/s 的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向;今在A 船上设置与静止坐标系方向相同的坐标系x 、y 方向单位矢量用i 、j 表示,那么在A 船上的坐标系中,B 船的速度以m/s 为单位为 ;A .j i 22+B .j i 22+-C .j i 22--D .j i 22+解:选B 船为运动物体,则B 船相对于地的速度为绝对速度j 2=v ,A 船相对于地的速度为牵连速度i 2=0v ,则在A 船的坐标系中,B 船相对于A 船的速度为相对速度v ';因v v v 0'+=,故j i 22+-='v ,因此应选B1–14 2004年1月25日,继“勇气”号之后,“机遇”号火星探测器再次成功登陆火星;在人类成功登陆火星之前,人类为了探测距离地球大约5103⨯km 的月球,也发射了一种类似四轮小车的月球探测器;它能够在自动导航系统的控制下行走,且每隔10s 向地球发射一次信号;探测器上还装着两个相同的减速器其中一个是备用的,这种减速器可提供的最大加速度为5m/s 2;某次探测器的自动导航系统出现故障,从而使探测器只能匀速前进而不再能自动避开障碍物;此时地球上的科学家必须对探测器进行人工遥控操作;下表为控制中心的显示屏的数据:图1-1y BM9:10:40 12 已知控制中心的信号发射与接收设备工作速度极快;科学家每次分析数据并输入命令最少需要3s;问: 1经过数据分析,你认为减速器是否执行了减速命令2假如你是控制中心的工作人员,应采取怎样的措施加速度需满足什么条件,才可使探测器不与障碍物相撞请计算说明;解:1设在地球和月球之间传播电磁波需时为0t ,则有s 10==c s t 月地从前两次收到的信号可知:探测器的速度为m/s 21032521=-=v 由题意可知,从发射信号到探测器收到信号并执行命令的时刻为9:10:34;控制中心第3次收到的信号是探测器在9:10:39发出的;从后两次收到的信号可知探测器的速度为m/s 2101232=-=v 可见,探测器速度未变,并未执行命令而减速;减速器出现故障;(2)应启用另一个备用减速器;再经过3s 分析数据和1s 接收时间,探测器在9:10:44执行命令,此时距前方障碍物距离s =2m;设定减速器加速度为a ,则有222≤=as v m,可得1≥a m/s 2,即只要设定加速度1≥a m/s 2,便可使探测器不与障碍物相撞;1–15 阿波罗16号是阿波罗计划中的第十次载人航天任务1972年4月16日,也是人类历史上第五次成功登月的任务;1972年4月27日成功返回;照片图1-2显示阿波罗宇航员在月球上跳跃并向人们致意;视频显示表明,宇航员在月球上空停留的时间是;已知月球的重力加速度是地球重力加速度的1/6;试计算宇航员在月球上跳起的高度;解:宇航员在月球上跳起可看成竖直上抛运动,由已知宇航员在空中停留的时间为,故宇航员从跳起最高处下落到月球表面的时间为t =,由于月球的重力加速度是地球的重力加速度的1/6,即g g 61M =,所以 m 43.0725.08.961212122M =⨯⨯⨯==t g h1–16 气球上吊一重物,以速度0v 从地面匀速竖直上升,经过时间t 重物落回地面;不计空气对物体的阻力,重物离开气球时离地面的高度为多少;解:方法一:设重物离开气球时的高度为x h ,当重物离开气球后作初速度为0v 的竖直上抛运动,选重物离开气球时的位置为坐标原点,则重物落到地面时满足图1-220021)(x x x gt h t h --=-v v 其中x h -表示向下的位移,0v x h 为匀速运动的时间,x t 为竖直上抛过程的时间,解方程得 gt t x 02v = 于是,离开气球时的离地高度可由匀速上升过程中求得,其值为)2()(000gt t t t h x x v v v -=-= 方法二:将重物的运动看成全程做匀速直线运动与离开气球后做自由落体运动的合运动;显然总位移等于零,所以0)(21200=--v v x h t g t 解得 )2(00g t t h x v v -=1–17 在篮球运动员作立定投篮时,如以出手时球的中心为坐标原点,作坐标系Oxy 如图1–3所示;设篮圈中心坐标为x ,y ,出手高度为H ,于的出手速度为0v ,试证明球的出手角度θ应满足⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ才能投入;证明:设出手后需用时t 入蓝,则有 θt t x x cos 0v v ==20221sin 21gt t gt t y y -=-=θv v 消去时间t ,得 θgx gx αx θgx θx y 22022022202tan 22tan cos 21tan v v v --=-= 图1-3整理得02tan tan 22022202=++-v v gx y θx θgx解之得⎥⎥⎦⎤⎢⎢⎣⎡+-±=)2(211tan 2022020v v v gx y g gx θ1–18 有一质点沿x 轴作直线运动,t 时刻的坐标为32254t t .x -=SI;试求:1第2s 内的平均速度;2第2s 末的瞬时速度;3第2s 内的路程;解:1将t =1s 代入32254t t .x -=得第1s 末的位置为m 5.225.41=-=x将t =2s 代入32254t t .x -=得第2s 末的位置为m 0.22225.4322=⨯-⨯=x则第2s 内质点的位移为0.5m 2.5m -m 0.212-==-=∆x x x第2s 内的平均速度-0.5m/s 10.5=-=∆∆=t x v 式中负号表示平均速的方向沿x 轴负方向;2质点在任意时刻的速度为269d d t t tx -==v 将s 2=t 代入上式得第2s 末的瞬时速度为 m/s 626292-=⨯-⨯=v式中负号表示瞬时速度的方向沿x 轴负方向;3由069d d 2=-==t t tx v 得质点停止运动的时刻为s 5.1=t ;由此计算得第1s 末到末的时间内质点走过的路程为m 875.05.25.125.15.4321=-⨯-⨯=s 第末到第2s 末的时间内质点走过的路程为m 375.10.25.125.15.4322=-⨯-⨯=s则第2s 内的质点走过的路程为m 25.2375.1875.021=+=+=s s s1–19 由于空气的阻力,一个跳伞员在空中运动不是匀加速运动;一跳伞员在离开飞机到打开降落伞的这段时间内,其运动方程为)e (/k t k t c b y -+-=SI,式中b 、c 和k 是常量,y 是他离地面的高度;问:1要使运动方程有意义,b 、c 和k 的单位是什么2计算跳伞员在任意时刻的速度和加速度;解:1由量纲分析,b 的单位为m,c 的单位为m/s,k 的单位为s;2任意时刻的速度为)e 1(d d /k t c ty -+-==v 当时间足够长时其速度趋于c -;任意时刻的加速度为k t kc t a /ed d -==v 当时间足够长时其加速度趋于零;1–20 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2d d v v K t-=,式中K 为常量;试证明电艇在关闭发动机后又行驶x 距离时的速度为Kx -=e 0v v 其中0v 是发动机关闭时的速度; 证明:由2d d v v K t-=得 2d d d d d d v v v v K xt x x -== 即x K d d -=vv 上式积分为⎰⎰-=x x K 0d d 0v v v v 得 Kx -=e 0v v1–21 一质点沿圆周运动,其切向加速度与法向加速度的大小恒保持相等;设θ为质点在圆周上任意两点速度1v 与2v 之间的夹角;试证:θe 12v v =;证明:因R a 2n v =,ta d d t v =,所以 t R d d 2v v =dsv v d d = 即vv d d =R s 对上式积分⎰⎰=2d d 0v v v v s R s得 12ln v v =R s 12ln v v ==R s θ 所以 θe 12v v =1–22 长为l 的细棒,在竖直平面内沿墙角下滑,上端A 下滑速度为匀速v ,如图1-4所示;当下端B 离墙角距离为xx<l 时,B 端水平速度和加速度多大解:建立如图所示的坐标系;设A 端离地高度为y ;∆AOB 为直角三角形,有222l y x =+ 方程两边对t 求导得 0d d 2d d 2=+t y y t x x所以B 端水平速度为 t y x y t x d d d d -=v xy =v x x l 22-= B 端水平方向加速度为v 222d /d d /d d d x tx y t y x t x-=232v x l -=1–23 质点作半径为m 3=R 的圆周运动,切向加速度为2t ms 3-=a ,在0=t 时质点的速度为零;试求:1s 1=t 时的速度与加速度;2第2s 内质点所通过的路程;图1-4解:1按定义ta d d t v =,得 t a d d t =v ,两端积分,并利用初始条件,可得 ⎰⎰⎰==t t t a t a 0t 0t 0d d d v v t t a 3t ==v当s 1=t 时,质点的速度为 m/s 3=v方向沿圆周的切线方向;任意时刻质点的法线加速度的大小为2222n m/s 39t Rt R a ===v 任意时刻质点加速度的大小为242n 2t m/s 99t a a a +=+=任意时刻加速度的方向,可由其与速度方向的夹角θ给出;且有22t n 33tan t t a a ===θ 当s 1=t 时有24m/s 23199=⨯+=a ,1tan =θ注意到0t >a ;所以得︒=45θ2按定义ts d d =v ,得t s d d v =,两端积分可得 ⎰⎰⎰==t t t s d 3d d v故得经t 时间后质点沿圆周走过的路程为C t s +=223 其中C 为积分常数;则第2s 内质点走过的路程为:m 5.4)123()223()1()2(22=+⨯-+⨯=-=∆C C s s s1–24 一飞机相对于空气以恒定速率v 沿正方形轨道飞行,在无风天气其运动周期为T ;若有恒定小风沿平行于正方形的一对边吹来,风速为)1(<<=k k V v ;求飞机仍沿原正方形对地轨道飞行时周期要增加多少解:依题意,设飞机沿如图1-5所示的ABCD 矩形路径运动,设矩形每边长为l ,如无风时,依题意有 vl T 4= 1 图1-5当有风时,设风的速度如图1-5所示,则飞机沿AB 运动时的速度为v v v k V +=+,飞机从A 飞到B 所花时间为vv k l t +=1 2 飞机沿CD 运动时的速度为v v v k V -=-,飞机从C 飞到D 所花时间为vv k l t -=2 3 飞机沿BC 运动和沿DA 运动所花的时间是相同的,为了使飞机沿矩形线运动,飞机相对于地的飞行速度方向应与运动路径成一夹角,使得飞机速度时的速度v 在水平方向的分量等于v k -,故飞机沿BC 运动和沿DA 运动的速度大小为222v v k -,飞机在BC 和DA 上所花的总时间为22232v v k lt -= 4综上,飞机在有风沿此矩形路径运动所花的总时间,即周期为2223212vv v v v v k l k l k l t t t T -+-++=++=' 5 利用1式,5式变为)1(4)4()1(4)11(22222k k T k k T T --≈--+='飞机在有风时的周期与无风时的周期相比,周期增加值为43)1(4)4(222T k T k k T T T T =---≈'-=∆。
大学物理:第01章 质点运动学
第一章 质点运动学运动学:描述物体在空间的位置随时间变化的规律。
§1-1 质点 参照系 坐标系 §1-2 描述质点运动的物理量 §1-3 自然坐标系下的速度和加速度 圆周运动 §1-4 相对运动1.质点把所研究的物体视为无形状大小但有一定质量 的点.质点是一种理想的模型. 复杂物体可看成质点的组合.2.参照系研究物体运动状态时选作参照的物体。
对物体运动的描述与参照系有关.3.坐标系为标定物体空间位置而设置的坐标系统.z直角坐标系:P(x, y, z)自然坐标系: 极坐标系: 球坐标系:P(x, y, z)Oy柱坐标系:x1.位置矢量z1.1 定义从坐标原点O指向质点位置P的有向线段.kγ1.2 位置矢量的直角坐标分量 Oiαrβjr = xi + yj + zk x大小:r = x2 + y2 + z 2方向:cosα=x r,cos β=y r, cos γ=z rP(x, y, z) y1.3 运动方程r = x(t)i + y(t) j + z(t)kx = x(t) y = y(t) z = z(t)消去t → F(x,y,z)=0G(x, y, z) = 0——轨道方程2.位移∆r = r′ − r = r (t + ∆t) − r (t)zP ∆s∆rP′rr′Oyx位移与路程:∆r ≠ ∆s3.速度3.1 速度 平均速度:zP ∆s∆rP′v = ∆r = r (t + ∆t) − r (t)rr′∆t∆t瞬时速度:Oylim v =∆r = dr∆t→0 ∆t dtx瞬时速度的大小:v = ds ——瞬时速率dt瞬时速度的方向:沿轨道切线方向3.2 速度的直角坐标分量r = r (t) = x(t)i + y(t) + z(t) jv=dr dt=dx i dt+dy dtj+dz dtk= vxi+ vyj+ vzk大小 : v =vx2+v2 y+vz2 方向 :cos α v=vx v, cos βv=vy v, cos γ a=vz v4.加速度4.1 加速度 平均加速度:zvPP′rr′v′a=∆v ∆t=v (t+∆t) ∆t−v (t )Oy瞬时加速度:xa=lim∆t →0∆v ∆t=dv dt=d 2r dt 2加速度与速度的方向一般不同.v ∆vv′4.2 加速度的直角坐标分量v = v(t) = vx (t)i + vy (t) j + vz (t)ka = dv = dvx i + dvy dt dt dtj + dvz k dt= axi + ay j + azk大小 : a = ax2 + ay2 + az2方向 :cosαa=ax a,cos βa=ay a,cosγ a=az a运动学的两类问题:1.已知运动方程,求质点任意时刻的位置、速度以及加速度r = r (t ) v = drdta=dv dt=d 2r dt 22. 已知运动质点的速度函数(或加速度函数)以及 初始条件求质点的运动方程a = a(t) v = ∫ adt + c1 r = ∫ vdt + c2其中 c1 和 c2 由初始条件:v t=0 = v0 r t=0 = r0确定。
大学物理教程-质点运动学
大学物理教程
1.1.4 速度 —描述物体位置随时间变化快慢和方向的物理量
1. 平均速度:
位移和发生这段位移所用时间的比。
v
r
t
2. 瞬时速度: 质点在某时刻的速度。
可用平均速度在△t趋于零时的极限值来表示。
v lim
r (t t) r (t) lim
r d r
r (t) r(t)
大学物理教程
坐标系:决定运动的数学表达式 固结在参考系上的一组有刻度的射线、曲线或角度。
1. 坐标系是参考系的数学抽象。 2. 参考系选定后,坐标系还可任选。在同一参考系中用不同的坐标系描 述同一运动,物体的运动形式相同,但其运动形式的数学表述却可以不同。
常用坐标系:
•笛卡尔坐标系(直角坐标系) •二维极坐标系 •自然坐标系(内禀坐标系)
y
vy
v
v0 y
v0 (x y)vx
o v0x
已知: x0 y0 0
v0x v0 cos
v v0 at
vx v0 cos , vy v0 sin - gt
g x
v0 y v0 sin
ax 0
r
r0
v0t
1 2
at
2
ay g
x v0t cos
y
v0t
sin
1 2
则 v d r = 50sin 5t i 50cos5t j m / s
dt
a d v = 250cos5t i 250sin 5t j dt
t s 时
v t = 50 j m / s
a = 250i t =
m / s2
1.1 质点运动的描述 哈尔滨工业大学(威海) Harbin Institute of Technology at Weihai
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学---研究物体机械运动的科学。
机械运动---物体相对位置或自身各部份的相对 位置发生变化的运动。
机械运动的基本运动形式: 平动 定轴转动
第 一 章 质点运动学
1.1 质点 参考系和坐标系 一、理想模型 (物体——看成“质点”)
质点--把实际物体看成只有质量而无大小形状 的力学研究对象。
已知:a 为常矢量(其大小和方向都不变)初始条件
求:v(t) ? r (t) ?
(t = 0)
r0 v0
12
解:由 a dv dv adt
v
t
dv adt
dt
v0
0
v v0 at
瞬时速度矢量 v v0 at
由 v dr (t) dr dt
r
r0
v0t
1 2
at 2
vdt
位矢
x2 y2 z2
A zo
Zk
r
n
x
BX i
方向 cos x cos y cos z
r
r
r
二、位移:
6
y
r r (t t) r (t) r2 r1
A(t)
?
(x2
x1)i
( y2
y1)
j
(z2
z1)k
xi yj zk
大小:
r
x2 y2 z2
z
M
O
r1
14
0 (t=0)
已知: a g y0 0 v0 0
求: y(t) ? v(t) ?
解: 同理可得
v gt
y
1 2
gt 2
v2
2gy
例3 竖直上抛物体运动:
y
v (t) g
yy
沿质点运动轨道建立y轴(正方向向上)
g
a g(向下)
v0 0 (向上)
v v0
gt
y
v0t
1 2
gt 2
dt
{ 质点运动状态变化
位移 r r2 r1
瞬时加速度矢量
a
dv dt
d2r dt 2
正问题:已知位置(运动函数) 求速度 求加速度(求导)
反问题:已知加速度 求速度 求位置(运动函数()积分)
r (t) x(t)i y(t) j z(t)k(运动方程)
{ 举例: 加速度为恒矢量时的质点运动
Δs r
r2
B(t+t) N
x
| r | r
三、路程:
r r
? r s Δr Δs
当 t 0 时 dr ds
例:如图所示:质点沿曲线路径由a运动至b,
所经路径为Sab, a,b的位矢为 ra rb
a Sab
b
dr ? r rb rb 位移
ra
b
a
rb
b
dr ?
ab 位移大小
“山不转来水在转,水不转来云在转 ,…”
3.常用参考系: ·太阳参考系(太阳 ─ 恒星参考系) ·地心参考系(地球 ─ 恒星参考系) ·地面参考系或实验室参考系 ·质心参考系(后面介绍)
三、坐标系 坐标系:固结在参考系上的一组有刻度的射线、曲线
或角度。
1.坐标系为参考系的数学抽象。 2.参考系选定后,坐标系还可任选。在同一参考系中 用不同的坐标系描述同一运动,物体的运动形式相同, 但其运动形式的数学表述却可以不同。
直角坐标系
y
j
o
x
ki
Z
自然坐标系
t
P o
n
极坐标系
r
P
O
x
1.2 质点运动的描述 一、 质点的位置矢量(位矢、矢径)
r op
x x(t), y y(t), z z(t)
Y j
r r (t) x(t)i y(t) j z(t)k y P
该式也叫质点的运动函数或运动方程。
大小
r
平均速率: v s
dy
j
dt
A
r1
vx
vy
vz
dz dt
k
v
s B r
r2
dx dt
dy
dt
dz
dt
t
(瞬时)速率: v lim s ds lim r dr v t0 t dt t0 t dt
二、加速度:
平均加速度: a v v2 v1 Y
瞬时加速度:
t t2 t1
位移 r
r
t
r0
r
dr r0
0 (v0 vot
1
2
at at
)dt
2
r r0
1.4 直线运动
运动特点:直线运动 匀加速
例1 匀加速直线运动
一维
v
a为常量
Ox (t=0)
(t)
13
a
x
{ 设质点沿Ox轴运动
已知: a 和 初始条件
解:
(t=0)
x0
( x0
0)
x(t)
求:
?
v0
v(t) ?
a
b
dr ?
a
Sab 路程大小
1.3 速度 加速度
一、平速均度速度:运动快慢v 程 度r2 和 r方1 向
r
(瞬时)速度 :
t
v lim
t r
dr
t 0 t
d
dt
dx
dt (xi yj zk ) dt i
方向: 切线方向 vxi vy j vzk
大小:
v
vx2 vy2 vz2
az
dvz dt
d2z dt 2
大小: a
ax2
a
2 y
az2
例:质点在平面运动,分别指出下列情况中做 何种特征运动?
dr 0 静止、转动 dt dr 0 静止 dt dv 0 匀速率运动(直线、曲线) dt dv 0 匀速直线运动 dt
质点运动学中的正反问题:
11
{位矢 r (t)
质点运动状态 瞬时速度矢量 v dr (t)
a
lim
t 0
v t
dv dt
d2r dt 2
Z
dvx i dvy j dvz k dt dt dt
d2 dt
x
2
i
d2 y
dt2
j
d2
dt
z
2
k
axi ay j azk
方向: 指向轨道曲线凹下的一侧
9
v1 B
A
v
v2
o
v2
X
ax
dvx dt
d2x dt 2
ay
Байду номын сангаас
dvy dt
d2 y dt 2
注意: a. 能否看成质点是相对于所研究的问题而言
b .不能看成质点的物体可看着质点的集合
二、 参考系 参考系:描述物体运动而选作参考的物体或物体系。
1.运动的绝对性决定描述物体运动必须选取参考系。 2.运动学中参考系可任选,不同参考系中物体的运动形式 (如轨迹、速度等)可以不同。
“坐地日行八万里 ”
反问题:已知加速度 求速度 求位置(运动函数)(积分)
由 a dv dt
vdv
t
adt
v0
0
由 v dx dt
x
dx
tvdt
x0
0
v v0 at v v0 at
x
t
dx x0
0 (v0 at)dt
x
x0
v0t
1 2
at 2
例2自由落体运动:
沿质点运动轨道建立y轴(正方向向下)
v0
0
0
1.5 抛体运动
15
曲线运动 运动特点:
匀加速
二维(平面运动)
ag
建立坐标系: 水平方向x轴 竖直方向y轴
x方向:匀速 ax 0
y
vy v
y方向:匀加速 ay g
初始条件
vxx00
0
v0
cos
(t=0) y0 0
v0
vx
vy0
(x y)
g
vx
{ { vy