立体几何常见证明方法
立体几何证明
立体几何证明
立体几何证明是指通过几何推理和定理证明立体几何问题的方法。
常见的立体几何证明包括证明两个立体图形是否全等、相似,以
及证明立体图形的性质等。
在立体几何证明中,常常使用的方法有以下几种:
1. 使用平行投影:通过平行投影将立体图形映射到二维平面上,
简化问题的处理。
例如,证明两个立方体全等时,可以将它们分
别投影到一个平面上,然后比较二维平面上的对应边和角是否相等。
2. 使用剖分方法:通过将立体图形剖分成若干个简单的形状,例
如三角形、矩形等,然后证明这些简单形状的性质,最终得出整
个立体图形的性质。
例如,证明一个四面体的四个侧面都是等边
三角形时,可以将四面体剖分成四个等边三角形,然后证明每个
等边三角形的性质。
3. 使用向量分析:通过使用向量的性质和运算,证明立体图形的
性质。
例如,证明两个平行六面体的面中心连线垂直时,可以使
用向量的内积来证明两个向量垂直。
4. 使用几何推理:通过运用几何定理,例如平行线定理、垂直定
理等,进行证明。
例如,证明两个平行四面体相似时,可以运用
平行线定理来证明它们的对应边与对应面的关系。
需要注意的是,在立体几何证明中,使用准确的定义和恰当的假
设是非常重要的,同时还需要运用合适的定理和推理方法进行证明。
此外,需要有一定的空间想象力和几何直觉,以便更好地理
解和分析立体图形的性质。
高考立体几何证明知识点
高考立体几何证明知识点立体几何是数学中的一个重要分支,旨在研究空间中的图形和物体的性质及其相互关系。
在高考中,立体几何是一个重要的考点,其中涉及到很多证明题。
本文将介绍几个高考常见的立体几何证明知识点,帮助考生更好地理解和掌握这些内容。
一、平行关系证明在立体几何中,平行关系是经常需要证明的一个知识点。
首先,我们需要了解平行的定义:若两条直线在同一个平面内,且不相交,则称这两条直线平行。
为了证明两条直线平行,我们可以利用以下几个常见的方法:1.同位角相等法:如果两条直线被平行线所截,那么可以利用同位角的性质来确定这两条直线平行。
同位角是指两条直线被平行线所截时,对应角或内错角两对角,它们的度数相等。
在证明过程中,我们需要找到直线间的对应角或内错角,将它们的度数相等证明出来,从而得出两条直线平行的结论。
2.共线错角相等法:如果两条直线被平行线所截,可以利用共线错角相等的性质来确定这两条直线平行。
共线错角是指两条直线被平行线所截时,同侧的内错角,它们的度数相等。
在证明过程中,我们需要找到两条直线间的共线错角,将它们的度数相等证明出来,从而得出两条直线平行的结论。
二、相似三角形证明相似三角形是立体几何中另一个重要的证明知识点。
首先,我们需要了解相似三角形的定义:若两个三角形的对应角相等,那么这两个三角形是相似的。
证明相似三角形的方法主要有以下几个:1.对应边成比例法:若两个三角形的两对对应边成比例,那么可以证明这两个三角形相似。
在证明过程中,我们需要找到两个三角形中对应的边,并运用对应边成比例的性质来证明它们相似。
2.三角形内相等角法:若两个三角形中,其中一个三角形的两个角与另一个三角形的两个角相等,那么可以证明这两个三角形相似。
在证明过程中,我们需要找到这两个相等的角,并证明它们与其他角的关系,从而得出两个三角形相似的结论。
三、垂直关系证明垂直关系也是立体几何中常见的一个证明知识点。
首先,我们需要了解垂直的定义:两条直线或线段在平面或空间中互相垂直,即两条直线或线段相交且相交的角度为90度。
立体几何证明方法——证线线平行
C
a:
方法三:同垂直于一个平面的 两条直线互相平行。
a
b
a 推理过程: a // b b
一如何证明直线与直线平行:
方法四:同平行于一条直线的 两条直线互相平行。
a b c
a // c 推理过程: a // b b // c
方法演练1:
一如何证明直线与直线平行:
方法一:线面平行则线线平行;
a // 平面 推理过程: a 平面 a // b b
b
a
一如何证明直线与直线平行:
方法二:面面平行则线线平行;
// 推理过程: a b // a b
P
已知:四边形 ABCD 是平行四边形, 点 P 是平面 ABCD 外一点, M 是 PC 的中点,在 DM 上取一点 G, 过 AP 和 G 作平面交平面 BDM 于 GH,A 求证:AP∥GH (提示:线面平行则线线平行)
M D H G C
O
B
方法演练2:
在长方体 ABCD A1 B1C1 D1 中, 证明 BD // B1 D1 。 (面面平行)
立体几何基本知识总结和线面垂直平行六种关系的证明方法
立体几何基本知识总结I. 基础知识要点 一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个. 4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向) 二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图). (二面角的取值范围[]180,0∈θ)(异面直线所成角(] 90,0∈θ)(斜线与平面成角()90,0∈θ)(直线与平面所成角[]90,0∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. 5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面) 三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性12方向相同12方向不相同证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交) ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .●三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行) ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√) 5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短. [注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都POAaPαβθM AB O取加则必有⎥⎦⎤⎝⎛∈2,0πθ)7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图) ⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条. 成角比交线夹角一半大,又比交线夹角补角小,一定有2条. 成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 五、 棱锥、棱柱. 1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的. ②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全.等的矩形..... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是钜形可如图) ②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα. 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. [注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.图1θθ1θ2图2⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心. [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α)附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =. 注:S 为任意多边形的面积(可分别多个三角形的方法). ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高). ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直. 简证:A B ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令b AC c AD a AB ===,,得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅c a b b c a0=-⇒c b c a 则0=⋅AD BC .iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形. 3. 球:⑴球的截面是一个圆面. ①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. l ab c FEH GBCDAO'⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.构造以半径为斜边的直角三角形线面垂直平行六种关系的证明方法总结一、线线平行的证明方法:1、利用平行四边形。
高考数学立体几何中与角有关的四大定理及其证明
则 cosθ = cos2β + cos2γ - 2cosαcosβcosγ sinα
证明:设 ∠HAC = θ1,∠HAB = θ2 ⇒ α = θ1 + θ2,
由三余弦定理得:
cos β cosγ
= =
cosθ cosθ
cosθ1 cosθ2
① ②
由①和②得 cosθ = cosβ = cosγ ③ cosθ1 cosθ2
α
Aβ
γ
P α : 线面角 β : 斜线角 γ : 射影角 则 cosβ = cosαcosγ ⇒ β > α,β > γ
Q
B
证明:cosβ =
AB PA
,cosα =
QA PA
,cosγ =
AB QA
⇒ cosβ = cosαcosγ
·1·
3. 三夹角公式
P
θ
Aβ
γ
α
C H
B
若 θ 为 PA 与平面 ABC 的夹角
⋅
HO BO
AH AO
⋅
BH BO
= cosθ - cosθ1cosθ2 sinθ1sinθ2
注:若 φ =
π 2
,
则该定理退化为三余弦定理
·3·
立体几何中与角有关的四大定理及其证明
1. 三正弦定理
β α
A
γ
B
P
α : 线面角 β : 线棱角 γ : 二面角 则 sinα = sinβsinγ Q ⇒ α ≤ β,α ≤ γ
证明:sinα =
PQ PA
,sinβ =
PB PA
,sinγ =
PQ PB
⇒ sinα = sinβsinγ
高中立体几何证明方法及例题
1.空间角与空间距离在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。
2.立体几体的探索性问题立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。
近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。
对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。
对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。
(一)平行与垂直关系的论证由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。
1.线线、线面、面面平行关系的转化:面面平行性质α//βαI γ=a ,βI γ⎫⎬⇒a =b ⎭//baa //b⎫⎬ba ⊄α,b ⊂α⎭α⇒a //αa ⊂α,b ⊂αAb a I b =Aαaa //β,b //ββ⎫⎪⎬⎪⎭(a//b,b//c线线∥⇒a //c)公理4线面平行判定线面平行性质线面∥⇒α//β面面平行判定1面面∥面面平行性质面面平行性质1α//γ⎫β//γ⎭⎫⎪a ⊂β⎬αI β=b ⎪⎭a //α⇒a //bα//β⎫a ⊂α⎭⎬⎬⇒α//β⇒a //β2.线线、线面、面面垂直关系的转化:⎫⎪a Ib =O ⎬l ⊥a ,l ⊥b ⎪⎭a ,b ⊂α⇒l ⊥α⎫⎬⇒α⊥βa ⊂β⎭a ⊥α面面⊥三垂线定理、逆定理线线⊥PA ⊥α,AO 为PO 在α内射影a ⊂α则a ⊥OA ⇒a ⊥PO a ⊥PO ⇒a ⊥AOl ⊥α线面垂直判定1线面垂直定义线面⊥α⊥β面面垂直判定面面垂直性质,推论2⎫⎬a ⊂α⎭⇒l ⊥a⎫⎪αI β=b ⎬⇒a ⊥αa ⊂β,a ⊥b ⎪⎭α⊥γβ⊥γαI β⎫⎪⎬⇒a ⊥γ=a ⎪⎭面面垂直定义αI β=l ,且二面角α-l -β⎫成直二面角⎬⇒α⊥β⎭3.平行与垂直关系的转化:a //b ⎫a ⊥αa ⊥α⎫⇒b ⊥αa⎬⎭⎬⇒αa ⊥β⎭//β线线∥线面垂直判定2线面垂直性质2a ⊥α⎫线面⊥面面平行判定2面面平行性质3面面∥⎬⇒a //b b ⊥α⎭α//β⎫a ⊥α⎬a ⊥β⎭4.应用以上“转化”的基本思路——“由求证想判定,由已知想性质。
高中立体几何证明线面平行的常见方法
高中立体几何证明线面平行的常见方法1.通过“平移”再利用平行四边形的性质题目1:四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点。
证明AF∥平面PCE。
证明:将四棱锥P-ABCD平移,使其底面平移到平面PCE上,得到四棱锥P'-A'B'C'D',其中A'B'C'D'与ABCD平行,且P'、E'、F'分别为A'B'、C'D'、A'D'的中点。
因为AF∥PD,所以AF'=PD'=C'F',又因为AD'=C'D'/2=AB'/2=AF'/2,所以AD'∥B'C'。
因此,根据平行四边形的性质,AF'∥B'C',即AF∥CE。
题目3:四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点,证明EB∥平面PAD。
证明:连接PE,因为E为PC的中点,所以PE∥AD。
又因为CD⊥AD,所以CD∥PE。
又因为CD=2AB,所以AB∥PE。
因此,根据平行四边形的性质,EB∥PA,即EB∥平面PAD。
2.利用三角形中位线的性质题目4:四面体ABCD中,E、F、G、M分别是棱AD、CD、BD、BC的中点,证明AM∥平面EFG。
证明:连接EF、EG、FG,因为E、F、G分别为三角形BCD、ACD、ABD的中点,所以EF、EG、FG分别是这三个三角形的中位线。
因此,EF∥AD,EG∥BD,FG∥AC。
又因为M为BC的中点,所以AM∥FG。
因此,AM∥平面EFG。
3.利用平行四边形的性质题目7:正方体ABCD-A' B' C' D'中O为正方形ABCD的中心,M为B'B的中点,求证D'O∥平面A'BC'。
立体几何证明定理及性质总结
一.直线和平面的三种位置关系:1。
线面平行2. 线面相交l符号表示:符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。
方法二:用面面平行实现.mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβαmlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。
若αα⊥⊥ml,,则ml//。
2.线面平行:方法一:用线线平行实现。
ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现.αββα////ll⇒⎭⎬⎫⊂3.面面平行:方法一:用线线平行实现. 方法二:用线面平行实现βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll。
βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。
方法二:用面面垂直实现。
αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥llmlm,2。
面面垂直:l方法一:用线面垂直实现。
方法二:计算所成二面角为直角.βαβα⊥⇒⎭⎬⎫⊂⊥l l3. 线线垂直:方法一:用线面垂直实现.m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理.PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭。
立体几何证明8条定理
立体几何证明8条定理立体几何是几何学的一个分支,研究的是在三维空间中的图形和体的性质。
在立体几何中有许多定理,其中一些重要的定理包括平行线定理、垂直线定理、欧拉定理、等角定理、切线定理、割线定理、同位角定理和三角形内角和定理等。
下面将详细讨论这些定理:1.平行线定理:如果两条平行线被一组平行线截断,那么它们的对应线段成比例。
这个定理可以用于证明两条线平行。
2.垂直线定理:如果两条直线相交,且其中一条直线垂直于另一条直线,那么相交处的四个角都是直角。
这个定理可以用于证明两条线垂直。
3.欧拉定理:在任意一个凸多面体中,顶点数、棱数和面数之间存在一个关系:顶点数加上面数等于棱数加上2、这个定理被应用于立体几何中的多面体的计算。
4.等角定理:如果两条线分别与一条平行线相交,且其中一对内错角(相对于平行线的两条线之间的两个角)或一个内错角和一个外错角(与平行线的两条线相交形成的一对内角和一对外角)相等,那么这两条线是平行线。
这个定理可以用于证明平行线。
5.切线定理:给定一个圆和一个与圆相切且通过切点的直线,那么切线的切点与切线所跨越的弦的两个端点之间的角是直角。
这个定理可以用于证明圆的性质。
6.割线定理:给定一个圆和一个与圆相交的直线,那么直线与圆的切线所跨越的弦的两个端点之间的角相等。
这个定理也可以用于证明圆的性质。
7.同位角定理:如果两条平行线被一条截线截断,那么同位角(相对于平行线的两条线的每一对内角)相等。
这个定理可以用于证明平行线。
8.三角形内角和定理:三角形的三个内角的度数之和等于180度。
这个定理是三角形的基本性质,可以用于证明其他三角形的性质。
这些定理是立体几何中的一些基本定理,通过运用它们可以推导出其他一些更复杂的定理。
这些定理不仅在几何学中有重要的应用,而且在物理学、工程学等其他学科中也有广泛的应用。
立体几何常见证明方法
立体几何常见证明方法在几何学中,立体几何是研究物体在三维空间中的形状、大小、位置和相互关系的分支。
在证明一个立体几何问题时,我们通常需要运用一些常见的证明方法来得出结论。
本文将介绍几种常见的立体几何证明方法。
一、平行四边形面积证明法平行四边形面积证明法是一种常见的证明方法。
对于一个平行四边形,我们可以通过证明它的底边乘以高得到的面积与对角线的乘积相等来验证其正确性。
具体来说,我们可以按照以下步骤进行证明:1. 画出平行四边形的底边和高线;2. 证明底边乘以高得到的面积等于对角线的乘积。
可以通过运用三角形的面积公式和勾股定理进行证明。
二、等腰三角形证明法等腰三角形证明法是另一种常见的证明方法。
对于一个等腰三角形,我们可以通过证明其底边上的两个角相等来验证其正确性。
具体来说,我们可以按照以下步骤进行证明:1. 画出等腰三角形;2. 证明底边上的两个角相等。
可以通过等腰三角形的定义进行证明,即等腰三角形的两边相等,所以其对应的两个角也相等。
三、垂直证明法垂直证明法是证明两条线垂直的常见方法。
它通常基于垂直线的特性,如垂直线的斜率之积为-1等。
具体来说,我们可以按照以下步骤进行证明:1. 给定两条线段;2. 证明两条线段所在的直线的斜率之积为-1。
可以通过计算两条线段的斜率,然后对其进行运算得出结论。
四、相似三角形证明法相似三角形证明法常用于证明两个或多个三角形之间的相似关系。
它基于相似三角形的一些性质,如对应角相等、对应边成比例等。
具体来说,我们可以按照以下步骤进行证明:1. 给定两个或多个三角形;2. 证明对应角相等或对应边成比例,以确定两个或多个三角形之间的相似关系。
五、共面证明法共面证明法常用于证明多个点是否处于同一个平面上。
它基于共面点的一些性质,如共线的三个点必然共面等。
具体来说,我们可以按照以下步骤进行证明:1. 给定多个点的坐标或描述;2. 证明这些点共面。
可以通过计算这些点的坐标或应用共线点的条件来证明。
立体几何证明方法总结及经典3例(推荐文档)
立体几何证明方法总结及典例例1:平行类证明 【平行类证明方法总结】 线线平行的证明方法:三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。
线面平行的证明方法:面外线与面内线平行,两面平行则面内一线与另面平行等等 面面平行的证明方法:面内相交线与另面平行则面面平行,三面间平行的传递性等等。
【例】正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE.证法一:如图(1),作PM ∥AB 交BE 于M , 作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB, 则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE. 证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ , ∴PEAPQK AQ =.则PQ ∥EK. ∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o 、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD ,∴SA BC ⊥. ∵AB BC ⊥,∴BC ⊥平面SAB . 又∵AE ⊂平面SAB , ∴BC AE ⊥. ∵SC⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC . ∴AE SB ⊥. 同理证AG SD ⊥. 例3:向量法解立体几何类 【量法解立体几何类公式总结】 基本公式若),,(),,,(222111z y x b z y x a ==,则①212121z z y y x x b a ++=⋅;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<夹角公式:.||||cos 2121n n n n ⋅⋅-=θ距离公式:||||||n n AB CD d ⋅== 【例】已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角; (3)求点P 到面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB<>==,. 所求异面直线所成的角是1arccos3. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-,,,,,,,,设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P到平面QAD 的距离22PQ d==n n.立体几何证明经典习题平行题目1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.2、如图(1),在直角梯形P1DCB中,P1D//BC,CD⊥P1D,且P1D=8,BC=4,DC=46,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置(如图(2)),使二面角P—CD—B成45°,设E、F分别是线段AB、PD的中点.求证:AF//平面PEC;垂直题目3、如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.4、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD向量法解立体几何题目5、在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值.立体几何证明经典习题答案1、证明:如图,连结AC 交BD 于点O . ∵ABCD 是平行四边形,∴A O =O C.连结O Q ,则O Q 在平面BDQ 内, 且O Q 是△APC 的中位线, ∴PC ∥O Q.∵PC 在平面BDQ 外, ∴PC ∥平面BDQ.2、证明:如图,设PC 中点为G ,连结FG ,则FG//CD//AE ,且FG=21CD=AE , ∴四边形AEGF 是平行四边形 ∴AF//EG ,又∵AF ⊄平面PEC ,EG ⊂平面PEC , ∴AF//平面PEC3、证明:在平面PAC 内作AD ⊥PC 交PC 于D . ∵平面PAC ⊥平面PBC ,且两平面交 于PC ,AD ⊂平面PAC ,且AD ⊥PC ,∴AD ⊥平面PBC . 又∵BC ⊂平面PBC , ∴AD ⊥BC .∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA ⊥BC . ∵AD ∩PA =A , ∴BC ⊥平面PAC .4、证明:取AB 的中点F,连结CF ,DF . ∵ACBC =, ∴CFAB ⊥.∵AD BD =,(等腰三角形三线合一)∴DF AB ⊥. 又CFDF F =,∴AB ⊥平面CDF .∵CD ⊂平面CDF ,∴CD AB ⊥.又CD BE ⊥,BEAB B =,∴CD ⊥平面ABE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E =,∴ AH ⊥平面BCD .5、以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、31022c ⎛⎫-⎪ ⎪⎝⎭,,、133022C ⎛⎫ ⎪ ⎪⎝⎭,,.设302E a ⎛⎫ ⎪ ⎪⎝⎭,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =,即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭, 即12a =或32a =(舍去).故31022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.因11(002)B A BA ==,,,31222EA ⎛⎫=-- ⎪ ⎪⎝⎭,, 故11112cos 3EA B A EA B A θ==,即2tan 2θ=。
立体几何证明定理归纳
立体几何证明定理归纳在立体几何中,证明定理是一种重要的方法,通过逐步推理和归纳总结,可以得出一般性的结论。
本文将以立体几何证明定理归纳为主题,介绍几个典型的立体几何定理,并通过证明的方式,展示定理归纳的过程。
一、平行线与平面的关系我们来证明平行线与平面的关系。
根据平行线的定义,平行线是在同一个平面上,且不相交的两条直线。
定理:如果一条直线与一个平面平行,则该直线与平面上的任意一条直线都平行。
证明:设直线AB与平面P平行,直线CD是平面P上的一条直线。
我们需要证明直线AB与直线CD平行。
根据平行线的定义,我们可以找到平面P内的一条直线EF,使得直线EF与直线AB平行。
由于直线EF与直线AB平行,而直线AB与直线CD在同一个平面P内,根据平行线与平面的关系可知,直线EF 与直线CD也平行。
因此,直线AB与直线CD平行。
证毕。
二、相交线与平面的关系接下来,我们来证明相交线与平面的关系。
定理:如果两条直线相交于一个点,并且这两条直线都在同一个平面上。
则这个平面与这两条直线垂直。
证明:设直线AB和直线CD相交于点O,且直线AB和直线CD在同一个平面P上。
我们需要证明平面P与直线AB、直线CD垂直。
我们可以通过点O分别作直线AE和直线CF,使得直线AE和直线CF 都与直线AB和直线CD垂直。
由于直线AB和直线CD在同一个平面P上,因此直线AE和直线CF也在平面P上。
接下来,我们需要证明直线AE和平面P垂直。
假设直线AE与平面P有交点M,由于直线AE与平面P垂直,因此直线AE与平面P上的所有直线都垂直。
而直线CF在平面P上,所以直线CF与直线AE垂直。
由于直线AE与直线CF垂直,所以直线AE与平面P上的所有直线都垂直。
这与直线AE与平面P的交点M矛盾。
因此,直线AE与平面P垂直。
同理,可以证明直线CF与平面P垂直。
因此,平面P与直线AB、直线CD垂直。
证毕。
三、平行四边形的性质我们来证明平行四边形的性质。
定理:一个四边形是平行四边形的充分必要条件是它的对边平行。
立体几何中平行与垂直证明方法归纳
a ∥
a∥
α
a a
β
3) 利用定义:直线在平面外,且直线与平面没有公共点
(三)平面与平面平行的证明
常见证明方法:
1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
3
a ⊂ b ⊂
a ∩b P
a // b //
⇒ /性:如正方体的上下底面互相平行等
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。
a
b
ab
A
l
l a l b
l
b
Aa
4) 利用平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
5
l
a
a
a l
l
5) 利用常用结论:
① 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。
在同一个平面内,垂直于同一条直线的两条直线互相平行。
8) 利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1) 利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
a
a
b a∥
a∥b
b
2) 利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a b ba
b a
α
4) 利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这
两条直线互相垂直。
4
l a b al
bl
ab
β b
立体几何的证明方法文字语方描述部分
立体几何的证明方法总结文字语言表述部分:一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。
(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。
(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。
7、夹在两个平行平面之间的平行线段相等。
二、线面平行的证明方法1、定义法:直线和平面没有公共点。
2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。
(线面平行的判定定理)3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。
4、反证法。
三、面面平行的证明方法1、定义法:两个平面没有公共点。
2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。
(面面平行的判定定理)3、平行于同一个平面的两个平面平行。
4、经过平面外一点,有且只有一个平面与已知平面平行。
5、垂直于同一条直线的两个平面平行。
四、线线垂直的证明方法1、勾股定理;2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。
7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。
(三垂线定理)8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。
9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
五、线面垂直的证明方法:1、定义法:直线与平面内的任意直线都垂直;2、点在面内的射影;3、 如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。
(线面垂直的判定定理)4、 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。
数学立体几何的证明方法知识点解析
数学立体几何的证明方法知识点解析数学立体几何作为数学的一个分支,研究的是三维空间中的图形和形体性质。
在学习立体几何的过程中,证明方法是非常重要的一环。
本文将对数学立体几何的证明方法进行详细解析,帮助读者更好地理解和掌握这一知识点。
一、直接证明法直接证明法是数学证明中最基本、最常用的一种方法。
它通过逻辑推理和严密的推导,从已知条件出发,推出结论,具有简洁明了的特点。
在立体几何中,直接证明法常常用于证明图形的性质和关系,如平行、垂直、相似等。
在进行直接证明时,我们需要运用相关的定理、公理和性质,并合理运用建立的几何模型,通过推理和演算得到证明。
二、间接证明法间接证明法指的是通过反证法证明一个命题的真假。
当我们想要证明一个命题为真时,可以假设它为假,然后通过逻辑推理,推导出一个自相矛盾的结论,从而得出原命题为真。
在立体几何中,间接证明法可以用于证明一些形状的唯一性或者不存在性。
通过巧妙的反设假设,并运用逻辑推理,可以得到具有严密性和说服力的证明。
三、数学归纳法数学归纳法是一种常用的证明方法,它主要用于证明与自然数有关的命题。
在立体几何中,数学归纳法可以用于证明一些图形的性质或者等式的成立。
首先,我们证明当n=1时命题成立;然后,假设当n=k时命题成立,即我们假设当有k个条件时命题成立;最后,通过数学归纳法的步骤,证明当n=k+1时命题也成立。
数学归纳法需要严密的逻辑推理和数学思维,但是一旦证明了某个特定条件下的命题成立,就能推广到所有情况下成立。
四、反证法反证法是一种常用的证明方法,它通过假设命题的反面为真,推导出自相矛盾的结论,从而证明原命题的真实性。
在立体几何中,反证法通常用于证明一些性质的唯一性或不存在性。
通过反设假设,并运用逻辑推理和演算,我们可以得到具有严密性和说服力的证明。
五、构造法构造法是一种通过构造特定图形或者解决方案,来证明命题成立的方法。
在立体几何中,构造法可以用于证明一些图形的存在性和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何方法归纳小结
一、线线平行的证明方法
1、根据公理4,证明两直线都与第三条直线平行。
2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则a//b。
3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b 。
4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线a与直线b,则a//b 。
二、线面平行的证明方法
1、根据线面平行的定义,证直线与平面没有公共点。
2、根据线面平行的判定定理,若平面A内存在一条直线b与平面外的直线a平行,则a//A 。
(用相似三角形或平行四边形)
3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。
三、面面平行的证明方法
1、根据定义,若两平面没有公共点,则两平面平行。
2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。
或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。
3、垂直同一直线的两平面平行。
4、平行同一平面的两平面平行。
四、两直线垂直的证明方法
1、根据定义,证明两直线所成的角为90°
2、一直线垂直于两平行直线中的一条,也垂直于另一条.
3、一直线垂直于一个平面,则它垂直于平面内的所有直线.
4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).
五、线面垂直的证明方法
1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.
2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.
3、一直线垂直于两平行平面中的一个,也垂直于另一个.
4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.
5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.
六、面面垂直的证明方法
1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。
2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。
3、一平面垂直于两平行平面中的一个,也垂直于另一个。
七、两异面直线所成角的求法
1、根据定义,平移其中一条和另一条相交,然后在三角形中求角。
2、利用中位线,将两异面直线平移至一特殊点(中位线的交点)然后在三角形中求角。
3、cos θ=cos θ1cos θ2
八、直线与平面所成角的求法
1、根据定义,作出直线与平面所成角,然后在直角三角形中求角。
2、转化为距离(sin θ=h/l )
注:对两异面直线所成角和直线与平面所成角一定要注意角的范围。
九、二面角的求法
1、定义法,从二面角的棱上的某一点分别在两个半平面内作棱的垂线,求两条垂线所形成的角。
2、根据三垂线定理,先作出二面角的平面角,再在直角三角形中求角。
3、射影面积法,先作出一个半平面内的某个多边形,在另一个半平面内的射影多边形,然后由公式 cosθ=s'/s (其中θ为二面角的平面角, s'为射影多边形的面积, s 为多边形的面积)求出二面角的平面角。
5. 公式法(异面直线上点距离公式和三类角公式)
十、点到平面的距离的求法
1、根据定义,直接求垂线段的长度。
2、等体积法,主要用在四面体(三棱锥)中,根据四面体的体积等于1/3底面积×高,选取不同的底面积,求出其中一条高长。
十一、平面图形翻折问题的处理方法
1、先比较翻折前后的图形,弄清哪些量和位置关系在翻折过程中不变,哪些已发生变化,然后将不变的条件集中到立体图形中,将问题归结为一个条件与结论都已知的立体几何问题。
2、有关翻折问题的计算,必须抓住在翻折过程中点、线、面之间的位置关系、数量关系中,哪些是变的,哪些没变,尤其要抓住不变量。
对计算几何体上两点之间的最短距离问题,要注意转变为平面图形求两点间的距离来计算。
十二、要注意的问题
1、对推理论证与计算相结合的题目的解题原则是一作、二证、三计算。
(向量法可省略证角,但必须交代如何建系,右手系)。
2、正方体中,两个平行的正三角形截面把一条与它们垂直的体对角线三等分。
3、已知三条射线两两夹角,会求线面角和二面角(课堂笔记,只需会推导方法,不需强记公式)
4、适当时候,坐标法不方便时可以考虑基向量法,求向量模易出错:a =r 。
5、求异面直线间的距离,若公垂线找不到,除向量法外,可以考虑构造平行平面或平行线面,转化为点面距离求。