北师大版八年级上册数学《期末考试卷》含答案

合集下载

北师大版数学八年级上册期期末考试试卷及答案

北师大版数学八年级上册期期末考试试卷及答案

北师大版数学八年级上册期期末考试试题一、选择题(下列各题备选答案中,只有-个答案是正确的每小题2分,共20分)1.在平面直角坐标系中,下列各点在第四象限的是()A.(﹣2,3)B.(2,0)C.(0,﹣3)D.(3,﹣5)2.已知△ABC的三边长分别为a,b,c,则下列条件中不能判定△ABC是直角三角形的是()A.a=1,b=1,c=B.a=2,b=3,c=4C.a=1,b=,c=2D.a=3,b=4,c=3.估算﹣2的值在()A.﹣1到0之间B.0到1之间C.1到2之间D.2到3之间4.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点A,B,C均在网格的格点上,则△ABC的三条边中边长是无理数的有()A.0条B.1条C.2条D.3条5.如图,是我们学过的用直尺和三角板画平行线的方法示意图,画图的原理是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.内错角相等,两直线平行D.同旁内角互补,两直线平行6.如图,有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个水池的深度是()尺.A .26B .24C .13D .127.用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多5尺;若环绕大树4周,则绳子又少了2尺,这根绳子有多长?环绕大树一周需要多少尺?设绳子有x 尺,环绕大树一周需要y 尺,所列方程组中正确的是()A .B .C .D .8.某次体操比赛,五位评委对某位选手的打分(单位:分)如下:9.1,9.3,9.4,9.5,9.5.如果规定:去掉一个最高分和一个最低分,余下分数的平均值作为这位选手的最后得分,那么该选手的最后得分是()A .9.4B .9.36C .9.3D .5.649.如图,已知y =﹣x ﹣4和y =x 的图象交于点P ,根据图象可得关于x ,y 的二元一次方程组的解是()A .B .C .D .无法确定10.按如图所示的程序计算,若开始输入的值为9,则最后输出的y 值是()A.B.±C.3D.±3二、填空题(每小题3分,共18分)11.﹣27的立方根是.12.直线y=3x﹣2不经过第象限.13.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?14.某商店销售5种领口大小(单位:cm)分别为38,39,40,41,42的衬衫.为了调查各种领口大小衬衫的销售情况,商店统计了某天的销售情况,并绘制了如图所示的扇形统计图,则该商店应将领口大小为cm的衬衫进的最少.15.已知点M(﹣3,3),线段MN=4,且MN∥y轴,则点N的坐标是.16.已知等腰三角形的两边长分别为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为.三、解答题(第17小题6分,第18.19小题各8分,共22分)17.计算:|2﹣|+(﹣1)2﹣()﹣2.18.解二元一次方程组:.19.如图,在四边形ABCD中,AB=7cm,AD=24cm,∠BAD=90°,BC=20m,CD=15cm.(1)连接BD,求BD的长;(2)求四边形ABCD的面积.四.(每小题8分,共16分)20.如图所示,在平面直角坐标系中△ABC的三个顶点坐标分别为A(﹣2,4),B(﹣4,2),C(﹣3,1).(1)作出△ABC关于x轴对称的△A1B1C1,并直接写出A1点的坐标;(2)作出△ABC关于y轴对称的△A2B2C2,并直接写出B2点的坐标;(3)在(1)(2)的条件下,若点P在x轴上,当A1P+B2P的值最小时,直接写出A1P+B2P 的最小值为.21.(列二元一次方程组求解)小明家离学校2km,其中有一段为上坡路,另一段为下坡路.他从家跑步去学校共用了16min,已知小明在上坡路上的平均速度是4.8km/h,在下坡路上的平均速度是12km/h.求小明上坡、下坡各用了多少min?五.(本题10分)22.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加比赛.两校派出选手的比赛成绩如图所示.根据以上信息.整理分析数据:平均数/分中位数/分众数/分A校858585B校85a b(1)a=;b=;(2)填空:(填“A校”或“B校”)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是;③从两校比赛成绩的方差的角度来比较,代表队选手成绩的方差较大.六.(本题10分)23.已知,直线AB∥CD.(1)如图1,求证∠AEC=∠BAE+∠DCE;(2)如图2,请直接写出∠AEC,∠BAE,∠DCE之间的数量关系,并说明理由;(3)如图3,CF平分∠DCE,AF平分∠BAE,且∠E+∠F=60°.①请直接写出∠AEC,∠BAE,∠DCE之间的数量关系是;②请直接写出∠E的度数是.七.(本题12分)24.小明同学看到一则材料:甲开汽车,乙骑自行车从P地出发沿同一条公路匀速前往Q 地、设乙行驶的时间为t(h).甲乙两人之间的距离为y(km),y与t的函数关系如图所示.小明思考后发现了图中的部分信息:乙先出发1h;甲出发0.5小时与乙相遇.请你帮助小明同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式(不需要写出自变量的取值范围);(km)与时间t(h)的函数表达式是(不需(2)直接写出乙行驶的路程S乙要写出自变量的取值范围);(3)丙骑摩托车从Q地沿同一条公路匀速前往P地,若丙与乙同时出发,丙经过1.4h 与甲相遇.①直接写出丙行驶的路程S丙(km)与时间t(h)的函数表达式是(不需要写出自变量的取值范围);②直接写出甲出发h后与丙相距10km.八.(本题12分)25.如图1所示,直线l:y=k(x﹣1)(k>0)与x轴正半轴,y轴负半轴分别交于A,B 两点.(1)当OA=OB时,求点A坐标及直线l的函数表达式;(2)在(1)的条件下,如图2所示,设C为线段AB延长线上一点,作直线OC,过AB两点分别作AD⊥OC于点D.BE⊥OC于点E.若AD=,求BE的长;(3)如图3所示,当k取不同的值时,点B在y轴负半轴上运动,分别以OB、AB为边,点B为直角顶点在第三象限.第四象限内分别作等腰直角△OBG和等腰直角△ABF,连接FG交y轴于点H.①连接AH,直接写出△ABH的面积是;②动点F始终在一条直线上运动,则该直线的函数表达式是.参考答案一、选择题(下列各题备选答案中,只有-个答案是正确的每小题2分,共20分)1.在平面直角坐标系中,下列各点在第四象限的是()A.(﹣2,3)B.(2,0)C.(0,﹣3)D.(3,﹣5)【分析】根据第四象限内点的坐标特点解答.解:A、(﹣2,3)在第二象限,故本选项不合题意;B、(2,0)在x轴上,故本选项不合题意;C、(0,﹣3)在y轴上,故本选项不合题意;D、(3,﹣5)在第四象限,故本选项符合题意.故选:D.2.已知△ABC的三边长分别为a,b,c,则下列条件中不能判定△ABC是直角三角形的是()A.a=1,b=1,c=B.a=2,b=3,c=4C.a=1,b=,c=2D.a=3,b=4,c=【分析】先分别求出两小边的平方和和最长的边的平方,再看看是否相等即可.解:A.∵12+12=()2,∴以1,1,为边能组成直角三角形,故本选项不符合题意;B.∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项符合题意;C.∵12+()2=22,∴以1,,2为边能组成直角三角形,故本选项不符合题意;D.∵32+()2=42,∴以3,4,为边能组成直角三角形,故本选项不符合题意;故选:B.3.估算﹣2的值在()A.﹣1到0之间B.0到1之间C.1到2之间D.2到3之间【分析】根据1<<2即可得解.解:∵1<<2,∴1﹣2<﹣2<2﹣2,∴﹣1<﹣2<0,故选:A.4.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点A,B,C均在网格的格点上,则△ABC的三条边中边长是无理数的有()A.0条B.1条C.2条D.3条【分析】利用勾股定理得AB,BC,AC的长度,再判断是否是无理数即可.解:由勾股定理得:AB=,是无理数;BC=,是无理数;AC=,是有理数.∴△ABC的三条边中边长是无理数的有2条,故选:C.5.如图,是我们学过的用直尺和三角板画平行线的方法示意图,画图的原理是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.内错角相等,两直线平行D.同旁内角互补,两直线平行【分析】根据同位角相等,两直线平行,判断即可.解:用直尺和三角板画平行线的方法示意图,画图的原理是同位角相等,两直线平行,故选:B.6.如图,有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个水池的深度是()尺.A.26B.24C.13D.12【分析】先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2,再解即可.解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,答:水深12尺,故选:D.7.用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多5尺;若环绕大树4周,则绳子又少了2尺,这根绳子有多长?环绕大树一周需要多少尺?设绳子有x尺,环绕大树一周需要y尺,所列方程组中正确的是()A.B.C.D.【分析】根据“若环绕大树3周,则绳子还多5尺;若环绕大树4周,则绳子又少了2尺”,即可得出关于x,y的二元一次方程组,此题得解.解:依题意得:.故选:D.8.某次体操比赛,五位评委对某位选手的打分(单位:分)如下:9.1,9.3,9.4,9.5,9.5.如果规定:去掉一个最高分和一个最低分,余下分数的平均值作为这位选手的最后得分,那么该选手的最后得分是()A.9.4B.9.36C.9.3D.5.64【分析】平均数是指在一组数据中所有数据之和再除以数据的个数,按照游戏规则打分即可.解:该选手的最后得分是=9.4(分).故选:A.9.如图,已知y=﹣x﹣4和y=x的图象交于点P,根据图象可得关于x,y的二元一次方程组的解是()A.B.C.D.无法确定【分析】根据函数图象交点坐标为两函数解析式组成的方程组的解进行解答.解:∵y=﹣x﹣4和y=x的图象交于点P(﹣4,﹣2),∴关于x,y的二元一次方程组的解是.故选:A.10.按如图所示的程序计算,若开始输入的值为9,则最后输出的y值是()A.B.±C.3D.±3【分析】根据已知判断每一步输出结果即可得到答案.解:∵9的算术平方根是3,3不是无理数,∴再取3的平方根,而3的平方根为,是无理数,∴输出值y=,故选:B.二、填空题(每小题3分,共18分)11.﹣27的立方根是﹣3.【分析】根据立方根的定义求解即可.解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.12.直线y=3x﹣2不经过第二象限.【分析】根据已知求得k,b的符号,再判断直线y=3x﹣2经过的象限.解:∵k=3>0,图象过一三象限,b=﹣2<0过第四象限∴这条直线一定不经过第二象限.故答案为:二13.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGE=∠A+∠C,∠DFE=∠B+∠D,然后利用三角形的内角和定理列式计算即可得解.解:如图,由三角形的外角性质得,∠AGE=∠A+∠C,∠DFE=∠B+∠D,∵∠AGE+∠DFE+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.14.某商店销售5种领口大小(单位:cm)分别为38,39,40,41,42的衬衫.为了调查各种领口大小衬衫的销售情况,商店统计了某天的销售情况,并绘制了如图所示的扇形统计图,则该商店应将领口大小为42cm的衬衫进的最少.【分析】由扇形统计图知,42cm的衬衫销售量最少,只占9%,据此可得答案.解:由扇形统计图知,42cm的衬衫销售量最少,只占9%,所以该商店应将领口大小为42cm的衬衫进的最少,故答案为:42.15.已知点M(﹣3,3),线段MN=4,且MN∥y轴,则点N的坐标是(﹣3,﹣1)或(﹣3,7).【分析】根据线段MN=4,且MN∥y轴,点M(﹣3,3),可知点N的横坐标为﹣3,纵坐标与3的差的绝对值为4,从而可得点N的结论.解:∵线段MN=4,且MN∥y轴,点M(﹣3,3),∴点N的坐标为(﹣3,y),∴|y﹣3|=4,∴y=﹣1或y=7,∴则点N的坐标是(﹣3,﹣1)或(﹣3,7).故答案为:(﹣3,﹣1)或(﹣3,7).16.已知等腰三角形的两边长分别为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为7或8.【分析】首先根据+(2a+3b﹣13)2=0,求得a、b的值,然后求得等腰三角形的周长即可.解:∵+(2a+3b﹣13)2=0,∴,解得:,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7.故答案为7或8.三、解答题(第17小题6分,第18.19小题各8分,共22分)17.计算:|2﹣|+(﹣1)2﹣()﹣2.【分析】先利用绝对值的意义、完全平方公式和负整数指数幂的意义计算,然后合并即可.解:原式=2﹣2+2﹣2+1﹣()2=1﹣2=﹣1.18.解二元一次方程组:.【分析】整理后由②得出y=﹣3x③,把③代入①得出4x+6x=﹣5,求出x,再求出y 即可.解:整理得:,由②,得y=﹣3x③,把③代入①,得4x+6x=﹣5,解得:x=﹣0.5,把x=﹣0.5代入③,得y=1.5,所以方程组的解是.19.如图,在四边形ABCD中,AB=7cm,AD=24cm,∠BAD=90°,BC=20m,CD=15cm.(1)连接BD,求BD的长;(2)求四边形ABCD的面积.【分析】(1)连接BD,利用勾股定理解答即可;(2)利用勾股定理的逆定理和三角形的面积公式解答即可.解:(1)连接BD,∵AB=7cm,AD=24cm,∠BAD=90°,∴BD=(cm);(2)∵BC=20m,CD=15cm,BD=25cm,∴202+152=252,∴BC2+CD2=DB2,∴△BCD是直角三角形,∴四边形ABCD的面积===84+150=234(cm2).四.(每小题8分,共16分)20.如图所示,在平面直角坐标系中△ABC的三个顶点坐标分别为A(﹣2,4),B(﹣4,2),C(﹣3,1).(1)作出△ABC关于x轴对称的△A1B1C1,并直接写出A1点的坐标(﹣2,﹣4);(2)作出△ABC关于y轴对称的△A2B2C2,并直接写出B2点的坐标(4,2);(3)在(1)(2)的条件下,若点P在x轴上,当A1P+B2P的值最小时,直接写出A1P+B2P的最小值为6.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可.(3)连接A1B2交x轴于点P,此时PA1+PB2的值最小.解:(1)如图,△A1B1C1,即为所求作.A1(﹣2,﹣4).故答案为:(﹣2,﹣4).(2)如图,△A2B2C2即为所求作.B2(4,2).故答案为:(4,2).(3)连接A1B2交x轴于点P,此时PA1+PB2的值最小,最小值==6.故答案为:6.21.(列二元一次方程组求解)小明家离学校2km,其中有一段为上坡路,另一段为下坡路.他从家跑步去学校共用了16min,已知小明在上坡路上的平均速度是4.8km/h,在下坡路上的平均速度是12km/h.求小明上坡、下坡各用了多少min?【分析】设小明上坡用了xmin,下坡用了ymin,根据小明家离学校2km且从家跑步去学校共用了16min,即可得出关于x,y的二元一次方程组,解之即可得出结论.解:设小明上坡用了xmin,下坡用了ymin,依题意得:,解得:.答:小明上坡用了10min,下坡用了6min.五.(本题10分)22.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加比赛.两校派出选手的比赛成绩如图所示.根据以上信息.整理分析数据:平均数/分中位数/分众数/分A校858585B校85a b(1)a=80;b=100;(2)填空:(填“A校”或“B校”)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是A校;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是B校;③从两校比赛成绩的方差的角度来比较,B校代表队选手成绩的方差较大.【分析】(1)根据条形图将B校数据重新排列,再根据中位数和众数的概念求解即可;(2)从表中数据,利用中位数和众数的意义可得出①②答案,计算出A、B两校成绩的方差,根据方差的意义可得③答案.解:(1)将B校5名选手的成绩重新排列为:70、75、80、100、100,所以其中位数a=80、众数b=100,故答案为:80、100;(2)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是A校;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是B校;③=×[(75﹣85)2+(80﹣85)2+2×(85﹣85)2+(100﹣85)2]=70,=×[(70﹣85)2+(75﹣85)2+(80﹣85)2+2×(100﹣85)2]=160,∴从两校比赛成绩的方差的角度来比较,B校代表队选手成绩的方差较大.故答案为:A校、B校、B校.六.(本题10分)23.已知,直线AB∥CD.(1)如图1,求证∠AEC=∠BAE+∠DCE;(2)如图2,请直接写出∠AEC,∠BAE,∠DCE之间的数量关系,并说明理由;(3)如图3,CF平分∠DCE,AF平分∠BAE,且∠E+∠F=60°.①请直接写出∠AEC,∠BAE,∠DCE之间的数量关系是∠BAE=∠AEC+∠DCE;②请直接写出∠E的度数是40°.【分析】(1)根据平行线的性质即可得到结论;(2)先根据两直线平行,同位角相等求出∠3=∠ECD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解;(3)①同(2)根据平行线的性质推出同位角相等,再根据三角形的外角性质得出结论即可;②根据CF平分∠DCE,AF平分∠BAE,可得∠ECD=2∠FCD,∠EAB=2∠BAF,根据AB∥CD,可得∠BAF=∠FMD,∠END=∠BAE,可得出∠E=2∠F,即可求解.解:(1)如图1中,过点E作EF∥AB,则有EF∥CD,∴∠1=∠BAE,∠2=∠DCE,∴∠AEC=∠1+∠2=∠BAE+∠DCE;(2)∠DCE=∠AEC+∠BAE,理由如下:如图2,∵AB∥CD,∴∠3=∠DCE,∵∠3=∠AEC+∠BAE,∴∠DCE=∠AEC+∠BAE;(3)①∠BAE=∠AEC+∠DCE,理由如下:如图3,∵AB∥CD,∴∠BAE=∠DNE,∵∠DNE=∠AEC+∠DCE,∴∠BAE=∠AEC+∠DCE;②∵CF平分∠DCE,AF平分∠BAE,∴∠ECD=2∠FCD,∠EAB=2∠BAF,∵AB∥CD,∴∠BAF=∠FMD,∠END=∠BAE,∵∠FMD=∠FCD+∠F,∠END=∠ECD+∠E,∴∠F=∠BAF﹣∠FCD=∠EAB﹣∠ECD=(∠BAE﹣∠ECD),∠E=∠BAE﹣∠ECD,∴∠E =2∠F ,∵∠E +∠F =60°,∴∠E =40°.故答案为:①∠BAE =∠AEC +∠DCE ;②40°.七.(本题12分)24.小明同学看到一则材料:甲开汽车,乙骑自行车从P 地出发沿同一条公路匀速前往Q 地、设乙行驶的时间为t (h ).甲乙两人之间的距离为y (km ),y 与t 的函数关系如图所示.小明思考后发现了图中的部分信息:乙先出发1h ;甲出发0.5小时与乙相遇.请你帮助小明同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式(不需要写出自变量的取值范围);(2)直接写出乙行驶的路程S 乙(km )与时间t (h )的函数表达式是s 乙=20t (不需要写出自变量的取值范围);(3)丙骑摩托车从Q 地沿同一条公路匀速前往P 地,若丙与乙同时出发,丙经过1.4h 与甲相遇.①直接写出丙行驶的路程S 丙(km )与时间t (h )的函数表达式是S 丙=40t (不需要写出自变量的取值范围);②直接写出甲出发0.3或0.5h 后与丙相距10km .【分析】(1)利用待定系数法求函数解析式,即可解答;(2)先求出甲、乙的速度,可得S 乙(km )与时间t (h )的函数表达式;(3)①首先得出P 、Q 地之间的距离,进而求出丙的速度;②分两种情况:相遇前相距10km 和相遇后相距10km ,利用一元一次方程可得答案.解:(1)直线BC 的函数解析式为y =kt +b ,把(1.5,0),(,)代入得:解得:,∴直线BC 的解析式为:y =40t ﹣60;设直线CD 的函数解析式为y =kt +b ,把(,),(4,0)代入得:,解得:,∴直线CD 的函数解析式为:y =﹣20t +80.(2)由图象可知,甲、乙二人的速度比是3:1,设乙的速度是xkm /h ,则甲的速度是3xkm /h ,依题意得,3x (﹣1)=x +,解得x =20,所以甲的速度是60km /h ,乙的速度20km /h ,所以乙行驶的路程S 乙与时间t 的函数表达式是S 乙=20t .故答案为:S 乙=20t .(3)①由图象可知P 、Q 两地得距离是4×20=80(km ),所以丙的速度是[80﹣60×(1.4﹣1)]÷1.4=40km /h ,所以S 丙=40t .故答案为:S 丙=40t .②设甲出发a 小时后与丙相距10km ,60a +40(a +1)=80﹣10,解得a =0.3;60a +40(a +1)=80+10,解得a =0.5;故答案为:0.3或0.5.八.(本题12分)25.如图1所示,直线l :y =k (x ﹣1)(k >0)与x 轴正半轴,y 轴负半轴分别交于A ,B 两点.(1)当OA =OB 时,求点A 坐标及直线l 的函数表达式;(2)在(1)的条件下,如图2所示,设C为线段AB延长线上一点,作直线OC,过AB两点分别作AD⊥OC于点D.BE⊥OC于点E.若AD=,求BE的长;(3)如图3所示,当k取不同的值时,点B在y轴负半轴上运动,分别以OB、AB为边,点B为直角顶点在第三象限.第四象限内分别作等腰直角△OBG和等腰直角△ABF,连接FG交y轴于点H.①连接AH,直接写出△ABH的面积是;②动点F始终在一条直线上运动,则该直线的函数表达式是y=﹣x﹣1.【分析】(1)分别表示出A点和B点坐标,根据OA=OB可求出K值,进而求得表达式;(2)利用勾股定理求出OD,证明△OBE和△AOD全等,可求BE的长;(3)①过点F作FE⊥y轴,证明△OAB和△EBF全等,得到BE,OA的长,利用△FEH 与△GHB全等,求得BH,可求得面积.②用含k的式子表示出F点坐标,即可求解.解:(1)当x=0时,y=﹣k;当y=0时,x=1,∴点B坐标为(0,﹣k),点A坐标(1,0),∴OA=1,OB=k,∴k=1,∴直线l的函数表达式为y=x﹣1,A点坐标(1,0);(2)在Rt△OAD中,AD=,OA=1,∴OD==,∵∠OEB=∠ADO=∠AOB=90°,∴∠BOE+∠OBE=90°,∠BOE+∠AOD=90°,∴∠OBE=∠AOD,∵OB=OA,在Rt△OBE和Rt△AOD中,,∴△OBE≌△AOD(AAS),∴BE=OD=;(3)①过点F作FE⊥y轴于E,如图,∵△ABF和△OBG都是等腰直角三角形,∴AB=BF,OB=OG,∠ABF=∠OBG=90°,∴∠AOB=∠BEF=90°,∴∠OAB+∠OBA=90°,∠EBF+∠OBA=90°,∴∠OAB=∠EBF,在Rt△AOB和Rt△EBF中,,∴Rt△AOB≌Rt△EBF(AAS),∴BE=OA=1,EF=OB.∴EF=BG,在Rt△FEH和Rt△GBH中,,∴Rt△FEH≌Rt△GBH(AAS),∴BH=EH=BE=,∴△ABH的面积:S==;故答案为,②∵点B的坐标为(0,﹣k),点A的坐标为(1,0),OA=1,OB=K,∴EF=OB=k,OE=OB+BE=k+1,∴点F的坐标为(k,﹣k﹣1),∴点F始终在一条直线上运动,该直线的函数表达式为y=﹣x﹣1,故答案为y=﹣x﹣1.。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列实数中,是无理数的是()A B .3-C .0.101001D .132.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b 的是()A .∠2=∠5B .∠1=∠3C .∠5=∠4D .∠1+∠5=180°3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <4.快要到新年了,某鞋店老板要进一批新年鞋,他一定会参考下面的调查数据,他最关注的是()A .中位数B .平均数C .加权平均数D .众数5.下列各命题中,属于假命题的是()A .若a -b =0,则a =b =0B .若a -b >0,则a >bC .若a -b <0,则a <bD .若a -b≠0,则a≠b6.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是()A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩7.已知正比例函数y =kx 的函数值y 随x 的增大而减小,则一次函数y =kx -k 的图象大致是()A .B .C .D .8.如图,已知函数y =ax+b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组y ax by kx=+⎧⎨=⎩的解是()A.24xy=-⎧⎨=-⎩B.42xy=-⎧⎨=-⎩C.24xy=⎧⎨=-⎩D.42xy=-⎧⎨=⎩9.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定10.如图,∠AFD=65°,CD∥EB,则BÐ的度数为()A.115°B.110°C.105°D.65°二、填空题11.甲、乙两地7月上旬的日平均气温如图所示,则甲,乙两地这10天中日平均气温的方差S2甲与S2乙的大小关系是S2甲_______S2乙.(填“>”或“<”)12.小明某学期数学平时成绩为70分,期中考试成绩为80分,期末考试成绩为90分,计算学期总评成绩的方法:平时占30%,期中占30%,期末占40%,则小明这学期的总评成绩是________分.13.若|3x﹣0,则xy的算术平方根是_____.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.15.如图,已知∠1=100°,∠2=140°,那么∠3=________度.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于1AB2的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.17.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是____________.18.如图,在△ABC 中,∠A=40°,点D 是∠ABC 和∠ACB 角平分线的交点,则∠BDC 为________三、解答题1901323(21)2-+20.解下列方程组:569745x y x y -=⎧⎨-=-⎩21.某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A ,B ,C ,D ,E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?22.如图,已知12l l //,且3l 与1l ,2l 分别交于A ,B 两点,点P 在直线AB 上.(1)当点P 在A ,B 两点之间运动时,求1∠,2∠,3∠之间的数量关系,并说明理由.(2)如果点P 在A ,B 两点外侧运动,试探究1∠,2∠,3∠之间的数量关系(点P 与A ,B 不重合),并说明理由.23.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)若小李11月份上网20小时,他应付多少元的上网费用?(2)当x≥30,求y 与x 之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?24.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,将△ACB 沿CD 折叠,使点A 恰好落在BC 边上的点E 处.(1)求△BDE 的周长;(2)若∠B =37°,求∠CDE 的度数.25.某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?26.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式(写出自变量范围);(3)登山多长时间时,甲、乙两人距地面的高度差为70米?参考答案1.A2.B3.B4.D 5.A 6.B 7.C 8.B 9.C 10.A 11.> 12.81 1314.x=2 15.6016.8 517.(0,3)18.110°【详解】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∵∠A=40°,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故答案为:110°.191.1)1=+1=.20.34xy=-⎧⎨=-⎩.【详解】解:569745x y x y -=⎧⎨-=-⎩①②,①×2-②×3,得-11x=33,解得x=-3,把x=-3代入①,得-15-6y=9,解得y=-4,故方程组的解为34x y =-⎧⎨=-⎩.21.(1)补全图形见解析;(2)6,6;(3)6本;4500本.【详解】解:(1)D 组人数=30﹣4﹣6﹣9﹣3=8.(2)众数是6本中位数是6本.故答案为6,6.(3)平均数=6(本),该单位750名职工共捐书约4500本.22.(1)123∠+∠=∠,见解析;(2)123∠-∠=∠或213∠-∠=∠,见解析.【详解】(1)123∠+∠=∠.理由如下:如图所示,过点P 作1//PQ l .12//l l ,12////l l PQ ∴,14∴∠=∠,25∠=∠.453∠+∠=∠ ,123∴∠+∠=∠.(2)123∠-∠=∠或213∠-∠=∠.理由如下:当点P 在下侧时,过点P 作1l 的平行线PQ ,如图所示,12//l l ,12////l l PQ ∴,24∴∠=∠,134∠=∠+∠,123∴∠-∠=∠.当点P 在上侧时,如图所示,12//l l ,24∴∠=∠,又413∠=∠+∠,213∴∠-∠=∠.23.(1)60元;(2)y =3x ﹣30;(3)55个小时.【详解】解:(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)当x≥30时,设函数关系式为y =kx+b ,则30604090k b k b +=⎧⎨+=⎩,解得k 3b 30=⎧⎨=-⎩,故函数关系式为y =3x ﹣30;(3)由135=3x ﹣30解得x =55,故12月份上网55个小时.24.(1)△BDE 的周长为12;(2)∠CDE 的度数为82°.【分析】(1)由折叠的性质可知,DE=AD ,CE=AC ,则△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,先求出BE 的长,再利用勾股定理求出AB 的长即可;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,再利用三角形内角和定理求解即可.【详解】解:(1)由折叠的性质可知,DE=AD ,CE=AC ,∴△BDE 的周长=BD+DE+BE=BD+BE+AD=AB+BE ,∵∠ACB=90°,AC=6,BC=8,∴BE=BC-CE=BC-AC=2,10AB =,∴△BDE 的周长=AB+BE=10+2=12;(2)由折叠的性质可知:∠ACD=∠BCD ,∠A=∠CED ,∵∠ACB=90°,∠B=37°,∴∠A=∠CED=53°,1452ECD ACB ==o ∠,∴=180=82CDE BCD CED --o o ∠∠∠.25.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)w =﹣10a+2400;(3)12月份该店需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数星,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式;(3)根据甲种水果不超过90千克,可得出a的取值范固,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300 x yx y+=⎧⎨+=+⎩,解得10050xy=⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400;(3)根据题意得,a≤90,由(2)得,w=﹣10a+2400,∵﹣10<0,w随a的增大而减小,∴a=90时,w有最小值w最小=﹣10×90+2400=1500(元).答:12月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数之间的关系,找出w关于a的函数关系式. 26.(1)10;30;(2)15(02)3030(211)x xyx x≤<⎧=⎨-≤≤⎩;(3)登山3分钟或10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者作差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y 关于x 的函数关系式=70,得出关于x 的一元一次方程,解之可求出x 值.综上即可得出结论.(1)解:甲登山上升的速度是:(300-100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)解:当0≤x <2时,y=15x ;当x≥2时,y=30+10×3(x-2)=30x-30.当y=30x-30=300时,x=11.∴乙登山全程中,距地面的高度y 与登山时间x 之间的函数关系式为:15(02)3030(211)x x y x x ≤<⎧=⎨-≤≤⎩;(3)解:甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=kx+b (k≠0),把(0,100)和(20,300)代入解析式得:10020300b k b =⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴甲登山全程中,距地面的高度y 与登山时间之间的函数关系式为y=10x+100(0≤x≤20),当10x+100-(30x-30)=70时,解得:x=3;当30x-30-(10x+100)=70时,解得:x=10;当300-(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.。

北师大版八年级数学上册期末试卷及参考答案

北师大版八年级数学上册期末试卷及参考答案

11北师大版八年级数学上册期末试卷一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。

的相反数是( )A .5B .5-C .5±D .252. 如图,将边长为2个单位的等边△ABC 沿边BC 向右平移1个单位得到△DEF,则四边形ABFD 的周长为( )A .6B . 8C .10D .123. 为了让居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能..进行平面镶嵌的是( ) A .正三角形B .正方形C .正五边形D .正六边形4. 在平面直角坐标系中,点(12)P -,的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限 5. 在一组数据3,4,4,6,8中,下列说法正确的是( )A .平均数小于中位数B .平均数等于中位数C .平均数大于中位数D .平均数等于众数 6.). A.6到7之间 B.7到8之间 C.8到9之间D.9到10之间二、填空题(每小题3分,共27分) 7.x 应满足的条件是 .8. 若一个多边形的内角和等于720,则这个多边形是 边形.9. 随着海拔高度的升高,空气中的含氧量含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 .10. 如图,点A B ,在数轴上对应的实数分别为m n ,, 则A B ,间的距离是 .(用含m n ,的式子表示)11. 边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 . 12.写出满足14<a <15的无理数a 的两个值为 . 13. 如图,有一圆柱体,它的高为20cm ,底面半径为7cm .在圆柱的下底面A 点处有一个蜘蛛,它想吃到上底面上与A 点相对的B 点处的苍蝇,需要爬行的最短路径是 cm(结果用带根号和π的式子表示).BFEDCBA2题2214. 直线y kx b =+经过点(20)A -,和y 轴正半轴上的一点B ,如果ABO △(O 为坐标原点)的面积为2,则b 的值为 .15. 若等腰梯形ABCD 的上、下底之和为4,并且两条对角线所夹锐角为60,则该等腰梯形的面积为 (结果保留根号的形式).三、解答题(本大题8个小题,共75分) 16.(8分)(1.(2)解方程组:425x y x y -=⎧⎨+=⎩, . ①② 17.(9分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点均在格点上,点C 的坐标为(41)-,.①把ABC △向上平移5个单位后得到对应的111A B C △,画出111A B C △的图形并写出点1C 的坐标; ②以原点O 为对称中心,再画出与111A B C △关于原点O 对称的222A B C △,并写出点2C 的坐标.30400.30户家庭的(2)根据上述数据,试估计该社区的月用水量;(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m (吨),家庭月用水量不超过m (吨)的部分按原价收费,超过m (吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由. 22. (10分) 康乐公司在A B ,两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台,从A B ,(1)如果从地运往甲地台,求完成以上调运所需总费用(元)与(台)之间的函数关系式;33(2)请你为康乐公司设计一种最佳调运方案,使总费用最少,并说明理由。

最新北师大版八年级数学上册期末考试及答案【完美版】

最新北师大版八年级数学上册期末考试及答案【完美版】

最新北师大版八年级数学上册期末考试及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1 B .1 C .﹣5 D .56.下列二次根式中能与23合并的是( )A .8B .13C .18D .97.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a bC .222a b + D .222a b - 10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.正五边形的内角和等于______度.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 _________.5.如图,平行四边形ABCD中,60BAD∠=︒,2AD=,点E是对角线AC上一动点,点F是边CD上一动点,连接BE、EF,则BE EF+的最小值是____________.6.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)2153x x=+(2)3111xx x=-+-2.先化简,再求值:(1﹣11x-)÷22441x xx-+-,其中x5 23.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、C5、A6、B7、C8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-2、5403、如果两个角互为对顶角,那么这两个角相等4、180°56、7三、解答题(本大题共6小题,共72分)1、(1)x=1(2)x=22、12x x +-,55+3、(1)略;(2)△ABC 的周长为5.4、(1)略;(2)75.5、(1)略(2)90°(3)AP=CE6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。

北师大版八年级上册期末考试数学试卷(共5套,含参考答案)

北师大版八年级上册期末考试数学试卷(共5套,含参考答案)

初二上学期期末考试数学试卷选择题(每小题3分,共30分)1.下列各数:1.414,2,31-,0,其中是无理数的为( ) A. 1.414 B. 2 C. 31- D. 0 2.下列二次根式中,不是最简二次根式的是( ) A.10 B.8 C.6 D.23.今年5月1日~7日,威海地区每天最高温度(单位:℃)情况如图1所示,则表示最高温度的这组数据的中位数是( )A. 24B. 25C. 26D. 27① ②图1 图2 图34. 下列选项中,可以用来说明命题“两个锐角的和是锐角”是假命题的反例是( )A. ∠A =30°,∠B =40°B. ∠A =30°,∠B =110°C. ∠A =30°,∠B =70°D. ∠A =30°,∠B =90°5.如图2,给出下列条件:①∠3=∠4;②∠1=∠2;③EF ∥CD ,且∠D =∠4;④∠3+∠5=180°. 其中,能推出AD ∥BC 的条件为( )A. ①②③B. ①②④C. ①③④D. ②③④6.小亮解方程组651x y x y -=∙⎧⎨+=-⎩,的解为1x y =-⎧⎨=*⎩,,由于不小心,滴上了两滴墨水,刚好遮住了•和*处的两个数,则点(•,*)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.设0<k <2,关于x 的一次函数y =kx +2(1-x ),当1≤x≤2时的最大值是( )A. 2k -2B. k -1C. kD. k +18. 对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分和4分四个等级,将调查结果绘制成条形统计图(如图3-①)和扇形统计图(如图3-②).根据图中信息,这些学生的平均分数是( )A. 2.25B. 2.5C. 2.95D. 39.若一次函数y 1=k 1x +b 1与y 2=k 2x +b 2,满足b 1<b 2,且已知21k k 没有意义,则能大致表示这两个函数图象的是( )最高温度日期A B C D 图410.如图4,在长方形纸片ABCD中,AB=5 cm,BC=10 cm,CD上有一点E ,ED=2 cm,AD上有一点P,PD=3 cm,过点P作PF⊥AD,交BC于点F,将纸片折叠,使点P与点E重合,折痕与PF交于点Q,则PQ的长是()A.134cm B. 3 cm C. 2 cm D.72cm二、填空题(每小题4分,共32分)11. 如图5,点A表示的实数是____________.图5 图6 图7 图812.已知函数23(1)my m x-=+是正比例函数,且图象在第二、四象限内,则m的值是.13.如图6,在方格纸中有三个点A,B,C,若点A的位置记为(0,1),点B的位置记为(2,-1),则点C 的位置应记为________________.14.方程组4123x yy x-=⎧⎨=+⎩,的解是____________,则一次函数y=4x-1与y=2x+3的图象的交点坐标为________________.15.一副三角尺如图7所示叠放在一起,则图中∠α的度数是___________.16.(2016年大庆)甲、乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_______________.(填“甲”或“乙”)17.如图8,已知A点坐标为(2,0),点B在直线y=x上运动,当线段AB长度最短时,直线AB的表达式为_____________.18.如图9,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的平分线,CA2是∠A1CD的平分线,BA3是∠A2BD的平分线,CA3是∠A2CD的平分线,…若∠A1=α,则∠A2016的度数为.图9三、解答题(共58分)19.(每小题5分,共10分)计算:(1()20161-;(2)()()()2227373-++-.y=x20.(8分)一次函数y=kx+b的图象经过点A(-1,3),B(2,-3).(1)求这个一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积.21.(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输. 为提高质量,做进一步研究,某饮料加工厂需生产A,B 两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶添加2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?22.(10分)某中学举行“中国梦·校园好声音”歌手大赛,初中部与高中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛. 两个队各选出的5名选手的决赛成绩(满分100分)如图10所示:(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.图1023.(10分)在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OB=OA=3.(1)求点A,B的坐标;(2)已知点C(-2,2),求△BOC的面积;(3)若P是第一象限角平分线上一点,且S△ABP=332,求点P的坐标.100 95 90 85 80 75 70O24.(12分)平面内不重合的两条直线有相交和平行两种位置关系.(1)如图12-①,若AB∥CD,点P在AB,CD的同侧,则有∠B=∠BOD,∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB,CD的异侧,如图12-②,结论∠BPD=∠B-∠D是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在图12-②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图12-③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?并证明你的猜想;(3)设BF交AC于点M,AE交DF于点N,已知∠AMB=140°,∠ANF=105°.利用(2)中的结论直接写出∠B+∠E+∠F的度数为_____________度,∠A比∠F大_______________度.①②③图12期末模拟测试题 参考答案一、1. B 2. B 3. B 4. C 5. C 6. B 7. C 8. C 9. D 10. A二、11.5 12. -2 13. (-3,-2) 14. 2,7x y =⎧⎨=⎩ (2,7) 15. 75° 16. 甲 17. y =-x +2 18. 20152α 三、19. 解:(1)原式=-3+21-1=-72. (2)原式=9-7+22-2=2+22-2=22.20. 解:(1)依题意,得323k b k b -+=⎧⎨+=-⎩,,解得21.k b =-⎧⎨=⎩,所以所求一次函数的表达式是y=-2x+1. (2)令x=0,由y=-2x+1,得y=1;令y=0,由y=-2x+1,得x=21. 所以直线AB 与坐标轴的交点坐标分别是(0,1)和(21,0).所以围成的三角形的面积为21×21×1=14. 21. 解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶.根据题意,得方程组10023270.x y x y +=⎧⎨+=⎩,解得3070.x y =⎧⎨=⎩,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.22. 解:(1)初中部决赛成绩的平均数为15(75+80+85+85+100)=85(分),众数85分,高中部决赛成绩的中位数80分.(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)因为2s 初=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,2s 高=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,所以2s初<2s 高. 所以初中代表队选手的成绩较为稳定.23.解:(1)由OB=OA=3,A ,B 两点分别在x 轴、y 轴的正半轴上,得A (3,0),B (0,3).(2)画图形如图1所示,知点C 到OB 的距离为点C 的横坐标的绝对值,则S △BOC =2321⨯⨯=3.(3)由点P 在第一象限的角平分线上,可设P 的坐标为(a ,a ).由S △AOB =12OA·OB=92<S △ABP ,知点P 在AB 的右侧,则S △ABP =S △PAO +S △PBO -S △AOB=12×3a+12×3a-12×3×3,即12×3a+12×3a-12×3×3=233. 整理,得293-a =233,解得7=a .所以P 的坐标为(7,7). 24. 解:(1)不成立.应为∠BPD=∠B+∠D.证明:如图2,延长BP 交CD 于点E.∵AB ∥CD ,∴∠B=∠BED. 又∵∠BPD=∠BED+∠D ,∴∠BPD=∠B+∠D.(2)∠BPD=∠BQD+∠B+∠D.证明:如图3所示,连接QP 并延长.利用“三角形的一个外角等于和它不相邻的两个内角的和”,得∠BPD=(∠BQP+∠B )+(∠DQP+∠D )=∠BQD+∠B+∠D .(3)75 65提示:由(2)的结论,得∠ENF=∠B+∠E+∠F ,∠AMB=∠B+∠E+∠A.因为∠ANF=105°,所以∠B+∠E+∠F=180°-∠ANF=180°-105°=75°.因为∠A=∠AMB-∠B-∠E ,∠F=∠ENF-∠B-∠E ,所以∠A-∠F=∠AMB-∠ENF=140°-75°=65°.图2 图3北师大版八年级上学期期末测试题数学一、选择题(每小题3分,共30分)1.下列四组线段中,能构成直角三角形的是( )A .1,2,3B .13 C .2,3,4 D .1,12.下列计算正确的是( )A5 B12= C=1D3.一组数据2,7,6,3,4,7的众数和中位数分别是( )A .7,4.5B .4,6C .7,4D .7,54.如图1,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组y ax b y kx=+⎧⎨=⎩,的解是( ) A .31x y =⎧⎨=-⎩, B .31x y =-⎧⎨=-⎩, C .31x y =-⎧⎨=⎩, D .31x y =⎧⎨=⎩,图1 图2 图3 图4 5.一次函数y=6x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6. 点M 关于y 轴对称的点为M 1(3,–5),则点M 关于x 轴对称的点M 2的坐标为( )A .(–3,5)B .(–3,–5)C .(3,5)D .(3,–5)7.如图2,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE8=0,则x 2015+y 2016的值为( )A .0B .1C .﹣1D .29.图3所示是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于( )A .90°B .120°C .150°D .180°10. 甲、乙两车从A 地匀速驶向B 地,甲车比乙车早出发2 h ,并且甲车图中休息了0.5 h 后仍以原速度驶向B 地,图4所示是甲、乙两车行驶的路程y (km )与行驶的时间x (h )之间的函数图象.下列说法:①m=1,a=40;②甲车的速度是40 km/h ,乙车的速度是80 km/h ;③当甲车距离A 地260 km 时,甲车所用的时间为7 h ;④当两车相距20 km 时,则乙车行驶了3 h 或4 h.其中正确的个数是( )32 1A .1个B .2个C .3个D .4个二、填空题(每小题4分,共32分)11.已知正比例函数y=kx (k≠0)的图象经过点(1,﹣2),则正比例函数的表达式为 .12.若7在两个连续整数a ,b 之间,即a <7<b ,则=+b a .13.若一组数据2,4,x ,6,8的平均数是6,则这组数据的极差为 ,方差为 .14.若点P 的坐标为(a 2+1,–6+2),则点P 在第_________象限.15. 如图5,点D ,B ,C 在同一直线上,∠A=75°,∠C=55°,∠D=20°,则∠1的度数是_______________.图5 图6 图7 图816.若m ,n 为实数,且,则(m+n )2017的值为____________.17.在Rt △ABC 中,∠C=90°,AB=AC+BC=6,则△ABC 的面积为 .18.如图6,直线y=x+1分别与x 轴、y 轴相交于点A ,B ,以点A 为圆心,AB 长为半径画弧交x 轴于点A 1,再过点A 1作x 轴的垂线交直线y=x+1于点B 1,以点A 为圆心,AB 1长为半径画弧交x 轴于点A 2,…,按此作法进行下去,则点A 8的坐标是 .三、解答题(共58分)19. (每小题6分,共12分)(1) 计算:2+(2)解方程组:230311.x y x y +=⎧⎨-=⎩, 20. (6分) 如图7,AB ∥CD ,∠A=75°,∠C=30°,求∠E 的度数.21. (8分)目前节能灯在城市已基本普及,今年广东省面向农村地区推广,为响应号召,某商场计划用3800元购进节能灯120个,这两种节能灯的进价、售价如下表:进价(元/个) 售价(元/个)甲 型25 30 乙 型45 60 (1)求甲、乙两种节能灯各购进多少个?(2)全部售完120个节能灯后,该商场获利润多少元?22. (10分)如图8,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (4,0),B (﹣1,4),C (﹣3,1).(1)在图中作△A′B′C′与△ABC 关于x 轴对称;(2)写出点A′,B′,C′的坐标.23.(10分)甲、乙两人参加理化实验操作测试,学校进行了6次模拟测试,成绩如表所示:第1次第2次第3次第4次第5次第6次平均数众数甲7 9 9 9 10 10 9 9乙7 8 9 10 10 10 _______ _______(1)根据图表信息,补全表格;(2)已知甲的成绩的方差等于1,请计算乙的成绩的方差;(3)从平均数和方差相结合看,分析谁的成绩好些?24.(12分)甲、乙两人沿同一路线登山,图中线段OC,折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象(如图9所示).请根据图象所提供的信息,解答下列问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?图9期末测试题参考答案一、1. D 2. C 3. D 4. C 5. D 6. A 7. D 8. D 9. D 10. C二、11. y=﹣2x 12. 5 13. 8 8 14. 四15. 30°16. -1 17. 4 18.(15,0)三、19. (1) 原式=2+3﹣.(2)方程组230 311x yx y+=⎧⎨-=⎩,②,①②×3+①,得11x=33,解得x=3.把x=3代入②,得y=﹣2.则原方程组的解是32. xy=⎧⎨=-⎩,20. 解:如图1所示.∵AB∥CD,∠A=75°,∴∠1=∠A=75°. ∵∠C=30°,∴∠E=∠1-∠C=75°-30°=45°.图1 图2 图321. 解:(1)设商场购进甲型节能灯x个,则购进乙型节能灯y个.由题意,得25453800120.x yx y+=⎧⎨+=⎩,解得8040.xy=⎧⎨=⎩,答:甲型节能灯购进80个,乙型节能灯购进40个.(2)由题意,得80×5+40×15=1000(元).答:全部售完120个节能灯后,该商场获利润1000元.22. 解:(1)如图所示.(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).23. 解:(1)乙的平均数是(7+8+9+10+10+10)÷6=9;因为10出现了3次,出现的次数最多,所以乙的众数是10.(2)乙的方差是16[(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=43.(3)甲的成绩好些,因为两个人的平均成绩都是9分,但甲的方差小,所以成绩更稳定.24. 解:(1)设甲登山的路程y与登山时间x之间的函数表达式为y=kx.∵点C(30,600)在函数y=kx的图象上,∴30k=600,解得k=20.∴y=20x(0≤x≤30).(2)设乙在AB段登山的路程y与登山时间x之间的函数表达式为y=ax+b(8≤x≤20).将点A(8,120),B(20,600)代入,得812020600a ba b+=⎧⎨+=⎩,.解得40200.ab=⎧⎨=-⎩,所以y=40x﹣200.联立方程,得2040200.y xy x=⎧⎨=-⎩,解得10200.xy=⎧⎨=⎩,故乙出发后10分钟追上甲,此时乙所走的路程是200米.北师大版八年级上册数学期末考试试卷一、选择题(每小题3分,共30分。

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列各数中,是无理数的是()AB C .227D .3.14152.在﹣3,0,2,这组数中,最小的数是()A .B .﹣3C .0D .23.如图,不能推出a ∥b 的条件是()A .∠4=∠2B .∠3+∠4=180°C .∠1=∠3D .∠2+∠3=180°4.甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S 甲2=5,S 乙2=20,S 丙2=23,S 丁2=32,则这四名学生的数学成绩最稳定的是()A .甲B .乙C .丙D .丁5.下列各组数据中,能构成直角三角形的三边的长的一组是()A .1,2,3B .4,5,6C .5,12,13D .13,14,156.下列运算正确的是()A 2=±B 2=-C .224-=D .22--=7.已知23x y =-⎧⎨=⎩是方程22kx y +=-的解,则k 的值为()A .﹣2B .2C .4D .﹣48.如图,在△ABC 中,∠C =90°,AC =3,BC =2.以AB 为一条边向三角形外部作正方形,则正方形的面积是()A .5B .6C .12D .139.在平面直角坐标系中,点A 的坐标是(3a ﹣5,a+1).若点A 到x 轴的距离与到y 轴的距离相等,且点A 在y 轴的右侧,则a 的值为()A .1B .2C .3D .1或310.若直线y kx b =+经过第一、二、四象限,则函数y bx k =-的大致图像是()A .B .C .D .二、填空题11.9的算术平方根是.12.方程组43139x y x y +=-⎧⎨+=⎩的解是:_____.13.一组数据:2,5,7,3,5的众数是________.14.请写出“两直线平行,同位角相等”的结论:_____.15.如图,把一张三角形纸片(△ABC )进行折叠,使点A 落在BC 上的点F 处,折痕为DE ,点D ,点E 分别在AB 和AC 上,DE ∥BC ,若∠B =70°,则∠BDF 的度数为____.16.如图,已知直线y =x+3与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴正半轴于点C ,则点C 坐标为_____.17.如图,直角坐标平面xoy 内,动点P 按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),…按这样的运动规律,动点P 第2022次运动到点的坐标是_____.三、解答题1802021π(-)19.如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.20.如图所示,在平面直角坐标系中,已知A (0,1),B (3,0),C (3,4).(1)在图中画出△ABC ,△ABC 的面积是;(2)在(1)的条件下,延长线段CA ,与x 轴交于点M ,则M 点的坐标是.(作图后直接写答案)21.若实数b的立方根为2,且实数a,b,c(a﹣c+4)2=8.(1)求2a﹣3b+c的值;(2)若a,b,c是△ABC的三边,试判断三角形的形状.22.为了解某校八年级体育科目训练情况,从八年级学生中随机抽取了部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:∠的度数是__________,并把图2条形统计图补充完整.(1)图1中α(2)抽取的这部分的学生的体育科目测试结果的中位数是在__________级;(3)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,请计算抽取的这部分学生体育的平均成绩.23.某小区为了绿化环境,计划分两次购进A,B两种树苗,第一次购进A种树苗40棵,B种树苗15棵,共花费1750元;第二次购进A种树苗20棵,B种树苗6棵,共花费860元.(两次购进的A,B两种树苗各自的单价均不变)(1)A,B两种树苗每棵的价格分别是多少元?(2)因受季节影响,A种树苗价格下降10%,B种树苗价格上升20%,计划购进A种树苗25棵,B种树苗20棵,问总费用是多少元?24.如图,在平面直角坐标系中,过点C(0,6)的直线AB与直线OA相交于点A(4,2),动点M在直线OA和射线AC上运动.(1)求直线AB的解析式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积是△OAB的面积的1若存在,求出此时点M的坐标;2若不存在,说明理由.25.甲、乙两人从同一点出发,沿着跑道训练400米速度跑,乙比甲先出发,并且匀速跑完全程,甲出发一段时间后速度提高为原来的3倍.设乙跑步的时间为x(s),甲、乙跑步的路程分别为y1(米)、y2(米),y1、y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲比乙晚出发s,甲提速前的速度是每秒米,m=,n=;(2)当x为何值时,甲追上了乙?(3)在甲提速后到甲、乙都停止的这段时间内,当甲、乙之间的距离不超过30米时,请你直接写出x的取值范围.参考答案1.A2.B3.B4.A5.C6.B7.C8.D9.C 10.B 11.312.285395 xy⎧=⎪⎪⎨⎪=-⎪⎩【分析】②×3-①求出x的值,再把x的值代入②求出y的值即可.【详解】解:431 39x yx y+=-⎧⎨+=⎩①②②×3-①,得5x=28∴x=28 5把x=285代入②得,283+95y⨯=∴395 y=-∴方程组的解为285395 xy⎧=⎪⎪⎨⎪=-⎪⎩故答案为:285395 xy⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.13.5【分析】根据众数的概念求解.【详解】解:这组数据5出现的次数最多.故众数为5.故答案为:5,【点睛】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.14.同位角相等【分析】命题是由题设和结论两部分组成的,将这个命题改写成“如果⋯那么⋯”的形式即可得出答案.【详解】解:将命题改写成“如果⋯那么⋯”的形式为:如果两直线平行,那么同位角相等,则此命题的结论为:同位角相等,故答案为:同位角相等.【点睛】本题考查了命题,熟练掌握命题的概念是解题关键.15.40°【分析】利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.【详解】解:∵DE∥BC,∴∠ADE=∠B=70°,由折叠的性质可得∠ADE=∠EDF=70°,∴∠BDF=180°﹣∠ADE-∠EDF=40°,故答案为:40°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.16.(3,0)【分析】先求出直线与坐标轴的交点坐标A(﹣3,0),B(0,3),再利用勾股定理计算出AB=AC=AB=OC的长,即可得出点C的坐标.【详解】解:当y=0时,x+3=0,解得x=﹣3,则A(﹣3,0);当x=0时,y=x+3=3,则B(0,3),所以AB=因为以点A为圆心,AB为半径画弧,交x轴于点C,所以AC=AB=所以OC=AC﹣AO=3,所以的C的坐标为(3,0),故答案为(3,0).【点睛】本题考查了一次函数图象与坐标轴的交点问题,关键是求出一次函数图象与x轴、y轴的交点坐标,也考查了勾股定理.17.(2021,0)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2022除以4,再由商和余数的情况确定运动后点的坐标.【详解】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,∵2022÷4=505余2,∴第2022次运动为第505循环组的第2次运动,-+⨯+=,纵坐标为0,横坐标为1505422021∴点P运动第2022次的坐标为(2021,0).故答案为:(2021,0).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.18.2【分析】直接利用二次根式的性质及零指数幂的性质解题即可.-+1=32=2.19.(1)见解析;(2)∠B=38°.【分析】(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.【详解】(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°.∵AD∥EF.(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG=∠1=38°,∵AB∥DG,∴∠B=∠CDG=38°.20.(1)见解析;6;(2)作图见解析;(-1,0).【分析】(1)根据A(0,1),B(3,0),C(3,4)在坐标系中描点即可;(2)根据题意作图,由图知点M的坐标.【详解】(1)如图,△ABC的面积=1436 2⨯⨯=,故答案为:6;(2)如图,设经过点A ,C 的直线为y kx b =+,代入A (0,1),C (3,4)得,134b k b =⎧⎨+=⎩11k b =⎧∴⎨=⎩1y x ∴=+令0y =,则1x =-点M 的坐标(-1,0),故答案为:(-1,0).21.(1)-2(2)直角三角形【分析】(1)立方根为2的数是8,把b=86a -+(a ﹣c+4)2=0,根据非负数的性质可以求出a 和b 的值,然后代入计算可得答案.(2)根据abc 的数量关系得出三角形为直角三角形.(1)解:∵实数b 的立方根为2,∴b=86a -(a ﹣c+4)2=0,∴a-6=0;a-c+4=0解得:a=6;c=10.∴2a﹣3b+c=2×6-3×8+10=-2(2)解:∵a2+b2=62+82=100,c2=102=100∴a2+b2=c2∴△ABC是直角三角形.22.(1)54°,图形见解析;(2)C;(3)72.【分析】(Ⅰ)根据B级的人数除以B级所占的百分比,可以计算出本次抽查的学生数,根据圆周角乘以A及所占的比例,可得扇形的圆心角;根据抽测人数乘以C级所占的比例,从而可以将条形统计图补充完整;(Ⅱ)根据(Ⅰ)中补充完整的条形统计图和中位数的定义可以解答本题;(Ⅲ)根据统计图中的数据,再利用加权平均数的定义计算出抽取的这部分学生体育的平均成绩即可.【详解】解:(Ⅰ)本次抽查的学生有:12÷30%=40(人),∠α的度数是:360°×640=54°,故答案为54;C级学生有:40-6-12-8=14(人),补全的条形统计图如图所示,(Ⅱ)由统计图可得,抽取的这部分的学生的体育科目测试结果的中位数是在C级,故答案为C;(Ⅲ)∵90680127014508x 7240⨯+⨯+⨯+⨯==,∴抽取的这部分学生体育的平均成绩为72分.【点睛】本题考查了条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)A 种树苗每棵的价格40元,B 种树苗每棵的价格10元;(2)总费用需1140元.【分析】(1)设A 、B 两种树苗每棵的价格分别是x 元、y 元,根据题意列二元一次方程组,解方程组求出x 、y 的值即可得答案;(2)根据(1)所求得结果进行求解即可.【详解】解:(1)设A 种树苗每棵的价格x 元,B 种树苗每棵的价格y 元,根据题意得:40151750206860x y x y +=⎧⎨+=⎩,解得:4010x y =⎧⎨=⎩,答:A 种树苗每棵的价格40元,B 种树苗每棵的价格10元;(2)40(110%)2510(120%)20⨯-⨯+⨯+⨯=1140元。

北师大版八年级(上)数学期末测试试题及答案一

北师大版八年级(上)数学期末测试试题及答案一

北师大版八年级(上)数学期末测试试题及答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.(3分)若取1.442,计算﹣3﹣98的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.014422.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(0,4),以点A为圆心,以AB长为半径画弧交x轴上点C,则点C的坐标为()A.(5,0)B.(2,0)C.(﹣8,0)D.(2,0)或(﹣8,0)3.(3分)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包4.(3分)某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为()A.23cm B.24cm C.25cm D.26cm5.(3分)解方程组的下列解法中,不正确的是()A.代入法消去a,由②得a=b+2B.代入法消去b,由①得b=7﹣2aC .加减法消去a ,①﹣②×2得2b =3D .加减法消去b ,①+②得3a =96.(3分)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其常绕着附近的树干沿最短路线盘旋而上.现有一段葛藤绕树干盘旋2圈升高为2.4m ,如果把树干看成圆柱体,其底面周长是0.5m ,如图是葛藤盘旋1圈的示意图,则这段葛藤的长是( )m .A .1.3B .2.5C .2.6D .2.87.(3分)对于一次函数y =﹣x +5,下列结论正确的是( ) A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A (1,y 1),B (3,y 2)在该函数图象上,则y 1<y 2 8.(3分)已知,都是关于x ,y 的方程y =﹣3x +c 的一个解,则下列对于a ,b 的关系判断正确的是( ) A .a ﹣b =3B .a ﹣b =﹣3.C .a +b =3D .a +b =﹣39.(3分)定理:三角形的一个外角等于和它不相邻的两个内角的和.下面给出该定理的两种证法. 已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B . 证法1:如图,∵∠A +∠B +∠ACB =180(三角形内角和定理), 又∵∠ACD +∠ACB =180°(平角定义),∴∠ACD +∠ACB =∠A +∠B +∠ACB (等量代换).∴∠ACD =∠A +∠B (等式性质). 证法2:如图,∵∠A =76°,∠B =59°,且∠ACD =135°(量角器测量所得),又∵135°=76°+59°(计算所得), ∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法2只要测量够一百个三角形进行验证,就能证明该定理C.证法2用特殊到一般法证明了该定理D.证法1用严谨的推理证明了该定理10.(3分)描述一组数据的离散程度,我们还可以用“平均差”.在一组数x1、x2、x3、…、x n中,各数据与它们的平均数x的差的绝对值的平均数,即T=(|x1﹣x|+|x2﹣x|+…+|x n﹣x|)叫做这组数据的“平均差”.“平均差”也能描述一组数据的离散程度,“平均差”越大说明数据的离散程度越大,稳定性越小.现有甲、乙两组数据,如表所示,则下列说法错误的是()甲121311151314乙10161018177A.甲、乙两组数据的平均数相同B.乙组数据的平均差为4C.甲组数据的平均差是2D.甲组数据更加稳定二、填空题(每小题3分,共15分)11.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是cm.12.(3分)在我国新冠疫情虽然得到了有效的控制,但防范意识仍不能松懈,小丽去药店购买口罩和酒精消毒湿巾,若买150只一次性口罩和10包酒精消毒湿巾,需付75元;若买200只一次性口罩和12包酒精消毒湿巾,需付96元.设一只一次性医用口罩x元,一包酒精消毒湿巾y元,根据题意可列二元一次方程组:.13.(3分)一次考试中,某题的得分情况如下表所示,则该题的平均分是.得分01234百分率15%10%25%40%10%14.(3分)某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚得元.15.(3分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应减少度.三、解答题(本大题共8个小题,满分75分)16.(10分)(1)计算与化简:()()+6﹣(﹣2)2.(2)解方程组:.17.(9分)“欲穷千里目,更上一层楼”,说的是登得高看得远,如图,若观测点的高度为h(单位km),观测者能看到的最远距离为d(单位km),则d≈,其中R是地球半径,通常取6400km.(1)小丽站在海边的一块岩石上,眼睛离海平面的高度h为20m,她观测到远处一艘船刚露出海平面,求此时d的值.(2)判断下面说法是否正确,并说明理由;泰山海拔约为1500m,泰山到海边的最小距离约230km,天气晴朗时站在泰山之巅可以看到大海.18.(9分)“三等分一个任意角”是数学史上一个著名问题,经过无数人探索,现在已经确信,仅用圆规和直尺是不可能作出的.在探索过程中,我们发现,可以利用一些特殊的图形,把一个角三等分.如图:在∠MAN的边上任取一点B,过点B作BC⊥AN于点C,并作BC的垂线BF,连接AF,E是AF上一点,并且∠BAE=∠BEA,∠EBF=∠EFB,请你证明∠F AN=∠MAN.19.(9分)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg),进行整理和分析(餐厨垃圾质量用x表示,共分为四个等级:A.x<1,B.1≤x<1.5,C.1.5≤x<2,D.x≥2),下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.八年级10个班的餐厨垃圾质量中B等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.七、八年级抽取的班级餐厨垃圾质量统计表年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.1a0.2640%八年级 1.3b 1.00.23m%根据以上信息,解答下列问题:(1)直接写出上述表中a,b,m的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).20.(9分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在x轴上是否存在一点P,使得△POC为等腰三角形?若存在,请直接写出点P坐标,若不存在,请说明理由.21.(9分)张氏包装厂承接了一批纸盒加工任务,用如图1所示的长方形和正方形纸板作侧面和底面,做成如图2所示的竖式与横式两种无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需要正方形纸板张,长方形纸板张.(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(3)该厂某一天使用的材料清单上显示,这天一共使用正方形纸板162张,长方形纸板a张,全部加工成上述两种纸盒,且290<a<310.试求在这一天加工两种纸盒时,a的所有可能值.22.(10分)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C (10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]23.(10分)已知AB∥CD,点P在直线AB、CD之间,连接AP、CP.(1)探究发现:(填空)填空:如图1,过P作PQ∥AB,∴∠A+∠1=°()∵AB∥CD(已知)∴PQ∥CD()∴∠C+∠2=180°结论:∠A+∠C+∠APC=°;(2)解决问题:①如图2,延长PC至点E,AF、CF分别平分∠P AB、∠DCE,试判断∠P与∠F存在怎样的数量关系并说明理由;②如图3,若∠APC=100°,分别作BN∥AP,DN∥PC,AM、DM分别平分∠P AB,∠CDN,则∠M的度数为(直接写出结果).参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷(含答案)

图1AB C D3412图2B CBC北师大版八年级(上)期末数学试卷及答案一选择题。

(每小题3分,共24分)下列各小题均有四个选项,其中只有一项符合题目要求,将符合题目要求的选项前面字母填入题后括号内。

1、下列式子正确的是()A. 1)1(33-=- B. 525±= C. 9)9(2-=- D. 2)2(2-=-2、二元一次方程12=-yx有无数多个解,下列四组值中不是..该方程的解是()A.⎩⎨⎧==11yxB.⎩⎨⎧-=-=21yxC.⎩⎨⎧-=-=31yxD.⎩⎨⎧==32yx3、如图1,相对灯塔O而言,小岛A的位置是()A. 北偏东60 °B. 距灯塔2km处C. 北偏东30°且距灯塔2km处D. 北偏东60°且距灯塔2km处4、下列说法正确的是()A. 数据0,5,-7,-5,7的中位数和平均数都是0;B. 数据0,1,2,5,a的中位数是2;C. 一组数据的众数和中位数不可能相等;D. 数据-1,0,1,2,3的方差是4。

5、已知正比例函数kxy=的函数值xy随的增大而减小,则一次函数kkxy+=的图象大致是()6、如图2在△ABC中,∠1=∠2,∠3=∠4,若∠D=25°,则∠A等于()A. 25°B. 50°C. 65°D. 75°7、小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路D程s (m)与他行走的时间t (min)之间的函数关系用图象表示正确的是( )8、如图3,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则 ∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30° 二、填空题(每小题3分,共21分) 9、64的算术平方根是___________。

北师大版八年级数学上册期末测试题(附参考答案)

北师大版八年级数学上册期末测试题(附参考答案)

北师大版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每小题3分,共36分。

每小题只有一个选项符合题目要求。

1.下列各数中为无理数的是( )A.√2B.1.5C.0 D.-12.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形3.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,E是边BC上的中点,AD=ED=3,则BC的长为( )A.3√2B.3√3C.6 D.6√24.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根−√45,则实数m所在的范围是( )5.若实数m=5√15A.m<-5 B.-5<m<-4C.-4<m<-3 D.m>-36.甲、乙两位同学放学后走路回家,他们走过的路程s(km)与所用的时间t(min)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A.前10 min,甲比乙的速度慢B.经过20 min,甲、乙都走了1.6 kmC.甲的平均速度为0.08 km/minD.经过30 min,甲比乙走过的路程少7.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是( )A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x8.在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是( )A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组{ax−y=−b,mx−y=−n的解为{x=2,y=39.已知方程组{2x+y=1,kx+(k−1)y=19的解满足x+y=3,则( )A.k=-8 B.k=2C.k=8D.k=-210.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁11.如图,直线AB∥CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是( )A.60°B.30°C.40°D.70°12.如图,在平面直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(-3,0),A1(-2,1),A2(-1,0),A3(-2,-1),则顶点A100的坐标为( )A.(31,34) B.(31,-34)C.(32,35) D.(32,0)二、填空题:本题共6个小题,每小题3分,共18分。

北师大版八年级上册数学期末试卷及答案

北师大版八年级上册数学期末试卷及答案

北师大版八年级上册数学期末考试试卷一. 填空题(每题3分,共30分) 1.实数 5757757775.0,27,25,,3333.0,11,7133π-(相邻两个5之间7的个数逐个加12.3.254= ,±4.写出二元一次方程53=+y x 的一组解是⎩⎨⎧==________y x ;5.菱形的两条对角线长为6和8,则菱形的面积是 ; 6.若一个多边形的内角和与外角和相等,则这个多边形是 边形,其内角和为 度; 7.P (-5,-6)到x 轴的距离是 ,到y 轴的距离是 ,到原点的距离是 ; 8.函数的图象132+-=x y 不经过 象限; 9.一组数据:1、2、4、3、2、4、2、5、6、1,它们的平均数为 ,众数为 ,中位数为 ; 10.如图,直线L 是一次函数b kx y +=的图象, 则_______,==k b ,当______x 时,0>y ;二、选择题:(每题3分,共21分)11.判断下列几组数据中,可以作为直角三角形的三条边的是 ( ) (A ) 6,15,17 (B ) 7,12,15 (C ) 13,15,20 (D) 7,24,25 12.平方根等于它本身的数是 ( ) (A ) 0 (B ) 1,0 (C ) 0, 1 ,-1 (D) 0, -1 13.等腰梯形的上底与高相等,下底是上底的3倍,则底角的度数是 ( ) (A ) 300、1500 (B) 450、1350 (C) 600、1200 (D) 都是900 14.下列说法中错误的是 ( ) A 四个角相等的四边形是矩形 B 对角线互相垂直的矩形是正方形 C 对角线相等的菱形是正方形 D 四条边相等的四边形是正方形15.点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于原点的对称点2P 的坐标是 ( )A 、 (-4,-8)B 、 (4,8)C 、 (-4,8)D 、 (4,-8)16.小明期未语、数、英三科的平均分为92分,她记得语文是88分,英语是95分,但她把数学成绩忘记了,你知道小明数学多少分吗 ( )(A) 93分 (B) 95分 (C) 92.5分 (D)94分17.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n (厘米)与燃烧时间t(时)的函数关系的图象是 ( )A B C D三、解答题;(每题4分,共8分) 18.计算:2163)1526(-⨯- 5621624++19.解下列二元一次方程组:(每题4分,满分8分)⎩⎨⎧+==+31423y x y x 28、 ⎪⎩⎪⎨⎧=-=-243143y x y x20.(6分)如图,AC ,,AB BAC ABC =︒=∠∆90的D 、E 在BC 上,∠DAE = 45º,AEC ∆按顺时针方向转动一个角后成AFB ∆。

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷(含答案)

北师大版八年级(上)期末数学试卷及答案一、选择题(每小题3分,共18分)1.(3分)﹣的倒数是()A.B.3C.﹣3D.﹣2.(3分)在直角三角形中,斜边与较小直角边的和、差分别为8、2,则较长直角边长为()A.5B.4C.3D.23.(3分)已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的()A.B.C.D.4.(3分)若方程(a+3)x+3y|a|﹣2=1是关于x,y的二元一次方程,则a的值为()A.﹣3B.±2C.±3D.35.(3分)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°6.(3分)已知关于x、y的方程组,则下列结论中正确的是()①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变.A.①②B.①②③C.②③D.②二、填空题。

(每小题3分,共18分)7.(3分)函数中,自变量x的取值范围是.8.(3分)的平方根是.9.(3分)若a,b,c分别是△ABC的三条边长,且a2﹣6a+b2﹣10c+c2=8b﹣50,则这个三角形的形状是.10.(3分)的整数部分是,小数部分是.11.(3分)如果二元一次方程组的解适合方程3x+y=﹣8,则k=.12.(3分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间(t)分之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有360米.其中正确的结论有.(填序号)三、解答题。

(5×6分+3×8分+2×9分+12分=84分)13.(6分)计算:(1);(2).14.(6分)(1)已知点P(2m﹣6,m+2),若点P在y轴上,求点P的坐标.(2)已知点Q,若点Q在过点A(2,3)且与x轴平行的直线上,AQ=3,求点Q的坐标.15.(6分)解方程组.16.(6分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x轴、y轴交于A、B两点,若正比例函数的图象l2与l1交于点C(m,4).(1)求m的值;(2)求△AOC的面积;(3)一次函数y=kx+1的图象为l3,且l1、l2、l3不能围成三角形,请写出k的值.17.(6分)如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;(2)写出点A′,B′,C′的坐标.18.(8分)如图,在平面直角坐标系中,一次函数y=2x﹣3的图象分别交x轴,y轴于点A、B,将直线AB绕点B 顺时针方向旋转45°,交x轴于点C,求直线BC的函数表达式.19.(8分)如图,圆柱形容器的高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.20.(8分)某学校在体育周活动中组织了一次体育知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示:(1)把八年级一班竞赛成绩统计图补充完整;(2)求出下表中a、b、c的值:平均数/分中位数/分众数/分方差一班a b90106.24二班87.680c138.24(3)根据上面图表数据,请你对这次竞赛成绩的结果进行分析.(至少写两条)21.(9分)材料阅读:如图(1)所示的图形,像我们常见的学习用品—圆规,我们常把这样的图形叫做“规形图”.(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你利用此结论,解决以下两个问题:Ⅰ.如图(2),把一个三角尺DEF放置在△ABC上,使三角尺的两条直角边DE,DF恰好经过点B,C,若∠A =30°,则∠ABD+∠ACD=.Ⅱ.如图(3),BD平分∠ABP,CD平分∠ACP,若∠A=50°,∠BPC=130°,求∠BDC的度数.22.(9分)在《二元一次方程组》这一章的复习课上,王老师让同学们根据下列条件探索还能求出哪些量:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建条335米长的公路,甲队每天修建20米,乙队每天修建25米,一共用15天完成.(1)小红同学根据题意,列出了一个尚不完整的方程组请写出小红所列方程组中未知数x,y表示的意义:x表示,y表示;并写出该方程组中?处的数应是,*处的数应是;(2)小芳同学的思路是想设甲工程队一共修建了x米公路,乙工程队一共修建了y米公路.下面请你按照小芳的设想列出方程组,并求出乙队修建了多少天?23.(12分)6月份以来,猪肉价格一路上涨,为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆,10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输分别是18辆、10辆.已知一辆运输车从A市到D、E两市的运费分别为200元和800元,从B市到D、E两市的运费分别为300元和700元,从C市到D、E两市的运费分别为400元和500元.若从A、B两市都派x辆车到D市,当这28辆运输车全部派出时,①求总运费W(元)与x(辆)之间的关系式,并写出x的取值范围;②求总运费W最低时的车辆派出方案.参考答案与试题解析一、选择题。

北师大版八年级上册数学《期末考试卷》带答案

北师大版八年级上册数学《期末考试卷》带答案

2020-2021 学年第一学期期末测试北师大版八年级数学试题一、选择题(每小题 3 分,共 30 分)1.9 的算术平方根是( ) A. ±3B. ﹣3C. 3D. ±812.在平面直角坐标系中,点 P (–2,–3)在( A. 第一象限B. 第二象限)C. 第三象限D. 第四象限D. 5,6,7 3.以下列三个数据为三角形的三边,其中能构成直角三角形的是( A. 2,3,4B. 4,5,6C. 5,12,13)4.已知 a ,b ,c 均为实数,若 a >b ,c ≠0.下列结论不一定正确的是( )a bA. a+c >b+cB. a >abC. D. c ﹣a <c ﹣b 2 c c2 2 5.对于函数 y =﹣2x+1,下列结论正确的是( )A. 它的图象必经过点(﹣1,3)B. 它的图象经过第一、二、三象限 D. y 值随 x 值的增大而增大1x C. 当 时,y >02x 2 a x y 1 6.已知 是方程组的解,则 a+b 的值为( )y 12x by 1A. 2B. -2C. 4D. -47.若 x = ﹣4,则 x 的取值范围是( B. 3<x <4)37 A. 2<x <3C. 4<x <5D. 5<x <68.下面四条直线,可能是一次函数 y =kx ﹣k (k ≠0) 图象是()A. B. C. D.9.下列命题是真命题的是(A. 中位数就是一组数据中最中间的一个数B. 计算两组数的方差,得 S =0.39,S =0.25,则甲组数据比乙组数据波动小)2 2 甲乙C. 一组数据的众数可以不唯一D. 一组数据的标准差就是这组数据的方差的平方根10.在Rt△ABC中,∠ACB=90°,AB=10cm,AB边上的高为4cm,则Rt△ABC的周长为(35+1065+10)cm.A.24B.65C.D.二、填空题(每小题分,共分)416311.的相反数是_____,8的立方根是_____.312.已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a与b的大小关系是_____.213.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是___.(结果保留根号)14.如图,已知函数y=ax+b和y=cx+d的图象交于点M,则根据图象可知,关于x,y的二元一次方程组y ax b{的解为______.y cx d三、解答题(共分)5415.计算下列各题:18273(1)21(2)3(2715)3|53|316.计算题:3x 2y 13(1)解方程组:.4x y 104x 125x 10(2)解不等式组(并把解集在数轴上表示出来).2(2x 3)3(x 1)1217.已知;如图,在四边形A B C D中,A B∥C D,∠B A D,∠A D C的平分线AE、DF分别与线段B C相交于点E、F,AE与D F相交于点G,求证:AE⊥DF.18.某中学10月份召开了校运动会,需要购买奖品进行表彰,学校工作人员到某商场标价购买了甲种商品25件,乙种商品26件,共花费了2800元;回学校后发现少买了2件甲商品和1件乙种商品,于是马上到该商场花了170元把少买商品买回.(1)分别求出甲、乙两种商品的标价.的(2)若元旦前,学校准备为全校教职工购买甲、乙两种商品作为慰问品,需要购买甲、乙两种商品共200件,请求出总费用(元)与甲种商品(件)之间的函数关系式(不需要求出自变量取值范围)aw19.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是(2)计算被调查学生阅读时间的平均数;小时,中位数是小时;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.20.如图,已知直线AB:y=﹣x+4与直线AC交于点A,与x轴交于点B,且直线AC过点C(﹣2,0)和点D(0,1),连接B D.(1)求直线的解析式;A C(2)求交点 的坐标,并求出△ 的面积;A AB D (3)在 轴上是否存在一点 ,使得 AP P D + 的值最小?若存在,求出点 ;若不存在,请说明理由. Px P四、填空题(每小题 分,共 分)4 20x 3x 121.函数中,自变量 x 的取值范围是_____. y 22.将一张长方形纸片按图中方式折叠,若∠2=65°,则∠1的度数为_____.23.若 x = ﹣1,则 x +x ﹣3x+2019 的值为____.322 1 124.如图,在平面直角坐标系中,直线 y =﹣ x+6 分别与 x 轴 ,y 轴交于点 B ,C 且与直线 y = x 交于点 A ,2 2点 是直线 D上 点,当△AC D 为直角三角形时,则点 的坐标为___. O A D的25.把自然数按如图的次序排列在直角坐标系中,每个点坐标就对应着一个自然数,例如点(0,0)对应的 自然数是 1,点(1,2)对应的自然数是 14,那么点(1,4)对应的自然数是____;点( , )对应的自n n然数是____.五、解答题(共30分)26.已知A,B两地相距120km,甲,乙两人分别从两地出发相向而行,甲先出发,中途加油休息一段时间,然后以原来的速度继续前进,两人离地的距离()与甲出发时间()的关系式如图所示,请结合y km x hA图象解答下列问题:(1)甲行驶过程中速度是多少/,途中休息的时间为多少.km hh(2)求甲加油后与的函数关系式,并写出自变量的取值范围;y x x的(3)甲出发多少小时两人恰好相距10?km27.已知ABC是等边三角形,点D是直线AB上一点,延长CB到点E,使BE=A D,连接DE,D C,△(1)若点在线段上,且=6,=2(如图①),求证:=;并求出此时的长;C DD ABABAB A D D E D C(2)若点在线段的延长线上,(如图②),此时是否仍有=?请证明你的结论;D E D CDAB2(3)在(2)的条件下,连接AE,若,求:的值.C D AEA D328.如图,已知长方形O A B C的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=﹣x+b经过点A交B C于D、交y轴于点M,点P是A D的中点,直线OP交A B于点E(1)求点D的坐标及直线OP的解析式;(2)求△O DP的面积,并在直线A D上找一点N,使△AE N的面积等于△O DP的面积,请求出点N的坐标.(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、A D于点F、G,在线段AE 上是否存在一点Q,使得△F G Q为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由.答案与解析一、选择题(每小题分,共分)3301.9的算术平方根是(A.±3)B.﹣3C. 3D.±81【答案】C【解析】【分析】如果一个非负数x 的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.【详解】解:∵32=9,∴9算术平方根为3.故选.C【点睛】本题考查算术平方根,解题的关键是正确区别算术平方根与平方根的定义.2.在平面直角坐标系中,点P(–2,–3)在()A.第一象限【答案】C【解析】B.第二象限C.第三象限D.第四象限【分析】应先判断出点P 的横纵坐标的符号,进而判断其所在的象限.【详解】解:∵点P 的横坐标-2<0,纵坐标为-3<0,∴点P(-2,-3)在第三象限.故选:C.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4【答案】C【解析】B.4,5,6C.5,12,13D.5,6,7【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.【详解】解:A、2+3 ≠4 ,故不能构成直角三角形;222B、4+5 ≠6 ,故不能构成直角三角形;222C、5+12=13,故能构成直角三角形;222D、5+6 ≠7 ,故不能构成直角三角形.222故选C.【点睛】本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()a bA.a+c>b+cB.a>abC.D.c﹣a<c﹣b2c2c2【答案】B【解析】【分析】依据不等式的基本性质进行判断,即可得到答案.【详解】解:∵a>b,c≠0,∴﹣a<﹣b,∴a+c>b+c,故A选项正确;a b>,故C选项正确;c2c2c﹣a<c﹣b,故D选项正确;又∵a符号不确定,∴a>ab不一定成立.2故选B.的【点睛】本题考查不等式的性质,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.5.对于函数y=﹣2x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限1xC.当时,y>0D.y值随x值的增大而增大2【答案】A【解析】【分析】根据一次函数图象上点的坐标特征和一次函数的性质依次判断,可得解.【详解】解:当 =﹣1 时, =3,故 选项正确,x y A ∵函数 =-2 +1 图象经过第一、二、四象限, 随 的增大而减小, y x y x ∴ 、 选项错误, B D ∵ >0, y ∴﹣2 +1>0x 1 ∴ < x , 2∴ 选项错误. C故选 .A【点睛】本题考查一次函数图象上点的坐标特征,一次函数的性质,熟练掌握一次函数的性质是解题的关 键.x 2a x y 1 6.已知 是方程组的解,则 a+b 的值为 C. 4( )y 1 2x by 1A. 2B. -2 D. -4【答案】B 【解析】【详解】∵{x 2是方程组{axy 1① 的解y 12x by 0②∴将{x 2代入①,得 a+2=−1,∴a=−3.y 1x 2 把{代入②,得 2−2b=0,∴b=1.y 1∴a+b=−3+1=−2. 故选 B.7.若 x = 37 ﹣4,则 x 取值范围是( )A. 2<x <3 【答案】A 【解析】 【分析】B. 3<x <4C. 4<x <5D. 5<x <6根据 36<37<49,则有 6< 37 <7,即可得到 的取值范围. x 【详解】∵36<37<49,∴6<∴2<37<7,37﹣4<3,故x的取值范围是2<x<3.故选A.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.8.下面四条直线,可能是一次函数y=kx﹣k(k≠0)的图象是()A. B. C. D.【答案】D【解析】【分析】根据一次函数的性质,利用分类讨论的方法可以判断哪个选项中的图象符合要求.【详解】解:∵一次函数=﹣(≠0),y kx k k∴当>0时,函数图象在第一、三、四象限,故选项错误,选项正确,k A D当<0时,函数图象在第一、二、四象限,故选项、错误,B Ck故选.D【点睛】本题考查一次函数的图象,解题的关键是明确题意,利用一次函数的性质解答.9.下列命题是真命题的是(A.中位数就是一组数据中最中间的一个数B.计算两组数的方差,得2=0.39,S2=0.25,则甲组数据比乙组数据波动小)S甲乙C.一组数据的众数可以不唯一D.一组数据的标准差就是这组数据的方差的平方根【答案】C【解析】【分析】直接利用方差的意义以及众数的定义和中位数的意义分别分析得出答案.【详解】解:、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;AB、计算两组数的方差,所2=0.39,S2=0.25,则甲组数据比乙组数据波动大;故错误;乙S甲C、一组数据的众数可以不唯一,故正确;D、一组数据的标准差就是这组数据的方差的算术平方根,故错误.故选.C【点睛】本题考查中位数的意义以及众数和方差,正确把握相关定义是解题的关键.10.在Rt△ABC中,∠ACB=90°,AB=10cm,AB边上的高为4cm,则Rt△ABC的周长为()cm.555D.6+10A.24B.6C.3+10【答案】D【解析】【分析】2AC BC A C BC,根根据勾股定理、三角形的面积公式求出AC BC和,根据完全平方公式求出22据三角形的周长公式计算即可.由勾股定理得,A C BC AB 100,222121AC BC AB CD 20由三角形的面积公式可知,,22A C BC 80,则ACBC AC B C 2AC BC 1802,22解得,A C BC 65,Rt AB C的周长A C B C AB 6510.故选.D【点睛】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a、,斜边长为c,那么ba b c.222二、填空题(每小题分,共分)416311.的相反数是_____,8的立方根是_____.33【答案】(1);(2). 2.【解析】【分析】直接利用相反数以及立方根的性质计算得出答案.3 3【详解】解:﹣的相反数是:;38的立方根是:2.3故答案为;2.3【点睛】本题考查相反数的性质以及立方根,正确把握相关性质是解题的关键.12.已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a与b的大小关系是_____.【答案】a>b【解析】试题解析:∵点A(-1,a),B(2,b)在函数y=-3x+4的图象上,∴a=3+4=7,b=-6+4=-2,∵7>-2,∴a>b.故答案为a>b.213.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是___.(结果保留根号)【答案】13 .【解析】【分析】先将侧面展开,再根据两点之间线段最短,由勾股定理可得出.【详解】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,是边的中点,矩形的宽等于C圆柱的高.2∵=π• =2,=3.AB C B∴=AB2B C2=13.A C故答案为13.【点睛】本题考查平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽等于圆柱的高.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.14.如图,已知函数y=ax+b和y=cx+d的图象交于点M,则根据图象可知,关于x,y的二元一次方程组y ax b{的解为______.y cx d2x【答案】3y【解析】由图可知:直线y=ax+b和直线y=cx+d的交点坐标为(-2,3);y ax b x2的解为:因此方程组y cx d y3三、解答题(共54分)15.计算下列各题:18273(1)21(2)3(2715)3|53|35 22【答案】(1) ﹣3;(2)﹣3+2 5 .【解析】 【分析】(1)直接利用算术平方根以及立方根的性质分别化简得出答案; (2)直接利用二次根式的性质分别化简得出答案.18 273 【详解】解:(1) 22=2 2 ﹣3+2 5 2= ﹣3; 227 15 3 5 3 1(2)333 ﹣(3 315 )÷ 3 + 5﹣3= ﹣= 3 ﹣3+ 5 + 5 ﹣ 3 =﹣3+2 5 .5 22故答案为(1) ﹣3;(2)﹣3+2 5 .【点睛】本题考查二次根式的混合运算,正确化简二次根式是解题的关键. 16.计算题: 3x 2y 13 (1)解方程组:.4x y 104x 12 5x 10 (2)解不等式组(并把解集在数轴上表示出来).2(2x 3)3(x 1) 123 x【答案】(1);(2)﹣3≤ ≤﹣2,将不等式组的解集表示在数轴上见解析. x y 2【解析】 【分析】(1)利用加减消元法求解可得;(2)分别解出两个不等式的解集,再根据“大小小大中间找”确定不等式组的解集即可.3 2 13①x y【详解】解:(1) , 4x y 10②②×2 得:8x+2y =20 ③, ①+③,得:11 =33, x 解得 =3,x 将 =3 代入②,得:12+ =10,解得 =﹣2, x y y3 x所以方程组的解为; y 2(2)解不等式 4 ﹣12≥5 ﹣10,得: ≤﹣2, x x x 解不等式 2(2 ﹣3)﹣3( +1)≥﹣12,得: ≥﹣3, x x x 则不等式组的解集为﹣3≤ ≤﹣2, x 将不等式组的解集表示在数轴上如下:3 x故答案为(1);(2)﹣3≤ ≤﹣2,将不等式组的解集表示在数轴上见解析. x 2y 【点睛】本题考查二元一次方程组,一元一次不等式(组)的解法,解题的关键是掌握不等式组解集的规 律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.已知;如图,在四边形A B C D 中,A B ∥C D ,∠B A D ,∠A D C 的平分线 AE 、DF 分别与线段 B C 相交于 点 E 、F ,AE 与 D F 相交于点 G ,求证:AE ⊥DF .【答案】证明见解析. 【解析】 【分析】已知 A B ∥D C ,根据平行线的性质得到∠BA D +∠A D C =180°;再根据角平分线的定义,证得∠DAE +∠A DF=90°,即可得到∠AG D=90°,由此结论得证.【详解】证明:∵A B∥D C,∴∠B A D+∠A D C=180°.∵AE,DF分别是∠B A D,∠A D C的平分线,11∴∠D A E=∠B A E=∠B A D,∠A DF=∠C DF=∠A D C.2211∴∠D A E+∠A DF=∠B A D+∠A D C=90°.22∴∠A G D=90°.∴AE⊥DF.【点睛】本题考查了平行线的性质以及角平分线的定义的运用.熟练运用平行线的性质是解决问题的关键.18.某中学10月份召开了校运动会,需要购买奖品进行表彰,学校工作人员到某商场标价购买了甲种商品25件,乙种商品26件,共花费了2800元;回学校后发现少买了2件甲商品和1件乙种商品,于是马上到该商场花了170元把少买的商品买回.(1)分别求出甲、乙两种商品的标价.(2)若元旦前,学校准备为全校教职工购买甲、乙两种商品作为慰问品,需要购买甲、乙两种商品共200件,请求出总费用(元)与甲种商品(件)之间的函数关系式(不需要求出自变量取值范围)w aw a【答案】(1)甲种商品的标价为每件60元,乙种商品的标价为每件50元;(2)=10+10000.【解析】【分析】(1)设甲种商品的标价为每件x元,根据买2件甲商品和1件乙种商品花了170元,可得乙种商品的标价为每件(170-2x)元,再根据买了甲种商品25件,乙种商品26件,共花费了2800元列出方程,求解即可;(2)根据总费用=甲种商品的单价×甲种商品的数量+乙种商品的单价×乙种商品的数量列式即可.x x【详解】解:(1)设甲种商品的标价为每件元,则乙种商品的标价为每件(170﹣2)元,x x根据题意得,25+26(170﹣2)=2800,x解得=60,则170﹣2×60=50.答:甲种商品的标价为每件60元,乙种商品的标价为每件50元;w a a(2)由题意,可得=60+50(200﹣),w a化简得,=10+10000.w a故答案为(1)甲种商品的标价为每件60元,乙种商品的标价为每件50元;(2)=10+10000.【点睛】本题考查一次函数的应用,一元一次方程的应用,正确求出甲、乙两种商品的单价是解题的关键.19.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是(2)计算被调查学生阅读时间的平均数;小时,中位数是小时;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.【答案】(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【解析】【分析】(1)根据统计图可以求得本次调查的学生数,从而可以求得阅读时间1.5小时的学生数,进而可以将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生周末阅读时间的众数、中位数.(2)根据补全的条形统计图可以求得所有被调查学生阅读时间的平均数.(3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.【详解】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,补全的条形统计图如图所示,由补全的条形统计图可知,被调查的学生周末阅读时间众数是1.5小时,中位数是1.5小时,故答案为1.5,1.5;1(2)所有被调查学生阅读时间的平均数为:100×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均阅读时间为1.32小时.40+18(3)估计周末阅读时间不低于1.5小时的人数为500×=290(人).100故答案为(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【点睛】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答问题.20.如图,已知直线AB:y=﹣x+4与直线AC交于点A,与x轴交于点B,且直线AC过点C(﹣2,0)和点D(0,1),连接B D.(1)求直线的解析式;A C(2)求交点的坐标,并求出△AB D的面积;A(3)在轴上是否存在一点,使得AP P D+的值最小?若存在,求出点;若不存在,请说明理由.Px P122【答案】(1)=+1;(2)点坐标为(2,2),=3;(3)点坐标为(,0).y x A S P△AB D3【解析】【分析】(1)利用待定系数法求A C解析式;(2)将直线A B,A C解析式组成方程组,可求点A坐标,根据S△AD B=S-S△BEO△A D E-S△BD O,可求△ABD的面积;(3)作点D(0,1)关于x轴的对称点D'(0,-1),先求出直线AD'的解析式,即可求直线A D'与x轴的交点P的坐标.【详解】解:(1)设直线解析式为:=+,y kx bA C0=2k b根据题意得:1b12∴=k=1b12∴直线解析式为:=yx+1A C1x 1y2(2)根据题意得:x 4yx 2解得:2y∴点坐标为(2,2)A如图,设直线与轴交点为,y EAB∵直线与轴交于点,与轴交于点,yAB x B E∴点(4,0),点(0,4)B E∴=4,=4,O B O E∵D O=1,∴=3,D E∵S△ADB=S△BE O﹣S△ADE﹣S△BD O,1211443214∴S△ADB==3,22(3)如图,作点(0,1)关于轴的对称点'(0,﹣1),D x D∵+=+',AP D P AP P D∴当点在PA D AP DP'上时,+的值最小,连接x PA D设直线A D y mx n'的解析式为:=+,1n根据题意得:22m n3m2解得:∴直线1n3A D'的解析式为:=x﹣1y22当=0时,=y x32∴点坐标为(,0)P312故答案为(1)=x+1;(2)点坐标为(2,2),0.=3;(3)点P坐标为(,)y AS△AB D23【点睛】本题是一次函数综合题,考查用待定系数法求出一次函数的解析式,解方程组,最短路径等知识点,利用数形结合思想解决问题是解题的关键.四、填空题(每小题分,共分)420x 3x 121.函数y 中,自变量x的取值范围是_____.【答案】x≥﹣3且x≠1【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,+3≥0 且−1≠0,x xx x.解得≥−3 且≠1x x.故答案为≥−3 且≠1【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.22.将一张长方形纸片按图中方式折叠,若∠2=65°,则∠1的度数为_____.【答案】50°【解析】【分析】由平行线的性质以及折叠的性质,可得∠2=∠B D G=65°,再根据三角形内角和定理以及对顶角的性质,即可得到∠1的度数.C D【详解】解:如图,延长至,G∵∥,AB C D∴∠2=∠B D G=65°,由折叠可得,∠BD E=∠B D G=65°,∴△B DE中,∠BE D=180°﹣65°×2=50°,∴∠1=∠BE D=50°,故答案为50°.【点睛】本题考查平行线的性质,解题时注意:两直线平行,内错角相等.23.若x=﹣1,则x+x﹣3x+2019的值为____.232【答案】2018.【解析】【分析】先根据x的值计算出x的值,再代入原式=xx+x-3x+2019,根据二次根式的混合运算顺序和运算法则计算222可得.【详解】解:∵ = 2 ﹣1,x ∴ =( 2 ﹣1) =2﹣2 2 +1=3﹣2 2 ,x 2 2 x x 2 x 2 x则原式= + ﹣3 +2019=( 2 ﹣1)×(3﹣2 2 )+3﹣2 2 ﹣3( 2 ﹣1)+2019=3 2 ﹣4﹣3+2 2 +3﹣2 2 ﹣3 2 +3+2019=2018.故答案为 2018.【点睛】本题考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.1 1 24.如图,在平面直角坐标系中,直线 y =﹣ x+6 分别与 x 轴 ,y 轴交于点 B ,C 且与直线 y = x 交于点 A ,2 2点 是直线 D 上的点,当△ 为直角三角形时,则点 的坐标为___. A C D DO A12 6 【答案】( , )或(﹣4,﹣2). 5 5【解析】【分析】解方程或方程组得到 A (6,3),B (12,0),C (0,6),①当∠AD C =90°,得到 CD ⊥O A ,设直线 C D 的12 6 解析式为:y=-2x+b ,求得直线 C D 的解析式为:y=-2x+6,解方程组得到 D ( , ),②当∠AC D =90°, 5 5得到 D C ⊥B C ,设直线 C D 的解析式为:y=2x+a ,把 C (0,6)代入得,a=6,求得直线 C D 的解析式为: y=2x+6,解方程组得到 D (-4,-2).1 详解】解:(1)直线 =﹣ x +6, y 2当 =0 时, =6,x y 当 =0 时, =12,y x 则 (12,0), (0,6), B C1 y x 6 得:{x 6 y 32 解方程组: , 1 y x 2则 (6,3), A 故 (6,3), (12,0), (0,6), A B C ∵△AC D 直角三角形,∴①当∠A D C =90°,∴ ⊥ , C D O A∴设直线 的解析式为: =﹣2 + , x bC D y 把 (0,6)代入得, =6,C b ∴直线 的解析式为: =﹣2 +6, CD yx 12 5 6 y 2x 6 x y 1 解 得 , y x 2512 6 5 ∴ ( D , ), 5②当∠AC D =90°, ∴ ⊥ , D C B C∴设直线 的解析式为: =2 + , x aC D y 把 (0,6)代入得, =6,C a ∴直线 的解析式为: =2 +6, CD y x y 2x 6 x 4 y 2 解 得,{ , 1 y x 2∴ (﹣4,﹣2), D12 5 6 5 综上所述:点 的坐标为( D, )或(﹣4,﹣2). 12 5 6 5故答案为( , )或(﹣4,﹣2). 【点睛】本题考查两条直线相交或平行问题,直角三角形的性质,待定系数法求函数的解析式,正确的理 解题意是解题的关键.25.把自然数按如图的次序排列在直角坐标系中,每个点坐标就对应着一个自然数,例如点(0,0)对应的自然数是1,点(1,2)对应的自然数是14,那么点(1,4)对应的自然数是____;点(,)对应的自n n然数是____.【答案】【解析】【分析】(1). 60,n2n(2). 4﹣2+1.观察图的结构,发现这些数是围成多层正方形,所有奇数的平方数都在第四象限的角平分线上.依此先确定(n,n)坐标的数,再根据图的结构求得坐标(n,n).【详解】解:观察图的结构,发现这些数是围成多层正方形,从内到外每条边数依次+2,所有正方形内自然数个数即(每边自然数个数的平方数)都在第四象限的角平分线上(正方形右下角).其规律为(,﹣)n n 表示的数为(2 +1),而且每条边上有2 +1个数,n 2 n点(1,4)在第四层正方形边上,该层每边有2×4+1=9 个数,右下角(4,﹣4)表示的数是81,所以点(1,4)表示的是第四层从左下角开始顺时针(从81倒数)第21个数,即为81﹣8﹣8﹣5=60,点(,﹣)在第层正方形边上,该层每边有2 +1个数,右下角(,﹣)表示的数是(2 +1),n n n n n n n 2点(,)是正方形右上角的数,是从左下角开始顺时针(从(2 +1)倒数)第6 个数,即为(2 +1)2 n n n 2 n n﹣6 =4﹣2+1.n n2 n故答案为60,4﹣2+1.n2n【点睛】本题考查点的坐标,找到所有奇数的平方数所在位置是解题的关键.五、解答题(共30分)26.已知A,B两地相距120km,甲,乙两人分别从两地出发相向而行,甲先出发,中途加油休息一段时间,然后以原来速度继续前进,两人离地的距离()与甲出发时间()的关系式如图所示,请结合Ay km x h图象解答下列问题:的(1)甲行驶过程中的速度是多少/,途中休息的时间为多少.km h h(2)求甲加油后与的函数关系式,并写出自变量的取值范围;y x x(3)甲出发多少小时两人恰好相距10?h y x x【答案】(1)甲的速度为60/;休息了0.5;(2)=﹣60+150(1.5≤≤2.5);(3)甲出发1.8小时或km h2小时两车相距10km.【解析】【分析】(1)由图象可知,甲在前1小时走了60千米,计算速度即可;由于甲的速度未改变,故走完全程不休息需要2小时,而图象可知用了2.5小时,相减即可求出休息时间;(2)设甲加油后y=kx+b,将图象上两点(1.5,60)和(2.5,0)代入即可求出解析式;(3)先算出乙路程y和x的关系式,再根据|y-y|=10列出方程计算即可.11【详解】解:(1)根据甲的图象可知前1小时走了120﹣60千米,故甲的速度为60/;km h甲走120千米需要2小时,而他到达终点的时间是2.5小时,故休息了0.5.h故答案为60;0.5.(2)设甲加油后=+,将(1.5,60)和(2.5,0)代入解析式,y kx b1.5k b60k60,解得.2.5k b0b150故=﹣60+150(1.5≤ ≤2.5).y x x(3)设乙路程y=k x+,将(1,0)和(,)代入b4120111k b 0k 4011,解得1.4k b 120b 40111故y=40x﹣40.1当x=1.5时,y=40×1.5﹣40=20,此时两车相距60﹣20=40千米.1故相距10km时间段为1.5h~2.5小时之间.依题意得,|(﹣60x+150)﹣(40x﹣40)|=10解得,x=1.8或2故甲出发1.8小时或2小时两车相距10km.故答案为(1)甲的速度为60km/h;休息了0.5h;(2)y=﹣60x+150(1.5≤x≤2.5);(3)甲出发1.8小时或2小时两车相距10km.【点睛】本题考查了一次函数的应用,用待定系数法求出解析式,行程问题中路程、速度与时间关系的应用,理解题意,从函数图象中获取有关信息是解题的关键.27.已知△ABC是等边三角形,点D是直线AB上一点,延长CB到点E,使BE=A D,连接DE,D C,(1)若点D在线段AB上,且AB=6,A D=2(如图①),求证:DE=D C;并求出此时C D的长;(2)若点D在线段AB的延长线上,(如图②),此时是否仍有DE=D C?请证明你的结论;AB 2(3)在(2)的条件下,连接AE,若,求C D:AE的值.A D313319【答案】(1)见解析,C D=27;(2)DE=D C,理由见解析;(3)C D:AE=.【解析】【分析】(1)过点D作D F∥B C交A C于点F,作D M⊥B C于点M,由题意可证△A DF是等边三角形,可得A D=AF=DF=2=BE,可得∠D B E=∠DFC=120°,CF=D B=4,可证△DB E≌△CF D,可得DE=C D,由勾股定理可求C D的长;(2)过点D作DF∥B C交A C的延长线于点F,由题意可证△A DF是等边三角形,可得A D=DF=AF,由“SAS”可证△EB D≌△D FC,可得DE=D C;(3)过点C作CH⊥A B于点H,过点A作A N⊥B C于点N,设A B=2x,A D=3x,由等边三角形的性质可得BC=A C=2x,D F=BE=3x,B D=A D-A B=x,B N=B H=x,A N=3x=C H,由勾股定理可求C D,A E的长,即可求C D:A E的值.【详解】解:(1)过点D作DF∥B C交AC于点F,作D M⊥B C于点M,∵△AB C是等边三角形∴∠AB C=∠ACB=∠A=60°,AB=AC=BC=6,∴∠DBE=120°∵DF∥B C∴∠A DF=∠ABC=60°,∠AF D=∠ACB=60°∴△A DF是等边三角形,∠DF C=120°∴A D=AF=DF=2,∴B D=AB﹣A D=4=AC﹣AF=CF∵BE=A D=D F=2,∠DBE=∠D F C=120°,CF=DB∴△DBE≌△CFD(SAS)∴DE=D C又∵D M⊥B C11∴C M=E M=EC=(BE+B C)=422∵在Rt△DB M中,B D=4,∠DBM=60°∴B M=2,D M=3B M=23D M M C2=27∴C D=(2)DE=D C理由如下:过点D作DF∥B C交A C的延长线于点F,;2∵BC∥D F∴∠AB C=∠A D F=60°,∠ACB=∠AF D=60°,∴△A DF是等边三角形,∴A D=D F=AF,∴A D﹣AB=AF﹣A C∴B D=CF,且BE=A D=D F,∠EB D=∠AB C=60°=∠AF D∴△EB D≌△DFC(SAS)∴DE=C D;(3)如图,过点C作C H⊥AB于点H,过点A作A N⊥B C于点N,A B2=A D3∵∴设AB=2x,A D=3x,∴BC=AC=2x,D F=BE=3x,BD=A D﹣AB=x,∵△AB C是等边三角形,AN⊥BC,C H⊥AB3∴BN=B H=x,AN=在Rt△DH C中,D C=在Rt△AEN中,AE=7x=C HD H C H7x,=22E N A N19x,=2213319∴C D:AE==.1913319故答案为(1)见解析,=27;(2)=,理由见解析;(3):=.C D D E D C C D AE【点睛】本题是三角形综合题,考查等边三角形的性质,全等三角形判定和性质,勾股定理等知识,添加恰当辅助线构造全等三角形是解题的关键.28.如图,已知长方形O A B C的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=﹣x+b经过点A交B C于D、交y轴于点M,点P是A D的中点,直线OP交A B于点E(1)求点D的坐标及直线OP的解析式;(2)求△O DP的面积,并在直线A D上找一点N,使△AE N的面积等于△O DP的面积,请求出点N的坐标.(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、A D于点F、G,在线段AE上是否存在一点Q,使得△F G Q为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由.3【答案】(1)点D的坐标为(2,6).直线OP的解析式为y=x.(2)点N的坐标为(3,5)或(13,-5).(3)580244813时点Q的坐标为(8,13)或(8,),13在线段AE上存在一点Q,使得△F G Q为等腰直角三角形,当t=208当t=时点Q的坐标为(8,).33【解析】【分析】(1)根据长方形的性质可得出点A的坐标,利用待定系数法可求出直线A D的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,再由点P是AD的中点可得出点P的坐标,进而可得出正比例函数OP 的解析式;(2)利用三角形面积的公式可求出S的值,由直线OP的解析式,利用一次函数图象上点的坐标特征O D P△可得出点E的坐标,设点N的坐标为(m,-m+8),由△AE N的面积等于△O DP的面积,可得出关于m的含绝对值符号的一元一次方程,解之即可得出m的值,再将其代入点N的坐标中即可得出结论;(3)由点T的坐标可得出点F,G的坐标,分∠FG Q=90°、∠GF Q=90°及∠FQ G=90°三种情况考虑:①当∠FG Q=90°时,根据等腰直角三角形两直角边相等可得出关于t的一元一次方程,解之可得出t值,。

北师大版八年级上册数学期末考试试卷含答案

北师大版八年级上册数学期末考试试卷含答案

北师大版八年级上册数学期末考试试题一、单选题 1.在实数227-,0,506,π,0.7171171117…(相邻两个7之间1的个数逐次加1)中,无理数的个数是( ) A .2个B .3个C .4个D .5个2.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A .1,2,3B .5,12,13C .4,5,7D .9,80,813.点P (-3,4)到坐标原点的距离是( ) A .3B .4C .-4D .54.下列命题中真命题有几个( )①三角形的任意两边之和都大于第三边;①三角形的任意两角之和都大于第三个角;①同位角都相等;①若a =b ,则a b =;①相等的角都是直角;①同角的补角不一定相等; A .1个B .2个C .3个D .4个5.如图,AB①CD ,①A=35°,①C=80°,那么①E 等于( )A .35°B .45°C .55°D .75°6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )A .13B .26C .34D .477.点A (3,1y )和点B (-2,2y )都在直线y =-2x +3上,则1y 和2y 的大小关系是() A .12y y =B .12y y >C .12y y <D .不能确定8.如果关于x ,y 的方程组45x by ax =⎧⎨+=⎩与72x y bx ay +=⎧⎨+=⎩的解相同,则a b +的值( )A .1B .2C .-1D .09.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米; ①乙车比甲车晚出发1小时,却早到1小时; ①乙车出发后2.5小时追上甲车; ①当甲、乙两车相距50千米时,54t =或154. 其中正确的结论有( ) A .1个B .2个C .3个D .4个10.已知正比例函数y=kx 的图象经过第一、三象限,则一次函数y=kx ﹣k 的图象可能是下图中的( )A .B .C .D .二、填空题11.-8的立方根是________________.12_____0.5(用“>”或“<”填空). 13.甲、乙、丙三个芭蕾舞团各有10名女演员,她们的平均身高都是165cm ,其方差分别为21.5S =甲,22.5S =乙,20.8S =丙,则________团女演员身高更整齐(填甲、乙、丙中一个).14.如果函数y=(m+1)x+m2﹣1是正比例函数.则m的值是___.15.已知二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=-12x-1的交点坐标为____.16.若一直角三角形的两边长为4、5,则第三边的长为________ .17.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,CD的长为______.18.如图,①A1B1A2,①A2B2A3,①A3B3A4,…①AnBnAn+1都是等腰直角三角形,其中点A1,A2,…,An在x轴上,点B1,B2,…,Bn在直线y=x上,已知OA1=1,则OA2021的长为______.三、解答题19.计算:2(2)2-20.解方程组:(1)4 25 x yx y-=⎧⎨+=⎩(2)4=52 232 x yx y--⎧⎨+=⎩21.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)在图中作出①ABC关于y轴的对称图形①A1B1C1(2)写出点A1,B1,C1的坐标.22.如图,把一块直角三角形①ABC,(①ACB=90°)土地划出一个三角形①ADC后,测得CD=3米,AD=4米,BC=12米,AB=13米,求图中阴影部分土地的面积.23.某单位用汽车和火车向疫区用输两批防疫物资,具体运输情况如下表所示,求每辆汽车和每节火车车厢平均各装物资多少吨?24.某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了30户家庭的月用水量,结果如下表所示:(1)求这30户家庭月用水量的平均数、众数和中位数;(2)根据上述数据,试估计该社区的月用水量;(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由.25.如图,直线EF分别与直线AB,CD交于点E,F.EM平分①BEF,FN平分①CFE,且EM①FN.求证:AB①CD.26.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?27.某实验中学八年级甲、乙两班分别选5名同学参加“学雷锋读书活动”演讲比赛其预赛成绩如图:(1)根据上图填写下表(2)根据上表中的平均数和中位数你认为哪班的成绩较好?并说明你的理由参考答案1.B2.B3.D4.B5.B6.D7.C8.A9.B10.D11. -2 4 2【分析】根据立方根、平方根、算术平方根解决此题.【详解】解:-82=-.4.4,42.故答案为:2-,4,2.【点睛】本题主要考查了立方根、平方根、算术平方根,熟练掌握立方根、平方根、算术平方根是解决本题的关键. 12.>【分析】由459<<,得23,故112<与0.5的大小关系. 【详解】解:459<<,23,21131∴--<,即112<,12>, 故答案为:>【点睛】本题主要考查算术平方根的性质以及不等式的性质,熟练掌握算术平方根的性质以及不等式的性质是解题的关键. 13.丙【分析】根据方差越小数据越稳定解答即可.【详解】解:①21.5S =甲,22.5S =乙,20.8S =丙,①222丙甲乙S S S , ①丙团女演员身高更整齐, 故答案为:丙.【点睛】本题考查方差,熟知方差越小数据越稳定是解答的关键. 14.1【详解】解:由正比例函数的定义可得:m2﹣1=0,且m+1≠0,解得,m=1;故答案为:1.【点睛】此题主要考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.15.(-4,1)【详解】试题分析:①二元一次方程组5{22x yx y-=-+=-的解为4{1xy=-=,①直线l1:y=x+5与直线l2:112y x=--的交点坐标为(﹣4,1),故答案为(﹣4,1).考点:一次函数与二元一次方程(组).16或3##3【详解】解:当4和5;当53=;3.17.3cm【分析】由勾股定理求得AB=10cm,然后由翻折的性质求得BE=4cm,设DC=xcm,则BD=(8-x)cm,DE=xcm,在①BDE中,利用勾股定理列方程求解即可.【详解】解:①在Rt①ABC中,两直角边AC=6cm,BC=8cm,10AB cm∴=().由折叠的性质可知:DC=DE,AC=AE=6cm,①DEA=①C=90°,①BE=AB-AE=10-6=4(cm ),①DEB=90°,设DC=xcm,则BD=(8-x)cm,DE=xcm,在Rt①BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3.故答案为3cm.18.20202【分析】根据①A1B1A2为等腰直角三角形,得出A1B1⊥OA2,①B1A2O=45°,根据点B1在直线y=x上,①B1Ox=45°=①B1A2O,OA1= A1A2,即点A1为OA2的中点,根据OA1=1,得出OA2=2OA1=2,根据①A2B2A3为等腰直角三角形,得出A2B2⊥OA2,①B2A3O=45°=①B2OA3,得出OA2=A2A3=2,可求OA3=OA2+A2A3=2+2=4=22,根据①A3B3A4,…①AnBnAn+1都是等腰直角三角形,可得①B3A4O=…=①BnAn+1O=45°=①BnOAn,B3A3①OA4,…,Bn-1An-1①OAn,得出OA4=2OA3=2×4=8=23,…OA n=2OAn-1=2×2n-2=2n-1,当n=2021时,代入求值即可.【详解】解:①①A1B1A2为等腰直角三角形,①A1B1⊥OA2,①B1A2O=45°,又①点B1在直线y=x上,①①B1Ox=45°=①B1A2O①OA1= A1A2,即点A1为OA2的中点,又①OA1=1,①A1B1=A1A2=1 .OA2=2OA1=2,①①A2B2A3为等腰直角三角形,点B2在直线y=x上,①A2B2⊥OA2,①B2A3O=45°=①B2OA3,①OA2=A2A3=2,①OA3=OA2+A2A3=2+2=4=22,①①A3B3A4,…①AnBnAn+1都是等腰直角三角形,点B3,Bn在直线y=x上,①①B3A4O=…=①BnAn+1O=45°=①B3OA4=①BnOAn,B3A3①OA4,…,Bn-1An-1①OAn,①OA4=2OA3=2×4=8=23,…①OA n=2OAn-1=2×2n-2=2n-1当n=2021时,①OA2021=22021-1=22020.故答案为:22020.【点睛】本题主要考查一次函数图象上点的坐标特征,规律型:图形的变化类,等腰直角三角形性质.19.(1)1(2)-2【分析】(1)将二次根式化简,合并同类二次根式,计算除法,最后计算减法即可; (2)根据平方差公式和完全平方公式去括号,再合并同类二次根式. (1)22- =3-2 =1; (2)解:原式=2222⎡⎤+-⎣-⎦=3-(3++2)=3-3-2=--2.【点睛】此题考查了二次根式的混合运算,正确掌握运算顺序及运算法则及公式是解题的关键.20.(1)31x y =⎧⎨=-⎩(2)86x y =-⎧⎨=⎩【分析】(1)用加法消元法求解; (2)用减法消元法求解. (1)①425x y x y -=⎧⎨+=⎩①② ①+①得:39x =, 3x =,将x =3代入①中得:34y -=,得1y =-,①原方程组的解是31x y =⎧⎨=-⎩. (2)将方程组变形为452232x y x y +=-⎧⎨+=⎩①②, ①2⨯,得464x y +=①,①-①,得6y =,把6y =代入①,得8x =-.①原方程组的解是86x y =-⎧⎨=⎩. 21.(1)见解析(2)A 1(1,5),B 1(1,0),C 1(4,3)【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)根据A 1,B 1,C 1的位置写出坐标即可.(1)解:所作图形①A 1B 1C 1如下所示:(2)解:根据所作图形知:A 1(1,5),B 1(1,0),C 1(4,3).【点睛】本题考查作图-轴对称变换,解题的关键是熟练掌握基本知识.关于y 轴对称的点,纵坐标相同,横坐标互为相反数.22.阴影部分土地的面积为24平方米.【分析】先由勾股定理求出AC=5米,再由勾股定理的逆定理证出①ADC=90°,最后由三角形面积公式求解即可.【详解】解:①①ACB =90°,BC =12,AB =13,①AC 5,① 32+42=52,CD =3,AD =4,AC =5,即 CD 2+AD 2=AC 2,①①ADC =90°,①S 阴影=-ABC ACD S S =1122AC BC CD AD ⨯-⨯ 11512342422=⨯⨯-⨯⨯=(平方米). 【点睛】本题考查了勾股定理的应用以及勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理是解题的关键.23.每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨【分析】设每辆汽车平均装物资x 吨,每节火车车厢平均装物资y 吨,列方程得5214034224x y x y +=⎧⎨+=⎩,计算即可.【详解】解:设每辆汽车平均装物资x 吨,每节火车车厢平均装物资y 吨根据题意得:5214034224x y x y +=⎧⎨+=⎩, 解得: 850x y =⎧⎨=⎩. 答:每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨.【点睛】此题考查了二元一次方程组的实际应用,正确理解题意是解题的关键.24.(1)众数是7,中位数是7;(2)9300吨;(3)以中位数或众数作为月基本用水量较为合理.【分析】(1)根据中位数和众数的定义求解即可,(2)用社区的总户数乘以平均数列出算式计算即可,(3)根据平均数、众数、中位数的意义,结合题意选择合适的量即可.【详解】(1)解:1(3443557118492101) 6.230x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 众数是7,中位数是7 (2)1500 6.29300⨯=(吨)①该社区月用水量约为9300吨(3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水.25.见解析【分析】根据平行线的性质以及角平分线的定义,即可得到①FEB=①EFC ,进而得出AB①CD .【详解】解:证明:①EM①FN ,①①FEM=①EFN ,又①EM 平分①BEF ,FN 平分①CFE ,①①BEF=2①FEM ,①EFC=2①EFN ,①①FEB=①EFC ,①AB①CD .【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟记角平分线的定义和平行线的性质.26.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+, AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩, 解得, 2.560k b =⎧⎨=⎩, 即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>; (2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.27.(1)8.5;0.7;8;(2)甲班的成绩较好.【分析】(1)根据众数、方差和中位数的定义及公式分别进行解答即可;(2)从平均数、中位数两个角度分别进行分析即可;【详解】解:(1)甲班的众数是8.5;甲班的方差是:0.7;乙班的中位数是8;(2)因为甲、乙两班成绩的平均数相同,而甲班成绩的中位数高于乙班的中位数,所以甲班的成绩较好.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.当x<0时,y<0D.方程kx+b=2的解是x=﹣1
【答案】D
【解析】
【分析】
根据一次函数的性质判断即可.
【详解】由图象可得:
A、y随x的增大而增大;
B、k>0,b>0;
C、当x<0时,y>0或y<0;
D、方程kx+b=2的解是x=﹣1,
故选:D.
【点睛】考查了一次函数与一元一次方程的关系,一次函数图象与系数的关系,正确的识别图象是解题的关键.
1.2的平方根为( )
A.4B.±4C. D.±
【答案】D
【解析】
【分析】
利用平方根的定义求解即可.
【详解】解:∵2的平方根是± .
故选D.
【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.
2.下列各数中是无理数的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
二、填空题(共6题,每题4分,满分24分.请将答案填在答题卡的相应位置)
11.比较大小: ________ .(填“>”或“<”).
【答案】>
【解析】
【分析】
比较二次根式,只要把根号外面的数根据二次根式的性质移到根号里面,比较即可.
【详解】解: = , = ,
∵ > ,
∴ > ,
故答案为:>.
【点睛】此题主要考查二次根式的比较,运用二次根式性质,把根号外的数移到根号里面是解题的关键.
4. 将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )
A. 45°
B. 50°
C 60°
D. 75°
5.在共有l5人参加的演讲加比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进入前八名,只需了解自己的成绩以及全部成绩的
A.平均数B.众数C.中位数D.方差
6.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是( )
A.(2,2)B.(0,1)C.(2,﹣1)D.(2,1)
7.下列四个命题中,是真命题的是()
A.两条直线被第三条直线所截,内错角相等.B.如果∠1和∠2是对顶角,那么∠1=∠2.
C.三角形的一个外角大于任何一个内角.D.无限小数都是无理数.
8.如图,AB=AC,则数轴上点C所表示的数为( )
A. +1B. ﹣1C. ﹣ +1D. ﹣ ﹣1
分别根据无理数、有理数的定义即可判定选择项.
【详解】A.3.14是有限小数,属于有理数;
B. =2,是整数,属于有理数;
C. 是无理数;
D. =4,是整数,属于有理数;
故选C.
【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
3.以下列各组数为边长,不能构成直角三角形的是( )
八年级上学期数学期末测试卷
一、选择题(共10题,每题4分,满分40分.每题只有一个正确选项,请在答题卡的相应位置填涂)
1.2的平方根为( )
A.4B.±4C. D.±
2.下列各数中是无理数的是( )
A. B. C. D.
3.以下列各组数为边长,不能构成直角三角形的是( )
A.3,4,5B.1,1,
C.8,12,13D. 、 、
A.3,4,5B.1,1,
C.8,12,13D. 、 、
【答案】C
【解析】
【分析】
根勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.
【详解】A. 32+42=52,能构成直角三角形,故不符合题意;
B. 12+12=( )2,能构成直角三角形,故不符合题意;
C. 82+122≠132,不能构成直角三角形,故符合题意;
12.若 ,则点 到 轴的距离为__________.
【答案】3
【解析】
【分析】
根据平面直角坐标系中点的坐标的几何意义解答即可.
【详解】解:∵点P的坐标为(-3,2),
∴点P到x轴的距离为|2|=2,到y轴的距离为|-3|=3.
故填:3.
【点睛】解答此题 关键是要熟练掌握点到坐标轴的距离与横纵坐标之间的关系,即点到x轴的距离是横坐标的绝对值,点到y轴的距离是纵坐标的绝对值.
(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上 一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.
答案与解析
一、选择题(共10题,每题4分,满分40分.每题只有一个正确选项,请在答题卡的相应位置填涂)
9.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为( )
A B. C. D.
【答案】D
【解析】
【分析】
等量关系为:鸡的只数+兔的只数=35,2×鸡的只数+4×兔的只数=94,把相关数值代入即可得到所求的方程组.
(3)在(2)的条件下,如果买同一种奖品,请你帮忙计算说明,买哪种奖品费用更低.
24.小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.
D.( )2+( )2=( )2,能构成直角三角形,故不符合题意,
故选C.
【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
4. 将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )
(1)求小张骑自行车的速度;
(2)求小张停留后再出发时y与x之间的函数表达式;
(3)求小张与小李相遇时x的值.
25.建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.
实践操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证:△CAD≌△BCE.
模型应用:(1)如图2,在直角坐标系中,直线l1:y= x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.
【详解】解:∵鸡有2只脚,兔有4只脚,
∴可列方程组为: ,
故选D.
【点睛】本题考查了由实际问题抽象出二元一次方程组.如何列出二元一次方程组的关键点在于从题干中找出等量关系.
10.如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是( )
A. y随x的增大而减小B. k>0,b<0
【详解】根据题意可建立如图所示平面直角坐标系:
由坐标系知白棋(甲)的坐标是(2,1),
故选D.
【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
7.下列四个命题中,是真命题的是()
A. 两条直线被第三条直线所截,内错角相等.B. 如果∠1和∠2是对顶角,那么∠1=∠2.
13.已知 是关于 的二元一次方程 的一个解,则 =___.
C、三角形的一个外角大于任何一个内角,错误,有可能小于与它相邻的内角,为假命题;
D、无限小数都是无理数,错误,无限不循环小数才是无理数,为假命题;
故选B.
【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、三角形的外角的性质,以及无理数的概念,属于基础知识,难度不大.
8.如图,AB=AC,则数轴上点C所表示的数为( )
C. 三角形的一个外角大于任何一个内角.D. 无限小数都是无理数.
【答案】B
【解析】
【分析】
利用平行线的性质、对顶角的性质、三角形的外角的性质和无理数的概念分别判断后即可确定选项.
【详解】解:A、两条直线被第三条直线所截,内错角相等,错误,为假命题;
B、如果∠1和∠2是对顶角,那么∠1=∠2,正确,为真命题;
14.已知一组数据为:5,3,3,6,3则这组数据的方差是______.
15.如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向160米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米.
16.如图,有一种动画程序,屏幕上正方形 是黑色区域(含正方形边界),其中四个顶点 坐标分别为 、 、 、 ,用信号枪沿直线 发射信号,当信号遇到黑色区域时,区域便由黑变白,则能使黑色区域变白的b的取值范围为_________.
A. 45°
B. 50°
C. 60°
D. 75°
【答案】D
【解析】
本题主要根据直角尺各角的度数及三角形内角和定理解答.
解:∵∠C=30°,∠DAE=45°,AE∥BC,
∴∠EAC=∠C=30°,∠FAD=45﹣30=15°,
在△ADF中根据三角形内角和定理得到:∠AFD=180﹣90﹣15=75°.
回答下列问题:
(1)写出条形图中存在的错误,并说明理由;
(2)写出这20名学生每人植树量的众数和中位数;
(3)求这20名学生每人植树量 平均数,并估计这260名学生共植树多少棵?
22.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.
A. +1B. ﹣1C. ﹣ +1D. ﹣ ﹣1
【答案】B
【解析】
相关文档
最新文档