(新)高数(一)全套公式
(完整版)高数1全套公式
o
x
极限的计算方法 一、初等函数: 1.lim C C(C是常值函数)
2.若 f x M(即 f x 是有界量),lim (0 即 是无穷小量), lim f x
0,
特别 : f x C lim C 0
fx
3.若 f x M(即 f x 是有界量) lim
0,
特别 : f x C C 0
lim C 0
2.特殊角的三角函数值
f( ) cos sin tan cot
0 (0 )
1 0 0 不存在
6
(30 ) 3/ 2 1/ 2
1/ 3 3
4
( 45 ) 2 /2 2 /2
1 1
3
( 60 ) 1/ 2 3/ 2
3 1/ 3
2
( 90 )
0 1 不存在 0
只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值
(3)、 d( ax ) a x ln adx ,特别地,当 a e时, d (ex ) exdx ;
(4)、 d(log a x)
1 dx ,特别地,当 a e 时, d (ln x) 1 dx ;
1。
45 2
1
60
2 1
45
30
1 3 诱导公式:
3
函数
角A
sin cos tg ctg
-α 90 °- α 90 °+ α 180 °-α 180 °+α 270 °-α 270 °+α 360 °-α 360 °+α
-sin α cos α -tg α -ctg α cos α sin α ctg α tg α cos α -sin α -ctg α -tg α sin α -cos α -tg α -ctg α -sin α -cos α tg α ctg α -cos α -sin α ctg α tg α -cos α sin α -ctg α -tg α -sin α cos α -tg α -ctg α sin α cos α tg α ctg α
(完整版)高数公式大全(费了好大的劲),推荐文档
lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
高数一全套公式
初等数学基础知识一、三角函数1 .公式同角三角函数间的基本关系式:平方关系:sin A2( a )+cos A2( a )=tan^2( a )+1= sec A2( ;cOt A2( a )+1= csc A2( a) 商的关系:tan a =sin a /cos a ot a =cos a /sin a倒数关系:tan a・ cot a; =sin a・ csc a =1cos a・ sec a =1三角函数恒等变形公式:两角和与差的三角函数:cos( a + 3 )=cos a・ coin Ba・ sin 3cos( a 3 )=cos a・ cos 3 +sin a・ sin 3sin( a±3 )=sin a・ cos 3 土 cos a・ sin 3tan( a + 3 )=(tan a +tan -tan(a^ tan 3)tan( a 3 )=(tan -tan 3 )/(1+tan a・ tan 3)倍角公式:sin(2 a )=2sin a・ cos acos(2 a )=cosA2( -s)n人2( a )=2cosA2( -a=1- 2si门人2( a)tan(2 a )=2tan a #1 门人2( a )]半角公式:sinA2( a /2X1-C0S a )/2cosA2( a /2)=(1+cos a )/2tan A2( a /2)=(1cos a )/(1+cos a)tan( a /2)=sin a /(1+cos ot-()os1a )/sin a万能公式:sin a =2tan( a /2)/[1+ta门人2( a /2)]cos a =[1-tanA2( a /2)]/[1+ta门人2( a /2)]tan a =2tan( a /2)/{t1a门人2( a /2)]积化和差公式:sin a・cos 3 =(1/2){sin(a + 3-)+s]n( acos a・sin 3=(1/2){sin(-si a+ a))]cos a・cos 3 =(1/2){cos( a + 3 )+^$1 asin a・sin-(1=){cos( a +-co)( a- 3 )] 和差化积公式:sin a +sin 3 =2sin{( a + 3 )/2]cos{)/2] asin asin3 =2cos[( a + 3 )/2]sin{© )/2}x cos a +cos 3 =2cos[( a + 3 )/2]cos{(3 )2 cos a-cos 3=2S in{(a + 3 )/2]sin{- 3 )/a2.特殊角的三角函数值f (衿、0 (0=)JI■6(30 JJT~4(45)JI~3(60 °)31"2(90°)cos日 1 73/2 V2/2 1/2 0si n日0 1/2 v'2 / 2 V3/2 1tan日0 1/V3 1 不存在cot日不存在43 1 1小0只需记住这两的三角值。
高中数学必修一全部公式
高中数学必修一全部公式数学这门学科,有时候真的是让人觉得头疼,但只要掌握了那些公式,它就会变得简单许多。
今天咱们就来聊聊高中数学必修一里那些基础公式,让它们变成你手里的小宝贝,助你在数学的海洋中轻松遨游!1. 函数与方程1.1 一次函数先说说一次函数吧。
它的公式就是 y = kx + b。
这是个直线方程,其中的 k 是斜率,决定了直线的倾斜程度,而 b 是截距,决定了直线和 y 轴的交点。
就像你画直线的时候,k 就是你手抖的程度,b 就是你线从 y 轴的哪个位置开始。
这玩意儿非常基础,但用得可广泛了。
1.2 二次函数接下来是二次函数,它的公式是y = ax² + bx + c。
这个公式看起来是不是有点吓人?别担心,其实它的图像就是个漂亮的抛物线。
a、b、c 分别是这个抛物线的“身高”、"弯度"和“横坐标”,直接决定了它的样子。
a 大于零时,抛物线是向上的,a 小于零时,它就是向下的,像个倒立的笑脸。
2. 代数公式2.1 完全平方公式接下来,咱们聊聊代数公式。
首先是完全平方公式:(a + b)² = a² + 2ab + b²。
这个公式就是告诉你,两个数相加再平方,等于各自的平方和加上两者的乘积的两倍。
简单说,就是把“a + b”先“平方”,你得到的结果其实就是把每个数平方加起来,再加上它们的乘积乘以二。
然后是差平方公式:(a b)² = a² 2ab + b²。
这个公式类似于完全平方公式,但这里是“减”。
就是说,两个数相减再平方,结果等于各自的平方和减去两者的乘积的两倍。
它其实是个简化的工具,能让我们更快地解决问题。
3. 三角函数3.1 正弦和余弦公式三角函数也是数学里的一大重点。
正弦函数和余弦函数的基本公式是:sin²θ + cos²θ = 1这就像是一条法则,无论你选择什么角度θ,只要你把正弦和余弦的平方相加,结果总是 1。
高数公式大全(全)
高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
(完整版)高数1全套公式
一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值1。
高数(一)全公式
初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]co sα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2.特殊角的三角函数值θ)(θf0 )0(6π )30( 4π )45( 3π )60( 2π)90(θcos 1 2/32/2 2/10 θsin 0 2/12/22/3 1 θtan 0 3/1 1 3不存在 θcot不存在313/1只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。
新高考数学必背公式
一、代数部分平方差公式:公式:a² - b² = (a + b)(a - b)全平方公式:公式:a²± 2ab + b² = (a ± b)²立方和与立方差公式:立方和公式:a³ + b³ = (a + b)(a² - ab + b²)立方差公式:a³ - b³ = (a - b)(a² + ab + b²)因式分解公式:a² - b² = (a + b)(a - b),a³ + b³ = (a + b)(a² - ab + b²),等等。
集合运算性质:并集:A∪B=B∪A,A∪A=A,A∪∅=∅∪A=A交集:A∩B=B∩A,A∩A=A,A∩∅=∅∩A=∅德·摩根定律:(A∩B)=(A)∪(B)(A∪B)=(A)∩(B)不等式性质:如果a<b,c<d,那么a+c<b+d如果a<b,c>0,那么ac<bc如果a<b,c<0,那么ac>bc基本不等式:a+b≥2(a,b∈R+),当且仅当a=b时等号成立柯西不等式:二维柯西不等式:(a+b)(c+d)≥(ac+bd),当且仅当ad=bc时成立伯努利不等式:对于实数x>-1,n≥1时,有(1+x)n≤1+nx成立,当且仅当n=0,1,或x=0时,等号成立。
二、三角函数部分正弦、余弦、正切的定义:sin = 对边/斜边cosθ = 邻边/斜边tanθ = 对边/邻边三角函数的和差公式:sin(α + β) = sinαcosβ + cosαsinβcos(α + β) = cosαcosβ - sinαsinβtan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)三角函数的倍角公式:sin2α = 2sinαcosαcos2α = cos²α - sin²αtan2α = 2tanα / (1 - tan²α)三、几何部分圆的周长和面积公式:周长:C = 2πr面积:S = π*r²三角形的面积公式:S = 1/2 * 底 * 高平行四边形的面积公式:S = 底 * 高四、微积分部分导数的定义:(x) = lim(Δx→0) [f(x + Δx) - f(x)] / Δx 积分的基本公式:∫f(x)dx = f(x) + C(C为常数)。
大一高数公式总结大全
高数是大学数学中最重要的学科,其中的公式为学习者提供了极大的帮助。
下面就是大一高数公式总结大全。
一、有理函数公式:
1、有理函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、有理函数的一阶导数公式:
f′(x)=lim[h->0] (f(x+h) -f(x))/h
3、有理函数的二阶导数公式:
f′′(x)=lim[h->0] (f′(x+h)-f′(x))/h
二、指数函数公式:
1、指数函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、指数函数的一阶导数公式:
f′(x)=f(x)·ln(a)
3、指数函数的二阶导数公式:
f′′(x)=f(x)·ln2(a)
三、三角函数公式:
1、三角函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、三角函数的一阶导数公式:
f′(x)=cosx
3、三角函数的二阶导数公式:
f′′(x)=-sinx
四、对数函数公式:
1、对数函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、对数函数的一阶导数公式:
f′(x)=1/x
3、对数函数的二阶导数公式:
f′′(x)=-1/x2
以上就是大一高数公式总结大全,这些公式可以帮助大学生掌握高数学习中的基本概念,为他们的学习提供便利。
高数一全套公式
5.未定式
1 0型 0
A.分子 , 分母含有相同的零因式 , 消去零因式
B.等价无穷小替换 (常用 sin x ~ x,ex 1 ~ x,ln x 1 ~ x)
fx
fx
C.洛必达法则 :要求 f x , g x 存在 , 且 lim
存在 , 此时 , lim
gx
gx
fx lim
gx
2型
A.忽略掉分子 , 分母中可以忽略掉的较低阶的无穷大 , 保留最高阶的无穷大
1
1
(4) (log ax)
, 特别地,当 a e 时,( ln x )
x ln a
x
(5) (sin x) cosx
(6) (cos x) sin x
(7) (tan x)
1 cos2 x
sec2 x
(9) (sec x) (sec x) tan x
(8) (cot x)
(10) (csc x)
专业文档供参考,如有帮助请下载。
二、分段函数: 分段点的极限用左 , 右极限的定义来求解 .
切线方程 为: y y0 f (x0)( x x0) 基本初等函数的导数公式
法线方程 为 y y0
1 ( x x0 )
f (x0 )
(1) (C) 0 , C 是常数
(2) ( x )
x1
(3) (a x ) ax ln a ,特别地,当 a e 时,( e x) e x
(2) a2 2ab b2 (a b) 2
(3)a2 2ab b2 ( a b) 2
(4) a3 b3 ( a b)( a2 ab b2)
(5)a3 b3 ( a b)( a2 ab b2 )
(6) a3 3a2b 3ab2 b3 (a b)3
(完整版)高数1全套公式
02>cbxax 2121)(xxxxxx>或<< abx2 Rx 02<cbxax 21xxx x x
因式分解与乘法公式
2
22
22
322
322
2233
2233
22(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()
222(abababaabbabaabbabababaabbababaabbaababbabaababbababcabbcca 2
竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割
b42 0 0 0
0(2>一元二次函数acbxaxy
.1x
2cbxax一元二次方程
acbbx2422,1有二互异实根
abx2)(2,1有一根有二相等实根 无实根 1 45 2 1 45 1 2 30 60 3 2x 1x
、1()dxxdx(为任意常数);
、()lnxxdaaadx,特别地,当ea时,()xxdeedx;
、1(log)
adxdxxa,特别地,当ea时,1(ln)dxdxx;
、(sin)cosdxxdx;
、
)sindxxdx;
、2(tan)secdxxdx;
、2(cot)cscdxxdx;
数
函
数 10logaaxya R y=logax
xa>10<a<1O(1,0)xy
过点1,0. 1a单增. 10a单减.
log1,log10,,0logloglog,logloglog,loglog,loglog0,1,loglog(0)
0)
aaaaaaaapaacacxaxaMNMNMNMMNNMPMbbcaaxxaxx
高等数学考研(数学一)公式大全
高等数学公式大全导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a x x x x x x x x x x a xxln 1)(logln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:函数 角A sincostancot-α -sinα cosα -tan α -cot α 90°-α cosα sinαcot αtan α90°+α cosα -sinα -cot α -tan α 180°-α sinα-c osα -tan α -cot α180°+α -sinα -cosα tan α cot α 270°-α -cosα -sinα cot α tan α270°+α -cosα sinα -cot α -tan α 360°-α -sinα cosα -tan α -cot α 360°+αsinαcosαtan αcot α·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos 2cos 2cos cos 2sin2cos 2sin sin 2cos 2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+-=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=± xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
(完整版)高数一全套公式
初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。
大一上学期高等数学必记公式
第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。
(高等数学、考研数学通用)高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE 可逆,则先分解因子aA+bE再说。
●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。
高数一全套公式范文
高数一全套公式范文高数一是一门重要的数学课程,它涉及的内容非常广泛,包括函数、极限、连续性、导数、积分等等。
以下是高数一的全套公式:1.函数相关公式:-阶乘:n!=n(n-1)(n-2)...3*2*1-组合数:C(n,m)=n!/(m!(n-m)!)2.极限相关公式:- 基本极限:lim(x->0) (sinx/x) = 1;lim(x->0) (1-cosx/x) =0 - 极限的四则运算:lim(x->a) [f(x) ± g(x)] = lim(x->a) f(x) ± lim(x->a) g(x)- 复合函数极限:lim(x->a) f[g(x)] = f[lim(x->a) g(x)]3.连续性相关公式:- 连续函数极限:f(x)在x=a处连续当且仅当lim(x->a) f(x) =f(a)-零点定理:如果f(x)在[a,b]上连续,并且f(a)f(b)<0,则方程f(x)=0在[a,b]上至少有一个根。
4.导数相关公式:- 基本导数:(d/dx) (c) = 0, 其中c为常数;(d/dx) (x^n) =nx^(n-1)- 幂函数求导法则:(d/dx) (a^x) = a^x ln(a), 其中a为正数且不等于1- 三角函数求导法则:(d/dx) (sinx) = cosx, (d/dx) (cosx) = -sinx- 乘积法则:(d/dx) (u*v) = u*(d/dx)v + v*(d/dx)u5.积分相关公式:- 定积分的基本性质:∫(a, b) f(x) dx = -∫(b, a) f(x) dx- 定积分与导数的关系:f(x)在[a, b]上连续,则∫(a, b) f'(x)dx = f(b) - f(a)- 分部积分法:∫u dv = uv - ∫v du这只是高数一公式的一小部分。
高数公式大全
高数公式大全(全)(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx ee shx x xxx xx xx++=+-==+=-=----1ln(:2:2:2)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学一常用公式表
常用公式表(一)1。
乘法公式()()22212a b a ab b +=++ ()()22222a b a ab b -=-+()()()223a b a b a b -=+-()()()33224a b a b a ab b +=+-+ ()()()33225a b a b a ab b -=-++2、指数公式:()()0110a a =≠ ()12pp a a-= ()3mn m n a a =()4m n m na a a += ()5m m n m n n a a a a a-÷== ()()6n m mn a a =()()7nn nab a b = ()8nn n a a b b⎛⎫= ⎪⎝⎭ ()()29a a =(()210a a = ()1111a a -= ()1212a a =3、指数与对数关系:(1)若N a b =,则N b a log = (2)若N b=10,则N b lg =(3)若N e b=,则N b ln =4、对数公式:(1)ba b a =log , ln b e b = (2)log 10,ln10a ==(3)N aaN=log ,ln N e N = ()ln 4log ln aN N a= (5)a b b e a ln = (6)N M MN ln ln ln += ()7ln ln ln MM N N=--(8)M n M n ln ln = ()19ln ln n M M n=5、三角恒等式:(1)22sin cos 1αα+= (2)221tan sec αα+=(3)221cot csc αα+=()sin 4tan cos ααα= ()cos 5cot sin ααα= ()16cot tan αα=()17csc sin αα=()18sec cos αα= 6.倍角公式:(1)()22tan 2tan 21tan ααα=- ,(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=7.半角公式(降幂公式):()21cos 1sin 22αα-=()21cos 2cos 22αα+= ()1cos sin 3tan 2sin 1cos ααααα-==+(1)若x=siny ,则y=arcsinx (2)若x=cosy ,则y=arccosx (3)若x=tany ,则y=arctanx(4)若x=coty ,则y=arccotx10、函数定义域求法:(1)分式中的分母不能为0,(a 1α≠0)(2)负数不能开偶次方, (a α≥0)<(3)对数中的真数必须大于0,(N a log N>0)(4)反三角函数中arcsinx ,arccosx 的x 满足:(-1≤x ≤1) (5)上面数种情况同时在某函数出现时,此时应取其交集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] co sα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。
3诱导公式:记忆规律: 竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割即第一象限全是正的,第二象限正弦、正割是正的,第三象限正切是正的,第四象限余弦、余割是正的)二、一元二次函数、方程和不等式14521451230603三、因式分解与乘法公式22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2)n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 四、等差数列和等比数列()()()11111 22n n n n a a n d n a a n n n S S na d=+-+-==+1.等差数列 通项公式: 前项和公式或()()1100n n n GP a a qa q -=≠≠2.等比数列 通项公式,()()()11.1111n n n a q q S qna q ⎧-⎪≠=-⎨⎪=⎩前项和公式 五、常用几何公式基本初等函数一、初等函数:()()()()()()()()()1.lim (2.lim 0lim 0,:lim 03.lim 0,:0lim 004.lim0C C C f x M f x f x f x C C f x f x M f x C f x C C C C C αααα=≤=⇒⋅==⇒⋅=≤⇒=∞=≠⇒=∞+∞>⎧=⎨-∞<⎩是常值函数)若(即是有界量),(即是无穷小量), 特别若(即是有界量) 特别()()5.010.,,.(sin ~,1~,ln 1~)x A B x x e x x x -+未定式型分子分母含有相同的零因式消去零因式等价无穷小替换常用()()()()()()()().,,lim,,lim limf x f x f x C f xg x g x g x g x ''''=''洛必达法则:要求存在且存在此时 ()2.,,,.,,...A B C ∞∞型忽略掉分子分母中可以忽略掉的较低阶的无穷大保留最高阶的无穷大再化简计算分子分母同除以最高阶无穷大后再化简计算洛必达法则()型型或转化为数有理化通过分式通分或无理函型"""00",3∞∞∞-∞ ()⎪⎪⎪⎩⎪⎪⎪⎨⎧=∞∞∞=∞∞⋅00100104转化为 ()()()().1lim 1706005100或求对数来计算通过型型型求对数求对数e x xx =+∞⋅−−→−∞∞⋅−−→−→∞二、分段函数:,.分段点的极限用左右极限的定义来求解切线方程为:))((000x x x f y y -'=- 法线方程为)()(1000x x x f y y -'-=- 基本初等函数的导数公式(1) 0)(='C ,C 是常数 (2)1)(-='αααx x(3) a a a x x ln )(=',特别地,当e a =时,x xe e =')( (4) a x x a ln 1)(log =', 特别地,当e a =(5)x x cos )(sin =' (6) x x sin )(cos -='(7) x x x 22sec cos 1)(tan ==' (8) x xx 22csc sin 1)(cot -=-=' (9) x x x tan )(sec )(sec =' (10) x x x cot )(csc )(csc -=' (11) =')(arcsin x 211x- (12) 211)(arccos xx --='(13)(14) 21(arccot )1x x '=-+函数的和、差、积、商的求导法则可导都在点及函数x x v v x u u )()(==,)()(x v x u 及的和、差、商 (除分母为 0的点外) 都在点 x 可导,)()(])()([)1(x v x u x v x u '±'='± )()()()(])()([)2(x v x u x v x u x v x u '+'=')()()()()()()()3(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡)0)((≠x v基本初等函数的微分公式(1)、0dc =(c 为常数);(2)、1()d x x dx μμμ-=(μ为任意常数);(3)、()ln x x d a a adx =,特别地,当e a =时,()x x d e e dx =; (4)、1(log )ln a d x dx x a =,特别地,当e a =时,1(ln )d x dx x=; (5)、(sin )cos d x xdx =; (6)、(cos )sin d x xdx =-; (7)、2(tan )sec d x xdx =; (8)、2(cot )csc d x xdx =-;(9)、(sec )sec tan d x x xdx =; (10)、(csc )csc cot d x x xdx =-; (11)、(arcsin )d x =; (12)、(arccos )d x =;(13)、21(arctan )1d x dx x =+; (14)、21(cot )1d arc x dx x=-+. 曲线的切线方程000'()()y y f x x x -=-幂指函数的导数极限、可导、可微、连续之间的关系条件A ⇒ 条件B ,A 为B 的充分条件 条件B ⇒ 条件A ,A 为B 的必要条件 条件A ⇔ 条件B ,A 和B 互为充分必要条件 边际分析边际成本 MC =()C q ';边际收益 MR =()R q ';边际利润 ML =()L q ',()()()L q R q C q '''=-= MR —MC弹性分析)(x f y =在点0x 处的弹性,()ED pD p Ep D-'= 特别的,需求价格弹性:罗尔定理()()()()()()()()()'ln v x v x u x u x u x v x u x v x u x ⎛⎫'⎡⎤'=+ ⎪⎪⎣⎦⎝⎭00()x x x Eyy x Exy ='=若函数)(x f 满足: (1) 在闭区间],[b a 连续;(2) 在开区间),(b a 可导;(3) )()(b f a f =,则在),(b a 内至少存在一点ξ,使0)(='ξf .拉格朗日定理设函数)(x f 满足:(1) 在闭区间],[b a 连续;(2) 在开区间),(b a 可导,则在),(b a 上至少存在一点ξ,使得ab a f b f f --=')()()(ξ .基本积分公式(1) 0dx C =⎰ (2) ()为常数k Ckx kdx +=⎰特别地:dx x C =+⎰(3) ()111-≠μ++μ=+μμ⎰C x dx x(4)C x dx x +=⎰||ln 1(有时绝对值符号也可忽略不写)(5) C aa dx a xx+=⎰ln (6) C e dx e x x +=⎰ (7) C x xdx +=⎰sin cos (8) C x xdx +-=⎰cos sin (9)⎰⎰+==C x xdx x dx tan sec cos 22 (10)⎰⎰+-==C x xdx x dx cot csc sin 22(11) C x xdx x +=⎰sec tan sec (12) C x xdx x +-=⎰csc cot csc (13) C x x dx +=+⎰arctan 12(或C x arc x dx+-=+⎰cot 12)(14) C x xdx +=-⎰arcsin 12(或C x xdx +-=-⎰arccos 12)(15)C x xdx +-=⎰|cos |ln tan ,(16) C x xdx +=⎰|sin |ln cot , (17) C x x xdx ++=⎰|tan sec |ln sec , (18) C x x dx x +-=⎰|cot csc |ln cot , (19) C a xa xa dx +=+⎰arctan 122,)0(≠a , (20) C a x ax a x a dx +-+=-⎰ln 2122,(0)a ≠,(21) C a xx a dx +=-⎰arcsin 22,)0(>a ,(22)C a x x a x dx +±+=±⎰2222ln ,)0(≠a .常用凑微分公式(1)、()()0,,1≠+=a b a b ax d adx 且为常数(2)、()221x d xdx = (3)、⎪⎭⎫ ⎝⎛-=x d dx x 112 (4)、x d dx x21=(5)、x d dx xln 1=(6)、x x de dx e = (7)、()sin cos xdx d x =- (8)、x d xdx sin cos = (9)、x d xdx tan sec 2= (10)、x d xdx cot csc 2-= (11)arcsin d x =(12)、x d dx xarctan 112=+一阶线性非齐次微分方程的通解为()()()P x dxP x dx y eQ x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰()()dyP x y Q x dx+=xy 0a b()y g x =()y f x =y 0xc d()x y ψ=()x y ϕ=平面图形面积的计算公式1)区域D 由连续曲线和直线x=a,x=b 围成,其中(右图) 2)区域D 由连续曲线和直线x=c,x=d 围成,其中(右图)平面图形绕旋转轴旋转得到的旋转体体积公式1 、绕x 轴的旋转体体积(右图)注意:此时的曲边梯形必须紧贴旋转轴.2、绕y 轴的旋转体体积(右图)注意:此时的曲边梯形必须紧贴旋转轴.由边际函数求总函数000()()((0)q C q f x dx C C C =+=⎰为固定成本) 0()()qR q g x dx =⎰总利润函数为00()()()[()()]qL q R q C q g x f x dx C =-=--⎰。