实验一 典型环节的MATLAB仿真

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 典型环节的MATLAB 仿真

一、实验目的

1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。 二、SIMULINK 的使用

MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。

1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真

环境下。

2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。

3.在simulink 仿真环境下,创建所需要的系统

三、实验内容

按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。

① 比例环节1)(1=s G 和2)(1=s G 实验处理:1)(1=s G SIMULINK 仿真模型

波形图为:

实验处理:2)(1=s G SIMULINK 仿真模型

波形图为:

实验结果分析:增加比例函数环节以后,系统的输出型号将输入信号成倍数放大.

② 惯性环节11)(1+=

s s G 和15.01)(2+=s s G 实验处理:1

1

)(1+=s s G

SIMULINK 仿真模型

波形图为:

实验处理:1

5.01

)(2+=

s s G

SIMULINK 仿真模型

波形图为:

实验结果分析:当1

1

)(1+=

s s G 时,系统达到稳定需要时间接近5s,当

1

5.01

)(2+=

s s G 时,行动达到稳定需要时间为2.5s,由此可得,惯性环节可

以调节系统达到稳定所需时间,可以通过惯性环节,调节系统达到稳定输出的时间。

③ 积分环节s s G 1)(1=

实验处理: SIMULINK 仿真模型

实物图为:

实验结果分析:由以上波形可以的出,当系统加入积分环节以后,系统的输出量随时间的变化成正比例增加。

④ 微分环节s s G =)(1 实验处理:

SIMULINK 仿真模型

波形图为:

实验结果分析:微分环节,是将系统的输入对时间的倒数作为输出,当输入为阶跃信号时,加入微分环节后,输入变为0。

⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G 实验处理:2)(1+=s s G SIMULINK 仿真模型

波形图为:

实验处理:1)(2+=s s G

SIMULINK 仿真模型

实物图为:

实验结果分析:当系统的输入为信号,即在有效时间内输入不随时间变化而变化时,微分环节对系统不起作用,比例环节将输入型号按倍数放大。

⑥ 比例+积分环节(PI )s s G 11)(1+=和s

s G 211)(2+=

实验处理:s

s G 11)(1+=

SIMULINK 仿真模型

波形图为:

实验处理:s

s G 21

1)(2+=

SIMULINK 仿真模型

波形图:

实验结果分析:当系统加入比例积分环节后,系统的输出是比例放大倍数与积分环节单独作用是的叠加。

实验心得与体会:同过本次实验,我基本掌握了MATLAB 中SIMULINK 的使用,同时也掌握对系统结构图在软件上的绘制,通过对实验结果的分析,加深了我对比例环

节,惯性环节、微分环节、积分环节的认识,比较直观的感受到了它们单独使用和组合使用时对系统输出产

的影响。

实验二 线性系统时域响应分析

一、实验目的

1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB 函数

(一)基础知识

时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。 三、实验内容

1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为

1

46473)(2342++++++=s s s s s s s G

可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 实验结果:

用函数step( )的点用格式时其程序代码段为:

num=[0 0 1 3 7] den=[1 4 6 4 1] step(num,den) grid

xlabel('t/s'),ylabel('c(t)')

title('Unit-step Respinse of G(s)=(s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)') 其对应的阶跃响应曲线为:

相关文档
最新文档