求函数自变量取值范围应注意的问题
如何确定函数自变量的取值范围
如何确定函数自变量的取值范围确定函数自变量的取值范围历来是中考的热点问题之一,考题中多以填空、选择形式出现,现在将常见的几种类型及解法归纳如下,以供同学们参考。
一、 自变量的取值必须使含有自变量的代数式有意义。
1、函数关系式是一个含有自变量的整式或奇次根式时,自变量的取值范围是全体实数。
例1、函数y=15-x 21的自变量取值范围是 。
解析:由于15-x 21是整式,所以x 的取值范围是全体实数。
2、当函数关系式是分式时,自变量的取值范围是使分母不为零的实数。
例2、(07哈尔滨)函数34x y x -=-的自变量x 的取值范围是 。
解析:43--x x 是分式,由分母x-4≠0得x≠4,所以x 的取值范围是x≠4。
3、当函数关系式是偶次根式时,自变量取值范围是使被开方数为非负数的实数。
例3、(07武汉)在函数1-=x y 中,自变量x 的取值范围是( )A 、x≥-1B 、x≠1C 、x≥1D 、x≤1解析:此函数关系式是二次根式,由被开方数为非负数可知,x-1≥0,所以x≥1。
故选C 。
4、当函数关系式中,自变量同时含在分式、二次根式中时,函数自变量的取值范围是它们的公共解,即建立不等式组,取它们的公共解。
例4、(07芜湖)函数y =中自变量x 的取值范围是( ) A 、 x ≥1- B 、 x ≠3 C 、 x ≥1-且x ≠3 D 、 1x <-解析:自变量x 同时含在分式、二次根式中,所以x 的取值范围是它们的公共解。
列不等式组得⎩⎨⎧≠-≥+0301x x 解得x≥-1且x≠3。
故选C 。
二、 自变量的取值必须使实际问题有意义。
当函数关系式表示实际问题或几何问题时,自变量的取值范围既要使函数表达式有意义,也要同时使实际问题及几何问题有意义。
例5、已知等腰三角形的面积为20cm 2,设它的底边长为x (cm ),则底边上的高y (cm )关于x 的函数关系式为 ,自变量的取值范围是: 。
自变量的取值范围
自变量的取值范围确定函数自变量的取值范围是研究函数时经常会遇到的问题,可能有些同学由于思考不全面等原因,往往出现顾此失彼的错误。
一、只考虑部分,而忽视了整体例1 求函数4y x =-的自变量x 的取值范围。
错解:由x+5≥0,得自变量x 的取值范围是x ≥-5。
14x -有意义的条件,即40x -≠。
正解:欲使函数y =有意义,则5040x x +≥⎧⎨-≠⎩,解得x ≥-5且x ≠-4。
所以此函数自变量的取值范围是x ≥-5且x ≠-4。
二、只考虑一部分,而忽视了另一部分例2 求函数213x y x-=+-+的自变量x 的取值范围。
错解:由-3+x ≠0,解得自变量x 的取值范围为x ≠3。
错解剖析:错解中只考虑了213x x--+这一部分有意义的条件,而忽视了x 的取值。
正解:要使213x y x -=+-+有意义,则3010x x -+≠⎧⎨-≥⎩,解得x ≥1且x ≠3。
三、只考虑解析式有意义,而忽视了问题本身的意义例3 等腰三角形的周长为20cm,若设一腰为xcm ,写出底边y(cm)与腰长x (cm )的解析式,并求出自变量x 的取值范围。
错解:y 与x 的函数解析式202y x =-,自变量x 的取值范围是全体实数。
错解剖析:错解中只考虑202x -有意义的条件,而忽视了问题本身的几何意义。
正解:y 与x 的函数解析式202y x =-。
因为0x >,0y >,又有三角形任意两边之和大于第三边,可得到不等式组02020202x x x x x >⎧⎪->⎨⎪+>-⎩解得510x <<。
所以函数自变量x 的取值范围是510x <<。
函数自变量取值范围
函数自变量取值范围函数自变量的取值范围是使函数解析式有意义的自变量的所有可能取值,它是一个函数被确定的重要因素,一直是中考的热点问题之一,下面举例谈谈这类问题的常见类型和解法供供同学们学习时参考。
一、教法点拨:1.在一般的函数关系式中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分式形式:分母≠0;(3)函数关系式含偶次方根:被开方数≥0;(4)函数关系式含0指数或负整数指数:底数≠0.(5)解析式是上述几种形式组合而成时,应首先求出式子中各部分的取值范围,然后再求出它们的公共部分;2. 实际问题中自变量的取值范围:(1)注意自变量自身表示的意义;(2)问题中的限制条件,此时多用不等式或不等式组来确定自变量的取值范围。
3. 几何图形中函数自变量的取值范围:(1)使函数式有意义;(2)考虑几何图形的构成条件及运动范围。
注意记清各种情况,判断哪一类型,准确计算即可。
二、题型分类:题型一:函数关系式中自变量取值范围1.解析式是整式时, 函数自变量取值范围是全体实数。
(原创题)①y = x2-3 ;②y = 2x -1;③ y =-3x .2.解析式是分式时,自变量的取值范围是使分母不为0的实数。
①(2018哈尔滨)函数y= 中,自变量x的取值范围是_________。
②(2018武汉)若分式在实数范围内有意义,则实数x 的取值范围是()[来源:学科网ZXXK] A.x>-2B.x<-2C.x=-2D.x≠-2③(2017哈尔滨)函数Y= 中,自变量X取值范围是____________。
④(2018•宿迁)函数y= 中,自变量x的取值范围是()A.x≠0B.x<1C.x>1D.x≠13.解析式是偶次根式,自变量的取值范围是被开方数为非负数。
①(2018北京市)若在实数范围内有意义,则实数的取值范围是。
②(2018湖北十堰)函数的自变量x的取值范围是。
(完整版)如何求实际问题中自变量取值范围
如何求实际问题中自变量取值范围一般地求实际问题中的自变量取值范围,可以从静止和运动变化的角度去考虑, 卜面举例说明.、用静止的观点求自变量的取值范围.由于学生认识能力有限,运动的变化观念和意识尚不成熟,他们往往习惯于用静止的观点看问题.学生在求自变量取值范围时,一般喜欢用静止的观点来求.从静止的角度考虑这个问题一般遵循以下原则:1 .尊重事实.现实世界,“人数” “字数”等均用零和自然数表达,线段的长度,时间均为非负数,这些都是不可违背的事实.例1设电报费标准是每字0.14元,电报纸每张0.20元,写出电报费y(元)与字数x(个)之间的函数关系及x的取值范围.解:y=0.14x+0.20, x 取正整数.例2矩形周长20, 一边长x,面积为y,试写出y与x关系及x取值范围.解:y=10x —x2, 一边长为x,另一边长为10—x,由于边长不能为负,则x>0, 10-x>0, -0<x<10.2,遵循定律公理等.例3等腰梯形腰长和底长均为x,下底长y,其周长为20,写出y与x之间函数关系及x的取值范围.解:y=20— 3x,根据两点间距离线段最短,有:x+x + x>y, 即叙>20-3弘,门〉可,又:边长不能为负加H>0,y>05J.20例4等腰三角形腰长x,底边长y,周长30,写出y与x的函数关系及自变量的取值范围.解:y=30— 2x,因三角形两边之和大于第三边,x+x>y,即2H>3。
- .又丁边长为正数,y>0,2丈>0, x<15. /.3.符合题目要求例5 一根弹簧,不挂物体时长12厘米,挂上物体以后,它伸长的长度(不超过22厘米)与所挂重物质量成正比.如果挂3千克重物,弹簧总长13.5厘米.求弹簧总长y 与所挂重物质量x之间的函数关系,并写出自变量取值范围.解:y=12+0.5x,因为最长伸长y不超过22厘米,「. 12+0.5x&22, x<20,又,. x>0, ;x的取值范围是0<x<20.二、用运动变化的观点求自变量取值范围.1.让两变量对应的图形或值进行大小变化,从而确定自变量最大值和最小值或者临界值.例6等腰三角形底角为x,顶角为y,写出y与x之间函数关系及x取值范围.解:y= 180° -2x,我们让x变大,x不可大到90° ,让x变小x不能小到0° , 这里0°就是x的临界值,「. x的取值范围是0° <x<90 .例7拖拉机油箱里有油54千克,使用时平均每小时耗油6千克,求箱中剩下油y (千克)与使用时间t(小时)之间函数关系及自变量的取值范围.解:y=54— 6t.当拖拉机不使用时,t=0;开始使用,t在增加,y在减小,至U 油耗干时,y= 0, 54—6t=0, t=9,这里,0和9是它的最大值和最小值.一•t 的取值范围是0<t<9.2.让动点动起来.例8如图L在边长为Q的正方形ABCD一边BC上有一点P,从B点运动到C点,设PB = x,四边形APCD面积为y,写出y与x之间的函数关系及x 的取值范围.卸解;y= --z + 2,让P从B点运动到。
(完整版)如何求实际问题中自变量取值范围
如何求实际问题中自变量取值范围一般地求实际问题中的自变量取值范围,可以从静止和运动变化的角度去考虑,下面举例说明.一、用静止的观点求自变量的取值范围.由于学生认识能力有限,运动的变化观念和意识尚不成熟,他们往往习惯于用静止的观点看问题.学生在求自变量取值范围时,一般喜欢用静止的观点来求.从静止的角度考虑这个问题一般遵循以下原则:1.尊重事实.现实世界,“人数”“字数”等均用零和自然数表达,线段的长度,时间均为非负数,这些都是不可违背的事实.例1设电报费标准是每字0.14元,电报纸每张0.20元,写出电报费y(元)与字数x(个)之间的函数关系及x的取值范围.解:y=0.14x+0.20,x取正整数.例2矩形周长20,一边长x,面积为y,试写出y与x关系及x取值范围.解:y=10x-x2,一边长为x,另一边长为10-x,由于边长不能为负,则x>0,10-x>0,∴0<x<10.2.遵循定律公理等.例3等腰梯形腰长和底长均为x,下底长y,其周长为20,写出y与x之间函数关系及x的取值范围.解:y=20-3x,根据两点间距离线段最短,有:x+x+x>y,例4等腰三角形腰长x,底边长y,周长30,写出y与x的函数关系及自变量的取值范围.解:y=30-2x,因三角形两边之和大于第三边,∴x+x>y,3.符合题目要求例5一根弹簧,不挂物体时长12厘米,挂上物体以后,它伸长的长度(不超过22厘米)与所挂重物质量成正比.如果挂3千克重物,弹簧总长13.5厘米.求弹簧总长y与所挂重物质量x之间的函数关系,并写出自变量取值范围.解:y=12+0.5x,因为最长伸长y不超过22厘米,∴12+0.5x≤22,x≤20,又∵x≥0,∴x的取值范围是0≤x≤20.二、用运动变化的观点求自变量取值范围.1.让两变量对应的图形或值进行大小变化,从而确定自变量最大值和最小值或者临界值.例6等腰三角形底角为x,顶角为y,写出y与x之间函数关系及x取值范围.解:y=180°-2x,我们让x变大,x不可大到90°,让x变小x不能小到0°,这里0°就是x的临界值,∴x的取值范围是0°<x<90°.例7拖拉机油箱里有油54千克,使用时平均每小时耗油6千克,求箱中剩下油y(千克)与使用时间t(小时)之间函数关系及自变量的取值范围.解:y=54-6t.当拖拉机不使用时,t=0;开始使用,t在增加,y在减小,到油耗干时,y=0,54-6t=0,t=9,这里,0和9是它的最大值和最小值.∴t 的取值范围是0≤t≤9.2.让动点动起来.B点运动到C点,设PB=x,四边形APCD面积为y,写出y与x之间的函数关系及x的取值范围.例9如图2,在矩形ABCD中,边CD上有一动点P(异于C、D),设DP=x,AD=a,AB=b,△APD和△QCP面积之和为y,写出y与x的函数关系式及自变量x的取值范围.从靠近C点向D点靠近时,Q沿BC延长线上迅速远离C点,x则由大变小,∴0<x<b.3.让某部分图形整体移动.例10如图3,OM⊥ON,AB=a,点A、B分别在ON、OM上滑动.设OB=x,△OAB面积为y,写出y与x的函数关系及x的取值范围.逐渐提起,A点仍不离ON,并向左推动,此过程x在减小,当AB竖立在ON 线上时,x=0,∴0≤x≤a.例11如图4,△ABC中,AC=4,AB=5,D是AC边上点,E是AB边上点,∠ADE=∠B,设AD=x,AE=y,则x与y之间函数关系式是[ ]=0°,不符合题意.在∠ADE向下平移过程中,x在增大,当顶点D到达C处,且∠BDE=∠B,x=4,故0<x≤4,故选(C).总而言之,求实际问题中的自变量取值范围,如果用静止观点研究,必须遵守三条原则,如果用运动观点研究,动点必须在一定的轨道上运动,而且要时刻兼顾到图形其它的部分的变化.当然,对于此类问题,有时也可动静结合综合考察.。
函数自变量的取值范围问题
函数自变量的取值范围问题二、方法剖析与提炼例1.在下列函数关系式中,自变量x 的取值范围分别是什么? ⑴23-=x y ; ⑵121-=x y ; ⑶43-=x y ; ⑷xx y 32+=; ⑸0)3(-=x y【解答】⑴x 的取值范围为任意实数;⑵分母012≠-x ∴21≠x ∴x 的取值范围为21≠x ;⑶043≥-x ∴34≥x ∴x 的取值范围为34≥x ;⑷⎩⎨⎧≠≥+0302x x ∴2-≥x 且0≠x ∴x 的取值范围为:2-≥x 且0≠x ⑸x -3≠0 ∴x ≠3,x 的取值范围为x ≠3.【解析】⑴为整式形式:函数关系式是一个含有自变量的整式时,自变量的取值范围是全体实数.⑵分式型:当函数关系式是分式时,自变量的取值范围是使分母不为零的实数.⑶偶次根式:当函数关系式是偶次根式时,自变量取值范围是使被开方数为非负数的实数.含算术平方根:被开方数043≥-x . ⑷复合型:当函数关系式中,自变量同时含在分式、二次根式中时,函数自变量的取值范围是它们的公共解,即建立不等式组,取它们的公共解.⑸0指数型:当函数关系式中,自变量同时含在0指数下的底数中时,自变量取值范围是使底数为非零的实数.即底数x -3≠0 .【解法】解这类题目,首先搞清楚函数式属于“整式型”、“分式型”、“偶次根式”、“0指数型”、“复合型”当中哪一个类型,自变量的取值必须使含有自变量的代数式有意义即可.【解释】这种解题策略可以推广到其他问题,如: 求31+x 中x 的取值范围.解:右边的代数式属于奇次根式型,自变量的取值范围是全体实数. 例2.某学校在2300元的限额内,租用汽车接送234名学生和6名教师集体外出活动,每量汽车上至少有一名教师.甲、乙两车载客量和租金如下表:设租用甲种车x 辆,租车费用为y 元,求y 与x 的函数关系式,并写出自变量x 的取值范围.【解答】⑴由题设条件可知共需租车6辆,租用甲种车x 辆,则租用乙种车辆(6-x )辆.y =400x +280(6-x )=120x +1680∴y 与x 的函数关系式为:y =120x +1680⑵∵⎩⎨⎧≤+≥-+23001680120240)6(3045x x x , ∴⎩⎨⎧≤≥54x x , ∴自变量x 的取值范围是:4≤x ≤5【解析】(1)租车费用y =甲种车辆总费用+乙种车辆总费用.(2)函数关系式同时也表示实际问题时,自变量的取值范围要同时使实际问题有意义.自变量x 需满足以下两个条件: 一是,甲、乙两车的座位总数≥师生总数240名;二是,费用≤2300元,还要考虑到实际背景下的x 为整数.【解法】关注问题中所有的限制条件,多用不等式或不等式组来确定自变量的取值范围.【解释】做此题前首先要先从乘车人数的角度考虑应总共租多少辆汽车.因为题目已知总共6名教师,而且要求每辆车上至少有一名教师.所以,最多租用6辆车.同时,也不能少于6辆车否则座位数少于师生总数,不能接送所有的师生.由此可知共租用6辆车子. 例3.一个正方形的边长为5cm ,它的边长减少x cm 后得到的新正方形的周长为y cm ,写了y 与x 的关系式,并指出自变量的取值范围.【解答】解:由题意得,y 与x 的函数关系式为y =4(5-x )=20-4x ;自变量x 应满足⎩⎨⎧≥>-005x x 解得0≤x <5,所以自变量的取值范围是0≤x <5.【解析】正方形的周长=边长×4,即y =4(5-x );自变量的范围同时满足两个条件:一是,正方形的边长是正数;二是,边长减少的x 应取非负数.【解法】关注问题中所有的限制条件,多用不等式或不等式组来确定自变量的取值范围.【解释】函数关系式表示实际问题时,自变量的取值范围要同时使实图1际问题有意义.例4.若等腰三角形的周长为20cm ,请写出底边长y 与腰长x 的函数关系式,并求自变量x 的取值范围.【解答】y =20-2x∵⎪⎩⎪⎨⎧>+>≥y x x y x 00,∴⎪⎩⎪⎨⎧->>-≥x x x x 220202200,∴⎪⎩⎪⎨⎧><≥5100x x x ,∴自变量x 的取值范围是5<x <10.【解析】自变量的范围同时满足两个条件:一是,x 表示等腰三角形腰长,要求x ≥0;二是,等腰三角形底边长y >0;三是,三角形中“两边之和大于第三边”,即2x >y .最后综合自变量x 的取值范围.【解法】自变量x 的取值要满足多个条件,根据条件列出不等式得到不同情况和答案,之后取交集.【解释】别忘记解答的最后要写出各个情况的交集. 例5.如图1,在边长为2的正方形ABCD 的一边BC 上,一点P 从B 点运动到C 点,设BP =x ,四边形APCD 的面积为y .(1)写出y 与x 的函数关系式及x 的取值范围;(2)说明是否存在点P ,使四边形APCD 的面积为1.5.【解答】(1)x y -=4,x 的取值范围是40≤≤x .(2)令5.1=y ,得x -=45.1, ∴5.2=x∴存在点P 使四边形APCD 的面积为1.5.【解析】(1)ABP ABCD APCD S S S ∆-=正方形四边形,其中取值范围要考虑让P 从B 点运动到C 点过程中,x 由小变大.特别的,当P 在B 处,0=x .(2)求出的x 的值要符合x 的取值范围.【解法】几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.【解释】求实际问题中的自变量取值范围时,如果用运动观点研究,动点必须在一定的轨道上运动,而且要时刻兼顾到图形其它的部分的变化.三、能力训练与拓展1.函数y =15-x 21的自变量取值范围是 .2.函数34x y x -=-的自变量x 的取值范围是 . 3.在函数1-=x y 中,自变量x 的取值范围是( ).A 、x ≥-1B 、x ≠1C 、x ≥1D 、x ≤14.函数3y x =-中自变量x 的取值范围是( ) A .x ≥1- B .x ≠3 C .x ≥1-且x ≠3 D . 1x <-5.已知等腰三角形的面积为20cm 2,设它的底边长为x (cm ),则底边上的高y (cm )关于x 的函数关系式为 ,自变量的取值范围是: .6.汽车由北京驶往相距850千米的沈阳.它的平均速度为80千米/时.求汽车距沈阳的路程S (千米)与行驶时间t(小时)的函数关系式,写出自变量的取值范围.7.如图2,在矩形ABCD中,边CD上有一动点P(异于C、D),设DP=x,AD=a,AB=b,△APD和△QCP面积之和为y,写出y与x的函数关系式及自变量x的取值范围.8.如图3,OM⊥ON,AB=a,点A、B分别在ON、OM上滑动.设OB=x,△OAB面积为y,写出y与x的函数关系及x的取值范围.9.如图4,△ABC中,AC=4,AB=5,D是AC边上点,E是AB边上点,∠ADE=∠B,设AD=x,AE=y,写出y与x之间函数关系式及x的取值范围.10.用长6米铝合金条制成如图形状的矩形窗框, 问长和高各是多少米时,窗户的透光面积最大?最大面积是多少?1.全体实数【解析】由于15-x 21是整式,所以x 的取值范围是全体实数. 2.x ≠4【解析】43--x x 是分式,由分母x -4≠0得x ≠4,所以x 的取值范围是x ≠4. 3.C【解析】此函数关系式是二次根式,由被开方数为非负数可知,x -1≥0,所以x ≥1.故选C .4.C。
解析几何中的取值范围问题
解析几何中的取值范围问题
在解析几何中,取值范围问题是非常重要的一个部分。
一般来说,我们需要根据题意来确定自变量的取值范围,进而求解函数的值域或图像。
下面是一些常见的取值范围问题的解决方法:
1. 明确函数的定义域:在求解函数值域时,我们需要明确函数的定义域。
通常情况下,函数的定义域是求解域的子集,但也可能会出现定义域不包含求解域的情况。
2. 分析函数的导数:在求解函数值域时,我们可以利用函数的导数来确定其值域。
一般情况下,函数的导数在区间端点处取值为零,但在一些特殊情况下,导数可能不为零。
3. 利用不等式来确定取值范围:在解析几何中,我们经常利用不等式来确定自变量的取值范围。
例如,利用均值不等式、柯西不等式、排序不等式等。
4. 利用几何图形来确定取值范围:在解析几何中,几何图形是非常重要的一部分。
我们可以通过几何图形来直观理解自变量的取值范围,进而求解函数的值域或图像。
在实际应用中,取值范围问题是非常常见的。
因此,我们需要熟练掌握各种取值范围问题的解决方法,并能够灵活运用这些方法来解决实际的问题。
拓展:
在解析几何中,还有一种非常重要的取值范围问题,那就是参数方程的取值范围问题。
一般来说,参数方程的取值范围取决于参数的取值。
我们需要根据题意来确定参数的取值范围,进而求解参数方程的值域或图像。
在求解参数方程的值域或图像时,我们可以利用参数方程的导数和不等式等方法来确定其取值范围。
求函数自变量的取值范围的确定方法
求一次函数自变量取值的方法1 函数自变量取值范围的确定在一个变化过程中,如果有两个变量x 与y ,如果对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.在解答与函数有关的问题时,常常要求出函数的自变量x 的取值范围,下面我们来介绍这一类问题的解法.经典例题在函数32--=x x y 中,求自变量x 的取值范围. 解题策略2x -分子中的二次根式被开方数必须为非负数,而且分母不为0.即自变量x 为下面不等式组的解:20,30.x x -≥⎧⎨-≠⎩ 解这个不等式组便可求得自变量x 的取值范围是x ≥2,且x ≠3.画龙点睛求函数自变量的取值范围,要注意以下几点:1. 若函数的解析式是整式,自变量的取值范围是全体实数;2. 若函数的解析式是分式,自变量的取值范围是使分母不等于0的一切实数;3. 若函数的解析式是二次根式,自变量的取值范围是使被开方数不小于0的一切实数;4. 若函数的解析式含有以上几类式子时,则应分别求出各自的取值范围,再求出它们的公共部分.举一反三1.下列函数中,自变量x 的取值范围是x >2的函数是( ).(A )2-=x y(B )12-=x y (C )21-=x y (D )121-=x y2.求函数2||1--=x x y 中自变量x 的取值范围. 3.求函数1||y x =-x 的取值范围. 融会贯通4.若函数25(2)34kx y k x k+=++-自变量x 的取值范围是一切实数,求实数k 的取值范围.参考答案1.C .在四个选择分支A 、B 、C 、D 中,它们的自变量x 的取值范围依次是x ≥2,x ≥12,x >2,x >12.故选C .2.由不等式组10,||20,x x -≥⎧⎨-≠⎩解得x ≤1, 且x ≠-2.3.由不等式1-|x |>0,得|x |<1,于是-1<x <1.4.要使函数自变量x 的取值范围是一切实数,就必须使分母不等于0.(1)当k =0时,分母等于3;(2)当k >0时,k (x +2)2≥0,要使分母不等于0,就应有3-4k >0,k <34,于是有0<k <34;(3)当k <0时,k (x +2)2≤0,要使分母不等于0,就应有3-4k <0,于是有k >34,这与k <0矛盾.综上所述,k 的取值范围是0≤k <34.。
求实际问题中函数自变量取值范围之思路
求实际问题中函数自变量取值范围之思路作者:陈新富来源:《中学教学参考·理科版》2011年第04期函数是代数的基本内容之一,而函数问题总离不开自变量的取值范围.函数自变量的取值范围是使函数解析式有意义的自变量的所有可能取值,它是一个函数被确定的重要因素.对于初中生来说,确定自变量的取值范围是一个难点,特别是函数实际应用问题中的自变量取值范围.笔者在此归纳一些实际问题中求函数自变量取值范围的思路,供大家参考.一、结合问题的实际意义直接给出自变量取值范围在实际生活中自变量一般都不能取负数,结合具体问题很容易找出自变量的取值范围.在求出函数的解析式后,直接写出自变量的取值范围即可.图1【例1】你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm2)的反比例函数,假设其图象如图1所示,则y与x的函数关系式为.解析:观察图象,经过点P(0.04,3200),容易求出函数表达式是y=128x,但由于自变量x表示面条粗细,结合实际意义,x的取值范围应该是x>0.因此,本题的正确答案是y=128x(x>0).评析:此题若忽略条件x>0,函数y=128x的图象应该是经过第一、三象限的双曲线.像这样,函数解析式相同,但由于自变量的取值范围不同而图象不同的例子还有很多,大家要注意,一般当自变量表示与实际相关的量(如时间、边长、面积、价格等)时,切记要符合实际,不能取负值.二、找出变化过程的起点和终点,写出自变量的取值范围多数实际问题有开始有结束,如运动和剩余类问题,我们要从中找到变化过程的起点和终点,自变量的取值范围恰巧就位于其中.【例2】一个游泳池内有水300m3,现打开排水管以每小时25m3的排出量排水,写出游泳池内剩余水量Q m3与排水时间t h间的函数关系式.分析:阅读题目后,很容易列出解析式Q=300-25t.但由于此放水过程有开始,亦有结束,不难发现以现有速度排水,12小时后游泳池内水将排空,变化也就停止,而函数必须是个变化过程,故自变量取值范围应该为0≤t≤12.因此,本题的正确答案应该是Q=300-25t(0≤t≤12).评析:此题若自变量的范围仅考虑为t≥0,那么此函数将不符合实际.此类题目还有很多,大家一般都能找到起点,但容易遗漏终点,因此做此类题目还要想想变化过程是否会结束,务必要符合实际.三、根据题意,列出不等式(组)求出自变量的取值范围常见的最优化问题——最佳方案、最大利润、最小成本、最佳效益等,一般都是先建立相应的“目标函数”,再根据题意,列出不等式(组),求出不等式(组)的解集,结合实际意义,写出符合实际的自变量的取值范围.【例3】一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:(1)用含x、y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式.解:(1)60-x-y.(2)由题意,得 900x+1200y+1100(60-x-y)=61000,整理,得 y=2x-50,则购进C型手机部数为:60-x-y=110-3x.根据题意列不等式组,得:x≥8,2x-50≥8,110-3x≥8,解得:29≤x≤34.∴所求的函数关系式是y=2x-50(29≤x≤34,且x取整数).评析:本题是一个购机方案问题,其中函数关系式较容易求出,但自变量取值范围的求取是个难点,要符合题目中给出的条件要求.四、利用特殊点,“走极端”找出自变量的取值范围解决动点问题,通常用一个变量表示出点的运动路程(或线段的长度),然后结合图形,列出函数关系式,再通过研究函数关系式使问题得到解决.对于函数解析式的自变量取值范围,通常采用“走极端”的方法,讨论当动点运动到线段的端点、中点等特殊点时,自变量的取值情况(即自变量取值范围的临界值),然后再考虑临界值能否取得,从而确定取值范围中不等号是否带上“=”号.图2【例4】如图2,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是().A.B.C.D.解析:这是一个动点问题.很容易由△ADE∽△DPC得到AECD=ADDP,从而得出表达式y=12x.因为点P在BC边上运动,当点P与点C重合时,DP与边DC重合,此时DP最短,x=3;当点P与点B重合时,DP与对角线BD重合,此时DP最长,x=5,即x的临界值是3和5.又因为当x取3和5时,线段AE的长可具体求出,因此x的取值范围是3≤x≤5.选C.评析:解决动点问题的常用策略是“以静制动,动静结合”,找准特殊点,是求出临界值的关键.五、根据因变量的取值范围反解求出自变量的取值范围对于有些问题,很难直接求出自变量的取值范围,但发现因变量的取值范围很明显或容易求出,此时,我们可根据因变量的取值范围列出关于自变量的不等式(组),通过解不等式(组)求出自变量的取值范围.图3【例5】如图3,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.求y与x的函数关系式,并求出x与y的取值范围.解:过C作CE⊥AB于E,则CD=AE=3,CE=4,可得BC=5,所以梯形ABCD的周长为18.PQ平分ABCD的周长,所以x+y=9,因为0≤y≤6,所以3≤x≤9,所求函数关系式为:y=-x+9(3≤x≤9).求函数自变量取值范围的方法很多,题型也比较开放,在遇到实际问题时,确定函数的自变量取值范围,除首先要使解析式有意义外,还要注意问题的实际意义对自变量的约束.这点要加倍注意,并养成习惯,形成意识.(责任编辑金铃)。
函数中自变量的取值范围的确定
函数中自变量的取值范围的确定作者:严小松来源:《成才之路》 2012年第24期贵州遵义● 严小松研究函数,确定自变量的取值范围是一个重要问题。
在新课标中,这也是中考内容的一个重要知识点。
然而,怎样确定自变量的取值范围呢?很多同学对此不很明确,常常因考虑不周而出现错误。
为了使同学们学习这部分知识时不出错或少出错,现将自己多年积累的经验归纳说明如下,供大家参考。
一、整式型例1 求函数y=2x-3的自变量的取值范围。
分析:因为不论x取任意实数,2x-3都有意义,所以自变量x的取值范围是全体实数。
例2 在函数y=x2+3x+1中,自变量x的取值范围是( )。
A.全体实数B.x≤0C.x≠-1D.x≥0分析:不论x取任意实数, x2+3x+1都有意义,所以自变量x的取值范围是全体实数。
故正确答案应为A。
二、分式型当函数解析式是分式时,自变量的取值范围是使分母不为零的实数。
例3 在函数y=1/x-3中,自变量x的取值范围是()。
A.X≠3B.X≠0C.X>3D.X≠-3分析:当X=3时,1/x-3没有意义,所以自变量X的取值范围是X≠3。
故答案为A。
例4 判断函数y1=x1与y2=x是否相同?分析:两个函数是否相同,必须具备两个条件:(1)函数解析式相同(化简后);(2)自变量的取值范围相同。
函数y1=x2/x=x中,自变量x的取值范围是x≠ 0 ;而函数y2=x 中,自变量x的取值范围是全体实数。
两个函数的解析式虽然相同,但自变量x的取值范围不同,所以它们不同。
三、偶次根式型当函数解析式是偶次根式时,自变量的取值范围是使被开方式非负的实数。
四、实际问题型当遇到实际问题或几何问题时,自变量的取值还必须符合实际意义或几何意义。
例6 南京到上海的铁路长为311千米,一列火车以90千米/时的速度从南京开往上海,h 小时后火车距上海S千米,用解析式表示S与h之间的函数关系,并求自变量h的取值范围(不考虑停站时间)。
函数自变量取值范围的确定方法
函数自变量取值范围的确定方法在数学中,函数是一种映射关系,它将自变量的取值映射到因变量的取值。
确定函数自变量的取值范围是非常重要的,它决定了函数的定义域,也就是函数能够接受的有效输入。
以下是几种确定函数自变量取值范围的方法:1.函数定义式:函数的自变量取值范围可以通过函数的定义式来确定。
例如,对于一个有理函数f(x)=1/(x+1),我们可以通过分析定义式知道x的取值范围不能为-1,因为分母不能为零。
2.分段函数:如果一个函数在不同的自变量范围内有不同的定义式,那么我们需要考虑每个定义式的自变量取值范围。
例如,对于一个分段函数f(x)=,x,我们知道在x<0时,f(x)=-x;在x≥0时,f(x)=x。
因此,对于x<0和x≥0,我们需要考虑两个不同的自变量取值范围。
3.函数图象:函数的图象可以提供有关函数自变量的取值范围的一些线索。
我们可以通过观察函数的图象来确定函数自变量的取值范围。
例如,对于一个简单的二次函数f(x)=x^2,我们可以看到函数图象是一个开口朝上的抛物线,意味着函数自变量的取值范围为实数集。
4.函数的性质和约束:函数的性质和约束也可以提供有关函数自变量取值范围的信息。
例如,对于一个表示物体高度的位置函数f(t),我们知道物体不能以负的高度存在,因此自变量t的取值范围不能小于零。
5.实际问题:当函数被用于解决实际问题时,问题所涉及的条件和限制可以帮助确定函数自变量取值范围。
例如,对于一个描述人的体重变化的函数f(t),我们知道体重不能为负,因此自变量t的取值范围不能小于零。
总之,确定函数自变量取值范围的方法包括分析函数的定义式、分段函数的定义式、观察函数图象、考虑函数的性质和约束以及解决实际问题时考虑问题所涉及的条件和限制等。
通过这些方法,我们可以确定函数自变量的取值范围,从而确保函数的定义域是有效的。
求函数自变量的取值范围方法总结
求函数自变量的取值范围方法总结函数自变量的取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围.求自变量的取值范围一般从两个方面考虑:(1)使函数关系式有意义;(2)符合客观实际.确定自变量的取值范围的方法:(1)如果函数关系式的右边是关于自变量的整式,则自变量的取值范围是全体实数.例如函数1-=x y ,自变量x 的取值范围是全体实数.(2)如果函数关系式的右边是分式,则自变量的取值范围是使分母不等于零的所有实数.例如函数12-=x y ,自变量x 的取值范围是1≠x . (3)如果函数关系式的右边包含二次根号,则自变量的取值范围是使被开方数为非负数.例如函数2-=x y ,自变量x 的取值范围是x ≥2.(4)如果函数关系式是有具体问题建立的,则自变量的取值范围不但要使函数关系式有意义,还要符合实际意义.例如函数2x y =,自变量x 的取值范围是全体实数,如果x 表示正方形的边长,y 表示正方形的面积,则自变量x 的取值范围就变成了0>x (边长不能为负数).(5)有些函数自变量的取值范围是以上情况的综合,需进行多方面的考虑. 例如函数21-=x y ,自变量x 应满足两个条件:一是满足分母不等于零,二是保证被开方数为非负数,所以得到关于自变量的不等式组⎩⎨⎧≥-≠-0202x x ,求得自变量x 的取值范围是2>x .例1. 求函数131-+-=x x y 中的自变量x 的取值范围.分析:本题中,自变量x 的取值范围应同时满足分母()3-x 不等于零和被开方数()1-x 为非负数.解:⎩⎨⎧≥-≠-0103x x 解这个不等式组得:x ≥1且3≠x .∴自变量x 的取值范围是x ≥1且3≠x .习题1. 函数xx y 2+=的自变量x 的取值范围是__________. 习题2. 函数413-+-=x x y 中自变量x 的取值范围是__________. 习题3. 在函数x xy -=1中, 自变量x 的取值范围是__________.习题4. 下列函数中,自变量的取值范围是2>x 的是 【 】(A )2-=x y (B )21-=x y (C )12-=x y (D )121-=x y习题5. 函数21--=x x y 中,自变量x 的取值范围是__________. 习题6. 下列函数中,自变量的取值范围错误的是 【 】(A )2-=x y (x ≥2) (B )11+=x y (1-≠x ) (C )22x y =(x 取全体实数) (D )31+=x y (x ≥3-) 习题7. 在函数24-++=x x y 中,自变量x 的取值范围是__________.例 2. 已知等腰三角形的周长为20,求底边长y 与腰长x 的函数关系式及自变量的取值范围.分析:本题为易错题,考虑问题不全面导致自变量的取值范围不完整.解决本题要注意两个问题:(1) 边长不能为负数;(2)三角形三边之间的关系.解:由题意得:202=+y x∴y 与x 之间的函数关系式为x y 220-=∵⎪⎩⎪⎨⎧->+>->x x x x x 22002200∴自变量x 的取值范围是105<<x .习题8. 已知等腰三角形的周长为12 cm,底边长y (cm )是腰长x (cm )的函数.(1)写出这个函数关系式;(2)求自变量x 的取值范围.专题 自变量的取值范围受哪些因素的影响求函数自变量的取值范围是学习数学的难点,也是历年来中考的热点,那么,如何确定自变量的取值范围呢?一般情况下,可以遵循以下原则:如果函数解析式是整式,则自变量的取值范围是全体实数(整式型)习题9. 函数12+=x y 中,自变量x 的取值范围是__________.分析:因为函数解析式的右边12+x 是整式,所以自变量x 的取值范围是全体实数.习题10. 函数122-+=x x y 中,自变量x 的取值范围是__________.如果函数解析式含有分式,则自变量的取值范围是使分母不等于零的实数(分式型)习题11. 在函数11-=x y 中,自变量x 的取值范围是__________. 分析:因为11-x 是分式,所以要求分母不等于零,即01≠-x . 习题12. 函数52-=x x y 中,自变量x 的取值范围是__________. 如果函数解析式中含有二次根式,则自变量的取值范围是使被开方数为非负数的实数 习题13. 函数3-=x y 中自变量x 的取值范围是__________.分析:因为3-x 为被开方式,要求被开方式为非负数,所以3-x ≥0,解得x ≥3. 习题14. 函数1+-=x y 中,自变量x 的取值范围是__________.如果函数解析式中含有零指数幂或负整指数幂,则自变量的取值范围是使底数不等于零的实数(指数型)习题15. 函数()221+-=-x y 中,自变量x 的取值范围是__________. 分析:因为函数解析式中含有负整指数幂,所以要求底数02≠-x ,即2≠x . 实际上,()221+-=-x y ,即221+-=x y . 习题16. 函数()202-++=x x y 中,自变量x 的取值范围是__________. 如果函数解析式兼有上述两种或两种以上的结构特点,则先按上述方法分别求出它们的取值范围,再求它们的公共部分(综合型)习题17. 函数()023---=x x x y 中,自变量x 的取值范围是__________. 习题18. 函数31--=x x y 中,自变量x 的取值范围是__________. 习题19. 函数24-++=x x y 中,自变量x 的取值范围是__________. 自变量的取值范围必须符合客观实际,必须使实际问题有意义(如边长不能为负、人数不能为小数等)例3. 某小汽车的油箱可装汽油30升,原装有油10升,现加x 升汽油,如果油价为5元/升,求油箱内汽油的总价y (元)与x (升)之间的函数关系式,并求出自变量x 的取值范围.分析:本题先求出函数关系式,再由关系式和实际意义确定自变量的取值范围.解:由题意得:()y=x5+10∴50=xy5+∵油箱原有油10升,油箱容量为30升∴自变量x的取值范围是0≤x≤20.(也可以是x0≤20)<习题20. 某台拖拉机油箱中有油60升,工作时每小时耗油6升.(1)求出拖拉机油箱中的剩余油量Q(升)与工作时间t(小时)之间的函数关系式;(2)求出自变量t的取值范围;(3)当拖拉机工作3小时后,油箱中还剩多少升油?。
求函数自变量取值范围常见错误剖析
20 0 2年第 9期
盎 盎盎盎客 盎盎盍客 套盎客套
数 学学习与研究
错解辨析
求函数 自变量 取值 范 围常见错 误剖 析
( 苏省 泰州 橡胶 总厂 中学 2 50 ) 于志 洪 江 230 在 求 函数 自变 量取 值 范 围 时 . 些 学 一
『 二
. 。
即( 一2 ( ) +3 ≠O ) ,
一
:
・ . .
z一 4≥O 解 之得 ≥2或 ≤ 一 . . 2
.
.
2≠0且 +3≠0.
。 . .
≠2且 ≠ 一3 .
剖析
因为 变形后 的 函数 ' 。一 , : 4 ・ . 自
三、 以偏概 全
【 一2≥ 0
解 之得 ≥2 .
・ . .
2 x+1 ,. 一÷ , ≥0 . ‘ ≥ 这就是 自变量 的取值 范 围 . 剖析
‘ + 一 O
自变 量 的取值 范 围为 ≥2 .
二、 随意 约分
上述 解 法 中 只考虑 了二次 根式
例 2 求 函数 Y: 二 的取值 范 围 .
.
l.一 — 二 ( 0) 宿迁 市 )
) =6 一 ,
・
.
’ > , 0 又等腰 三角 形 的周 长为 l , 2
.
参 考答 案
・
.
<1 故 自变 量 的取 值范 围 为 2.
0< <1. 2
剖析 在 解 此类 问题 时 。 该 考 虑 应
“ 三角形 两边 之 和大 于 第 三边 ” 由于 忽 视 , 了这一 点 , 因而 求 自变 量 的取 值范 围 出
’
.
求实际问题中函数自变量取值范围之思路
求实际问题中函数自变量取值范围之思路实际问题中函数的自变量取值范围是指函数在实际问题中合理的输入值的范围。
确定函数自变量的取值范围是解决实际问题的重要一步,它直接影响到问题的有效求解和结果的准确性。
下面将从几个不同的角度探讨确定函数自变量取值范围的思路。
一、问题的物理特性:在物理问题中,函数的自变量往往与一些物理量有关。
我们可以通过对物理问题的分析,确定函数自变量的取值范围。
例如,考虑物体的位移函数,自变量可以是时间t,而时间t的取值范围可以根据实际问题中的时间限制来确定。
二、问题的约束条件:在实际问题中,通常存在一些约束条件,这些约束条件对函数的自变量有一定的限制。
可以通过分析问题的约束条件来确定函数的自变量取值范围。
例如,在一个投资问题中,假设要投资x万元,且投资额必须大于等于100万元,小于等于500万元,那么函数的自变量取值范围就在100到500之间。
三、问题的实际意义:在解决实际问题时,函数的自变量取值范围应当有一定的实际意义。
我们可以通过对实际问题的分析,确定函数自变量的取值范围。
例如,考虑一个数学模型,模型中的自变量表示一些物体的质量,那么自变量的取值范围就应当是非负数。
四、计算机模拟:在一些情况下,我们可以通过计算机模拟来确定函数自变量的取值范围。
通过模拟大量的实际数据,可以发现函数自变量的取值范围。
例如,在疫情模型中,可以通过模拟感染人数随时间的变化来确定感染率的范围。
总之,确定函数自变量取值范围是解决实际问题的关键一步。
我们可以从问题的物理特性、约束条件、实际意义和计算机模拟等不同的角度出发,确定函数自变量的取值范围。
这样可以确保问题的有效求解和结果的准确性。
函数自变量取值范围的确定方法
函数自变量取值范围的确定策略金山初级中学 庄士忠 201508函数是初中数学一个十分重要的内容,为保证函数式有意义或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围。
函数自变量的取值范围是函数成立的先决条件,初中阶段确定函数自变量的取值范围大致可分为三种类型:(1)函数关系式中函数自变量的取值范围;(2)实际问题中函数自变量的取值范围;(3)几何问题中函数自变量的取值范围。
一、 函数关系式中函数自变量的取值范围:初中阶段,在一般的函数关系中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分式形式:分母≠0;(3)函数关系式含算术平方根:被开方数≥0;(4)函数关系式含0指数:底数≠0。
典型例题:例1:函数y=x 1-的自变量x 的取值范围在数轴上可表示为【 】A .B .C .D .【分析】根据二次根式有意义的条件,计算出y=x 1-的取值范围,再在数轴上表示即可,不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示。
根据二次根式被开方数必须是非负数的条件,要使y=x 1-在实数范围内有意义,必须x 10-≥ x 1⇒≥。
故在数轴上表示为:。
故选D 。
例2:函数y =1x 2- 中自变量x 取值范围是【 】A .x =2 B .x ≠2 C .x >2 D .x <2【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使1x 2-在实数范围内有意义,必须x 20x 2-≠⇒≠。
故选B 。
例3:函数x+2x 的取值范围是【 】A .x >﹣2 B .x ≥2 C .x ≠﹣2 D .x ≥﹣2 【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使x+2在实数范围内有意义,必须x+20x 2x >2x+20x 2≥≥-⎧⎧⇒⇒-⎨⎨≠≠-⎩⎩。
求函数自变量的取值范围的方法总结
求函数自变量的取值范围的方法总结函数自变量的取值范围是指函数中自变量可以取的所有实数值的集合。
确定函数自变量的取值范围有多种方法,以下总结了几种常见的方法:1.根据函数的定义域确定自变量的取值范围:-如果函数的定义域是实数集(即没有限制),则自变量的取值范围也是实数集。
-如果函数的定义域有限制,需要根据这个限制来确定自变量的取值范围。
例如,如果一个函数的定义域是正实数集(即大于零的实数),则自变量的取值范围也是正实数集。
2.根据函数的图像确定自变量的取值范围:-观察函数的图像,确定自变量在图像上的取值范围。
例如,如果一个函数的图像是一个上升的直线,那么自变量的取值范围是整个实数集。
-需要注意的是,函数图像的性质可能会给出一些限制,例如函数图像是一个分段函数,那么需要根据每个分段函数的定义域确定自变量的取值范围。
3.使用代数方法确定自变量的取值范围:-对于一些特殊的函数,可以使用代数方法来确定自变量的取值范围。
例如,对于有分母的函数,需要考虑分母不能等于零的条件。
这样就可以通过求解不等式来确定自变量的取值范围。
-另一个例子是要求函数的值在一定范围内,可以通过解方程或者不等式来确定自变量的取值范围。
例如,对于一个二次函数,如果要求函数的值在大于等于0的范围内,可以通过求解不等式来确定自变量的取值范围。
4.使用函数性质确定自变量的取值范围:-函数的一些性质可以给出自变量取值范围的一些限制。
例如,对于奇函数来说,只有在定义域的一些小范围内,自变量的正负不同,才能保证函数是奇函数。
在具体问题中,需要根据函数性质来确定自变量的取值范围。
总结起来,确定函数自变量的取值范围需要根据函数的定义域、图像、代数方法和函数性质等多方面的因素综合考虑。
根据具体的问题,选择合适的方法来确定自变量的取值范围,可以帮助我们更好地理解函数的特性和解决相关的数学问题。
求函数自变量的取值范围的确定方法
求函数自变量的取值范围的确定方法确定一个函数自变量的取值范围是数学和实际问题中的一个重要部分。
它可以帮助我们确保函数在给定范围内有定义,避免产生错误或无意义结果。
在确定函数自变量的取值范围时,我们需要考虑函数的定义域、实际问题的限制以及常见的数学规则。
首先,我们需要了解函数的定义域。
函数的定义域是指使函数有意义的自变量的取值范围。
定义域可以通过函数的数学表达式来确定,也可以通过实际问题的限制来确定。
例如,对于函数f(x)=√x,由于平方根只对非负数有定义,因此函数的定义域是x≥0。
其次,我们需要考虑实际问题的限制。
在解决实际问题时,函数的自变量通常具有一些限制条件。
这些限制条件可以是来自实际问题的物理、经济或几何约束。
例如,如果我们正在解决一个关于时间的问题,函数的自变量可能被限制在一些时间段内,如t≥0。
通过考虑这些限制条件,我们可以确定函数自变量的取值范围。
此外,我们还需要考虑数学规则。
在数学中,有一些常见的规则可以帮助我们确定函数自变量的取值范围。
例如,对于分式函数,我们需要排除分母为零的情况,因为分母为零会导致函数无定义。
又如,对于对数函数log(x),由于对数只对正数有定义,因此函数的自变量需要满足x>0。
通过应用这些数学规则,我们可以确定函数自变量的取值范围。
在实际问题中,我们还可以利用图像来帮助确定函数自变量的取值范围。
通过绘制函数的图像,我们可以观察函数的趋势和特征,从而确定自变量的取值范围。
例如,对于一个上升趋势的函数,自变量的取值范围可以是负无穷到正无穷。
最后,我们需要根据具体问题的要求来确定函数自变量的取值范围。
不同的问题可能对函数的自变量有不同的要求,如非负、整数或实数。
通过仔细阅读和分析问题的描述,我们可以得出函数自变量的取值范围的具体要求。
在数学和实际问题中,确定函数自变量的取值范围是解决问题和避免错误的关键步骤。
通过了解函数的定义域,考虑实际问题的限制,应用数学规则,利用图像和根据问题要求确定自变量的取值范围,我们可以确保函数在给定范围内有定义,从而有效地解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
明,函数的取值范围是指使此式有意义的实数 X 的集合。 1、对于整式,一切实数都使式子有意义 例 1 试解定函数 y x 2 2x 3 自变量 X 的取值范围。 解: 由于此式不论 X 取什么实数都有意义, 所以 X 的取值 范围为( , ) ; 2、对于分式,应取使分母不为 0 的实数 例 2 试解定函数 y
∴函数自变量的取值范围为 (1/ 2.0) (0,1/ 2) 8、不能随意化简函数,否则将改变其函数关系 例 8 求下列函数的自变量取值范围 ⑴ y x. sin x
x
⑵y
( x 2) 0 1 1 1 1 x
解:⑴根据分式函数要求,有 x 0 ∴函数自变量的取值范围为 (,0) (0,) 注:此小题中,不断随意约去
1 自变量 x 1
X 的取值范围
解:由于分式的分母不能为 0,所以函数自变量 X 的取值
1
范围为,即 x
x 1 0 ,即x x 1
3、对于偶次根式,应取使被开方数为非负实数;对于奇 次根式,被开方数应为任意实数 例 3 求下列函数的自变量取值范围 ⑴y
4 x2
⑵ y 3 4 x2 解:⑴要使函数有意义,必须 4 x 2 0 , 即 2 x 2 ,函数自变量取值范围为 x
x / 6 k / 2, k z ,即 x / 3 k
∴函数自变量的取值范围为 x | x / 3 k , k z 7、若上述几种情况同时出现,要判断好函数的类型,分 别找出它们的自变量取值范围, 取公共部分为所求的自变量取 值范围。 例 7 求下列函数的自变量取值范围 ⑴y
<x< 2 或 x> 2 可得 1
函数自变量取值范围为( 1, 2 2, 5、对于指数式,注意 0 0 没有意义 例 5 求函数 y x 2 10 的自变量取值范围
2
解:要使函数有意义,必须 x 2 1 0 ,即 x 1 ,所以函数 自变量取值范围为 x | x 1 6、对于三角函数、反三角函数,要根据各个函数的自变 量取值范围确定,正弦函数、余弦函数、反正切函数和反余切 函数的自变量取值范围为实数集, 反正弦函数和反余弦函数的 为 x 1, 1 ,正切函数的为 x | x k / 2,k
x | x k , k z
z ,余切函数的为
例 6 求下列函数自变量取值范围 ⑴ y 3 arccos(2 3x) ⑵ y tan(x / 6) 2 解:⑴要使函数有意义,必须
1 2 3x 1, 即 1 / 3 x 1
∴函数自变量的取值范围为[1/3,1] ⑵要使函数有意义必须
(1,3 / 4) (3 / 4, 2 / 2) ( 2 / 2,1)
2 /2或 2 /2 <x<1
⑵要使函数有意义,必须
32 4 x > > 2x 1 2x 1 1 1 2 x 1
即
x< 5 / 2 x> 1 / 2 x0 1 / 2 x 1 / 2
y xinx( x (,)) 是不相同的函数关系。
x,
y
x. sin x x
与
⑵要使函数有意义,必须
4
x20 x0 1 1/ x 0 1 1 0 1 1 x
解得 x 2 且 x 1 且 x 1 / 2 且 x 0 ∴函数的自变量取值范围
x | x 2 且 x 1 且 x 1 / 2 且 x 0
注:如果把分子视为 1,分母视为,则原函数变为,可得, 显然,此函数与原函数是两个相同的函数关系到。 二、
5
2 x 2
⑵不论 X 取什么实数, 函数都有意义, 所以函数自变量取 值范围为( , ) ; 4、对于对数式,应取使真数>0,底数>0 且底数≠1 的 实数 例 4 求下列函数为自变量取值范围 ⑴ y 1oga ( x 2 2x) ⑵ y 1og x12 分析:⑴由 x 2 2 x>0 ,可得 x< 0 或 x> 2,函数自变量取值范 围为 , 0 2, ⑵由 x 1> 0 且 x 1 1
求函数自变量取值范围应注意的问题
函数是中学数学中一个十分重要的内容, 从初等代数函数 (如正比例函数、反比例函数、一次函数与二次函数)到初等 超越函数(旭幂函数、指数函数、对数函数、三角函数与反三 角函数) ,内容丰富,其地位举足轻重。因此求函数自变量取 值范围(即为函数定义域)问题显得尤为重要。求函数自变量 取值范围就是求使函数成立的自变量 X 取值的集合, 一般用集 合表示法,区间表示法、不等式表示法表示,求函数自变量取 值范围通常转化为解不等式或不等式组, 本文将从以下几个方 面探讨求函数自变量取值范围应注意的问题。 一、关于纯数学问题 如果所研究的函数 y
1og0.5 (1og2 x 2 1) ( x 1) 0 4x 3
3
⑵ y 1og2 x1 (32 4 x ) arcsin2x 解:⑴要使函数有意义,必须
1og 0.5 (1og2 x 2 1) 0 4x 3 0 x 1 0
解得 1 x< 3 / 4 或 3 / 4<x< ∴函数自变量的取值范围为