(完整版)高中数学必修5试卷(含答案)

合集下载

人教版高中数学必修五试题及答案

人教版高中数学必修五试题及答案

必修五·数学试卷ⅣⅠ、选择题一、选择题1、在A B C中,若sin cos A Ba b=,则角B 等于 ( )A 、30︒B 、45︒C 、60︒D 、90︒2、在A B C 中,52,10,30a c A ===︒,则角B 等于 ( )A 、105︒B 、60︒C 、15︒D 、105︒或15︒3、已知一个锐角三角形的三边边长分别为3,4,a ,则a 的取值范围 ( )A 、(1,5)B 、(1,7)C 、()7,5 D 、()7,74、A B C中,若1cos 1cos A aB b-=-,则A B C一定是 ( )A 、等腰三角形B 、直角三角形C 、锐角三角形D 、钝角三角形5、在等差数列{}n a 中,若34567450aaaaa ++++=,则28a a +等于( )A 、45B 、75C 、180D 、3006、设等差数列{}n a 的前n 项和为nS,且211210,38m m m n a a a S -+-+-==,则m 等于 ( )A 、38B 、20C 、10D 、97、若数列{}n a 的通项公式为11n a n n =++,且9m S =,则m 等于( )A 、9B 、10C 、99D 、1008、已知{}n a 为等差数列,135105a a a ++=,34699a a a ++=,用nS 表示{}n a 的前n 项和,则使nS达到最大值的n 是( )A 、21B 、20C 、19D 、189、若关于x 的不等式220a xb x ++>的解集为1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -的值是 ( )A 、-10B 、-14C 、10D 、1410、以原点为圆心的圆全部都在平面区域36020x y x y -+≥⎧⎨-+≥⎩内,则圆面积的最大值为( ) A 、185π B 、95πC 、2πD 、π 11、已知0a b <<,且1a b +=,则下列不等式中,正确的是( )A 、2lo g 0a >B 、12a ba-< C 、22l o g l o g 2a b +<- D 、12a b b aa +> 12、已知集合{}2240,1M x x N x x ⎧⎫=->=<⎨⎬⎩⎭,则M N 等于 ( )A 、{}2x x > B 、{}2x x <- C 、N D 、MⅡ、非选择题二、填空题13、A B C的三个内角之比为1:2:3,则这个三角形的三边之比为 . 14.已知数列{}n a 的前n 项和为231n S n n =++,则它的通项公式为 .15、设等差数列{}n a 的前n 项和为nS ,且53655S S -=,则4a = . 16、已知函数16,(2,)2y x x x =+∈-+∞+,则此函数的最小值为 . 三、解答题17、在A B C 中,已知33a =,2,150c B ==︒,求边b 的长及A B C 的面积S .18、在A B C 中,s i n b a C =且s i n (90)c a B =︒-,试判断A B C 的形状.19、设等差数列{}n a 的前n 项和为nS ,已知31124,0a S ==(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S ;(3)当n 为何值时,nS 最大?并求nS的最大值.20、已知数列{}n a 的前n 项和为32n n S a =+,求数列{}n a 的通项公式.21、已知函数22(),(0,)x x af x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若(0,),()6x f x ∀∈+∞>恒成立,求实数a 的取值范围.22、已知关于x 的不等式()320a b x a b ++-<的解集为3.4x x ⎧⎫>-⎨⎬⎩⎭(1)求实数,a b 满足的条件;(2)求关于x 的不等式2()(21)220a b xa bx a -++-+->的解集.。

高一数学人教a必修5试题及答案

高一数学人教a必修5试题及答案

高一数学人教a必修5试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x + 3,则f(-1)的值为()。

A. -1B. 1C. 5D. -5答案:D2. 已知集合A={1,2,3},B={2,3,4},则A∩B等于()。

A. {1,2}B. {1,3}C. {2,3}D. {4}答案:C3. 函数y=x^2-4x+c的图像与x轴有两个交点,则c的取值范围是()。

A. c>4B. c<4C. c≥4D. c≤4答案:B4. 已知等差数列{a_n}的前三项分别为2,5,8,则其公差d为()。

A. 3B. 2C. 1D. 4答案:A5. 函数y=x^3+2x^2-x-2的导数为()。

A. 3x^2+4x-1B. 3x^2+4x+1C. 3x^2-4x+1D. 3x^2-4x-1答案:A6. 若sinα=3/5,且α为锐角,则cosα的值为()。

A. 4/5B. -4/5C. √7/5D. -√7/5答案:A7. 已知等比数列{a_n}的前三项分别为2,4,8,则其公比q为()。

A. 2B. 1/2C. 1D. 1/4答案:A8. 函数y=x^2-6x+8的最小值为()。

A. 2B. -2C. 8D. -8答案:B9. 若cosα=-√3/2,且α为钝角,则sinα的值为()。

A. 1/2B. -1/2C. √3/2D. -√3/2答案:B10. 函数y=x^3-3x^2+4的极值点为()。

A. 1B. 2C. -1D. 0答案:A二、填空题(每题4分,共20分)1. 若a,b,c是等差数列,且a+b+c=9,则b=______。

答案:32. 已知函数f(x)=x^2-6x+8,其对称轴方程为______。

答案:x=33. 函数y=x^3-3x^2+4的极值点为______。

答案:14. 若sinα=3/5,且α为锐角,则tanα的值为______。

答案:4/35. 已知等比数列{a_n}的前三项分别为2,4,8,则其通项公式为______。

(完整版)高中数学必修五综合测试题 含答案

(完整版)高中数学必修五综合测试题 含答案

.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。

数学必修五高中试题及答案

数学必修五高中试题及答案

数学必修五高中试题及答案一、选择题(每题3分,共30分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。

A. 0B. 4C. 6D. 82. 已知点A(2, 3)和点B(-1, -2),求直线AB的斜率。

A. -1B. 1C. 2D. 33. 一个圆的半径为5,求该圆的面积。

A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第10项的值。

A. 23B. 21C. 19D. 175. 若\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。

A. \( \frac{4}{5} \)B. \( \frac{3}{4} \)C. \( \frac{1}{2} \)D. \( \frac{2}{3} \)6. 一个正方体的体积为27,求其边长。

A. 3B. 4C. 5D. 67. 已知函数\( g(x) = x^3 - 2x^2 + x - 2 \),求\( g(2) \)的值。

A. -1B. 0C. 1D. 28. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 89. 已知\( a = 2 \),\( b = 3 \),求\( a^2 + b^2 \)的值。

A. 13B. 14C. 15D. 1610. 求\( \sqrt{64} \)的值。

A. 8B. 16C. 32D. 64二、填空题(每题2分,共20分)11. 若\( a \)和\( b \)互为相反数,则\( a + b = _______ 。

12. 一个二次方程\( ax^2 + bx + c = 0 \)的判别式为\( b^2 - 4ac \),当\( b^2 - 4ac < 0 \)时,方程有_______解。

13. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值。

必修五数学试题及答案

必修五数学试题及答案

必修五数学试题及答案一、选择题(每题3分,共15分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为()。

A. 0B. -1C. 2D. 42. 已知集合A={1,2,3},B={2,3,4},则A∩B为()。

A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}3. 向量a=(3,-1),b=(2,2),则a·b的值为()。

A. 4B. 5C. 6D. 84. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为e=√5,且a=2,则b的值为()。

A. 1B. 2C. 3D. 45. 若直线y=kx+b与抛物线y=x^2-2x-3相切,则k的值为()。

B. 3C. -1D. -3二、填空题(每题3分,共15分)1. 函数y=|x|的图象是一条折线,其顶点坐标为()。

2. 已知等差数列{an}的首项a1=1,公差d=2,则其第5项a5的值为()。

3. 若复数z=3+4i,则|z|的值为()。

4. 已知圆的方程为(x-2)^2 + (y+1)^2 = 9,则圆心坐标为()。

5. 已知直线l的倾斜角为45°,则直线l的斜率k的值为()。

三、解答题(每题10分,共70分)1. 已知函数f(x)=x^3-3x^2+2x,求f(x)的导数f'(x)。

2. 已知等比数列{bn}的首项b1=2,公比q=3,求其前5项和S5。

3. 已知向量a=(1,2),b=(2,-1),求向量a+b和a-b。

4. 已知椭圆C的方程为x^2/9 + y^2/4 = 1,求椭圆C的离心率e。

5. 已知抛物线y=x^2-4x+3与x轴交于点A和点B,求线段AB的长度。

答案:一、选择题1. B2. B3. B4. C5. C二、填空题1. (0,0)2. 94. (2,-1)5. 1三、解答题1. f'(x)=3x^2-6x+22. S5=2(3^5-1)/(3-1)=1213. a+b=(3,1),a-b=(-1,3)4. e=√(1-4/9)=√5/35. AB的长度为2√2结束语:本试题涵盖了函数、集合、向量、复数、直线与抛物线、椭圆等知识点,旨在检验学生对必修五数学内容的掌握情况。

高中数学必修五习题及解析

高中数学必修五习题及解析

必修五第一章 解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形 解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320<0,∴B 为钝角. 答案 C2.在△ABC 中,已知a =1,b =3,A =30°,B 为锐角,那么A ,B ,C 的大小关系为( ) A .A>B>CB .B>A>C C .C>B>AD .C>A>B解析 由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C 3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6.答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC →的值为( ) A .5 B .-5 C .15 D .-15 解析 在△ABC 中,由余弦定理得cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17.∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.假设三角形三边长之比是1:3:2,则其所对角之比是( ) A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析 设三边长分别为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a2-2a22·a ·3a=0,∴A =90°.设最小角为B ,则cosB =2a2+3a2-a 22·2a ·3a=32, ∴B =30°,∴C =60°. 因此三角之比为1:2:3. 答案 A6.在△ABC 中,假设a =6,b =9,A =45°,则此三角形有( ) A .无解 B .一解 C .两解 D .解的个数不确定解析 由b sinB =a sinA ,得sinB =bsinAa =9×226=3 24>1.∴此三角形无解. 答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分别为A ,B 的对边),那么角C 的大小为( )A .30°B .45°C .60°D .90° 解析 根据正弦定理,原式可化为2R ⎝ ⎛⎭⎪⎫a 24R 2-c 24R 2=(2a -b)·b 2R , ∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满足ab =4,则该三角形的面积为( ) A .1 B .2 C. 2 D. 3解析 由a sinA =b sinB =csinC =2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴cosC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32.∴S △ABC =12absinC = 3.答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinBsinC 的值为( )A.85B.58C.53D.35解析 由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC ,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( ) A.2π3 B.5π6 C.3π4D.π3解析 由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3.答案 A11.有一长为1 km 的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 kmD.32km 解析 如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =ACtan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1. 答案 B12.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c.假设a =c =6+2,且A =75°,则b 为( ) A .2 B .4+2 3 C .4-2 3D.6- 2解析 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22⎝ ⎛⎭⎪⎫32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析 由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1). 答案 4(3-1)14.在△ABC 中,假设b =2a ,B =A +60°,则A =________. 解析 由B =A +60°,得sinB =sin(A +60°)=12sinA +32cosA.又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA.即32sinA =32cosA.∵cosA ≠0, ∴tanA =33.∵0°<A<180°,∴A =30°. 答案 30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______. 解析 由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案 60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析 设⎩⎪⎨⎪⎧b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7. 答案 11:9:7三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)在非等腰△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a 2=b(b +c). (1)求证:A =2B ;(2)假设a =3b ,试判断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA2sinB,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.假设A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B. (2)∵a =3b ,由a 2=b(b +c),得3b 2=b 2+bc ,∴c =2b. 又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.(12分)锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满足2sin(A +B)-3=0.求: (1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°. (2)∵a ,b 是方程x 2-23x +2=0的两个根, ∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6. ∴c = 6.S △ABC =12absinC =12×2×32=32.19.(12分)如右图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 nmile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 nmile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°,求: (1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,B =45°,AB =126,由正弦定理,得AD =ABsinBsin ∠ADB=126×2232=24(nmile).(2)在△ADC 中,由余弦定理,得 CD 2=AD 2+AC 2-2AD ·AC ·cos30°. 解得CD =83(nmile).∴A 处与D 处的距离为24 nmile ,灯塔C 与D 处的距离为8 3 nmile.20.(12分)已知△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)假设m ∥n ,求证:△ABC 为等腰三角形;(2)假设m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b2R ,∴a =b.故△ABC为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab. 由余弦定理c 2=a 2+b 2-2abcosC 得 4=(a +b)2-3ab ,即(ab)2-3ab -4=0.解得ab =4,ab =-1(舍去).∴△ABC 的面积S =12absinC =12×4×sin π3= 3.第二章 数列1.已知正项数列{a n }中,a 1=l ,a 2=2,2a n 2=a n+12+a n−12〔n ≥2〕,则a 6=〔 〕 A .16 B .4 C .2√2 D .45【解答】解:∵正项数列{a n }中,a 1=1,a 2=2,2a n 2=a n+12+a n ﹣12〔n ≥2〕, ∴a n+12﹣a n 2=a n 2﹣a n ﹣12,∴数列{a n 2}为等差数列,首项为1,公差d=a 22﹣a 12=3,∴a n 2=1+3〔n ﹣1〕=3n ﹣2,∴a n =√3n +2 ∴a 6=√3×6−2=4, 故选:B 2.《张丘建算经》卷上第22题﹣﹣“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加〔 〕 A .47尺 B .1629尺 C .815尺 D .1631尺 【解答】解:设该妇子织布每天增加d 尺, 由题意知S 30=30×5+30×292d =390,解得d=1629.故该女子织布每天增加1629尺.故选:B .3.已知数列{a n }满足a 1=1,a n+1={2a n ,(n 为正奇数)a n +1,(n 为正偶数),则其前6项之和是〔 〕A .16B .20C .33D .120【解答】解:∵a 1=1,a n+1={2a n ,(n 为正奇数)a n +1,(n 为正偶数),∴a 2=2a 1=2,a 3=a 2+1=2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14 ∴其前6项之和是1+2+3+6+7+14=33故选C . 4.定义n p 1+p 2+⋯+p n为n 个正数p 1,p 2,…p n 的“均倒数”.假设已知数列{a n }的前n 项的“均倒数”为12n+1,又b n =a n +14,则1b 1b 2+1b 2b 3+⋯+1b 10b 11=〔 〕A . 111 B . 910C . 1011 D . 1112【解答】解:由已知得,na1+a 2+⋯+a n=12n+1∴a 1+a 2+…+a n =n 〔2n+1〕=S n当n ≥2时,a n =S n ﹣S n ﹣1=4n ﹣1,验证知当n=1时也成立,∴a n =4n ﹣1, ∴b n =a n +14,∴1bn ′b n+1=1n −1n+1∴1b1b 2+1b2b 3+⋯+1b10b 11=(1-12)+(12−13)+(13−14)+⋯+(110−111)=1−111=1011. 故选C .5.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.假设a 1,a 3是方程x 2﹣5x+4=0的两个根,则S 6= 63 . 【解答】解:解方程x 2﹣5x+4=0,得x 1=1,x 2=4.因为数列{a n }是递增数列,且a 1,a 3是方程x 2﹣5x+4=0的两个根,所以a 1=1,a 3=4.设等比数列{a n }的公比为q ,则q 2=a 3a 1=41=4,所以q=2.则S 6=a 1(1−q 6)1−q=1×(1−26)1−2=63. 故答案为63.6.如图给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为a ij 〔i ≥j ,i ,j ∈N *〕,则a 53等于 ,a mn = 〔m ≥3〕.14 12,14 34,34,316【解答】解:①第k 行的所含的数的个数为k ,∴前n 行所含的数的总数=1+2+…+n=n(n+1)2.a 53表示的是第5行的第三个数,由每一列数成等差数列,且第一列是首项为12,公差d=12−14=14的等差数列,∴第一列的第5 个数=14+(5−1)×14=54;又从第三行起,每一行数成等比数列,而且每一行的公比都相等,由第三行可知公比q=3834=12,∴第5行是以为首项,12为公比的等比数列,∴a 53=54×(12)2=516.②a mn 表示的是第m 行的第n 个数,由①可知:第一列的第m 个数=14+(m −1)×14=m4,∴a mn =m 4×(12)n−1=m 2n+1.故答案分别为516, m2n+1.7.等差数列{a n }中,a 7=4,a 19=2a 9,〔Ⅰ〕求{a n }的通项公式;〔Ⅱ〕设b n =1na n,求数列{b n }的前n 项和S n .【考点】8E :数列的求和;84:等差数列的通项公式. 【分析】〔I 〕由a 7=4,a 19=2a 9,结合等差数列的通项公式可求a 1,d ,进而可求a n 〔II 〕由b n =1na n=2n(n+1)=2n −2n+1,利用裂项求和即可求解【解答】解:〔I 〕设等差数列{a n }的公差为d ∵a 7=4,a 19=2a 9,∴{a 1+6d =4a 1+18d =2(a 1+8d)解得,a 1=1,d=12∴a n =1+12(n −1)=1+n 2〔II 〕∵b n =1na n=2n(n+1)=2n −2n+1∴S n =2(1−12+12−13+⋯+1n −1n+1)=2(1−1n+1)=2nn+18.已知等差数列{a n },的前n 项和为S n ,且a 2=2,S 5=15,数列{b n }满足b 1=12,b n+1=n+12n b n . 〔1〕求数列{a n },{b n }的通项公式;〔2〕记T n 为数列{b n }的前n 项和,f (n )=2S n (2−T n )n+2,试问f 〔n 〕是否存在最大值,假设存在,求出最大值,假设不存在请说明理由. 将b n+1=n+12nb n 整理,得到{b n n}是首项为12,公比为12的等比数列,应用等比数列的通项即可求出b n ;〔2〕运用错位相减法求出前n 项和T n ,化简f 〔n 〕,运用相邻两项的差f 〔n+1〕﹣f 〔n 〕,判断f 〔n 〕的增减性,从而判断f 〔n 〕是否存在最大值. 【解答】解:〔1〕设等差数列{a n }首项为a 1,公差为d , 则{a 1+d =25a 1+10d =15解得a 1=1,d=1,∴a n =n ,又b n+1n+1=b n 2n ,即{b nn }是首项为12,公比为12的等比数列, ∴bn n =b 11(12)n−1,∴b n =n2n ;〔2〕由〔1〕得:T n =12+222+323+⋯+n2n ,12T n=123+223+324+⋯+n−12n +n2n+1,相减,得12T n =12+122+123+⋯+12n +n2n+1, =12(1−12n )1−12,∴T n =2−n+22n,又S n =12n 〔n+1〕,∴f (n )=2S n (2−T n )n+2=n 2+n 2n,∴f (n +1)−f (n )=(n+102+n+12n+1−n 2+n 2n=(n+1)(2−n)2n−1,当n >3时,f 〔n+1〕﹣f 〔n 〕<0,数列{f 〔n 〕}是递减数列, 又f (1)=1,f (2)=32,f (3)=32 ∴f 〔n 〕存在最大值,且为32.9.设数列{a n }的前项n 和为S n ,假设对于任意的正整数n 都有S n =2a n −3n .〔1〕设b n =a n +5,求证:数列{b n }是等比数列,并求出{a n }的通项公式。

【人教版】高中数学必修五期末试题(附答案)(1)

【人教版】高中数学必修五期末试题(附答案)(1)

一、选择题1.若正数x,y满足21yx+=,则2xy+的最小值为()A.2 B.4 C.6 D.82.已知正数x,y满足1431x y+=+,则x y+的最小值为()A.53B.2 C.73D.63.设变量,x y、满足约束条件236y xx yy x≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y=+的最大值为()A.2 B.3 C.4 D.94.如图,地面四个5G中继站A、B、C、D ,已知()62kmCD=+,30ADB CDB∠=∠=︒,45DCA∠=︒,60ACB∠=︒,则A、B两个中继站的距离是()A.3km B.10km C10km D.62km 5.ABC∆的内角A,B,C的对边分别为a,b,c,已知2b=,6Bπ=,4Cπ,则ABC∆的面积为()A.223+B31C.232D316.设ABC的内角A,B,C的对边分别是a,b,c.已知2cos0b a C-=,()sin3sinA A C=+,则2bca=()A7B14C.23D67.在ABC中,角A,B,C的对边分别为a,b,c,若22tan tanB Cb c=,则ABC的形状为()A.等腰三角形或直角三角形B.等腰直角三角形C.等腰三角形D.直角三角形8.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .139.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D.25910.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .411.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-212.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -二、填空题13.已知实数x ,y 满足约束条件010x y x y x -≤⎧⎪+≤⎨⎪⎩,则23x y z +=的最大值__________.14.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________. 15.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.16.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续自然数,且2C A =,则a =_______.17.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .18.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4a =,2c =,60B =︒,则b = ,C = .19.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.20.在数列{}n a 中,11a =()*1n =∈N ;等比数列{}n b 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.三、解答题21.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 22.已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.23.在ABC 中a ,b ,c 分别为内角A ,B ,C 所对的边,若()()2sin 2sin sin 2sin sin a A B C b C B c =+++.(1)求A 的大小; (2)求sin sin B C +的最大值.24.ABC 是等边三角形,点D 在边AC 的延长线上,且AD =3CD ,BD,求AD 的值和sin ∠ABD 的值25.在①数列{}n a 为递增的等比数列,且2312a a +=,②数列{}n a 满足122n n S S +-=,③数列{}n a 满足1121222n n n n a a a na -++++=这三个条件中任选一个,补充在下面问题中,再完成解答.问题:设数列{}n a 的前n 项和为n S ,12a =,__________. (1)求数列{}n a 的通项公式; (2)设2221log log n n n b a a +=⋅,求数列{}n b 的前n 项和n T .26.已知等比数列{}n a 的公比3q =,并且满足2a ,318a +,4a 成等差数列. (1)求数列{}n a 的通项公式; (2)设数列{}n b 满足31log n n nb a a =+,记n S 为数列{}n b 的前n 项和,求使2220n S n ->成立的正整数n 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等.所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.3.D解析:D 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.C解析:C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】由题意可得75DAC ∠=︒,45DBC ∠=︒, 在ADC 中,由正弦定理得()362sin 223sin sin 75CD ADCAC DAC+⨯⋅∠===∠︒, 在BDC 中,由正弦定理得()162sin 231sin 22CD BDC BC DBC+⨯⋅∠===+∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠()()()22123312233112=++-⨯⨯+⨯=,所以10km AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得6c b =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c =,则()2293bc b a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.7.A解析:A 【分析】由三角函数恒等变换的应用,正弦定理化简已知等式可得sin 2sin 2B C =,可得22B C =,或22B C π+=,解得B C =,或2B C π+=,即可判断ABC ∆的形状.【详解】22tan tan B Cb c =, ∴22sin sin cos cos B C b B c C =,由正弦定理可得:22cos cos b cb Bc C=,可得:cos cos b B c C =,可得sin cos sin cos B B C C =,可得:sin 2sin 2B C =,22B C ∴=,或22B C π+=,B C ∴=,或2B C π+=,ABC ∆∴的形状为等腰三角形或直角三角形. 故选:A . 【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.8.C解析:C 【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.9.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.10.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.11.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.12.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.二、填空题13.【分析】先作出不等式组对应的可行域再通过数形结合求出的最大值即得解【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域设它表示斜率为纵截距为的直线系要求的最大值即求的最大值当直线经过点时直线 解析:9【分析】先作出不等式组对应的可行域,再通过数形结合求出2x y +的最大值即得解. 【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域,设12,22m m x y y x =+∴=-+,它表示斜率为12-,纵截距为2m的直线系, 要求23x y z +=的最大值即求m 的最大值.当直线122m y x =-+经过点(0,1)A 时,直线的纵截距2m最大,m 最大. 此时max 022m =+=, 所以23x y z +=的最大值为239=.故答案为:9 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案。

高中数学测试题附答案

高中数学测试题附答案

高一数学必修5试题一.选择题本大题共10小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.由11a =,3d =确定的等差数列{}n a ,当298n a =时,序号n 等于 ( )A.99B.100C.96D.1012.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23 C.1 D.33.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( )A .99B .49C .102D . 1014.已知数列3,3,15,…,)12(3-n ,那么9是数列的 ( )(A )第12项 (B )第13项 (C )第14项 (D )第15项 5.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B. 4C. 5D. 66. △ABC 中,cos cos A a Bb=,则△ABC 一定是 ( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形7. 给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( )A B C D8.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解9.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 ( )2A.3 2B.-3 1C.-3 1D.-410.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为 ( )A 、63B 、108C 、75D 、8311.在△ABC 中,∠A = 60° , a = 6 , b = 4 ,满足条件的△ABC( )(A )无解 (B )有解 (C )有两解 (D )不能确定12. 数列}{n a 中,)(22,111++∈+==N n a a a a n n n ,则1012是这个数列的第几项 ( )A.100项B.101项C.102项D.103项二、填空题(本大题共4小题,每小题5分,共20分。

【精品推荐】新课程高中数学测试题组(必修5)全套含答案

【精品推荐】新课程高中数学测试题组(必修5)全套含答案

(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150 二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。

2.在△ABC 中,若=++=A c bc b a 则,222_________。

3.在△ABC 中,若====a C B b 则,135,30,200_________。

4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。

5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。

三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么?2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。

(完整版)高中数学必修5综合测试题及答案

(完整版)高中数学必修5综合测试题及答案

D. 27
D.最大值 144
re 5.一个等比数列的首项为 1,公比为 2,则 a12 a22 a32 ... an2 ( )
g a A. (2n 1)2
B. 1 (2n 1) 3
C. 4n 1
D. 1 (4n 1) 3
ein 6.以 a 2 , b 2 2 为边作三角形,则 a 所对的角 A 的范围( )
in A.-1221
B.-21.5
C.-20.5
D.-20
ir be 6、设集合 A {(x, y) | x, y,1 x y 是三角形的三边长},则 A 所表示的平面区域(不含边界的阴影部
the 分)是( )
in y
y
y
y
ings 0.5
th o 0.5
x
0.5 0.5
0.5
o
0.5
x
o
0.5 x
thing 1、ΔABC 中,a=1,b= 3 , A=30°,则 B 等于 ( )
e A.60°
B.60°或 120° C.30°或 150°
D.120°
m 1 o 2、等差数列{an}中,已知 a1= ,a2+a5=4,an=33,则 n 为( )
s 3
r A.50
B.49
C.48
D.47
d fo 3、已知等比数列{an }的公比为 2,前 4 项的和是 1,则前 8 项的和为 ( )
D.1500
10、已知数列an的前 n 项和 Sn 2n n 1,则 a5 的值为( )
A.80 B.40 C.20 D.10
11、不等式 (2 a)x 2 2(a 2)x 4 0 对于一切实数都成立,则 ( )

(完整版)人教版高中数学必修5测试题及答案全套(可编辑修改word版)

(完整版)人教版高中数学必修5测试题及答案全套(可编辑修改word版)

233 2 33513第一章解三角形测试一正弦定理和余弦定理Ⅰ学习目标1.掌握正弦定理和余弦定理及其有关变形.2.会正确运用正弦定理、余弦定理及有关三角形知识解三角形.Ⅱ基础训练题一、选择题1.在△ABC 中,若BC=,AC=2,B=45°,则角A 等于( )(A)60°(B)30°(C)60°或120°(D)30°或150°12.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=3,cos C=-,则c 等于( )4(A)2 (B)3 (C)4 (D)53.在△ABC 中,已知cos B =3, sin C =2,AC=2,那么边AB 等于( )(A)545(B)533(C)209(D)1254.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,已知B=30°,c=150,b=50 ,那么这个三角形是( )(A)等边三角形(B)等腰三角形(C)直角三角形(D)等腰三角形或直角三角形5.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,如果A∶B∶C=1∶2∶3,那么a∶b∶c 等于( )(A)1∶2∶3 (B)1∶∶2 (C)1∶4∶9 (D)1∶∶二、填空题6.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,B=45°,C=75°,则b=.7.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=2 ,c=4,则A=.8.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC 形状是三角形.9.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=3,b=4,B=60°,则c=.10.在△ABC 中,若tan A=2,B=45°,BC=,则AC=.三、解答题11.在△ABC 中,三个内角A,B,C 的对边分别是a,b,c,若a=2,b=4,C=60°,试解△ABC.12.在△ABC 中,已知AB=3,BC=4,AC=.(1)求角B 的大小;(2)若D 是BC 的中点,求中线AD 的长.13.如图,△OAB 的顶点为O(0,0),A(5,2)和B(-9,8),求角A 的大小.3 2 19 14. 在△ABC 中,已知 BC =a ,AC =b ,且 a ,b 是方程 x 2-2x +2=0 的两根,2cos(A +B )=1.(1) 求角 C 的度数; (2) 求 AB 的长; (3) 求△ABC 的面积.一、选择题测试二 解三角形全章综合练习Ⅰ 基础训练题1. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 b 2+c 2-a 2=bc ,则角 A 等于( )π (A)6π (B)3(C)2π3(D)5π 62. 在△ABC 中,给出下列关系式:①sin(A +B )=sin C ②cos(A +B )=cos C ③ sin A + B = cos C2 2其中正确的个数是( ) (A)0(B)1(C)2(D)32 33. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c .若 a =3,sin A = ,sin(A +C )= ,则 b 等于()(A)4(B) 833 4(C)6 (D)27 824. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a =3,b =4,sin C = ,则此三角形的面积是3( ) (A)8 (B)6 (C)4 (D)3 5. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若(a +b +c )(b +c -a )=3bc ,且 sin A =2sin B cos C ,则此三角形的形状是( )(A) 直角三角形(B)正三角形(C)腰和底边不等的等腰三角形 (D)等腰直角三角形二、填空题6. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a =,b =2,B =45°,则角 A =.7. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a =2,b =3,c =,则角 C =.3 8. 在△ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 b =3,c =4,cos A = ,则此三角形的面积为.59.已知△ABC 的顶点 A (1,0),B (0,2),C (4,4),则 cos A = . 10. 已知△ABC 的三个内角 A ,B ,C 满足 2B =A +C ,且 AB =1,BC =4,那么边 BC 上的中线 AD 的长为 .三、解答题11. 在△ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,且 a =3,b =4,C =60°.(1) 求 c ; (2) 求 sin B . 12.设向量 a ,b 满足 a ·b =3,|a |=3,|b |=2.(1)求〈a ,b 〉; (2)求|a -b |.13.设△OAB 的顶点为 O (0,0),A (5,2)和 B (-9,8),若 BD ⊥OA 于 D .(1) 求高线 BD 的长; (2) 求△OAB 的面积.14.在△ABC 中,若sin2A+sin2B>sin2C,求证:C 为锐角.(提示:利用正弦定理a=sin Absin B=csin C= 2R ,其中R 为△ABC 外接圆半径)Ⅱ拓展训练题15.如图,两条直路OX 与OY 相交于O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX、OY 上的A、B两点,| OA |=3km,| OB |=1km,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿OY 方向.问:(1)经过t 小时后,两人距离是多少(表示为t 的函数)?(2)何时两人距离最近?16.在△ABC 中,a,b,c 分别是角A,B,C 的对边,且(1)求角B 的值;(2)若b=,a+c=4,求△ABC 的面积. cos Bcos C=-b.2a +c13第二章 数列测试三 数列Ⅰ 学习目标1. 了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数.2. 理解数列的通项公式的含义,由通项公式写出数列各项.3. 了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( )(A)a n =4n (B)a n =4n(C)a = 4(10n -1) (D)a =4×11n92.在有一定规律的数列 0,3,8,15,24,x ,48,63,……中,x 的值是( )(A)30 (B)35 (C)36 (D)42 3.数列{a n }满足:a 1=1,a n =a n -1+3n ,则 a 4 等于( ) (A)4 (B)13 (C)28 (D)43 4.156 是下列哪个数列中的一项( ) (A){n 2+1} (B){n 2-1} (C){n 2+n } (D){n 2+n -1} 5. 若数列{a n }的通项公式为 a n =5-3n ,则数列{a n }是( ) (A) 递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对二、填空题6. 数列的前 5 项如下,请写出各数列的一个通项公式:(1)1, 2 , 1 , 3 2 2 , 15 3, , a n = ;(2)0,1,0,1,0,…,a n = .n 27.一个数列的通项公式是 a n = n 2 +1.(1) 它的前五项依次是; (2)0.98 是其中的第项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则 a 4=.9. 数列{a }的通项公式为 a =1(n ∈N *),则 a =.n1+ 2 + 3 + + (2n -1)310. 数列{a n }的通项公式为 a n =2n 2-15n +3,则它的最小项是第 项.三、解答题11. 已知数列{a n }的通项公式为 a n =14-3n .(1) 写出数列{a n }的前 6 项; (2)当 n ≥5 时,证明 a n <0.n 2 + n -112. 在数列{a n }中,已知 a n =(n ∈N *).3(1)写出 a 10,a n +1, a n 2 ;(2) 79 2 是否是此数列中的项?若是,是第几项?313. 已知函数 f (x ) = x - 1,设 a n =f (n )(n ∈N ).x+nnn(1)写出数列{a n}的前4 项;(2)数列{a n}是递增数列还是递减数列?为什么?测试四等差数列Ⅰ学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题.2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ基础训练题一、选择题1.数列{a n}满足:a1=3,a n+1=a n-2,则a100等于( )(A)98 (B)-195 (C)-201 (D)-1982.数列{a n}是首项a1=1,公差d=3 的等差数列,如果a n=2008,那么n 等于( )(A)667 (B)668 (C)669 (D)6703.在等差数列{a n}中,若a7+a9=16,a4=1,则a12的值是( )(A)15 (B)30 (C)31 (D)644.在a 和b(a≠b)之间插入n 个数,使它们与a,b 组成等差数列,则该数列的公差为( )(A)b -an (B)b -an +1(C)b +an +1(D)b -an + 25.设数列{a n}是等差数列,且a2=-6,a8=6,S n是数列{a n}的前n 项和,则( )(A)S4<S5(B)S4=S5(C)S6<S5(D)S6=S5二、填空题6.在等差数列{a n}中,a2与a6的等差中项是.7.在等差数列{a n}中,已知a1+a2=5,a3+a4=9,那么a5+a6=.8.设等差数列{a n}的前n 项和是S n,若S17=102,则a9=.9.如果一个数列的前n 项和S n=3n2+2n,那么它的第n 项a n=.10.在数列{a n}中,若a1=1,a2=2,a n+2-a n=1+(-1)n(n∈N*),设{a n}的前n 项和是S n,则S10=.三、解答题11.已知数列{a n}是等差数列,其前n 项和为S n,a3=7,S4=24.求数列{a n}的通项公式.12.等差数列{a n}的前n 项和为S n,已知a10=30,a20=50.(1)求通项a n;(2)若S n=242,求n.13.数列{a n}是等差数列,且a1=50,d=-0.6.(1)从第几项开始a n<0;(2)写出数列的前n 项和公式S n,并求S n的最大值.Ⅲ拓展训练题14.记数列{a n}的前n 项和为S n,若3a n+1=3a n+2(n∈N*),a1+a3+a5+…+a99=90,求S100.测试五等比数列Ⅰ学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题.2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ基础训练题一、选择题.在 和 之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.1. 数列{a n }满足:a 1=3,a n +1=2a n ,则 a 4 等于( )(A) 38(B)24 (C)48(D)542. 在各项都为正数的等比数列{a n }中,首项 a 1=3,前三项和为 21,则 a 3+a 4+a 5 等于()(A)33 (B)72 (C)84 (D)1893. 在等比数列{a n }中,如果 a 6=6,a 9=9,那么 a 3 等于()(A)4 (B) 3 2 (C) 169 (D)3 4. 在等比数列{a n }中,若 a 2=9,a 5=243,则{a n }的前四项和为( )(A)81(B)120(C)168(D)1925. 若数列{a n }满足 a n =a 1q n -1(q >1),给出以下四个结论:①{a n }是等比数列;②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列;④{a n }可能是递减数列. 其中正确的结论是( )(A)①③(B)①④(C)②③(D)②④二、填空题6. 在等比数列{a n }中,a 1,a 10 是方程 3x 2+7x -9=0 的两根,则 a 4a 7= . 7.在等比数列{a n }中,已知 a 1+a 2=3,a 3+a 4=6,那么 a 5+a 6= .8.在等比数列{a }中,若 a =9,q = 1,则{a }的前 5 项和为 .n59 8 27 2n3 210. 设等比数列{a n }的公比为 q ,前 n 项和为 S n ,若 S n +1,S n ,S n +2 成等差数列,则 q = .三、解答题11. 已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前 n 项和为 S n .(1) 求数列{a n }的通项公式; (2)若 S n =242,求 n .12. 在等比数列{a n }中,若 a 2a 6=36,a 3+a 5=15,求公比 q .13. 已知实数 a ,b ,c 成等差数列,a +1,b +1,c +4 成等比数列,且 a +b +c =15,求 a ,b ,c .Ⅲ 拓展训练题14. 在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于 q ,每列上的数从上到1 5下都成等差数列.a ij 表示位于第 i 行第 j 列的数,其中 a 24=,a 42=1,a 54=.(1) 求 q 的值;(2) 求 a ij 的计算公式.2 + 13 + 24 + 3n + 1 + n测试六 数列求和Ⅰ 学习目标1. 会求等差、等比数列的和,以及求等差、等比数列中的部分项的和.2. 会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1. 已知等比数列的公比为 2,且前 4 项的和为 1,那么前 8 项的和等于( )(A)15 (B)17 (C)19 (D)212. 若数列{a }是公差为 1 的等差数列,它的前 100 项和为 145,则 a +a +a +…+a的值为()n21 3 5 99(A)60 (B)72.5 (C)85 (D)120 3. 数列{a n }的通项公式 a n =(-1)n -1·2n (n ∈N *),设其前 n 项和为 S n ,则 S 100 等于( )(A)100 (B)-100 (C)200 (D)-200⎧ 1 ⎫ 4.数列⎨(2n -1)(2n +1) ⎬ 的前n 项和为( ) (A) ⎩ n 2n + 1 ⎭ (B)2n2n + 1 (C)n 4n + 2(D)2nn + 1 5.设数列{a n }的前 n 项和为 S n ,a 1=1,a 2=2,且 a n +2=a n +3(n =1,2,3,…),则 S 100 等于( )(A)7000 (B)7250 (C)7500 (D)14950 二、填空题 6.1 +1 +1 + +1 = .17.数列{n +2n }的前n 项和为 .8.数列{a n }满足:a 1=1,a n +1=2a n ,则 a 2 +a 2 +…+a 2 = .12n9.设 n ∈N *,a ∈R ,则 1+a +a 2+…+a n =. 1 1 1 1 10.1⨯ 2 + 2 ⨯ 4 + 3⨯ 8 + + n ⨯ 2n =.三、解答题11. 在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前 n 项和 S n .12. 已知函数 f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数 n 都有 f (1)=n 2 成立.(1) 求数列{a n }的通项 a n ;1 (2) 求a a + 1 + + 1 . a a a a1 22 3n n +113.在数列{a }中,a =1,当 n ≥2 时,a =1 + 1 + 1+ +1,求数列的前 n 项和 S .n1n2 42n -1nⅢ 拓展训练题14. 已知数列{a n }是等差数列,且 a 1=2,a 1+a 2+a 3=12.(1) 求数列{a n }的通项公式;(2) na n - 3 3a n +133一、选择题测试七 数列综合问题Ⅰ 基础训练题1.等差数列{a n }中,a 1=1,公差 d ≠0,如果 a 1,a 2,a 5 成等比数列,那么 d 等于( )(A)3 (B)2 (C)-2 (D)2 或-2 2.等比数列{a n }中,a n >0,且 a 2a 4+2a 3a 5+a 4a 6=25,则 a 3+a 5 等于( ) (A)5 (B)10 (C)15 (D)20 3. 如果 a 1,a 2,a 3,…,a 8 为各项都是正数的等差数列,公差 d ≠0,则( ) (A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5(C)a 1+a 8>a 4+a 5 (D)a 1a 8=a 4a 5 4. 一给定函数 y =f (x )的图象在下列图中,并且对任意 a 1∈(0,1),由关系式 a n +1=f (a n )得到的数列{a n }满足 a n +1>a n (n ∈N *),则该函数的图象是( )5. 已知数列{a }满足 a =0, a= (n ∈N *),则 a 等于()n1n +120 (A)0 (B)- (C) (D)3 2二、填空题⎧1a ,n 且且且 ,1⎪ 2 n6.设数列{a n }的首项 a 1= ,且 a n +1 = ⎨ ⎪a ⎩n+ 1, 4 n 且且且则 a 2=,a 3= ..7. 已知等差数列{a n }的公差为 2,前 20 项和等于 150,那么 a 2+a 4+a 6+…+a 20=.8. 某种细菌的培养过程中,每20 分钟分裂一次(一个分裂为两个),经过3 个小时,这种细菌可以由1 个繁殖成 个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则 a n = .10. 在数列{a n }和{b n }中,a 1=2,且对任意正整数 n 等式 3a n +1-a n =0 成立,若 b n 是 a n 与 a n +1 的等差中项,则{b n }的前 n 项和为 . 三、解答题11. 数列{a n }的前 n 项和记为 S n ,已知 a n =5S n -3(n ∈N *).(1)求 a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求 a 1+a 3+…+a 2n -1 的和.2 12.已知函数 f (x )=(x >0),设 a =1,a 2 ·f (a )=2(n ∈N *),求数列{a }的通项公式.x 2+ 41 n +1 n n13.设等差数列{a n }的前 n 项和为 S n ,已知 a 3=12,S 12>0,S 13<0. (1) 求公差 d 的范围;(2) 指出 S 1,S 2,…,S 12 中哪个值最大,并说明理由.⎪ 4a +a +a n +1 nⅢ 拓展训练题14.甲、乙两物体分别从相距 70m 的两地同时相向运动.甲第 1 分钟走 2m ,以后每分钟比前 1 分钟多走 1m ,乙每分钟走 5m .(1) 甲、乙开始运动后几分钟相遇?(2) 如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走 1m ,乙继续每分钟走 5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若 a 1,a 2 是正整数,且 a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”. (1) 举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项 a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.一、选择题测试八 数列全章综合练习Ⅰ 基础训练题1.在等差数列{a n }中,已知 a 1+a 2=4,a 3+a 4=12,那么 a 5+a 6 等于( ) (A)16 (B)20 (C)24 (D)36 2. 在 50 和 350 间所有末位数是 1 的整数和( ) (A)5880 (B)5539 (C)5208 (D)4877 3. 若 a ,b ,c 成等比数列,则函数 y =ax 2+bx +c 的图象与 x 轴的交点个数为( ) (A)0 (B)1 (C)2 (D)不能确定 4. 在等差数列{a n }中,如果前 5 项的和为 S 5=20,那么 a 3 等于( ) (A)-2 (B)2 (C)-4 (D)45. 若{a n }是等差数列,首项 a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前 n 项和 S n >0 成立的最大自然数 n 是( ) (A)4012(B)4013 (C)4014 (D)4015二、填空题6. 已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项 a n = . 7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前 20 项和 S 20= .8. 数列{a n }的前 n 项和记为 S n ,若 S n =n 2-3n +1,则 a n = .9. 等差数列{a n }中,公差 d ≠0,且 a 1,a 3,a 9 成等比数列,则 a 3 + a 6 + a9 = .47 1010. 设数列{a n }是首项为 1 的正数数列,且(n +1)a 2 -na 2 +a n +1a n =0(n ∈N *),则它的通项公式 a n = .三、解答题11. 设等差数列{a n }的前 n 项和为 S n ,且 a 3+a 7-a 10=8,a 11-a 4=4,求 S 13.12. 已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数 f (x )=2x +1 的图象上.(1) 求数列{a n }的通项公式;(2)求数列{a n }的前 n 项和 S n ;(3)设 c n =S n ,求数列{c n }的前 n 项和 T n .13. 已知数列{a n }的前 n 项和 S n 满足条件 S n =3a n +2.(1) 求证:数列{a n }成等比数列;(2)求通项公式 a n .14. 某渔业公司今年初用 98 万元购进一艘渔船,用于捕捞,第一年需各种费用 12 万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4 万元,该船每年捕捞的总收入为50 万元.n(1) 写出该渔船前四年每年所需的费用(不包括购买费用);(2) 该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3) 若当盈利总额达到最大值时,渔船以 8 万元卖出,那么该船为渔业公司带来的收益是多少万元?115. 已知函数 f (x )=Ⅱ 拓展训练题(x <-2),数列{a }满足 a =1,a =f (- 1)(n ∈N *).(1) 求 a n ;n 1 na n +1 (2) 设b =a 2 +a 2 +…+a 2,是否存在最小正整数 m ,使对任意 n ∈N *有 b < m成立?若存在,求出 mnn +1n +22n +125的值,若不存在,请说明理由.16. 已知 f 是直角坐标系平面 xOy 到自身的一个映射,点 P 在映射 f 下的象为点 Q ,记作 Q =f (P ).设 P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点 P n (x n ,y n )(n ∈N *) 都在这个圆内或圆上,那么称这个圆为点 P n (x n ,y n )的一个收敛圆.特别地,当 P 1=f (P 1)时,则称点 P 1 为映射 f 下的不动点.1若点 P (x ,y )在映射 f 下的象为点 Q (-x +1, y ).2(1) 求映射 f 下不动点的坐标;(2) 若 P 1 的坐标为(2,2),求证:点 P n (x n ,y n )(n ∈N *)存在一个半径为 2 的收敛圆.x 2 - 4bb 第三章 不等式测试九 不等式的概念与性质Ⅰ 学习目标1. 了解日常生活中的不等关系和不等式(组)的实际背景,掌握用作差的方法比较两个代数式的大小.2. 理解不等式的基本性质及其证明.Ⅱ 基础训练题一、选择题 1. 设 a ,b ,c ∈R ,则下列命题为真命题的是( ) (A) a >b ⇒ a -c >b -c (B)a >b ⇒ ac >bc (C)a >b ⇒ a 2>b 2 (D)a >b ⇒ ac 2>bc 2 2.若-1<<<1,则- 的取值范围是( ) (A)(-2,2) (B)(-2,-1) (C)(-1,0) (D)(-2,0) 3. 设 a >2,b >2,则 ab 与 a +b 的大小关系是( ) (A) ab >a +b (B)ab <a +b (C)ab =a +b (D)不能确定4. 使不等式 a >b 和 1 > 1同时成立的条件是( )a b (A)a >b >0 (B)a >0>b (C)b >a >0(D)b >0>a5.设 1<x <10,则下列不等关系正确的是()(A) lg 2x >lg x 2>lg(lg x )(B)lg 2x >lg(lg x )>lg x 2 (C)lg x 2>lg 2x >1g (lg x )(D)lg x 2>lg(lg x )>lg 2x二、填空题6. 已知 a <b <0,c <0,在下列空白处填上适当不等号或等号: (1)(a -2)c(b -2)c ; (2) cac ; (3)b -ab|a |-|b |. 7. 已知 a <0,-1<b <0,那么 a 、ab 、ab 2 按从小到大排列为 .a8. 已知 60<a <84,28<b <33,则 a -b 的取值范围是; 的取值范围是.b9. 已知 a ,b ,c ∈R ,给出四个论断:①a >b ;②ac 2>bc 2;③ a > b;④a -c >b -c .以其中一个论断作条件,另c c 一个论断作结论,写出你认为正确的两个命题是 ⇒ ;⇒ .(在“ ⇒ ”的两侧填上论断序号).10.设 a >0,0<b <1,则 P = b 三、解答题a + 32 与Q = b 的大小关系是 .b b + m11.若 a >b >0,m >0,判断 与的大小关系并加以证明.aa + m12.设 a >0,b >0,且 a ≠b , p = a 2+ a , q = a + b .证明:p >q .注:解题时可参考公式 x 3+y 3=(x +y )(x 2-xy +y 2).Ⅲ 拓展训练题13.已知 a >0,且 a ≠1,设 M =log a (a 3-a +1),N =log a (a 2-a +1).求证:M >N .14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,试比较 a 5 和 b 5 的大小.(a +1)(a +2)2ab ab ab bc y1. 了解基本不等式的证明过程.测试十 均值不等式Ⅰ 学习目标2. 会用基本不等式解决简单的最大(小)值问题.一、选择题1. 已知正数 a ,b 满足 a +b =1,则 ab ( )Ⅱ 基础训练题(A) 有最小值 1 4 (B) 有最小值 12 (C) 有最大值 14(D) 有最大值 122.若 a >0,b >0,且 a ≠b ,则()a + ba +b (A) <<2(B) <<2(C) << a + b 2(D) (D )< a + b2 3. 若矩形的面积为 a 2(a >0),则其周长的最小值为( )(A) a(B)2a (C)3a (D)4a4. 设 a ,b ∈R ,且 2a +b -2=0,则 4a +2b 的最小值是()(A) 2 (B)4 (C) 4 (D)85. 如果正数 a ,b ,c ,d 满足 a +b =cd =4,那么() (A)ab ≤c +d ,且等号成立时 a ,b ,c ,d 的取值唯一(B)ab ≥c +d ,且等号成立时 a ,b ,c ,d 的取值唯一(C)ab ≤c +d ,且等号成立时 a ,b ,c ,d 的取值不唯一(D)ab ≥c +d ,且等号成立时 a ,b ,c ,d 的取值不唯一二、填空题6. 若 x >0,则变量 x + 9的最小值是x;取到最小值时,x = . 4x7. 函数 y =x 2+1(x >0)的最大值是;取到最大值时,x =.8. 已知 a <0,则 a + 16 a - 3的最大值是 .9. 函数 f (x )=2log 2(x +2)-log 2x 的最小值是 . 10. 已知 a ,b ,c ∈R ,a +b +c =3,且 a ,b ,c 成等比数列,则 b 的取值范围是 .三、解答题11. 四个互不相等的正数 a ,b ,c ,d 成等比数列,判断 a + d 和 的大小关系并加以证明.212. 已知 a >0,a ≠1,t >0,试比较 1log t 与log2aat +1 2的大小.13. 若正数 x ,y 满足 x +y =1,且不等式Ⅲ 拓展训练题+ ≤ a 恒成立,求 a 的取值范围. a 14.(1)用函数单调性的定义讨论函数 f (x )=x + (a >0)在(0,+∞)上的单调性;xaa 2 +b 22 a 2 + b 22a 2 +b 2 2 a 2 + b 2 2 22x(2)设函数f(x)=x+(a>0)在(0,2]上的最小值为g(a),求g(a)的解析式.x测试十一 一元二次不等式及其解法Ⅰ 学习目标1. 通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的联系.2. 会解简单的一元二次不等式.一、选择题 1. 不等式 5x +4>-x 2 的解集是( )(A){x |x >-1,或 x <-4} Ⅱ 基础训练题(B){x |-4<x <-1} (C){x |x >4,或 x <1}(D){x |1<x <4}2. 不等式-x 2+x -2>0 的解集是()(A){x |x >1,或 x <-2}(B){x |-2<x <1} (C)R (D) ∅3. 不等式 x 2>a 2(a <0)的解集为( )(A){x |x >±a } (B){x |-a <x <a }(C) {x |x >-a ,或 x <a }(D) {x |x >a ,或 x <-a }4. 已知不等式 ax 2+bx +c >0 的解集为{x | - 1< x < 2},则不等式 cx 2+bx +a <0 的解集是()31(A){x |-3<x < }21(B){x |x <-3, 或 x > } 2 1(C){x -2<x < }31(D){x |x <-2, 或 x > }35. 若函数 y =px 2-px -1(p ∈R )的图象永远在 x 轴的下方,则 p 的取值范围是( )(A)(-∞,0)(B)(-4,0](C)(-∞,-4) (D)[-4,0)二、填空题 6. 不等式 x 2+x -12<0 的解集是. 7. 不等式 3x -1≤ 0 的解集是. 2x + 58.不等式|x 2-1|<1 的解集是 .9. 不等式 0<x 2-3x <4 的解集是.10. 已知关于 x 的不等式 x 2-(a + 1 )x +1<0 的解集为非空集合{x |a <x < 1},则实数 a 的取值范围是.a a三、解答题11. 求不等式 x 2-2ax -3a 2<0(a ∈R )的解集.⎧x 2 + y 2 - 2x = 012.k 在什么范围内取值时,方程组⎨ ⎩3x - 4 y + k = 0有两组不同的实数解?Ⅲ 拓展训练题13.已知全集 U =R ,集合 A ={x |x 2-x -6<0},B ={x |x 2+2x -8>0},C ={x |x 2-4ax +3a 2<0}.(1) 求实数 a 的取值范围,使 C (2) 求实数 a 的取值范围,使 C ⊇ (A ∩B ); ⊇ ( U A )∩( U B ).14.设 a ∈R ,解关于 x 的不等式 ax 2-2x +1<0.测试十二不等式的实际应用Ⅰ学习目标会使用不等式的相关知识解决简单的实际应用问题.Ⅱ基础训练题一、选择题11.函数y =( )(A){x|-2<x<2} (B){x|-2≤x≤2}(C){x|x>2,或x<-2} (D){x|x≥2,或x≤-2}2.某村办服装厂生产某种风衣,月销售量x(件)与售价p(元/件)的关系为p=300-2x,生产x 件的成本r=500+30x(元),为使月获利不少于8600 元,则月产量x 满足( )(A)55≤x≤60 (B)60≤x≤65(C)65≤x≤70 (D)70≤x≤753.国家为了加强对烟酒生产管理,实行征收附加税政策.现知某种酒每瓶70 元,不征收附加税时,每年大约产销100万瓶;若政府征收附加税,每销售100 元征税r 元,则每年产销量减少10r 万瓶,要使每年在此项经营中所收附加税不少于112 万元,那么r 的取值范围为( )(A)2≤r≤10 (B)8≤r≤10(C)2≤r≤8 (D)0≤r≤84.若关于x 的不等式(1+k2)x≤k4+4 的解集是M,则对任意实常数k,总有( )(A)2∈M,0∈M (B)2∉M,0∉M(C)2∈M,0∉M (D)2∉M,0∈M二、填空题5.已知矩形的周长为36cm,则其面积的最大值为.6.不等式2x2+ax+2>0 的解集是R,则实数a 的取值范围是.7.已知函数f(x)=x|x-2|,则不等式f(x)<3 的解集为.8.若不等式|x+1|≥kx 对任意x∈R 均成立,则k 的取值范围是.三、解答题9.若直角三角形的周长为2,求它的面积的最大值,并判断此时三角形形状.10.汽车在行驶过程中,由于惯性作用,刹车后还要继续滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个主要因素,在一个限速为40km/h 的弯道上,甲乙两车相向而行,发现情况不对同时刹车,但还是相撞了,事后现场测得甲车刹车的距离略超过12m,乙车的刹车距离略超过10m.已知甲乙两种车型的刹车距离s(km)与车速x(km/h)之间分别有如下关系:s 甲=0.1x+0.01x2,s 乙=0.05x+0.005x2.问交通事故的主要责任方是谁?Ⅲ拓展训练题11.当x∈[-1,3]时,不等式-x2+2x+a>0 恒成立,求实数a 的取值范围.12.某大学印一份招生广告,所用纸张(矩形)的左右两边留有宽为4cm 的空白,上下留有都为6cm 的空白,中间排版面积为2400cm2.如何选择纸张的尺寸,才能使纸的用量最小?⎨ ⎩ ⎨ ⎨ ⎩⎩⎩⎩⎨ ⎩ ⎨y < 0⎨ ⎩ ⎨ ⎩⎨ ⎩测试十三 二元一次不等式(组)与简单的线性规划问题Ⅰ 学习目标1. 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2. 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.Ⅱ 基础训练题一、选择题 1.已知点 A (2,0),B (-1,3)及直线 l :x -2y =0,那么( ) (A)A ,B 都在 l 上方 (B)A ,B 都在 l 下方 (C)A 在 l 上方,B 在 l 下方(D)A 在 l 下方,B 在 l 上方⎧x ≥ 0,2. 在平面直角坐标系中,不等式组⎪y ≥ 0, 所表示的平面区域的面积为()⎪x + y ≤ 2(A)1(B)2 (C)3(D)43. 三条直线 y =x ,y =-x ,y =2 围成一个三角形区域,表示该区域的不等式组是()⎧ y ≥ x ,⎧ y ≤ x , ⎧ y ≤ x , ⎧ y ≥ x , (A) ⎪ y ≥ -x , ⎪(B) ⎨ y ≤ -x ,(C) ⎪ y ≥ -x , ⎪(D) ⎨ y ≤ -x ,⎪ y ≤ 2. ⎪ y ≤ 2.⎧x - y + 5 ≥ 0, ⎪ y ≤ 2. ⎪ y ≤ 2. 4. 若 x ,y 满足约束条件⎪x + y ≥ 0, ⎪x ≤ 3,则 z =2x +4y 的最小值是()(A)-6 (B)-10 (C)5 (D)10 5. 某电脑用户计划使用不超过 500 元的资金购买单价分别为 60 元,70 元的单片软件和盒装磁盘.根据需要,软件至少买 3 片,磁盘至少买 2 盒,则不同的选购方式共有( ) (A)5 种 (B)6 种 (C)7 种 (D)8 种 二、填空题6. 在平面直角坐标系中,不等式组⎧x > 0所表示的平面区域内的点位于第 象限.⎩ 7. 若不等式|2x +y +m |<3 表示的平面区域包含原点和点(-1,1),则 m 的取值范围是.⎧x ≤ 1,8. 已知点 P (x ,y )的坐标满足条件⎪y ≤ 3, 那么 z =x -y 的取值范围是.⎪3x + y - 3 ≥ 0,⎧x ≤ 1,9.已知点 P (x ,y )的坐标满足条件⎪ y ≤ 2,⎪2x + y - 2 ≥ 0,那么 y 的取值范围是 .x10. 方程|x |+|y |≤1 所确定的曲线围成封闭图形的面积是.三、解答题11. 画出下列不等式(组)表示的平面区域:⎧x ≤ 1, (1)3x +2y +6>0(2) ⎪y ≥ -2,⎪x - y + 1 ≥ 0.2 2 2 ⎨ ⎩12. 某实验室需购某种化工原料 106kg ,现在市场上该原料有两种包装,一种是每袋 35kg ,价格为 140 元;另一种是每袋 24kg ,价格为 120 元.在满足需要的前提下,最少需要花费多少元?Ⅲ 拓展训练题13. 商店现有 75 公斤奶糖和 120 公斤硬糖,准备混合在一起装成每袋 1 公斤出售,有两种混合办法:第一种每袋装 250 克奶糖和 750 克硬糖,每袋可盈利 0.5 元;第二种每袋装 500 克奶糖和 500 克硬糖,每袋可盈利 0.9 元.问每一种应装多少袋,使所获利润最大?最大利润是多少?14.甲、乙两个粮库要向 A ,B 两镇运送大米,已知甲库可调出 100 吨,乙库可调出 80 吨,而 A 镇需大米 70 吨,B 镇需大米 110 吨,两个粮库到两镇的路程和运费如下表:问:(1)这两个粮库各运往 A 、B 两镇多少吨大米,才能使总运费最省?此时总运费是多少?(2)最不合理的调运方案是什么?它给国家造成不该有的损失是多少?测试十四 不等式全章综合练习Ⅰ基础训练题一、选择题 1. 设 a ,b ,c ∈R ,a >b ,则下列不等式中一定正确的是( )(A)ac 2>bc 2 (B) 1 < 1(C)a -c >b -c(D)|a |>|b |a b⎧x + y - 4 ≤ 0, 2.在平面直角坐标系中,不等式组⎪2x - y + 4 ≥ 0, 表示的平面区域的面积是()⎪ y ≥ 2(A) 32(B)3 (C)4 (D)63. 某房地产公司要在一块圆形的土地上,设计一个矩形的停车场.若圆的半径为 10m ,则这个矩形的面积最大值是( ) (A)50m 2(B)100m 2 (C)200m 2 (D)250m 2x 2 - x + 2 4. 设函数 f (x )=x 2,若对 x >0 恒有 xf (x )+a >0 成立,则实数 a 的取值范围是()(A)a <1-2 (B)a <2 -1 (C)a >2 -1 (D)a >1-2 5.设 a ,b ∈R ,且 b (a +b +1)<0,b (a +b -1)<0,则( ) (A)a >1 (B)a <-1 (C)-1<a <1 (D)|a |>1二、填空题222x +2ax -⋅a-1 12 n6. 已知 1<a <3,2<b <4,那么 2a -b 的取值范围是 a, 的取值范围是.b7. 若不等式 x 2-ax -b <0 的解集为{x |2<x <3},则 a +b = .8. 已知 x ,y ∈R +,且 x +4y =1,则 xy 的最大值为.9. 若函数 f (x )=的定义域为 R ,则 a 的取值范围为.10. 三个同学对问题“关于 x 的不等式 x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数 a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值.”乙说:“把不等式变形为左边含变量 x 的函数,右边仅含常数,求函数的最值.” 丙说:“把不等式两边看成关于 x 的函数,作出函数图象.” 参考上述解题思路,你认为他们所讨论的问题的正确结论,即 a 的取值范围是 .三、解答题11.已知全集 U =R ,集合 A ={x | |x -1|<6} ,B ={x |(1) 求 A ∩B ; (2) 求(U A )∪B .x - 8>0}.2x - 112. 某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本 1000 元,运费 500 元,可得产品 90 千克;若采用乙种原料,每吨成本 1500 元,运费 400 元,可得产品 100 千克.今预算每日原料总成本不得超过 6000 元, 运费不得超过 2000 元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?Ⅱ 拓展训练题a j 13. 已知数集 A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质 P :对任意的 i ,j (1≤i ≤j ≤n ),a i a j 与两a i数中至少有一个属于 A .(1) 分别判断数集{1,3,4}与{1,2,3,6}是否具有性质 P ,并说明理由;(2)证明:a =1,且a 1 + a 2 + + a n= a .1a -1+a -1+ +a -1 nab 3 3 ⎨ ⎩一、选择题1.函数 y = 测试十五 必修 5 模块自我检测题的定义域是()(A)(-2,2) (B)(-∞,-2)∪(2,+∞) (C)[-2,2] (D)(-∞,-2]∪[2,+∞) 2.设 a >b >0,则下列不等式中一定成立的是( )(A)a -b <0 (B)0< a<1b a + b(C) <(D)ab >a +b2 ⎧x ≤ 1, 3.设不等式组⎪y ≥ 0, 所表示的平面区域是 W ,则下列各点中,在区域 W 内的点是()⎪x - y ≥0(A) ( 1 2 , 1)3 (B) (- 1 , 1)2 3 (C) (- 1 ,- 1)(D) ( 1 ,- 1)2 32 34. 设等比数列{a n }的前 n 项和为 S n ,则下列不等式中一定成立的是() (A)a 1+a 3>0 (B)a 1a 3>0 (C)S 1+S 3<0 (D)S 1S 3<0 5. 在△ABC 中,三个内角 A ,B ,C 的对边分别为 a ,b ,c ,若 A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )(A)1∶ ∶2(B)1∶2∶3(C)2∶ ∶1(D)3∶2∶16.已知等差数列{a n }的前 20 项和 S 20=340,则 a 6+a 9+a 11+a 16 等于( )(A)31 (B)34 (C)68 (D)707. 已知正数 x 、y 满足 x +y =4,则 log 2x +log 2y 的最大值是() (A)-4 (B)4 (C)-2 (D)28. 如图,在限速为 90km/h 的公路 AB 旁有一测速站 P ,已知点 P 距测速区起点 A 的距离为 0.08 km ,距测速区终点 B 的距离为 0.05 km ,且∠APB =60°.现测得某辆汽车从 A 点行驶到 B 点所用的时间为 3s ,则此车的速度介于 ( )(A)60~70km/h (B)70~80km/h (C)80~90km/h (D)90~100km/h二、填空题 9. 不等式 x (x -1)<2 的解集为 . 10. 在△ABC 中,三个内角 A ,B ,C 成等差数列,则 cos(A +C )的值为 . 11. 已知{a n }是公差为-2 的等差数列,其前 5 项的和 S 5=0,那么 a 1 等于.12. 在△ABC 中,BC =1,角 C =120°,cos A = 2 ,则 AB =.3x 2 - 43 ⎨⎩⎧x ≥ 0, y ≥ 013.在平面直角坐标系中,不等式组⎪2x +y - 4 ≤ 0 ,所表示的平面区域的面积是;变量z=x+3y 的最大⎪x +y - 3 ≤ 0值是.14.如图,n2(n≥4)个正数排成n 行n 列方阵,符号a ij(1≤i≤n,1≤j≤n,i,j∈N)表示位于第i 行第j 列的正数.已1 1知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若a11=2,a24=1,a32=4,则q=;a ij=.三、解答题15.已知函数f(x)=x2+ax+6.(1)当a=5 时,解不等式f(x)<0;(2)若不等式f(x)>0 的解集为R,求实数a 的取值范围.16.已知{a n}是等差数列,a2=5,a5=14.(1)求{a n}的通项公式;(2)设{a n}的前n 项和S n=155,求n 的值.17.在△ABC 中,a,b,c 分别是角A,B,C 的对边,A,B 是锐角,c=10,且cos A=b=4.cos B a 3(1)证明角C=90°;(2)求△ABC 的面积.18.某厂生产甲、乙两种产品,生产这两种产品每吨所需要的煤、电以及每吨产品的产值如下表所示.若每天配给该厂的煤至多56 吨,供电至多45 千瓦,问该厂如何安排生产,使得该厂日产值最大?用煤(吨) 用电(千瓦) 产值(万元) 甲种产品7 2 8乙种产品 3 5 1119.在△ABC 中,a,b,c 分别是角A,B,C 的对边,且cos A=1.3(1)求sin 2B +C+ cos 2 A的值;2(2)若a=,求bc 的最大值.20.数列{a n}的前n 项和是S n,a1=5,且a n=S n-1(n=2,3,4,…).(1)求数列{a n}的通项公式;(2)求证:1+1a1 a2+1+ +1a3 a n<3⋅53 3 7 (5 - 0)2+ (2 - 0)2 29 3 2 44 参考答案一、选择题 第一章 解三角形测试一 正弦定理和余弦定理1.B 2.C 3.B4.D 5.B提示:4.由正弦定理,得 sin C =3,所以 C =60°或 C =120°,2当 C =60°时,∵B =30°,∴A =90°,△ABC 是直角三角形; 当 C =120°时,∵B =30°,∴A =30°,△ABC 是等腰三角形.5.因为 A ∶B ∶C =1∶2∶3,所以 A =30°,B =60°,C =90°,由正弦定理a = sin Ab sin B = csin C=k , 得 a =k ·sin30°= 1 k ,b =k ·sin60°= 2所以 a ∶b ∶c =1∶ ∶2.3k ,c =k ·sin90°=k ,2二、填空题 6.2 6 提示:7.30° 8.等腰三角形 9. 3 + 3710. 5 2 8. ∵A +B +C =π,∴-cos A =cos(B +C ).∴2cos B cos C =1-cos A =cos(B +C )+1,∴2cos B cos C =cos B cos C -sin B sin C +1,∴cos(B -C )=1,∴B -C =0,即 B =C .9. 利用余弦定理 b 2=a 2+c 2-2ac cos B .10. 由 tan A =2,得sin A =,根据正弦定理,得AC sin B = BC sin A ,得 AC = 5 2.三、解答题11.c =2 ,A =30°,B =90°.12.(1)60°;(2)AD = .13. 如右图,由两点间距离公式,得 OA = = ,同理得OB = 145, AB = .由余弦定理,得cos A = OA 2 + AB 2 - OB 2 22⨯OA ⨯AB = 2 , ∴A =45°.25232310137(5 - 0)2+ (2 - 0)22923214.(1)因为2cos(A+B)=1,所以A+B=60°,故C=120°.(2)由题意,得a+b=2 ,ab=2,又AB2=c2=a2+b2-2ab cos C=(a+b)2-2ab-2ab cos C=12-4-4×( -1)=10.2所以AB=.(3)S△ABC=1ab sin C=1·2· 3 =3 .2 2 2 2测试二解三角形全章综合练习1.B 2.C 3.D 4.C 5.B提示:5.化简(a+b+c)(b+c-a)=3bc,得b2+c2-a2=bc,由余弦定理,得cos A=b2+c2-a22bc=1,所以∠A=60°.2因为sin A=2sin B cos C,A+B+C=180°,所以sin(B+C)=2sin B cos C,即sin B cos C+cos B sin C=2sin B cos C.所以sin(B-C)=0,故B=C.故△ABC 是正三角形.二、填空题6.30°7.120°8.24559.510.三、解答题11.(1)由余弦定理,得c=;(2)由正弦定理,得sin B=239 .1312.(1)由a·b=|a|·|b|·cos〈a,b〉,得〈a,b〉=60°;(2)由向量减法几何意义,知|a|,|b|,|a-b|可以组成三角形,所以|a-b|2=|a|2+|b|2-2|a|·|b|·cos〈a,b〉=7,故|a-b|=.13.(1)如右图,由两点间距离公式,得OA ==,同理得OB = 145, AB =.由余弦定理,得329 29 29 48t 2 - 24t +7 cos A = OA 2 + AB 2 - OB 2 2⨯OA ⨯AB = 2 ,2 所以 A =45°.故 BD =AB ×sin A =2 .(2)S1 1 = ·OA ·BD = · ·2 =29. △OAB 2 214.由正弦定理aa = sin Ab b sin B = csin Cc= 2R , 得 = sin A , 2R 2R = sin B , 2R= sin C . 因为 sin 2A +sin 2B >sin 2C ,所 以 ( a )2 + ( b )2 > ( c)2 ,2R 2R 2R 即 a 2+b 2>c 2.a 2 +b 2 -c 2所以 cos C = 2ab>0, 由 C ∈(0,π),得角 C 为锐角.15.(1)设 t 小时后甲、乙分别到达 P 、Q 点,如图,3则|AP |=4t ,|BQ |=4t ,因为|OA |=3,所以 t = h 时,P 与 O 重合. 43故当 t ∈[0, ]时,4|PQ |2=(3-4t )2+(1+4t )2-2×(3-4t )×(1+4t )×cos60°;3当 t > h 时 ,|PQ |2=(4t -3)2+(1+4t )2-2×(4t -3)×(1+4t )×cos120°.4故得|PQ |= (t ≥0).(2)当 t = -- 24 = 2 ⨯ 48 1 h 时,两人距离最近,最近距离为 2km .416.(1)由正弦定理a = sin Ab sin B = csin C= 2R , 得 a =2R sin A ,b =2R sin B ,c =2R sin C .所以等式 cos B = - cos C b 2a + c可化为 cos B = - cos C 2R sin B ,2 ⋅ 2R sin A + 2R sin C 即 cos B = - cos Csin B ,2 sin A + sin C 2sin A cos B +sin C cos B =-cos C ·sin B ,故 2sin A cos B =-cos C sin B -sin C cos B =-sin(B +C ), 因为 A +B +C =π,所以 sin A =sin(B +C ), 1故 cos B =- ,2所以 B =120°.⎨ ⎨n1 23(2)由余弦定理,得 b 2=13=a 2+c 2-2ac ×cos120°, 即 a 2+c 2+ac =13 又 a +c =4,⎧a = 1 解得 ⎩c = 3 ⎧a = 3 ,或 . ⎩c = 1所以 S1 1 = ac sin B = ×1×3× 3 = 3 3 .△ABC2 22 4一、选择题1.C 2.B 3.C4.C5.B二、填空题第二章 数列测试三 数列6.(1) a = 2 (或其他符合要求的答案)(2) a = nn + 1n 1 + (-1)n2 (或其他符合要求的答案)7.(1) 1 , 4 , 9 , 16 , 25 (2)7 8.679. 1 10.42 5 10 17 26 15提示:9.注意 a n 的分母是 1+2+3+4+5=15.10.将数列{a n }的通项 a n 看成函数 f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前 6 项依次是 11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当 n ≥5 时,a n =14-3n <0.12.(1) a 10 = 109 3 , a n +1 = n 2 + 3n +13 , a 2 = n4 + n 2 -1 ; 3 (2)79 2是该数列的第 15 项.313.(1)因为 a =n - 1 ,所以 a =0,a = 3 ,a = 8 ,a =15 ;n2 344(2)因为 a-a =[(n +1) -1]-(n - 1)=1+1n +1nn + 1 nn (n + 1)又因为 n ∈N +,所以 an +1-a n >0,即 a n +1>a n . 所以数列{a n }是递增数列.测试四 等差数列一、选择题 1.B 2.D3.A4.B5.B二、填空题 6.a 4 7.13 8.6 9.6n -1 10.35 提示:10. 方法一:求出前 10 项,再求和即可;方法二:当 n 为奇数时,由题意,得 a n +2-a n =0,所以 a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当 n 为偶数时,由题意,得 a n +2-a n =2, 即 a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *).n。

人教A版高中数学必修5数学试卷(含答案).docx

人教A版高中数学必修5数学试卷(含答案).docx

□|r >座号2014-2015学年度第二学期高一必修5期末数学试卷一.选择题(每小题5分,共60分,1.下列结论正确的是()A.若ac>bc,则a>b答案涂在答题卡内)B,若则a>bA、16B、4C、8D、不确定10•—个等比数列{d〃}的前i】项和为48,前2n项和为60,则前3】】)A、63B、108C、75 Ds 83C.若a>b, c〈0,2.在数列{色}中,A. 99则a+c<b+c D.若石〈丽, 则a<b11. A ABC中,a、b、c分别为ZA、ZB、ZC的对边•如果a、b、3A ABC的面积为一,那么尿()2Oj=b a n^-a n = 2 ,则冬1的值为B. 49C. 101 D.1021 + V32B. 1 4~ V32 + V32D. 23. AABC中,若d = l,c = ZB = 6(y\ 则AABC 的面积为C.1D. 734.在等比数列{①}中,已知®二丄n 1 9A. 1B. 3C. ±14D. ±35•已知x>0 ,函数y = — + x的最小值是xB. 4A. 5 C. 8 D. 6x+y<l6•设兀y满足约束条件>?<x ,则z = 3^+y的最大值为y > -2A. 5B. 3C. 7 D・-87•已知数列{色}的前n项和S n=2n(n^l),则©的值为(A. 80B. 40C. 20 D・&在中,如果sin A: sin B: sin C = 2:3:4 ,那么cosQ等于10A*t ° 'I9•已知等差数列{%}的前n项和且S25 = 100 ,则如+%=(12.当R时,不等式kx2-kx+\> 0恒成立,则k之的取值范围是()A. (0,+oo)B. [0,+oo) c・[0,4) D. (二填空题(每小题5分,共20分。

必修五数学测试题及答案

必修五数学测试题及答案

必修五数学测试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为偶函数的是()A. f(x) = x^2B. f(x) = x^3C. f(x) = xD. f(x) = |x|2. 已知等差数列{a_n}的前n项和为S_n,若S_5 = 5a_3,则a_3的值为()A. 5B. 10C. 15D. 203. 函数y = 3x^2 - 2x + 1的顶点坐标为()A. (1/3, 2/3)B. (1, 2)C. (-1, 4)D. (0, 1)4. 已知圆x^2 + y^2 = 9的圆心为()A. (0, 0)B. (3, 0)C. (0, 3)D. (3, 3)5. 函数f(x) = 2x + 1在区间[-1, 2]上的最大值是()A. 3B. 5C. 3D. 56. 已知向量a = (3, -4),向量b = (-1, 2),则向量a与向量b的点积为()A. -14B. 10C. -2D. 147. 已知直线y = 2x + 3与直线y = -x + 5平行,则两直线之间的距离为()A. 2B. 3C. 4D. 58. 函数y = x^3 - 3x^2 + 4x - 2的导数为()A. 3x^2 - 6x + 4B. 3x^2 - 6x + 1C. 3x^2 - 9x + 12D. 3x^2 - 9x + 49. 已知函数f(x) = x^2 - 4x + 4,若f(a) = 0,则a的值为()A. 2B. -2C. 0D. 410. 已知复数z = 1 + i,其共轭复数为()A. 1 - iB. 1 + iC. -1 + iD. -1 - i二、填空题(每题5分,共20分)1. 已知等比数列{a_n}的公比为2,首项为1,则a_5 = _______。

2. 函数y = x^2 - 6x + 8的对称轴方程为x = _______。

3. 已知圆心在原点,半径为3的圆的方程为x^2 + y^2 = _______。

高二数学必修5试题及答案

高二数学必修5试题及答案

高二数学必修5试题及答案高二数学必修5试题及答案作为数学课程的一部分,是高中阶段学生必须掌握的内容。

这些试题包含了数学的各个领域,包括代数、几何、概率与统计等等。

通过学习和解答这些试题,学生可以提高自己的数学能力和解决问题的能力。

下面是一些高二数学必修5试题及答案的例子。

1. 解方程:求解方程2x + 3 = 7。

解答:将等式转化为2x = 7 - 3,得到2x = 4,再除以2得到x = 2。

因此,方程的解为x = 2。

2. 求函数的图像:已知函数y = x^2 - 2x + 1,画出函数的图像。

解答:首先,计算函数的值,然后将函数值与相应的x坐标连线,形成函数的图像。

将x值代入函数中,得到y值。

例如,当x = 0时,y = 1;当x = 1时,y = 0;当x = 2时,y = 1。

直接连线这些点,就可以画出函数的图像。

3. 求概率:从一副标准扑克牌中,随机抽取一张牌,求抽到红心的概率。

解答:一副标准扑克牌中有52张牌,其中有13张红心。

因此,红心的概率等于红心牌的数量除以总牌的数量,即13/52,简化为1/4。

4. 计算面积:一个正方形的边长为4cm,求其面积。

解答:正方形的面积等于边长的平方,即4cm * 4cm = 16cm^2。

因此,正方形的面积为16平方厘米。

这些试题只是高二数学必修5的一小部分,通过解答这些问题,学生可以巩固和应用他们在课堂上学到的知识。

同时,这些试题还需要学生具备一定的思维能力和分析能力,培养他们解决问题的能力。

高二数学必修5试题及答案的掌握对于学生来说非常重要,它可以帮助他们更好地理解数学知识,提高他们的数学能力。

除了通过课堂上的学习,学生还可以通过做题来巩固和拓展自己的知识。

总结而言,高二数学必修5试题及答案是学生进行数学学习和提高数学能力的重要工具。

通过解答这些试题,学生可以巩固和应用他们在课堂上学到的知识,提高他们的数学能力和解决问题的能力。

因此,我们应该认真对待这些试题,并加以适当的练习与应用。

(必考题)高中数学必修五第一章《数列》测试卷(有答案解析)(1)

(必考题)高中数学必修五第一章《数列》测试卷(有答案解析)(1)

一、选择题1.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .172.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .543.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .64.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞5.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( )A .2018B .2019C .2020D .20216.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .5B .6C .7D .87.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .268.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( )A .11n + B .1n n + C .1n n- D .11n n -+ 9.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .410.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .202211.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .912.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-二、填空题13.设S n 是数列{}n a 的前n 项和,且*1111,20,3n n n a a S S n N ++=+=∈,则1223910S S S S S S ++⋅⋅⋅⋅⋅+=___________.14.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记*1,n n n P AP n N θ+∠=∈.若32arctan 9θ=,则点A 的坐标为________.15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+ ⎪⎝⎭,则2018S =______. 16.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 17.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________. 18.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数). 从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______. 19.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________. 三、解答题21.设数列{}n a 满足()121*4n n a n N a +=-∈-,其中11a =. (1)证明:112n a ⎧⎫-⎨⎬-⎩⎭是等比数列; (2)令32n n n a b a -=-,设数列(){}21-⋅n n b 的前n 项和为n S ,求使2021n S <成立的最大自然数n 的值.22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .24.已知递增等比数列{}n a 满足:12a =,416a = . (1)求数列{}n a 的通项公式;(2)若数列{}n b 为等差数列,且满足221b a =-,3358b a =,求数列{}n b 的通项公式及前10项的和;25.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T .26.已知数列{}n a 的前n 项和为21n S n n =++.(1)求这个数列的通项公式; (2)设()11n n n b n a a *+=∈N ,证明:对n *∀∈N ,数列{}n b 的前n 项和524n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C . 【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.2.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.3.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.4.D解析:D【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.5.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2. 142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+(1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.6.C解析:C 【分析】首先分析题目已知3a n+1+a n =4(n ∈N*)且a 1=9,其前n 项和为S n ,求满足不等式|S n ﹣n ﹣6|<1125的最小整数n .故可以考虑把等式3a n+1+a n =4变形得到111-13n n a a +-=-,然后根据数列b n =a n ﹣1为等比数列,求出S n 代入绝对值不等式求解即可得到答案. 【详解】对3a n+1+a n =4 变形得:3(a n+1﹣1)=﹣(a n ﹣1) 即:111-13n n a a +-=- 故可以分析得到数列b n =a n ﹣1为首项为8公比为13-的等比数列. 所以b n =a n ﹣1=8×11-3n -⎛⎫ ⎪⎝⎭a n =8×11-3n -⎛⎫ ⎪⎝⎭+1所以181********n nnS n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+=-⨯-+ ⎪⎛⎫⎝⎭-- ⎪⎝⎭|S n ﹣n ﹣6|=n11-6-3125⎛⎫⨯< ⎪⎝⎭解得最小的正整数n=7 故选C . 【点睛】此题主要考查不等式的求解问题,其中涉及到可化为等比数列的数列的求和问题,属于不等式与数列的综合性问题,判断出数列a n ﹣1为等比数列是题目的关键,有一定的技巧性属于中档题目.7.A解析:A 【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.8.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.9.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.10.D解析:D 【分析】根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.11.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.12.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.二、填空题13.【分析】由代入化简求得再结合求和方法计算可得结果【详解】因为所以所以所以又所以数列是以为首项为公差的等差数列所以所以所以所以故答案为:【点晴】由代入化简求得数列是等差数列是解题的关键解析:17【分析】由11n n n a S S ++=-代入化简求得n S ,再结合求和方法计算可得结果. 【详解】因为1120n n n a S S +++= 所以1120n n n n S S S S ++-+= 所以112n n n n S S S S ++-= 所以1112n nS S +-=又11113S a == 所以数列1n S ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列, 所以()131221nn n S =+-⨯=+ 所以121n S n =+ 所以111111212322123n n S S n n n n +⎛⎫=⋅=- ⎪++++⎝⎭所以12239101111111111123557192123217S S S S S S ⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪⎝⎭⎝⎭ 故答案为:17【点晴】由11n n n a S S ++=-代入化简求得数列1n S ⎧⎫⎨⎬⎩⎭是等差数列是解题的关键. 14.或【分析】设点的坐标利用两角差正切公式求列式解得结果【详解】设因为所以或故答案为:或【点睛】本题考查两角差正切公式等比数列考查综合分析求解能力属中档题解析:(0,2)或(0,16) 【分析】设点A 的坐标,利用两角差正切公式求3tan θ,列式解得结果. 【详解】设(0,),0A a a >,因为233443343,124,128P AP AP OAP O x x θ=-=⨯==⨯=∠∠=∠所以238442284t 21an 39a a a a a a aθ-===∴=++⋅或16 故答案为:(0,2)或(0,16)【点睛】本题考查两角差正切公式、等比数列,考查综合分析求解能力,属中档题.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N *∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+= ⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=,201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.17.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n na a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n na a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.18.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.19.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如 解析:13313S 【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下:(1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)证明见解析;(2)最大自然数6n =. 【分析】(1)根据题中条件,可得1112n a +--的表达式,根据等比数列的定义,即可得证;(2)由(1)可得1122n n a -=-,则可得2n n b =,根据错位相减求和法,可求得n S 的表达式,根据n S 的单调性,代入数值,分析即可得答案. 【详解】解:(1)∵()1621*44n n n n a a n N a a +-=-=∈--, ∴()()1116323346312311122162262822224n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a +++----⎛⎫----+--======- ⎪-----+----⎝⎭--即11122112n n a a +--=--, ∴112n a ⎧⎫-⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列. (2)由(1)知,1122n n a -=-, 即321112222n n n n n n n a a b a a a ---==-==---, ∴()()21212-⋅=-⋅nn n b n ,()123123252212n n S n =⋅+⋅+⋅++-⋅,① ()23412123252212n n S n +=⋅+⋅+⋅++-⋅,②①减②得()()()112311421222222122221212n nn n n S n n +++--=⋅++++--⋅=+⋅--⋅-()13226n n +=-⋅-.∴()12326n n S n +=-⋅+.∴()()()21112122322210++++-=-⋅--⋅=+>n n n n n S S n n n ,∴n S .单调递增.∵7692611582021S =⨯+=<,87112628222021S =⨯+=>.故使2021n S <成立的最大自然数6n =. 【点睛】解题的关键是根据所给形式,进行配凑和整理,根据等比数列定义,即可得证,求和常用的方法有:①公式法,②倒序相加法,③裂项相消法,④错位相减法等,需熟练掌握. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23nnn c =+代入上式,整理得1(2)(3)2306n n k k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N , 将23nnn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅, 事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n n a an n+=+,得到{}n b 为等比数列,(2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅,12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.24.(1)2nn a =;(2)21n b n =-,数列{}n b 前10项的和10100S =.【分析】(1)利用等比数列的通项公式,结合已知12a =,416a =,可以求出公比,这样就可以求出数列{}n a 的通项公式;(2)由数列{}n a 的通项公式,可以求出21a -和 358a 的值,这样也就求出2b 和 3b 的值,这样可以求出等差数列{}n b 的公差,进而可以求出通项公式,利用前n 项和公式求出数列{}n b 前10项的和.【详解】(1)设等比数列的公比为q ,由已知12a =,34121616q a a q =⇒⋅=⇒=,所以112n n n a q a -=⋅=,即数列{}n a 的通项公式为2n n a =;(2)由(1)知2nn a =,所以2221213b a =-=-=,333552588b a ==⨯=, 设等差数列{}n b 的公差为d ,则322d b b -==,12121n d b b n b =-=∴=-, 设数列{}n b 前10项的和为10S ,则11010910910101210022S d b ⨯⨯=+⋅=⨯+⨯=, 所以数列{}n b 的通项公式21n b n =-,数列{}n b 前10项的和10100S =. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:即直接用等差、等比数列的求和公式求和.(2)错位相减法:若{}n a 是等差数列,{}n b 是等比数列,求1122n n a b a b a b ++⋅⋅⋅. (3)裂项相消法:把数列的通项拆成两项之差,相消剩下首尾的若干项.常见的裂顶有()11111n n n n =-++,()1111222n n n n ⎛⎫=- ⎪++⎝⎭,()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭等.(4)分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. (5)倒序相加法.25.(1)条件性选择见解析,2n n a =;(2)332n nn T +=-. 【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122n n S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列, 所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =, 所以1222n n n a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列. 故1222n n n a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n nn n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =. (2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===, 所以2323412222n n n T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n n n n T ++⎛⎫=++++- ⎪⎝⎭ 212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+---- 13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n n n T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 26.(1)*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩;(2)证明见解析. 【分析】(1)利用*1,(1),(2,)n n nn S n a S S n n N -=⎧=⎨-≥∈⎩求解即可;(2)利用n a 求n b ,当1n =时,1151224b =≤显然成立,当2n ≥时,利用列项相消法求和判断即可. 【详解】解:(1)当1n =时,111113a S ==++=;当2n ≥时,1n n n a S S -=-22(1)[(1)(1)1]n n n n =++--+-+2n =,所以*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩; (2)由(1)易知*1,(1)121(2,),4(1)n n b n n N n n ⎧⎪=⎪=⎨≥∈⎪+⎪⎩ 当1n =时,1151224b =≤显然成立. 当2n ≥时,1111()4(1)41n b n n n n ==-++, 123n n T b b b b =+++ 11111111[()()()]12423341n n =+-+-++-+ 1111()12421n =+-+ 515244(1)24n =-<+; 故结论成立.【点睛】关键点睛:本题考查数列求通项公式,利用数列求和证明不等式.利用列项相消法求和是解决本题的关键.。

高中数学必修五试卷(含答案)

高中数学必修五试卷(含答案)

必修五阶段测试四(本册综合测试)时间:120分钟满分:150分、选择题(本大题共12小题,每小题5分,共60分) 3x — 11. 不等式右广1的解集是()1 1且lg (a + b )=— 1,则匚+匚的最小值是()a bS n 为等差数列{a n }的前n 项和,若a 1= 1, a 3= 5, S k +2 — S k = 36,贝U k 的值为()D . a|c|>b|c|A . 12的最大项,贝U n °=()3W xW2B. x4wx<2C/2 . (2017 存瑞中学质检)△ ABC 中,a = 1 , B =45 °A . 4,33 .若a<0 ,则关于 A . x>5a 或 x< — a3x>2 或 x w4D . {x|x<2}&ABC =2,则厶ABC 外接圆的直径为(C . 5,22 2 x 的不等式x — 4ax — 5a >0的解为( )B . x> — a 或 x<5a D . 6,2C . — a<x<5aD . 5a<x<—aA.|10C . 40D . 80a ,b ,c € R , a>b ,则下列不等式成立的是210 .设全集 U = R , A = {x|2(x — 1) <2} , B = {x|lo g2(x 2+ x+1)> - lo g 2(x 2+ 2)},则图中阴影部分表示的集合为 ()a > 0,b > 0, 7.已知等差数列{ a n }的公差为d (d ^ 0),且a 3+ a 6 + a 10 + 玄仁=32,若 a m = 8,贝U m 的值为( &若变量x ,y 满足约束条件rx + y w 8,2y — x w 4,x > 0, y > 0,且z = 5y — x 的最大值为a ,最小值为b ,则a — b 的值是A . 48B . 30C . 24D . 169.设{a n }是等比数列,公比q = 2, S n 为{a n }的前 n 项和,记 T n = 17S n 'n (n €a n + 1N ),设Tn o 为数列{T n }A . {x|1w x<2} B. {x|x》1} C. {x|0<x w 1} D. {xX< 1}11 •在等比数列{a n}中,已知a2= 1,则其前三项的和S3的取值范围是()A . ( — 3 —1]B . (— s, 0] U [1 ,+s )C. [3,+s ) D . (— s,—1] U [3 ,+s )112. (2017 •西朔州期末)在数列{a n}中,a1 = 1, a*+1 = a*+ n+ 1,设数列匸的前n项和为Si,若S n<ma n对一切正整数n恒成立,则实数m的取值范围为()A . (3,+s )B . [3 ,+s )C . (2 ,+s )D . [2 ,+s )二、填空题(本大题共4小题,每小题5分,共20分)13. _______________________ (2017福建莆田二十四中期末)已知数列{ a n}为等比数列,前n项的和为S n,且a5= 4S4 + 3, a6= 4S s + 3,则此数列的公比q= .14. _______________________________________________________________________ (2017唐山一中期末)若x>0, y>0, x+ 2y+ 2xy= 8,贝U x+ 2y的最小值是 ___________________________________ .15. 如右图,已知两座灯塔A和B与海洋观察站C的距离都等于3a km,灯塔A在观察站C的北偏东20°.灯塔B在观察站C的南偏东40°则灯塔A与灯塔B的距离为_______________ .16. _______________________ 已知a, b, c 分别为△ ABC 三个内角A, B, C 的对边,a = 2,且(2 +b)(sinA —sinB) = (c—b)sinC, 则厶ABC面积的最大值为.三、解答题(本大题共6小题,共70分)17. (10分)(2017山西太原期末)若关于x的不等式ax2+ 3x—1>0的解集是,x舟<x<1(1) 求a的值;(2) 求不等式ax2—3x+ a2+ 1>0的解集.~~118. (12分)在厶ABC中,内角A, B, C的对边分别为a, b, c,且a>c.已知BA BC= 2, cosB = 3, b = 3.求:(1)a 和c 的值;(2)cos(B—C)的值.119. (12分)(2017辽宁沈阳二中月考)在厶ABC中,角A, B, C的对边分别为a, b, c,且cosA = 3.B+ C(1) 求sin2—2 + cos2A 的值;(2) 若a = .3,求bc的最大值.20. (12分)(2017长春^一高中期末)设数列{a n}的各项都是正数,且对于n € N*,都有a? + a2 + a3+- +a n = S 2,其中S n 为数列{a n }的前n 项和.(1)求 a 2;⑵求数列{a n }的通项公式.x + 2y w 2n ,21.(12分)已知点(x , y)是区域x >0, (n € N +)内的点,目标函数 z = x + y , z 的最大值记作Z n .,y > 0若数列{a n }的前n 项和为S n , a i = 1,且点(S n , a n )在直线z n = x + y 上.(1)证明:数列{a n — 2}为等比数列; ⑵求数列{S n }的前n 项和T n .22. (12分)某投资商到一开发区投资 72万元建起一座蔬菜加工厂,第一年共支出 12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入 50万元.设f(n)表示前n 年的纯利润总和(f(n)=前n 年的总收入一前n 年的总支出一投资额).(1) 该厂从第几年起开始盈利?(2) 若干年后,投资商为开发新项目,对该厂有两种处理方法:①年平均纯利润达到最大时,以 48万元出售该厂;②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?答案与解析1. B 由> 1,可得空——1> 0,所以3x — 1 —(2— x 碁0,即皱—> 0,所以炉—3【x— 3 4戶0,2 — x2 — x2— x 2 — x|x — 2 工 0,3解得4< x <2.故选B.1 .•1+1= 10;+〔 1 . 1 a b (a + b)=当a = b =気时,"=”成立,故选 C.、 5— 15. A T a i = 1, a 3= 5,…公差 d = -2~ = 2, ••• a n = 1 + 2(n — 1) = 2n — 1,S k +2 — S k = a k +2 + a k +1 = 2(k + 2) — 1 + 2(k + 1) — 1 = 4k + 4 = 36, • k = 8,故选 A. 6. C •- a >b , #7>o , • T+VT +V 故选 C.7.B 由等差数列的性质知, a 3 + a 6 + a io + a i3 = 4比=32,•- a $= 8.又 a m = 8, • m = 8.& C如图所示,当直线 z = 5y — x 经过A 点时z 最大,即a = 16,经过C 点时z 最小,即b =— 8, • a — b = 24,故选C.列{「}的最大项为T 2,则n 0= 2,故选A.2210. A 由 2(x — 1) <2,得(x — 1) <1.解得 0<x<2.122•- A = {x|0<x<2} •由 log?(x + x + 1)> — Iog 2(x + 2), 得 log 2(x 2 + x + 1)<log 2 (x 2 + 2). x 2+ x + 1>0, 则』x 2+ 2>0,解得x<1..^2 + x + 1<x ?+ 2.• B = {x|x<1} . • ?u B = {x|x > 1}. •••阴影部分表示的集合为 (?u B) n A = {x|1< x<2}.111. D 设数列{a n }的公比为q ,则a 2= a i q = 1, • q = T ,a i• S 3= a i + a 2+ a 3= a i + a i q + a i q 2= a i + 1 + ~,当 a i >0 时,S 3》1 + 2 1 a i •- = 3,当且仅当 a i = 1 时,9. A S n =a i; —V = a i (2n — 1),2 — 1V), a n +1 = a 1 2 ,n = 2时取等号,.••数取等号;当a i <0时,S 3< 1-2 = - 1,当且仅当a i =- 1时,取等号故S 3的取值范围是(一a, — 1] U [3 ,+^ ). 12. D a 1= 1, a n +1 一 a n = n + 1,a n = (a n — a n - 1)+ (a n -1 一 a n -2)+ …+ 但2一 a 1)+ a 1=(n — 1 + 1) + (n — 2+ 1) + …+ (1 + 1) + 1 =n + (n — 1) + (n — 2) + …+ 2+ 1 = n 1,当n = 1时,也满足上式,丄=2 = 2p 一丄、 a n n(n + 1) W n + 1 丿'T S n<m 对一切正整数n 恒成立,••• m >2,故选D. 13. 5解析:由题可得 a 5— a 6= 4S 4— 4S 5=— 4a 5,--a 6 = 5a5,・• q = 5.14. 4解•/ x + 2y + 2xy = 8,x + 2y 2又 2xyw —,i'x + 2y \ • x + 2y + —丿》8,• 4(x + 2y)2+ x + 2y -8 > 0, • x + 2y > 4,当且仅当x = 2y = 2时,等号成立. • x + 2y 的最小值为4.15.3a km解析:由题意知,/ ACB = 120°• AB 2= 3a 2+ 3a 2-2 . 3a x . 3acos120°= 9a 2, • AB = 3a km. 16. .3--a n =n n + 121—2+ 2 - 3+•••+ 2 2 3 1―丄=n n + 1丄)n + 1 )解析:由正弦定理及(2 + b)(sinA —sinB)= (c — b)sinC ,得(2 + b)(a — b) = (c — b)c ,又 a = 2, • b 2 + c 2— a 2= be.由余弦定理得 沁=畫 J= 2bi = 1,- A = 60°又 22= b 2+ c 2— 2bccos60°= b 2+ c 2— bc > 2bc — bc , • bc < 4.当且仅当b = c 时取等号.11{3 • &ABC =^bcsinA W4 x _23= .3.ax 2 + 3x — 1 = 0的两个实数根为 舟和1,1 3 1 1• 1+1=—a 且 2x 1=—a 解得••• a 的值为一2,⑵由(1)可知,不等式为一 2x 2- 3x + 5>0 ,即即 2x 2 + 3x — 5<0, •.•方程 2x 2 + 3x — 5 = 0 的两根为 x 1 = 1, x 2=— 2 由余弦定理,得 a 2+ c 2= b 2+ 2accosB. 又 b = 3,所以 a 2+ c 2 = 9 + 2 x 2= 13.ac^ 6, 解;2+ c 2= 13,得 a=2,c= 3或 a=3,c= 2.因 a>c ,所以 a = 3, c = 2.c 2,2.2 4.2sinC=b sinB = 3X 3 =9 .是 cos(B 一 C )=cosBcos C +sinBsinc =1x 9+竽x节=筹19. 解:(1)在厶ABC 中,T cosA = 3,2B + C1 2 1 2 1• sin — + cos2A =尹—cos(B + C)] + 2cos A — 1 =尹 + cosA) + 2cos A — 1 =—- ⑵由余弦定理知a 2= b 2+ c 2— 2bccosA ,⑵在△ ABC 中, sin B =訪—cos 2B =因a = b>c ,所以 C 是锐角,因此 cosC = 1 — sin 2c=7 9.17.解:(1)依题意,可知方程 a =— 2,•不等式ax 2— 3x + a 2+ 1>0的解集为5<x<118.解:⑴由BA BC = 2 得 cacosB = 2,1又 cosB = 3 所以 ac = 6.由正弦定理,得—1••• be 的最大值为9420. 解:(1)在已知式中,当 n = 1 时,a 3 = a f ,: a^o , • a i = 1, 当 n 》2 时,a 3+ a ; + a 3+…+ a *= £,① a 3 + a 3 + a 3 +…+ a : i = i ,②①一②得 a ¥= a n (2a i + 2a 2+…+ 2a n -1+ a n ). -a n>0 , • a n =2a 1+ 2a 2+…+2a n - 1+a n,即 a n = 2S n — a n ,•- a 2= 2(1 + a 2)— a 2,解得 a 2=— 1 或 a 2= 2,T a n >0a 2= 2.2 *(2)由(1)知 a n = 2S n — a n (n € N ),③ 当 n 》2 时,a 2-1 = 2S n -1 — a n -1,④③一④得 a :— a 2—1 = 2(S n — S n -1)— a n+a n - 1= 2a n— a n+a n - 1= a n+a n - 1.Ta n+a n -1>0 ,• a n—為-1= 3 ,•数列{a n }是等差数列,首项为 1 ,公差为21.解:(1)证明:由已知当直线过点(2n,0)时,冃标函数取得最大值,故 z n =2n.•方程为x + y = 2n. -(S n , a n)在直线 Z n =x+y上,…S n+a n= 2n •①• S n -1 + a n -1 = 2(n — 1), n A 2•②由①一②得,2a n — a n —1 = 2, n A 2. • a n —1 = 2a n — 2, n A 2.3•数列{a n — 2}是以一1为首项,1为公比的等比数列. (2)由(1)得 a n- 2=—2 * 1,• a n= 2— ~ ° 1T Sn+a n= 2n,「・ S n=2n—a n=2n— 2+f ° 19• 3= b 2 + e 22 4A2be—3be =3be ,3当且仅当b =c =2时,等号成立,1,可得a n = n ・又T= ^^ = 1, n A 2, a 1 — 2=— 1a n -1—42a n— 2—22(a n — 2) 21—触n 2n — 2 1 —2 2 -1 n —1=—n - +T =n— n+2—1 .1—2--T n = 0 +=[0 + 2 + …+ (2n — 2)] + + 2 + …+ 2n -2 +- nfn — 122. 解:由题意知 f(n)= 50n — 12n +(1)由f(n)>0,即一2n 2+ 40n — 72>0,解得2<n<18.由n € N +知,该厂从第3年起开始盈利.fL < 40 — 2X 12= 16. n 因此方案①共获利 16X 6+ 48= 144(万元),此时n = 6.方案②:f(n) = — 2(n — 10)2 + 128.从而方案②共获利 128 + 16= 144(万元)•比较两种方案,获利都是144万元,但由于第一方案只需 6年,而第②种方案需要 10年,因此,选择第①种方案更合算.2. C T S ^ABC =gacsinB = 2,• J x 1X 〒c = 2 ,• c = 42,• b 2= c 2 + a 2— 2accosB = 32 + 1 — 2x 1 x 4 2^^" = 25,• b = 5,.••外接圆的直径为SinB = 5 * * * * = 5.2,故选C. 23. B (x + a)(x — 5a)>0. ■/ a<0, /• — a>5a. ••• x> — a 或 x<5a ,故选 B.14. C 若 lg(a + b) = — 1,则 a + b =石,4 — 72=— 2n 2+ 40n — 72.(2)方案①:年平均纯利润 号=40-2n +36,••• n + 36 > 2 n n x 36n 12,当且仅当n = 6时取等号,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学必修5试题(满分:150分 时间:120分钟)一、选择题:(本大题共10小题,每小题5分,共50分)1、数列1,-3,5,-7,9,…的一个通项公式为 ( ) A .12-=n a n B.)21()1(n a n n --= C .)12()1(--=n a n n D.)12()1(+-=n a n n 2.已知{}n a 是等比数列,41252==a a ,,则公比q =( ) A .21-B .2-C .2D .213.已知ABC ∆中,︒=∠==60,3,4BAC AC AB ,则=BC ( ) A. 13B. 13C.5D.104.在△ABC 中,若2sin bB a=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 5. 在ABC ∆中,若cos cos a B b A =,则ABC ∆的形状一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 6.若∆ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =( ) A. 14-B. 14C. 23-D. 237.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为 48,则它的首项是( ) A .1 B .2C .2±D .48.等差数列}{n a 和{}n b 的前n 项和分别为S n 和T n ,且132+=n nT S n n , 则55b a =( ) A32 B 149 C 3120 D 979.已知n a 为公比q >1的等比数列,若20052006a a 和是方程24830x x的两根,则20072008a a 的值是( )A 18B 19C 20D 2110.已知数列{}n a 中,11,a =前n 项和为n S ,且点*1(,)()n n P a a n N +∈在直线10x y -+=上,则1231111nS S S S ++++=( ) A.(1)2n n + B.2(1)n n + C.21nn + D.2(1)n n +二、填空题:(本大题共4小题,每小题5分,共20分)11.已知{}n a 为等差数列,3822a a +=,67a =,则5a =____________ 12. 已知数列{}n a 的前n 项和是2n S n =, 则数列的通项n a =__ 13.在△ABC 中,若a 2+b 2<c 2,且sin C =23,则∠C = 14.△ABC 中,,,a b c 成等差数列,∠B=30°,ABC S ∆=23,那么b = 三、解答题:(本大题共6小题,共80分,解答应写出文字说明,证明过程或推演步骤.)15.(本小题满分12分)在△ABC 中,已知16a =,b =,A=30︒ 求B 、C 及c. 16. (本小题满分12分)已知等比数列{}n a 中,142,16a a ==。

(1)求数列{}n a 的通项公式;(2)设等差数列{}n b 中,2295,b a b a ==,求数列{}n b 的前n 项和n S .17. (本小题满分14分)在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若ABC △,求a b ,;(Ⅱ)若sin 2sin B A =,求ABC △的面积.18.(本小题满分14分)设等差数列{}n a 的前n 项和为n S ,已知334,9a S ==。

(1)求数列{}n a 的通项公式; (2)令11n n n b a a +=⋅,求数列{}n b 的前10项和.19.(本小题满分14分)如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的北偏西120方向的2B 处,此时两船相距问乙船每小时航行多少海里?(结论保留根号形式)20.(本小题满分14已知数列{}n a 的前n n 22()n a n n N +=-∈, (1)求数列{}n a 的通项公式n a ;(2)若数列{}n b 满足2log (2),n n b a =+n T 为数列{}2nn b a +的前n 项和,求n T , 并证明:12n T ≥.1A2A 120 105 乙~11-12学年第一学期阳春一中高二月考一数学答卷二、填空题:(本大题共4小题,每小题5分,共20分)11.______ _ 12._____ __ 13.___ ______ 14.___ _______ 三、解答题:(本大题共6小题,共80分,解答应写出文字说明,证明过程或推演步骤.) 15.班别____________________姓名__________________学号__________________================ 密 ====================== 封 ======================= 线 ===================17.19.1A2A120105============ 密 ====================== 封 ======================= 线 ================11-12学年第一学期阳春一中高二月考一数学试题参考答案一、选择题:B D A D D ,A B B A C二、填空题:11、15 12. 21n a n =- 13、32π14、13+ 三、解答题:15.(12分)在△ABC 中,已知16a =,b =A=30︒ 求B 、C 及c.15.解:由正弦定理sin sin a bA B =得sin sin b A B a ===………(2分) 0060120b b ∴==或………(6分)当006090,B c ==时,C= ………(9分)当0012030,16B c ==时,C= ………(12分)16. (12分)已知等比数列{}n a 中,142,16a a ==。

(1)求数列{}n a 的通项公式;(2)设等差数列{}n b 中,2295,b a b a ==,求数列{}n b 的前n 项和n S .16. 解:(1)设等比数列{}n a的公比为q由已知,得3162q =,解得2q =…………………………(3分)111222n n nn a a q --∴==⋅=……………………………………(5分)(2)由(1)得25294,32,4,32a ab b ==∴==…………………(7分)设等差数列{}n b的公差为d ,则114832b d b d +=⎧⎨+=⎩ ,解得104b d =⎧⎨=⎩ …………………………………(10分)()211222n n n S b n d n n -∴=+=-…………………………………(12分)17. (14分)在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若ABC △求a b ,;(Ⅱ)若sin 2sin B A =,求ABC △的面积.17. 解:(Ⅰ)由余弦定理得,224a b ab +-=,…3分又因为ABC △,所以1sin 2ab C =4ab =. …5分联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. …7分 (Ⅱ)由正弦定理,已知条件化为2b a =, …9分联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得a =,b =.…11分 所以ABC △的面积1sin 2S ab C ==. …14分18.( 14分)设等差数列{}n a 的前n 项和为n S ,已知334,9a S ==。

(1)求数列{}n a 的通项公式;(2)令11n n n b a a +=⋅,求数列{}n b 的前10项和.18.解:(1)设{}n a的公差为d ,由已知,得313124339a a d S a d =+=⎧⎨=+=⎩ 解得121a d =⎧⎨=⎩……………………………(5分)()111n a a n d n ∴=+-=+………………………………………………(7分)(2)由(1)得:()()111111212n n n b a a n n n n +===-++++………(10分)12101111111152334111221212b b b ⎛⎫⎛⎫⎛⎫∴++=-+-+-=-=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭……(14分)19.解:如图,连结12A B ,由已知22A B =122060A A ==1221A A A B ∴=, 又12218012060A AB =-=∠,122A AB ∴△是等边三角形, …………4分1212A B A A ∴== 由已知,1120A B =,1121056045B A B =-=∠, (7)分在121A B B △中,由余弦定理,22212111212122cos 45B B A B AB A B A B =+-2220220=+-⨯⨯200=.12B B ∴= …………11分因此,乙船的速度的大小为60=/小时)答:乙船每小时航行海里. …………14分20( 14分)已知数列{}n a 的前n 项和为n S ,满足22()n n S a n n N +=-∈, (1)求数列{}n a 的通项公式n a ;(2)若数列{}n b 满足2log (2),n n b a =+n T 为数列{}2nn b a +1A2A120 105~·· 的前n 项和,求n T ,并证明:12n T ≥. (1)解:当n N +∈时,22n n S a n =-,则当2n ≥, n N +∈时,1122(1)n n S a n --=--①-②,得1222n n n a a a -=--,即122n n a a -=+∴122(2)n n a a -+=+,∴1222n n a a -+=+,当1n =时,1122S a =-,则12a =. ∴{2}n a +是以124a +=为首项,2为公比的等比数列,∴112422n n n a -++=⋅=,∴122n n a +=-………………………6分(2) 证明:122log (2)log 21n n n b a n +=+==+.∴1122n n n b n a ++=+, …7分 则231231222n n n T ++=++⋅⋅⋅+, 3412123122222n n n n n T +++=++⋅⋅⋅++…………④…9分 ③-④,得23412121111222222n n n n T +++=+++⋅⋅⋅+-211(1)114214212n n n +-+=+-- 1211114222n n n +++=+--23342n n ++=- ∴13322n n n T ++=-.…12分 当2n ≥时,1113210222n n n n n n n n T T -+++++-=-+=>, ∴{}n T 为递增数列,∴112n T T ≥= ………………………14分。

相关文档
最新文档