10矩阵位移法1-基本思想
结构力学——矩阵位移法

整理版ppt
4
第一节 矩阵位移法概述
矩阵位移法以传统的结构力学作为理论基础; 以矩阵作为数学表达形式; 以电子计算机作为计算手段
三位一体的解决各种杆系结构受力、变形等计算的方法。
采用矩阵进行运算,不仅公式紧凑,而且形式统一,便 于使计算过程规格化和程序化。这些正是适应了电子计 算机进行自动化计算的要求。
结构力学
整理版ppt
学习内容
有限单元法的基本概念,结构离散化。 平面杆系结构的单元分析:局部坐标系下的单元刚度矩
阵和整体坐标系下的单元刚度矩阵。 平面杆系结构的整体分析:结构整体刚度矩阵和结构整
体刚度方程。 边界条件的处理,单元内力计算。 利用对称性简化位移法计算。 矩阵位移法的计算步骤和应用举例。
整理版ppt
16
第二节 单元分析(局部坐标系下的单元分析 )
3、局部坐标系中的单元刚度矩阵性质
与单元刚度方程相应的正、反两类问题
力学 模型
解的 性质
正问题 e
F e
将单元视为两端有人为 约束控制的杆件。
控e 制附加约束加以指
定。
e 为任何值时,F e都
有对应的唯一解,且总 是平衡力系。
整理版ppt
1、整体刚度矩阵的集成 将单元刚度矩阵按单元定位向量扩展为单元贡献矩阵
(换码扩阵)
1
1
3
K
1
k11
0
1
k21
1
0 0
0
k12
1
0
k22
1
2
2
3
0
K 2
结构力学十三讲矩阵位移法

-6EI l2
4EI l
4
§13-3 单元刚度矩阵(整体座标系)
一、单元座标转换矩阵 Y1
X1
X1
Y1
MM21
e
x
M2 X2
正交矩阵 [T]-1 =[T]T
e e
e T T e
v1
y e
X 2
Y2
Fⓔ T T F ⓔ
ee
F T F ee
座标转换矩阵
5
二、整体座标系中旳单元刚度矩阵
[k] e = [T]T k e [T]
(4)
(6)
00
(5)
y
单元 局部码总码
单元 局部码总码
(1) 1 (2) 2 (3) 3 (4) 0 (5) 0 (6) 4
1
2
3 0
0
4
(1) 1
1
(2) 2
2
(3) 3 (4) 0
3 0
(5) 0
0
(6) 0
0
18
1 2
[k] 1 = 3
0 0 4
1 2
[k] 2= 3
0 0 0
123004 101 102 103 104 105 106 201 202 203 204 205 206 301 302 303 304 305 306 401 402 403 404 405 406 501 502 503 504 505 506 601 602 603 604 605 606 123000 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66
矩阵位移法

第9章矩阵位移法9.1 概述前面介绍的力法、位移法和渐近法都是传统的解算超静定结构的方法,它们是建立在手算基础上的。
随着基本未知量数目的增加,其计算工作极为冗繁和困难。
而计算机的问世及其广泛应用,为结构计算提供了有效工具。
矩阵位移法就是以计算机为运算工具的一种新的结构分析方法,它完全可以代替人来完成大型复杂结构的计算问题。
矩阵位移法是以位移法为理论基础,结构分析的全部过程中运用了线性代数中的矩阵理论。
引入矩阵运算的目的就是使计算过程程序化,便于把结构分析的过程用算法语言编成计算程序,实现计算机自动化处理。
目前,应用矩阵位移法编制的结构分析软件,已在结构设计中得到了广泛的应用。
矩阵位移法又称为杆件有限元法。
它的主要解题思路是:首先将结构离散成为有限个独立的单元,进行单元分析,建立单元杆端力与单元杆端位移之间的关系式——单元刚度方程;然后利用结构的变形连续条件和平衡条件将各单元组合成整体,建立结点力与结点位移之间的关系式——结构刚度方程,这一过程称为整体分析;最后求得结构的位移和内力。
矩阵位移法就是在一分一合,先拆后搭的过程中,把复杂结构计算问题转化为简单的单元分析和集合问题。
本章主要讨论杆系结构的单元刚度矩阵及其在单元局部坐标系与结构整体坐标系间的变换、结构刚度矩阵的形成、荷载及边界条件处理等内容。
9.2 单元分析9.2.1 结构离散化结构离散化是指把结构分离成有限个独立杆件(单元),由单元的组合体代替原结构(图9.1)。
一般单元为等截面直杆,杆系结构中每根杆件可以作为一个或几个单元。
单元的联接点称为结点。
对于等截面直杆所组成的杆系结构,只要确定了一个结构的所有结点,则它的各个单元也就随之确定了。
根据杆件联接的方式,可以将构造结点,如转折点、汇交点、支承点和截面的突变点取为结点。
在有些情况下,非构造点,如集中力作用点,也可作为结点处理。
离散化的结构用数字进行描述,即对各结点和单元进行编号。
通常用①,②,…表示单元编号,用1,2,…表示结点编号。
《结构力学》第十章矩阵位移法

《结构力学》第十章矩阵位移法矩阵位移法是结构力学中的一种重要分析方法,通过将结构的受力分析转化为矩阵运算,可以有效地求解复杂结构的位移和应力分布。
本文将分为四个部分来介绍矩阵位移法的基本原理和应用。
第一部分将介绍矩阵位移法的基本原理。
矩阵位移法基于结构的受力平衡方程和变形条件,建立了适用于不同类型结构的一般形式的位移函数。
通过对这些位移函数进行适当组合,可以得到一个较为简化的位移矩阵方程。
这个方程可以通过矩阵运算求解,从而得到结构的位移和应力分布。
第二部分将介绍矩阵位移法的应用。
矩阵位移法可以用于求解各种类型的结构,包括梁、柱、框架等。
具体应用时,首先需要确定结构的边界条件和受力情况,然后根据结构的几何形状和材料性质,建立相应的位移函数。
之后,将位移函数按照一定的规则组合起来,建立一个位移矩阵方程。
通过解这个方程,可以得到结构的位移和应力分布。
第三部分将介绍矩阵位移法的优点。
相比于传统的力方法,矩阵位移法具有计算简单、准确性高、适用范围广等优点。
这是因为矩阵位移法可以通过矩阵运算将结构的受力分析转化为代数运算,减少了繁琐的计算过程,并且可以应用于各种不规则结构。
第四部分将介绍矩阵位移法的局限性。
矩阵位移法虽然具有很多优点,但也有一些限制。
首先,矩阵位移法对结构的刚度矩阵的求取较为复杂,需要通过精确和谐振数法等途径进行求解。
其次,矩阵位移法不能用于解决非线性和动力问题。
总结起来,矩阵位移法是一种重要的结构力学分析方法,通过将结构的受力分析转化为矩阵运算,可以有效地求解复杂结构的位移和应力分布。
它具有计算简单、准确性高、适用范围广等优点,但也有一些局限性。
因此,在实际应用中需要根据具体情况选择合适的方法。
同时,矩阵位移法的进一步研究和发展也是一个非常重要的方向。
位移法的知识点总结

位移法的知识点总结一、基本原理1. 位移法的基本原理位移法是以位移为基本变量进行分析的一种结构分析方法。
它的基本原理是根据结构受力状态和边界条件,通过对结构各部分的变形进行分析,推导出结构的位移场。
根据结构力学的基本原理,结构的受力和变形是密切相关的,因此通过分析结构的位移场,可以获得结构的受力分布和变形情况,为结构的设计和分析提供重要参考。
2. 位移的重要性在结构力学中,位移是描述结构变形的基本形式之一,它直接反映了结构受力的情况。
在进行结构分析时,通常可以通过计算结构的位移场来获得结构的受力分布和变形情况。
因此,位移是结构分析的重要变量,在位移法中被广泛应用。
3. 位移法的实质位移法的实质是通过假设结构各部分的变形是线性的,即受到外力作用后,结构的变形与受力成线性关系。
这一假设是位移法能够简化结构分析的基础,使得结构分析更加方便和实用。
二、应用范围1. 适用范围位移法适用于各种类型的结构,包括梁、柱、板、桁架、壳体等。
它可以用于解决结构在受力作用下的位移和变形问题,对于复杂结构的受力分析和设计具有广泛的适用性。
2. 适用条件位移法的应用条件包括结构受力状态和边界条件的明确,结构各部分的变形可线性假设,结构受力和变形之间存在较强的相关性等。
在满足这些条件的情况下,位移法可以有效地用于解决各种结构受力和变形问题。
三、操作步骤1. 结构建模首先需要对结构进行建模,确定结构的几何形状、受力条件和边界条件等。
通过建模可以获得结构的刚度矩阵和载荷向量,为后续的分析提供基础数据。
2. 变形分析根据结构的刚度矩阵和载荷向量,可以建立结构的位移方程。
通过对位移方程进行分析,可以获得结构的位移场,揭示结构受力和变形的关系。
3. 反演求解根据结构的位移场,可以反演求解结构的受力分布和变形情况。
通过求解可以获得结构各部分的受力情况,评估结构的受力状况和安全性。
4. 结果分析最后需要对求解结果进行分析,评估结构的受力和变形情况。
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第10章 矩阵位移法【圣才出品】

二、单元刚度矩阵(见表 10-1-2) ★★★★★ 表 10-1-2 单元刚度矩阵
2 / 46
圣才电子书
十万种考研考证电子书、题库视频学习平 台
3 / 46
圣才电子书
十万种考研考证电子书、题库视频学习平 台
三、单元刚度矩阵的坐标转换(见表 10-1-3) ★★★★★ 表 10-1-3 单元刚度矩阵的坐标转换
6.结构的总刚度方程的物理意义是什么?总刚度矩阵的形成有何规律?其每一程的物理意义:尚未进行支承条件处理的表示所有结点外力与 结点位移之间的关系的平衡方程。
(2)总刚矩阵的形成规律:把每个单元刚度矩阵的四个子块按其两个下标号码逐一
9 / 46
圣才电子书
十万种考研考证电子书、题库视频学习平
台
4.为何用矩阵位移法分析时,要建立两种坐标系?
答:在利用矩阵位移法分析结构的时候,要进行单元分析和整体分析,单元分析是为
了建立每个单元的单元刚度矩阵,整体分析是为了建立整体结构的刚度方程。在单元分析
的过程中,以各单元的轴线为局部坐标系的 x 轴,以垂直轴线的方向为局部坐标系的 y 轴,
台
送到结构原始刚度矩阵中相应的行和列的位置上去,就可得到结构原始刚度矩阵,即各单
刚子块“对号入座”形成总刚。
(3)每一元素的物理意义:当其所在列对应的结点位移分量等于 1(其余各结点位移
分量均为零)时,所引起的其所在行对应的结点外力分量的数值。例如 Kij 表示第 j 号位置
3.矩阵位移法中,杆端力、杆端位移和结点力、结点位移的正负号是如何规定的? 答:杆端力沿局部坐标系的、的正方向为正,杆端弯矩逆时针为正;杆端位移的正负 号规定同杆端力和弯矩。结点力沿整体坐标系 x、y 的正方向为正,结点力偶逆时针为正; 结点位移的正负号规定同结点力和力偶。
《矩阵位移法》课件

实际工程案例分析
总结词
为了验证矩阵位移法的有效性,可以通过实际工程案例 进行分析。通过与实验结果的对比,可以评估方法的精 度和可靠性。
详细描述
选取具有代表性的实际工程案例,如高层建筑、大跨度 桥梁等,利用矩阵位移法进行计算,并将结果与实验数 据进行对比。通过对比分析,可以评估矩阵位移法的精 度和可靠性,为该方法在实际工程中的应用提供依据。 同时,也可以针对不同工程案例的特点,对矩阵位移法 进行优化和改进,提高其适用性和计算效率。
05
矩阵位移法的优缺点
优点
精确度高
矩阵位移法基于严格的数学推导,能 够精确地计算出结构的位移和内力, 尤其适用于复杂结构的分析。
适用性强
矩阵位移法可以处理多种类型的载荷 ,包括静载、动载以及温度载荷等, 适用范围广泛。
便于计算机化
矩阵位移法的计算过程可以通过计算 机程序实现,便于进行大规模的结构 分析。
多尺度方法
将矩阵位移法应用于多尺度问题 ,考虑不同尺度之间的相互作用 和影响,为复杂系统提供更准确 的模拟结果。
THANKS
感谢观看ts
目录
• 引言 • 矩阵位移法的基本概念 • 矩阵位移法的实施步骤 • 矩阵位移法的应用实例 • 矩阵位移法的优缺点 • 未来展望与研究方向
01
引言
什么是矩阵位移法
矩阵位移法是一种数值分析方法,用 于求解线性方程组和解决各种数值计 算问题。
它通过将原问题转化为矩阵形式,利 用矩阵运算来求解未知数,具有高效 、精确和灵活的特点。
并行计算
利用并行计算技术,将计算任务分解为多个子任务,同时运行在多 个处理器上,加快计算速度。
智能优化
结合人工智能和机器学习技术,自动调整算法参数,实现自适应优 化,提高算法的效率和稳定性。
矩阵位移法知识讲解

2i3 4i3
10-4 连续梁的整体刚度矩阵
(3)换码重排座
1
2
2
3
整体刚度矩阵置零
0 0 0
K 0 0 0
0 0 0
集成单元②的刚度矩阵
4i1 2i1
0
K 2i1 4i1 4i2 2i2
0
2i2 4i2
3
0
集成单元①的刚度矩阵
4i1 2i1 0
K 2i1 4i1 0
l
0
6EI
l2
4EI
l
局部坐标下自由单元的单元刚度矩阵
10-2 局部坐标系下的单元刚度矩阵
2 单元刚度矩阵的性质
(1)单元刚度系数的意义
单位杆端位移引起的杆端力
(2)单元刚度矩阵是对称矩阵
反力互等定理
(3)自由单元刚度矩阵是奇异矩阵
矩阵行列式等于零,逆阵不存在。
Fe k e e
e k e 1 F e
M2 6EI l 2 Fy2 12EI l 3
M2 2EI l
Fy2 6EI l2
10-2 局部坐标系下的单元刚度矩阵
EA EA Fx1 l u1 l u2
Fy1
12EI l3
v1
6EI l2
1
12EI l3
v2
6EI l2
2
M1
6EI l2
v1
4EI l
1
6EI l2
v2
2EI l
10-5 刚架的整体刚度矩阵
2 整体坐标系下的单元刚度矩阵
300 0 0 300 0 0
0
12 30
0
12
30
k
①
0 300
矩阵位移法

D1 = D2 = 0
; D5 = D6 = 0
则有修正后的总刚度矩阵:
-100 2 [K ] = 100 600
[k11 ] [k12 ] {F1} = {F2 } [k 21 ] [k 22 ]
{D1} {D 2 }
@
单元刚度矩阵的性质:①对称性;②奇异性; ③主对角元恒为正值
3、整体刚度矩阵
K ij :单元仅发生第j个杆端单位位移时,在第
Y2 = QBA
写成矩阵表达式为:
4 EI 2 EI 6 EI q + q + -v ) ( v l 1 l 2 l2 1 2 2 EI 4 EI 6 EI q + q + -v ) ( M2 = v l 1 l 2 l2 1 2 6 EI 12 EI (v1 - v2 ) Y1 = (q1 +q 2 ) + l2 l2 6 EI 12 EI = q + q (v1 - v2 ) Y2 ( 1 2) l2 l2 M1 =
2
3
1 2
Hale Waihona Puke 3-1 50 1 50 50 300 -50 150 -1 -50 2 -100 -1 -50 = 50 150 -100 600 50 150 -1 50 1 50 -50 150 50 300
计入边界条件:因边界结点1和3 为固定端,故有:
0 12EI l3 6 EI - 2 l 0 12EI l3 6 EI - 2 l
@
0 6 EI l2 2 EI l 0 6 EI - 2 l 4 EI l
EA l 0 0
矩阵位移法

⎤ ⎧δ1② ⎫ k ⎥⎨ ②⎬ k ⎦ ⎩δ 2 ⎭
② 12 ② 22
② ⎡ k11 =⎢ ② ⎣ k21 ② k12 ⎤ ②⎥ k22 ⎦
k①
① ⎡ k22 =⎢ ① ⎣ k32
① k23 ⎤ ①⎥ k33 ⎦
k②
23 / 42
第十章 矩阵位移法
② ② F1 = k11 Δ1 + k12 Δ 2 ② ① ② ① F2 = k21 Δ1 + (k22 + k22 )Δ 2 + k23 Δ 3 ① ① F3 = k32 Δ 2 + k33 Δ 3
e Nj
F = − F sinα + F cosα
e xi e yi
M ie
e
i
Me j
M ie = M ie
F
e xi
e FNi M ie e FSi
y x
e ⎧ FNi ⎫ ⎡ cosα ⎪ e⎪ ⎢ e Fi = ⎨ FSi ⎬ = ⎢ −sinα ⎪M e ⎪ ⎢ 0 ⎩ i⎭ ⎣
sinα cosα 0
10 / 42
第十章 矩阵位移法
廏鞾條栒厱冟剶异昕穧 局部坐标系下平面杆单元分析
y
i
EA
e
j
x
u je
单元方向: i → j
⎧uie ⎫ ⎪ ⎪ δ e = ⎨ e⎬ 杆端位移: ⎪u j ⎪ ⎩ ⎭
uie
e FNi
i
EA
e
j Fe Nj
F
F
e Ni
EA EA e = ⋅ ui − ⋅ u je l l
矩阵位移法与矩阵力法之不同就在于选取 的基本未知量不同,因此计算次序不同
结构力学-10-矩阵位移法1-83

i e u je
F yie M
e i
v je
je
F yje M
e j
F xje
T
华北理工大学建筑工程学院建筑力学教学部
(25/190)10:42
结构力学‐2
华北理工大学建筑工程学院建筑力学教学部
(a)
华北理工大学建筑工程学院建筑力学教学部
(27/190)10:42
§10-2 单元刚度矩阵
杆端横向位移△ij正负 号规定:使杆的j 端绕 i 端 作顺时针转时为正值。 Δij (vje vie ) 由两端固定等截面 直杆的转角位移方程有
结构力学‐2
6 EI e 4 EI e 6 EI e 2 EI e M 4i i 2i 6i i 2 v j j 2 vi l l l l l e e (v j vi ) 6 EI e 2 EI e 6 EI e 4 EI e e e e M j 2i i 4i j 6i i 2 v j j 2 vi l l l l l e 12 EI 6 EI 12 EI 6 EI F yi 3 vie 2 i e 3 v je 2 je l l l l e 12 EI e 6 EI e 12 EI e 6 EI e F yj 3 vi 2 i 3 v j 2 j (b) l l l l
华北理工大学建筑工程学院建筑力学教学部 (23/190)10:42
§10-1 概述
重点:矩阵位移法基本思想 •化整为零 ------ 结构离散化
将结构拆成杆件,杆件称作单元。 单元的连接点称作结点。 对单元和结点编码. 基本未知量:结点位移
矩阵位移法

矩阵位移法
矩阵位移法是一种用于解决多项式方程组的数学方法。
它利用行和列变化将原系数矩阵转换成一个三角矩阵。
然后,从底端开始一行行解对角线的方程,最终求出未知数的值,解决多项式方程组。
矩阵位移法的基本步骤如下:
1.将系数矩阵进行行变换和列变换,转换成三角矩阵。
2.从最下面的方程开始,先求解最后一个未知数。
3.从次下面的方程开始,根据前面的结果一行行解出剩余未知数。
矩阵位移法比较容易理解和应用,可以有效地解决多项式方程组,但也存在一些缺点,比如容易出现几何错误,计算精度较低。
第10章矩阵位移法

整体坐标系(结构坐标系):整个结构统一的坐标系。 整体坐标系(结构坐标系):整个结构统一的坐标系。 ):整个结构统一的坐标系
e e e FNi = Fxi cosα + Fyi sin α e e e F i = Fxi sin α + Fyi cosα S e e e FNj = Fxj cosα + Fyj sin α e e F e = Fxj sin α + Fyi cosα Sj
e FNi =
由图a、 , 由图 、d,根据叠加原理可写出
EA e EA e ui uj l l EA e EA e e uj FNj = ui + l l
§10-2 单元刚度矩阵
可写出
12EI e 6EI e 12EI e 6EI e 12EI 6EI 12EI 6EI vi + 2 i 3 v j + 2 j F e = 3 vie 2 ie + 3 vje 2 je Sj l3 l l l l l l l 6EI 4EI e 6EI e 2EI e 6EI 2EI e 6EI e 4EI e Mie = 2 vie + i 2 vj + j M e = 2 vie + i 2 vj + j j l l l l l l l l Fe = Si
F1 F F = 2 F3 F4
Fx1 式中 F1 = Fy1 M 1
Fx 2 F2 = Fy 2 M 2
Fx 3 F3 = Fy 3 M 3
Fx 4 F4 = Fy 4 M 4
结点2、 处 结点外力F 是给定的结点荷载; 结点 、3处:结点外力 2、F3是给定的结点荷载; 支座1、 处 结点外力F 是支座反力, 支座 、4处:结点外力 1、F4是支座反力,如支座有给定结点荷 为结点荷载与支座反力的代数和。 载,则F1、F4为结点荷载与支座反力的代数和。
位移法基本概念

弹性体位移法
定义:弹性体位移法是一种基于弹性力学原理的位移分析方法,通过分析结构在 受力作用下的位移变化来推算结构的位移量。
适用范围:适用于各种类型的结构,特别是对于大型复杂结构的位移分析具有较 高的精度和可靠性。
优点:考虑了结构的弹性变形,能够更准确地反映结构的实际位移情况;可以用 于各种类型的结构,具有较广的适用范围。
解平衡方程
建立平衡方程: 根据结构特点 和受力情况, 建立平衡方程
式。
解平衡方程: 通过代数运算 求解平衡方程, 得到各未知数。
验证解的正确 性:将解代入 原方程进行验 证,确保解的
正确性。
应用解的结果: 根据解的结果 进行相应的计
算和分析。
求解位移
确定研究对象的几 何形状和尺寸
建立研究对象的数 学模型,包括平衡 方程、边界条件和 初始条件
感谢您的耐心观看
汇报人:XX
计算简便:位移法基于杆件之间的 相对位移,计算过程相对简单,易 于掌握。
优点
适用范围广:位移法适用于各种结 构形式和边界条件,具有广泛的适 用范围。
添加标题
添加标题
添加标题
添加标题
精度较高:位移法考虑了结构的整 体变形,能够得到较高的计算精度。
可用于静力分析和动力分析:位移 法不仅可用于静力分析,也可用于 动力分析,具有较好的通用性。
缺点
添加项标题
计算复杂:位移法需要求解复杂的微分方程,计算量大且复杂
添加项标题
对初始条件敏感:位移法的计算结果对初始条件非常敏感,初始条 件的微小变化可能导致计算结果的巨大差异
添加项标题
适用范围有限:位移法主要适用于线性问题或者某些特定的非线性 问题,对于一般性的非线性问题,位移法可能不适用
结构力学 第三十七讲矩阵位移法

第十一章 矩阵位移法
教学内容
教学内容:矩阵位移法基本思想,结构离散化,平面刚架单元 的刚度矩阵(局部坐标系、整体坐标系),坐标转换矩阵,单 元定位向量,单元集结构整体刚度矩阵,等效结点荷载,结构 整体荷载列阵,先处理法。 教学要求: 1、了解矩阵位移法的基本概念, 2、理解一般杆单元局部坐标系下的单元刚度方程;单元刚度 矩阵的性质;连续梁单元的单元刚度矩阵(局部坐标系);平 面刚架单元的单元刚度矩阵(局部坐标系);直接结点荷载; 单元杆端力两种坐标系下的转换关系;坐标转换矩阵及性质; 平面刚架单元整体坐标系下的单元刚度方程;整体刚度矩阵的 性质;结构整体刚度方程;矩阵位移法的计算步骤。 3、掌握用矩阵位移法计算连续梁;用矩阵位移法计算刚架。 重点:连续梁和刚架的矩阵位移法求解。 难点:刚架的矩阵位移法方程的建立。
X ,Y, M满足右手法则。
5
6
6
2 3
3
5
4
1
1
4
2
X
Y
第十一章 矩阵位移法
(5)单元杆端位移:
5
每杆端有:两个线位移(轴线、垂
直轴线)、一个角位移(转角)分量。 2
线位移的正方向与坐标正向正负相同, 3
角位移顺时针为正。
1
1
66
3
5
4
4
2
u1
v1 X1
Y
M1
1
Y1
u2
X
M2
v2
2
Y2 X 2
第十一章 矩阵位移法
(2)单元杆端力向量
1 1
u1
v1
2 2
u2
v2
(1) (e)
(
2)
矩阵位移法

0 cos 0 sin 0
e
0
0 X 1 0 Y 1 0 M 1 0 X 2 0 Y 2 1 M 2
e
简记:
F
e
T
F
T 为单元坐标转换矩阵
22
cos sin 0 T 0 0 0
e e
2、叠加各单元贡献矩阵,得到整体刚度矩阵。 二、单元定位向量 1、定义: 由单元的结点位移总码组成的向量称为“单元定
0 6EI 2 u1 l 2EI v1 1 l 0 u 2 v 2 6EI 2 l 2 4EI l
e
记为
F k
e
12
局部坐标系中的单元刚度方程
e
F 1 F 2 F 3 ... F 4 F 5 F 6
e
7
13.2 单元分析(一)——局部坐标系 中的单元刚度矩阵
定义:单元杆端力和杆端位移之间的转换关
系成为单元刚度方程。
F k
e e
e
e k 其中 称作单元刚度矩阵(简称作单刚)
sin cos 0 0 0 0
0 0 1
0 0 0
0 0 0 sin cos 0
0 cos 0 sin 0 0
0 0 0 0 0 1
23
T 为正交矩阵
T T F T F T T
e e
0 6EI l2 4EI l 0 6EI l2 2EI l
EA l 0 0
0 12EI 3 l 6EI 2 l 0 12EI l3 6EI 2 l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α
u1 v 1 1 (e) D u 2 v2 2
(e)
x
X1 Y 1 M1 (e) F X 2 Y2 M 2
M BE 4 0.75 B 3 B =3.4 M EB 2 0.75 B 1.5 B =1.7
3、列位移法方程
M M
B
M 0 2 1.7 0 10 BA B M BCC M BE M 9 41 CD M M.CF 2 7 0 CB B C
e
y
1
v1
x
l
1 2
单元编号 杆端编号 单元坐标 杆端位移编号
(b)
2
u2
u1
v2
2
(c) X 1
1 M1
Y1
M2 X2 Y2
杆端力编号
8
三、结点位移向量、结点力向量
1、结点位移向量
D5 D4 D6
结点位移分量按结点码顺序及u v 的顺序 排列组成的向量
D9 D7
D8 3
u D 1 1 ① D v1 2 结构的结点位移向量为: ② D 1 3 D u P P 4 2 D1 1 1 1x v D D 2 P P 5 J D3 2 1y D 2 P D2 P 6 1M 3 u D P P 3 7 4 2x y v D 3 P P 8 相应地结点力向量为: P 5 2 y J D P P 3 9 6 2M P P 7 3x P 8 P 3y P P 9 3M
D D
ql 2 20 4 2 .m 40 kN mBA 8 ql 2 8 20 5 2 kN .m MBA 41.7 mBC 12 12 mCB 41.7 kN .m
令EI=1
4m 4m
3I 0.75 3I 0.5 M图(kN.M) 0.75 MCD 0.5 MCB E E 1.7 MCF 4.9F F
第十章
1
矩阵位移法基本思想
2
位移法基本方程
k11Z 1+ k12Z 2+ · · · · · · · · · · + k1nZ n+R1P=0 k21Z 1+ k22Z 2 +· · · · · · · · · · + k2nZ n+R2P=0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · kn 1 Z 1 + kn 2 Z 2 + · · · · · · · · · · + knnZ n+RnP=0
QAB
θB
QBA B
θA
MAB A
↓↓↓↓↓↓↓↓
⑵一端铰结或铰支的等直杆
θA
MAB A
↓↓↓↓↓↓↓↓
B
θB
⑶一端为滑动支承的等直杆 M AB i A i B mAB M BA i B i A mBA
(4)已知杆端弯矩求剪力 M AB M BA 0 QAB QAB l
用矩阵形式表示
k11 k 21 k n1
k1n Z1 R1P k 22 k 2 n Z 2 R1P k n 2 k nn Z n R nP k12
一、矩阵位移法(有限单元法)的基本思路是:
先将结构离散成有限个单元,然后再将这些单元按一定条 件集合成整体。这样,就使一个复杂结构的计算问题转化为有 限个简单单元的分析与集成问题。 有限单元法的两个基本环节: 1)单元分析:建立单元刚度方程,形成单元刚度矩阵(物理关系) 2)整体分析:由单元刚度矩阵形集成整体刚度矩阵,建立结构的 7 位移法基本方程(几何关系、平衡条件)
↓↓↓↓↓↓↓↓
6、画M图
4m
§10-1 概述
矩阵位移法以传统的结构力学作为理论基础,以 矩阵作为数学表达形式,以电子计算机作为计算手段, 三位一体的方法。
手算与电算的不同: 手算:怕繁,讨厌重复性的大量运算,追求机灵的计算技巧, 运算次数较少的方法。 电算:怕乱,讨厌头绪太多,零敲碎打的算法,追求计算过 程程序化,通用性强的方法。
2
x
9
四、杆端位移、杆端力及其正负号规定
一般单元: 指杆件除有弯曲变形外,还有轴向变形和剪切变形的单元, 杆件两端各有三个位移分量,
这是平面结构杆件单元的一般情况。
符号规则:图(a)表示单元编号、杆端编号和局部座标,局部座标的 x 座标与杆轴重合; 一、单元坐标系中 1 (a) 图(b)表示的杆端位移均为正方向。 2 EAI
(e)
u1
2
2
u2
2
X1
v2
Y1
X1 Y1 (e) M1 F X 2 Y2 M 2
(e)
M2 X2 Y2
凡是符号上面带了一横杠的就表示是基于单元座标系而言的。
11
•选局部坐标系推导单元刚度矩阵方便且单元刚度矩阵的形式简单。 •选整体坐标系是为进行整体分析。按一个统一的坐标系来建立各 单元的刚度矩阵
e
y
1
v1
x
l
1 2
单元编号 杆端编号 单元坐标(局部坐标) 杆端位移编号
(b)
2
u2
u1
v2
2
(c) X 1
1 M1
Y1
M2 X2 Y2
杆端力编号
10
(1)单元杆端位移向量
1
(2)单元杆端力向量
1 M1
1
v1
u1 v 1 (e) 1 D u2 v2 2
5、回代 6、画M图
C
4、解方程
θB=1.15
θC=-4.89 位移不是真值!!
5
1、基本未知量θB、Δ
2、列杆端力表达式 3kN/m
Δ
B θ B
Δ 2i
C
3 4 2 =-13.89 M AB 2i B 6i i i 4 12 3 4 2 D A M BA 4i B 6i =-4.42 8m 4 12 M BC 3(2i ) B =4.44 M DC 3i =-5.69 4 QBA QCD 0, M BA M BC 0 10i 1.5i 4 0 M B 解之: B 4.42 θ=0.74/i 15 i X 0, QBA QCD 0 1.5iJB 6 0 Δ=7.58/i 4.44 16 M AB M BA 3i 0 6 3、列位移法方程 QBA M图(kN.m) QBA 1.5i B l 4 M DC 0 3i 4、解方程 QCD 13.89 5.69 5、回代 l 16 6
[K]{Z} =-{RP}
3
§9-7 用直接平衡法 建立位移法方程
1、转角位移方程: ⑴两端刚结或固定的等直杆
+mAB l M BA 2i A 4i B 6i +mBA l M AB 4i A 2i B 6i
M AB 3i A 3i M BA 0 m AB l
4
Δ
MBA MBA
MAB
θA
β
↓↓↓↓↓↓↓↓
算例 作弯矩图 4m 4m
1、基本未知量θB、θC 2、列杆端力表达式
40
46.9 43.5 20kN/m 24.5 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ 62.5 C A 4I i= 1 5I 1 B A C B 3.4 1 1
14.7
4I 1 9.8 1
二、单元码、结点码,单元坐标系、结构坐标系
一般单元: 指杆件除有弯曲变形外,还有轴向变形和剪切变形的单元, 杆件两端各有三个位移分量,
这是平面结构杆件单元的一般情况。
符号规则:图(a)表示单元编号、杆端编号和单元坐标,单元坐标的 x 座标与杆轴重合; 1 (a) 图(b)表示的杆端位移均为正方向。 2 EAI
(e)
y
ቤተ መጻሕፍቲ ባይዱ
X1
M1
α
x
Y1
y
M2 X2 Y2 12
2m 2m
5m 5m
4m 4m
MBC
M BA 3 B 40 =43.5 MBE M BC 4 B 2 C 41.7 =-46.9 M CB 2 B 4 C 41.7 =24.5 M CD 3 C =-14.7 M CF 4 0.5 C 2 C =-9.78 M FC 2 0.5 C C =-4.89