电磁场与电磁波(第八章).

合集下载

电磁场与电磁波教案

电磁场与电磁波教案

电磁场与电磁波教案第一章:电磁场的基本概念1.1 电荷与电场介绍电荷的性质和分类解释电场的概念和电场线电场的叠加原理1.2 磁场与磁力介绍磁铁和磁性的概念解释磁场的概念和磁场线磁场的叠加原理和磁力计算1.3 电磁感应介绍法拉第电磁感应定律解释电磁感应现象的应用第二章:电磁波的基本性质2.1 电磁波的产生与传播介绍麦克斯韦方程组解释电磁波的产生和传播过程电磁波的波动方程和相位2.2 电磁波的波动性质介绍电磁波的波长、频率和波速波动方程的解和电磁波的波动性质2.3 电磁波的能量与辐射解释电磁波的能量和辐射机制介绍电磁波的辐射压和光电效应第三章:电磁波的传播与应用3.1 电磁波在自由空间的传播自由空间中电磁波的传播方程电磁波的传播速度和天线原理3.2 电磁波在介质中的传播介绍电磁波在介质中的传播方程介质的折射率和反射、透射现象3.3 电磁波的应用介绍电磁波在通信、雷达和医学等领域的应用第四章:电磁波的辐射与接收4.1 电磁波的辐射介绍电磁波的辐射机制和天线理论电磁波的辐射强度和辐射功率4.2 电磁波的接收介绍电磁波接收原理和接收器设计调制和解调技术在电磁波接收中的应用4.3 电磁波的辐射与接收实验设计实验来观察和测量电磁波的辐射和接收现象第五章:电磁波的传播特性与调控5.1 电磁波的传播特性介绍电磁波的传播损耗和传播距离电磁波的多径传播和散射现象5.2 电磁波的调控技术介绍电磁波的调制技术和幅度、频率和相位的调控方法5.3 电磁波的传播调控应用介绍电磁波在无线通信和雷达系统中的应用和调控技术第六章:电磁波的波动方程与电磁波谱6.1 电磁波的波动方程推导电磁波在均匀介质中的波动方程讨论电磁波的横向和纵向波动特性6.2 电磁波谱介绍电磁波谱的分类和各频段的特征讨论电磁波谱中常见的波段,如射频、微波、红外、可见光、紫外、X射线和γ射线等6.3 电磁波谱的应用分析电磁波谱在不同领域的应用,如通信、医学、材料科学等第七章:电磁波的传播环境与传播效应7.1 电磁波的传播环境分析不同传播环境对电磁波传播的影响,如自由空间、大气层、陆地、海洋等讨论传播环境中的衰减、延迟和散射等效应7.2 电磁波的传播效应介绍电磁波的折射、反射、透射、绕射和干涉等传播效应分析这些效应在实际应用中的影响和应对措施7.3 电磁波的传播环境与效应应用探讨电磁波传播环境与效应在通信、雷达、遥感等领域的应用和解决方案第八章:电磁波的辐射与天线技术8.1 电磁波的辐射原理分析电磁波辐射的物理机制,如开放电极、偶极子、天线阵列等讨论电磁波辐射的方向性和极化特性8.2 天线的基本理论介绍天线的基本参数,如阻抗、辐射效率、增益等分析天线的设计方法和性能优化策略8.3 电磁波的辐射与天线技术应用探讨天线技术在无线通信、广播、雷达等领域的应用和实例第九章:电磁波的接收与信号处理9.1 电磁波的接收原理介绍电磁波接收的基本过程,如放大、滤波、解调等分析接收机的性能指标,如灵敏度、选择性、稳定性等9.2 信号处理技术介绍信号处理的基本方法,如采样、量化、编码、调制等讨论数字信号处理技术在电磁波接收中的应用9.3 电磁波的接收与信号处理应用探讨电磁波接收与信号处理技术在通信、雷达、遥感等领域的应用和实例第十章:电磁波的测量与实验技术10.1 电磁波的测量原理分析电磁波测量的基本方法,如直接测量、间接测量、网络分析等讨论测量仪器和设备的选择与使用10.2 实验技术介绍电磁波实验的基本步骤和方法,如实验设计、数据采集、结果分析等分析实验中可能遇到的问题和解决策略10.3 电磁波的测量与实验技术应用探讨电磁波测量与实验技术在科研、工程、教学等领域的应用和实例重点解析第一章:电磁场的基本概念重点:电荷与电场的性质,电场的概念和电场线,电场的叠加原理。

磁场的振幅

磁场的振幅

+z向传播,且电场方向指向
evx方
v Ev ex E0e jkz
(场量的复数形式)
或E ex E0 cos(t kz) (场量的实数形式)
由电磁波的场量表达式可总结出波的传播特性
均匀平面波的传播参数
角频率、频率和周期
角频率ω :表示单位时间内的相位变化,单位为rad /s
周期T :时间相位变化 2π的时间间隔,即
EH ES HS
第八章:平面电磁波
平面电磁波的时间平均能量密度为
we
1
4
Re{E(z) E*(z)}
1
4
E0
2
wm
1 Re{H (z) H *(z)}
4
1
4
E0 2
2
由此可得
we wm
w we wm 2 we
w
1
2
E0 2
第八章:平面电磁波
如图所示,设长度为 l 、横截面面积为 A 的圆柱体
E O
y
H
z
理想介质中均匀平面波的 E 和 H
13:51:41
电磁场与电磁波
第八章:平面电磁波
均匀平面波的波面是无限大的平面,波面上各点的 场强振幅又均匀分布,因而波面上各点的能流密度相 同,可见这种均匀平面波具有无限大的能量。因此, 实际中不可能存在这种均匀平面波。
当观察者离开波源很远时,因波面很大,若观察者 仅限于局部区域,则可以近似作为均匀平面波。
均匀平面波
13:51:41
电磁场与电磁波
第八章:平面电磁波
无界理想媒质中均匀平面波的传播特性总结
电场、磁场与传播方向之间相互垂直,是横电磁波(TEM波)。
无衰减,电场与磁场的振幅不变。

8电磁场与电磁波-第八章图片

8电磁场与电磁波-第八章图片
➢对于一定比值a/b,在给定工作频率下TE10模具有最 小的衰减。
1、TE10场量表达式和场结构 将m=1,n=0代入TEmn模式表达式中,可得:
场结构图
可以看出,TE10电场Ey在x=0和x=a处为零,在x=a/2有 最大值.
8.8 传输线的工作状态
传输线有行波、驻波和混合波三种可能的工作状 态,由端接负载特性决定其工作状态。
三、矩形谐振腔谐振频率 在谐振腔内部,电磁波频率为驻波。对一定尺寸的
谐振腔,只有一些特定的频率能够建立起稳定的驻波从 而实现谐振。这些频率称为谐振频率。
在谐振腔中,电磁波频率只能取不连续的离散值。 从前面讨论可知,谐振腔内波的波数为
说明:本征频率fmnl由谐振腔尺寸和填充材料决定,不 同模式的本征频率不同。
一、导波模式的分类:Transverse ElectroMagnetic (TEM)
❖横电磁波(TEM波):在波传播的方向上没有电场或磁场 分量,即电场和磁场垂直于电磁场传播方向;
❖横磁波(TM波或E波):在波传播的方向上有电场分量, 但没有磁场分量,即磁场垂直于电磁场传播方向;
❖横电波(TE波或M波):在波传播的方向上有磁场分量, 但没有电场分量,即电场垂直于电磁场传播方向;
❖在波传播方向上有电场分量,但没磁场分量,则为: 横磁波(TM波或E波);
❖在波传播的方向上没有电场或磁场分量,则为: 横电磁波(TEM波);
❖在波传播方向上有磁场分量,但没电场分量,则为: 横电波(TE波或M波)。
二、导行电磁波的纵向场量表达式Fra bibliotek 第二节 矩形波导
❖矩形波导是指横截面为矩形的空心 导波装置。 ❖电磁波在导体空腔内传播
一、谐振腔中的电磁场
令谐振腔中电场场量表达式为:

丁君版工程电磁场与电磁波答案 第八章 电磁波的辐射

丁君版工程电磁场与电磁波答案 第八章 电磁波的辐射

6
例 3 电偶极子长10m ,电流振幅1A ,频率为1MHz ,求: 1)在垂直于偶极子轴方向上10m 及100km 处的E 、S 、Sav ;
2)该偶极子的辐射率Prav 。
解:依题意 f
= 106 Hz ,λ
=
c f
=
3 ×108 106
= 300m,
l
= 10m ,I 0
= 1A ,θ
= 90
第八章 电磁波的辐射 8.1 主要内容与重点 本章主要内容:电流元(基本电振子)和磁流元(基本磁振子)的辐射,天线基本参数、对称阵 子天线以及天线阵。 本章重点:电流元和磁流元远区辐射场及其特点;天线基本参数的定义及计算;对称阵子 远区辐射场及期特点,方向图的画法,二元阵乃至多元均匀线阵远区辐射场的推导,方向 图的画法以及利用镜像法分析接地导电平面附近的单元天线或天线阵。 8.2主要公式(基本公式) 8.2.1 滞后位
(8.27)
故半功率波瓣宽度为
θ 0.5
=
±π 4
2θ 0.5
=
π 2

(8.28) (8.29)
(3)天线效率:定义为
ηA =
Pr Pin
=
Pr Pr + Pd
=
Rr Rr + Rd
(8.30)
其中 Pr
=
1 2
I
2 m
Rr
,Pd
=
1 2
Im2 Rd 分别为天线的平均辐射功率和损耗功率,而Rd 为损耗电
在求解辐射问题时,一般都是根据已知的ρ 或 J ,由(8.4),(8.5)求出ϕ 和A ,再由(8.2)或
(8.3) 求解辐射点磁场。 8.2.2电偶极子的辐射 (1)偶极子天线的辐射场为

导行电磁波.

导行电磁波.

t h = jkzH z
c
t e = jkzEz
f
由以上 6 个表达式可见,只要求出 Ez Hz 其它分量就可顺利得到
5、建波方程
2E k2E 0
t2 kz2 E k 2E t2E kc2E 0
2H k2H 0
t2H kc2H 0
k
2 c
k2
k
2 z
z jkz
E e x, y ezEz x, y e jkzz
z
z
jkzE
z
jkz
x
ex
y
ey
z
ez
t
jkzez
4、将已设场解及上式代入到场方程中,得:
t h = j Ezez a
t e = - jHzez d
t Hzez = jkzez h je b t Ezez = jkzez e jh e
Exyz = exEx x, y eyEy x, y ezEz x, ye jkzz = e ezEz x, ye jkzz
Hxyz = exHx x, y eyHy x, y ezHz x, ye jkzz = h ezHz x, ye jkzz
3、建场方程
H = jE E = - jH H = 0 E = 0
由式(a) (c) (d)(f):
t e = 0 t h = 0 t e = 0
∵梯无旋∴横场有一标量位Φe ∵腔内无源∴
t h = 0
t2e
2e
x2
+
2e
y 2
=
0
由前TE和TM模的计算可知:
由式(b)和Hz
=0
:h
=
kz
e
ez

习题8

习题8

习题八
∂H z ∂x
x=0 = 0
x=a
由此可得 kx
=
mπ a
,B
= 0 ,故
Hz
=
H
zm
A
cos⎜⎛ ⎝
mπ a
x ⎟⎞ e− jβ z ⎠
=
H
0
cos⎜⎛ ⎝
mπ a
x ⎟⎞ e− jβ z ⎠
式中, H0 = H zm A 。
将(1)式代入横向场分量的表达式,可得
Ey
=
jωµ kc
∂H z ∂x
⎟⎟⎠⎞2
小于媒质中的光速,与频率、波导的口面尺寸、波导中的媒质 ε r 及媒质中的光速有
关。 群速、相速、光速的关系是
(3) 截止波长
vp
⋅ vg
=
⎜⎛ ⎜⎝
c光 εr
⎟⎞2 ⎟⎠
λc =
2 ⎜⎛ m ⎟⎞2 + ⎜⎛ n ⎟⎞2
⎝ a ⎠ ⎝b⎠
它与传输模式、波导的截面尺寸有关。
117
习题八
(4) 波导波长
解: 相速是电磁波等相位点移动的速度。群速是包络波上某一恒定相位点移
114
《电磁场与电磁波》——习题详解
动的速度。 根据平面波斜入射理论,波导内的导行波可以被看成平面波向理想金属表面斜
入射得到的,如图 8-1 所示。从图中可以看出,由于理想导体边界的作用,平面波
从等相位面 D 上的 A 点到等相位面 B 上的 M 点和 F 点所走过的325λ0 = 3.976 cm
⎝ 2a ⎠
β = k 1− ⎜⎛ λ0 ⎟⎞2 = 0.755k = 1.58×10−2 rad/m ⎝ 2a ⎠
Z = TE10

电磁波的辐射与散射

电磁波的辐射与散射

天线的损耗电阻R1
2P R1 21 Im
用电阻表示的天线的效率
R 1 A R R1 1 R1 R
要提高天线效率,应尽可能提高R ,降低R1
极化特性 •极化特性是指天线在最大辐射方向上电场矢量的方向随时间变 化的规律。按天线所辐射的电场的极化形式,可将天线分为线 极化天线、圆极化天线和椭圆极化天线。线极化又可分为水平 极化和垂直极化;圆极化和椭圆极化都可分为左旋和右旋。 输入阻抗与频带宽度 天线的输入阻抗等于传输线的特性阻抗,才能使天线获得最 大功率。 当天线工作频率偏离设计频率时,天线与传输线的匹配变坏, 致使传输线上电压驻波比增大,天线效率降低。因此在实际 应用中,还引入电压驻波比参数,并且驻波比不能大于某一 规定值。 •天线的有关电参数不超出规定的范围时对应的频率,范围称 为频带宽度,简称为天线的带宽。
8.2.5 辐射功率和辐射电阻 辐射功率 Radiation Power
电流元所辐射的总功率可由其平均功率流密度在包围电流元的球 面上的面积分来得出。 其平均功率密度为
S
av
1 | E | 0 Il 1 * ˆ ˆ Re E H r r sin 2 0 2 2 r 2
b
天线增益G(Gain)与方向性GD
天线增益是在波阵面某一给定方向天线辐射强度的量度,它是 被研究天线在最大辐射方向的辐射强度与被研究天线具有同等 输入功率的各向同性天线在同一点所产生的最大辐射强度之比
单位立体角最大辐射功率 G 馈入天线总功率 4
天线方向性GD与天线增益但与天线增益定义略有不同
定量地描述主叶的宽窄程度 功率降为为主射方向上功率的1/2时,两个方向之间的夹角 以20.5表示,2 0.5 为两个零射方向之间的夹角称为零功率宽 度,以20表示。 电流元的半功率宽度:

电磁场与电磁波智慧树知到答案章节测试2023年山东大学威海

电磁场与电磁波智慧树知到答案章节测试2023年山东大学威海

绪论单元测试1.电磁场的发展经历了()个阶段。

A:3B:2C:1D:4答案:A2.()测定了电荷量。

A:库伦B:安培C:杜菲D:富兰克林答案:A3.力线可以交叉。

()A:对B:错答案:B4.奥斯特发现了电流的磁效应。

()A:对B:错答案:A5.麦克斯韦证明了电磁波的存在。

()A:对B:错答案:B第一章测试1.梯度是最大的方向导数。

()A:错B:对答案:B2.闭合面内的通量就是面内包含的场的总和。

()A:对B:错答案:B3.矢量场_的散度恒为零。

()A:散度B:通量C漩度D:梯度答案:C4.如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为O()A:保守场B:散度场C:流量场D:环流场答案:A5.在有界区域,矢量场不但与该区域中的散度和旋度有关,还与区域边界上矢量场的切向分量和法向分量有关。

()A:错B:对答案:B第二章测试1.基于电磁学三大定律,麦克斯韦提出的两个基本假设是()。

A:有旋磁场B:有旋电场C:位移电流D:位移磁流答案:BC2.高斯定理表明,空间任一点电场强度的散度与该处电荷密度有关,静电荷是静电场的通量源。

而对电场强度求旋度可知静电场是无旋场。

()A:错B:对答案:B3.磁感应强度的单位是特斯拉,可由已知电流分布通过积分计算。

()A:对B:错答案:A4.电位移矢量穿过任一闭合曲面的通量为该闭合曲面内自由电荷的代数和。

()A:对B:错答案:A5.感应电流的磁通总是对原磁通的变化起到引导作用。

()A:对B:错答案:B第三章测试1.()为静态场边值问题的各种求解方法提供了理论依据。

A:电荷守恒定律B:镜像法C:唯一性定理D:亥姆霍兹方程答案:C2.点电荷与无限大电介质平面的镜像电荷有()个。

A:2B:1C:0D:3答案:A3.静电场能量来源于建立电荷系统的过程中电荷提供的能量。

()A:对B:错答案:B4.穿过回路的磁通量与回路中电流的比值称为电感。

()A:错B:对答案:B5.恒定电场中,导体表面不是等位面。

大学_电磁场与电磁波第二版(周克定著)课后习题答案下载

大学_电磁场与电磁波第二版(周克定著)课后习题答案下载

电磁场与电磁波第二版(周克定著)课后
习题答案下载
电磁场与电磁波第二版(周克定著)课后答案下载
第一章矢量分析
第二章静电场
第三章恒定电流的电场和磁场
第四章静态场的解
第五章时变电磁场
第六章平面电磁波
第七章电磁波的辐射
第八章导行电磁波
附录一重要的矢量公式
附录二常用数学公式
附录三量和单位
电磁场与电磁波第二版(周克定著):内容提要
全书共分八章,内容包括:矢量分析、静电场、恒定电流的`电场和磁场、静电场的解、时变电磁场、平面电磁波、电磁波的辐射及导行电磁波。

本书内容精练,概念清晰,语言流畅,注重实践性与新颖性。

为便于学习使用,书中安排有较
多的例题。

本书可作为高等学校本科相关专业“电磁场与电磁波”课程的教材,也可作为有关科技人员的自学参考书。

电磁场与电磁波第二版(周克定著):图书目录
点击此处下载电磁场与电磁波第二版(周克定著)课后答案。

物理学-第八章电磁感应 电磁场

物理学-第八章电磁感应  电磁场
R1 R2


1 = B ( R12 22 ) = 226V R 2
盘边缘的电势高于中 心转轴的电势。
8-2 动生电动势和感生电动势
二 感生电动势
产生感生电动势的非静电场

感生电场
麦克斯韦假设:变化的磁场在其周围空间激发一种电场,这个电 场叫感生电场 E k 。
闭合回路中的感生电动势:
l


8-1 电磁感应定律
楞次定律是能量守恒定律的一种 表现。
要移动导线,就需要外力对它作 功,这样就把某种形式的能量转 换为其它形式的能量。 (1)稳恒磁场中的导体运动,或者回路面积变化、取向变化等 动生电动势 (2)导体不动、磁场变化

感生电动势
= Ek d l Ek


非静电的电场强度
H =0
R1 < r < R 2 , H =
wm
r > R 2, H = 0 I2 1 I = H2= )2= ( 82 r 2 2 2r 2
I 2r
8-5 磁场的能量 磁场能量密度
I2 W m = Vw m dV = V 2 2 dV 8 r
单位长度壳层体积:
= 2 rdr × 1 R2 I 2 I2 R 2 dr = ln Wm= R1 4 r 4 R1 dV
8-1 电磁感应定律
一 电磁感应现象
法拉第(1791-1867):伟大的英 国物理学家和化学家。他创造性地提出 场的思想,磁场这一名称是法拉第最早 引入的。他是电磁理论的创始人之一, 于1831年发现电磁现象,后又相继发现 电解定律,物质的抗磁性和顺磁性,以 及光的偏振面在磁场中的旋转。
N
S
当穿过闭合导体回路所围面积的磁通 量发生变化时,不管这种变化是由于 什么原因所引起的,回路中就有电 流。这种现象叫做电磁感应现象。回 路中所出现的电流叫做感应电流。

电磁场与电磁波 第八章 麦克斯韦电磁理论和电磁波

电磁场与电磁波 第八章 麦克斯韦电磁理论和电磁波

第八章 麦克斯韦电磁理论和电磁波一、选择题1、对位移电流有下述四种说法,请指出哪一种说法正确()A 、位移电流是由变化电场产生的。

B 、位移电流是由变化磁场产生的C 、位移电流的热效应服从焦耳定律。

D 、位移电流的磁效应不服从安培环路定律 答案:A2、电位移矢量的时间变化率dtDd的单位是()A 、 库仑/米2B 、库仑/秒C 、安培/米2D 、安培∙米2答案:C3、麦克斯韦方程dt d I l d H en i i Φ+=⋅∑⎰=1(其中i I 是传导电流,e Φ是电位移矢量的通量)说明了()A 、变化的磁场一定伴随有电场B 、磁感应线是无头无尾的C 、电荷总伴随有电场D 、变化的电场一定伴随有磁场 答案:D4、位移电流与传导电流进行比较,它们的相同处是() A 、 都能产生焦耳热 B 、都伴随有电荷运动C 、都只存在与导体中D 、都只能按相同规律激发磁场 答案:D5、 在有磁场变化的空间,没有导体回路,此空间不存在下面物理量的是()A 、 电场B 、感应电动势C 、感应电流D 、磁场 答案:C 6、电磁场和实物比较,下面说法错误的是()A 、有相同的物质属性,即有质量、能量、动量等B 、都服从守恒律,质量守恒,能量守恒,动量守恒等C 、都具有波粒二象性D 、实物粒子是客观存在的,电磁场是假设存在的 答案:D 7、 如图,平板电容器(忽略边缘效应)充电时,沿环路L 1,L 2磁场强度的环流中,必有:()A 、⎰⎰⋅>⋅21L L l d H l d H B 、⎰⎰⋅=⋅21L L l d H l d HC 、⎰⎰⋅<⋅21L L l d H l d H D 、01=⋅⎰L l d H答案:B8、在感应电场中磁感应定律可写成ϕdldl d E l k -=⋅⎰ ,式中k E 为感应电场的电场强度。

此式表明: A 、 闭合曲线上处处相等 B 、感应电场是保守力场C 、感应电场的电力线不是闭和曲线D 、在感应电场中不能像对静电场那样引入电势的概念 答案:D 9、 用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图所示,如磁场方向垂直图面向里,其大小随时间减小,则(A )→(D )各图中哪个图上正确表示了感应电流的流向答案:B10、用导线围成如图所示的回路(以O 点为圆心,加一直径),放在轴线通过O 点垂直于图面的圆柱形均匀磁场中,如磁场方向垂直图面向里其大小随时间减小,则感应电流的流向为答案:B11、在圆柱形空间内有一磁感应强度为B 的均匀磁场,如图所示,B的大小以速率dB/dt两个不同位置1(ab )和2(a`b`),则金属棒在这两个位置时棒内的感应电动势的大小关系为 A 、021≠=εε B 、21εε>C 、21εε< D 、021==εε答案:C12、在圆柱形空间内有一磁感应强度为B 的均匀磁场,如图所示,B的大小以速率dB/dt 变化。

电磁场与电磁波第八章习题及参考答案

电磁场与电磁波第八章习题及参考答案

第八章 电磁辐射与天线8.1 由(8.1-3)式推导(8.1-4)及(8.1-5)式。

解)sin ˆcos ˆ(4θθθπμ-=-rrIdle A jkrρ (8.1-3) 代入A H ρρ⨯∇=μ1,在圆球坐标系ˆsin ˆˆsin 112θ∂ϕ∂∂θ∂∂∂ϕθθθμμrA A rr r rr A H r=⨯∇=ρρ)]cos ()sin ([4ˆ])([sin sin ˆ2r e e r r Idl A rA r r r jkr jkr r θθθπϕθθμθϕθ--∂∂--∂∂=∂∂-∂∂=可求出H ρ的3个分量为jkre kr kr j Idl k H -+=))(1(sin 422θπϕ (8.1-4) 0==θH H r将上式代入E j H ρρωε=⨯∇,可得到电场为H j E ρρ⨯∇=ωε1ϕθ∂ϕ∂∂θ∂∂∂ϕθθθωεH r rr r rr j sin 0ˆsin ˆˆsin 12=代入ϕH 得jkrr e kr kr j Idl k j E -+-=))(1)((cos 2323θπωε jkr e kr jkr kr j Idl k E --+=))()(1(sin 4323θπωεθ (8.1-5) 0=ϕE8.2 如果电流元yIl ˆ放在坐标原点,求远区辐射场。

解 解1 电流元yIl ˆ的矢量磁位为 jkr e rIl y A -=πμ4ˆρ 在圆球坐标系中jkry r e rIl A A -==πϕθμϕθ4sin sin sin sinjkry e rIl A A -==πϕθμϕθθ4sin cos sin cosjkry e rIl A A -==πϕμϕϕ4cos cos由A H ρρ⨯∇=μ1,对远区辐射场,结果仅取r1项,得jkre rIl jH -=λϕθ2cos jkre r Il j H --=λϕθϕ2sin cos根据辐射场的性质,E r ZH ρρ⨯=ˆ1得 jkre r Il jZ E --=λϕθθ2sin cosjkre r Il jZ E --=λϕϕ2cos解2 根据 jkR e RRl Id jH -⨯=λ2ˆρρ (8.1-13) RH Z E ˆ⨯=ρρ (8.1-14) ϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆˆ++==r y lr Rˆˆ≈ ϕθϕθϕcos ˆsin cos ˆˆˆ+-=⨯rl ϕϕϕθθcos ˆsin cos ˆˆ)ˆˆ(--=⨯⨯r rl jkRer Idl j H -=λ2ρ)cos ˆsin cos ˆ(ϕθϕθϕ+- jkR erIdl jZ H -=λ2ρ)cos ˆsin cos ˆ(ϕϕϕθθ--8.3 三副天线分别工作在30MHz,100MHz,300MHz,其产生的电磁场在多远距离之外主要是辐射场。

第八部分导行电磁波Guidedwave

第八部分导行电磁波Guidedwave
4,由于m 及 n 为多值,因此场结构均具有多种模式。 m 及
n 的每一种组合构成一种模式,以TMmn表示。 例如 TM11表示 m = 1, n = 1 的场结构,具有这种场结构的波称为TM11波。
5,数值大的 m 及 n 模式称为高次模,数值小的称为低次
模。
矩形波导中TM波的最低模式是TM11波。Dominant mode
E
E

H TEM波
es
es
H TM波
es
H TE波
几种常用导波系统的主要特性
名称 双导线 同轴线 带状线 微带 矩形波导 圆波导 光纤
波形 TEM波 TEM波 TEM波 准TEM波 TE或TM波 TE或TM波 TE或TM波
电磁屏蔽
使用波段

> 3m

> 10cm

厘米波

厘米波

厘米波、毫米波

厘米波、毫米波
表明横向电场与横向磁场相位相差 /2 ,因此,沿 Z 方 向没有能量单向流动,这就意味着电磁波的传播被截止。
矩形波导中存在的模式 矩形波导中可能存在的模式有TMmn(m>0,n>0)和
TEmn(m0,n 0),每种波型对应有各自的截止波长。
若不同模式的波具有相同的截止波长,称这两种模式简并。
矩形波导中TMmn和TEmn,当m和n分别相等时,为简并波形。
没有电场或磁场分量,即电场和磁场垂直于电场传播方向;
(TM波或E波): Transverse magnetic wave:在波传播的方向上有
电场分量,但没有磁场分量,即磁场垂直于电场传播方向;
(TE波或M波): Transverse electronic wave:在波传播的方向上有

电磁场与电磁波期末复习考试要点

电磁场与电磁波期末复习考试要点

第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。

⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分与路径无关就是保守场。

⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,则该矢量可以由一个矢量函数的旋度表示。

矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。

第八章电磁感应电磁场

第八章电磁感应电磁场

第八章 电磁感应 电磁场一、选择题尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中:(A) 感应电动势不同, 感应电流不同.(B) 感应电动势相同,感应电流相同.(C) 感应电动势不同, 感应电流相同.(D) 感应电动势相同,感应电流不同.2. 如图14.1所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪种情况可以做到?(A) 载流螺线管向线圈靠近;(B) 载流螺线管离开线圈;(C) 载流螺线管中电流增大;(D) 载流螺线管中插入铁芯.3. 在一通有电流I 的无限长直导线所在平面内, 有一半径为r 、电阻为R 的导线环,环中心距直导线为a ,如图14.2所示,且a >>r .当直导线的电流被切断后,沿导线环流过的电量约为(A) )11(220ra a R Ir +-πμ. (B) rR Ia 220μ.图图(C) a r a R Ir +ln 20πμ. (D) aR Ir 220μ.4. 如图14.3所示,导体棒AB 在均匀磁场中绕通过C 点的垂直于棒长且沿磁场方向的轴OO 转动(角速度与B 同方向), BC 的长度为棒长的1/3. 则: (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(C) A 点比B 点电势低.(D) 有稳恒电流从A 点流向B 点.5. 如图14.4所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势ε和a 、c 两点的电势差U a U c 为(A) ε= 0, U a U c = B l 2/2 .(B) ε= Bw l 2, U a U c =B l 2/2 .(C) ε= 0, U a U c = B l 2/2.(D) ε= Bw l 2 , U a U c = B l 2/2 . 6.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将:(A) 减缓铜板中磁场的增加.(B) 加速铜板中磁场的增加.(C) 对磁场不起作用.(D) 使铜板中磁场反向.7. 磁感应强度为B 的均匀磁场被限制在圆柱形空间内,.B 的大小以速率d B /d t >0变化,在磁场中有一等腰三角形ACD 导线线圈如图O B O C B A 图14.3 B l c b a 图× × × × × O B A C D15.1放置,在导线CD 中产生的感应电动势为ε1,在导线CAD 中产生的感应电动势为ε2,在导线线圈ACDA 中产生的感应电动势为ε. 则:(A) ε1= ε2 , ε=ε1+ε2 =0.(B) ε1>0, ε2<0 , ε=ε1+ε2 >0.(C) ε1>0, ε2>0 , ε=ε1ε2 <0. (D) ε1>0, ε2>0 , ε=ε2ε1>0. 8. 自感为0.25H 的线圈中,当电流在(1/16)s 内由2A 均匀减小到零时, 线圈中自感电动势的大小为: (A) 7.8103V. (B) 2.0V.(C) 8.0V. (D) 3.1102V. 9. 匝数为N 的矩形线圈长为a 宽为b ,置于均匀磁场B 中.线圈以角速度旋转,如图15.2所示,当t =0时线圈平面处于纸面,且AC 边向外,DE边向里.设回路正向ACDEA . 则任一时刻线圈内感应电动势为(A) abNBsin t (B) abNBcos t (C) abNBsin t (D) abNB cos tC A E O O B b图10. 用导线围成如图15.3所示的正方形加一对角线回路,中心为O 点, 放在轴线通过O 点且垂直于图面的圆柱形均匀磁场中. 磁场方向垂直图面向里, 其大小随时间减小, 则感应电流的流向在图18.2的四图中应为: , 11. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向,使:(A) 两线圈平面都平行于两圆心的连线.(B) 两线圈平面都垂直于两圆心的连线.(C) 两线圈中电流方向相反.(D) 一个线圈平面平行于两圆心的连线,另一个线圈平面垂直于两圆心的连线.12. 对于线圈其自感系数的定义式为L =m /I .当线圈的几何形状,大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流变小,则线圈的自感系数L(A) 变大,与电流成反比关系.(B) 变小.(C) 不变. (D) 变大,但与电流不成反比关系.13. 一截面为长方形的环式螺旋管共有N 匝线圈,其尺寸如图16.1所示.则其自感系数为(A) 0N 2(b a )h/(2a ). (B) [0N 2h/(2)]ln(b/a ). (C) 0N 2(b a )h/(2b ). (D) 0N 2(b a )h/[(a+b ). 14. 一圆形线圈C 1有N 1匝,线圈半径为r .将此线圈放在另一半径为R (R>>r ),匝数为N 2的圆形大线圈C 2的中心,两者同轴共面.则此二线圈的互感系数M 为(A) 0N 2N 2R /2.图× × O I II (A × × O I I (B × × O I I I (C × × O I I (Dh ba 图(B) 0N 2N 2R 2/(2r ). (C) 0N 2N 2r 2/(2R ). (D) 0N 2N 2r /2.15. 可以利用超导线圈中的持续大电流的磁场储存能量, 要储存1kW h 的能量,利用1.0T 的磁场需要的磁场体积为V , 利用电流为500A 的线圈储存1kW h 的能量,线圈的自感系数为L. 则(A) V=9.05m 3, L =28.8H.(B) V=7.2×106m 3, L =28.8H.(C) V=9.05m 3, L =1.44×104H. (D) V=7.2×106m 3, L =1.44×104H. 16. 如图17.1所示,平板电容器(忽略边缘效应)充电时, 沿环路L 1、L 2磁场强度H 的环流中, 必有: (A) ⎰⋅1d L l H >⎰⋅2d L l H . (B) ⎰⋅1d L l H =⎰⋅2d L l H . (C) ⎰⋅1d L l H <⎰⋅2d L l H . (C) ⎰⋅1d L l H =0. 17. 关于位移电流,下述四种说法哪一种说法正确.(A) 位移电流是由变化电场产生的.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳-楞次定律.(D) 位移电流的磁效应不服从安培环路定理.18. 一平面电磁波在非色散无损耗的媒质里传播,测得电磁波的平均能流密度为3000W/m 2,媒质的相对介电常数为4,相对磁导率为1,则在媒质中电磁波的平均能量密度为:(A) 1000J/m 3.(B) 3000J/m 3 .O O图LL 图(C) 1.0×10-5J/m 3.(D) 2.0×10-5J/m 19. 电磁波的电场强度E 、磁场强度H 和传播速度u 的关系是:(A) 三者互相垂直,而且E 和H 相位相差/2. (B) 三者互相垂直,而且E 、H 、u 构成右手螺旋直角坐标系.(C) 三者中E 和H 是同方向的,但都与u 垂直.(D) 三者中E 和H 可以是任意方向,但都必须与u 垂直.20. 设在真空中沿着x 轴正方向传播的平面电磁波,其电场强度的波的表达式是,E z =E 0cos2(νtx /), 则磁场强度的波的表达式是:(A) H y =00/μεE 0cos2(νt x /).(B) H z =00/μεE 0cos2(νt x /).(C) H y =-00/μεE 0cos2(νt x /).(D) H y =-00/μεE 0cos2(νt +x /).二、填空题1. 如图14.5所示,半径为r 1的小导线环,置于半径为r 2的大导线环中心,二者在同一平面内,且r 1<<r 2.在大导线环中通有正弦电流I=I 0sin t ,其中、I 为常数,t 为时间,则任一时刻小导线环中感应电动势的大小为 .设小导线环的电阻为R ,则在t =0到t =/(2)时间内,通过小导线环某截面的感应电量为q= .2. 如图14.6所示,长直导线中通有电流I ,有一与长直导线共面且垂直于导线的细金属棒AB ,以速度v 平行于长直导线作匀速运动. (1) 金属棒AB 两端的电势U A U B (填 、、). (2) 若将电流I 反向,AB 两端的电势U A U B (填 、r r 图v B A 图、). (3) 若将金属棒与导线平行放置,AB 两端的电势U A U B (填 、、).3. 半径为R 的金属圆板在均匀磁场中以角速度绕中心轴旋转,均匀磁场的方向平行于转轴,如图14.7所示.这时板中由中心至同一边缘点的不同曲线上总感应电动势的大小为 ,方向 . 4. 如图15.4所示. 匀强磁场局限于半径为R 的圆柱形空间区域, B 垂直于纸面向里,磁感应强度B 以d B /d t =常量的速率增加. D 点在柱形空间内, 离轴线的距离为r 1, C 点在圆柱形空间外, 离轴线上的距离为r 2 . 将一电子(质量为m ,电量为-e )置于D 点,则电子的加速度为a D = ,方向向 ;置于C 点时,电子的加速度为aC = ,方向向 . 5. 半径为a 的长为l (l >>a )密绕螺线管,单位长度上的匝数为n , 则此螺线管的自感系数为 ;当通以电流I=I m sin t 时,则在管外的同轴圆形导体回路(半径为r >a )上的感生电动势大小为 .6. 一闭合导线被弯成圆心在O 点半径为R 的三段首尾相接的圆弧线圈:弧ab , 弧bc , 弧ca . 弧ab 位于xOy 平面内,弧bc 位于yOz 平面内,弧ca 位于zOx 平面内. 如图15.5所示.均匀磁场B 沿x 轴正向,设磁感应强度B 随时间的变化率为d B /d t =k (k >0),则闭合回路中的感应电动势为 ,圆弧bc 中感应电流的方向为7. 如图16.2所示,有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO 上,则直导线与矩形线圈间的互感系数为 . 8.边长为a 和2a 的两正方形线圈A 、B,如图16.3所示地同轴放置,通有相同的电流I ,线圈A 的电流所产生的磁场通过线圈O O B 图ax by c z O B R 图B r D R O 图× × r a 2a O O图B 的磁通量用BA 表示,线圈B 的电流所产生的磁场通过线圈A 的磁通量用AB表示,则二者大小相比较的关系式为 .9. 半径为R 的无线长圆柱形导体,大小为I 的电流均匀地流过导体截面.则长为L 的一段导线内的磁场能量W = .10. 反映电磁场基本性质和规律的麦克斯韦方程组的积分形式为:试判断下列结论是包含或等效于哪一个麦克斯韦方程式的. 将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场: ;(2) 磁感应线是无头无尾的: ;(3) 电荷总伴随有电场: .三、计算题1. 如图14.8所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示. 求此线框中产生的感应电动势的大小和方向.2. 一很长的长方形的U 形导轨,与水平面成 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图14.9所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的v m .3 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与.有一长为2R 的金属棒MN 放在磁场外且与圆柱形均匀磁20c 105c C A I 图b B l d a 图× × O R B a 2az场相切,切点为金属棒的中点,金属棒与磁场B的轴线垂直.如图15.6所示.设B随时间的变化率d B/d t为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高.(分别用对感生电场的积分εi=l E i·d l和法拉第电磁感应定律εi=-d/d t两种方法解).4. 电量Q均匀分布在半径为a,长为L(L>>a)的绝缘薄壁长圆筒表面上,圆筒以角速度绕中心轴旋转.一半径为2a,电阻为R总匝数为N的圆线圈套在圆筒上,如图15.7所示.若圆筒转速按=0(1t/t0)的规律(0,t0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.5 两半径为a的长直导线平行放置,相距为d,组成同一回路,求其单位长度导线的自感系数L0.6.如图所示,金属圆环半径为R,位于磁感应强度为B的均匀磁场中,圆环平面与磁场方向垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H H y z 同理: j Ex y z H x H z H j E j E y x z H y H x j E z y x H z y H y j Ex H z H x j E y x H y H x j Ez y x
ZTEM
TEM波的波阻抗与媒质本征阻抗相等。 相伴的磁场
Ex TEM j Hy j TEM
1 1 ez E ez E
H
ZTEM

与无界空间中均匀平面波的关系相同
2、当Hz=0, Ez0时(横磁波,TM波) Ez Ex 2 k 2 x E Ez y 2 2 Ey Ex k y ZTM Hy H x j H j Ez x 2 k 2 y H j Ez y 2 2 k x
1 相伴的磁场 H ez E ZTM
3、当Ez=0, Hz0时(横电波,TE波) j H z Ex 2 k 2 y j H z Ey 2 k 2 x Ey E j x ZTE H z H H H y x x 2 k 2 x H z H y 2 2 k y 场量间关系:
k 0 TEM k jk j
2 2
2
其相位系数: k TEM波的相速为:v p TEM波的波阻抗为:
H z H y j E x 8.1.5a : y

k


1

8.1.4b : E x
E z j H y x
式中:k 2 2
说明: 1 、均匀导波系统中,可用两个纵向场分量 Ez 和Hz表示其余的横向场分量Ex、Ey、Hx、Hy。 2、对于正弦电磁波,其满足的波动方程为亥姆 2 2 2 2 霍兹方程即 E k E 0 H k H 0 所以,两个纵向场分量Ez和Hz可由亥姆霍兹方程 2 Ez k 2 Ez 0 2 H z k 2 H z 0 及边界条件确定。 讨论:根据两纵向场分量存在与否,可对导行电磁波 进行分类: 1、当Ez=0,Hz=0时(横电磁波,TEM波) 当Ez=0,Hz=0时,由场量的纵向场表达式可知,要 想Ex、Ey、Hx、Hy有非零解,则有
E Z TE ez H
说明:TEM波只能存在于多导体导波装置内(如传输线, 同轴线),TE,TM波可存在于金属空心波导内。
第二节 矩形波导
矩形波导是指横截面为矩形的空心 导波装置。 电磁波在导体空腔内传播
矩形波导
其内传播的电磁波不可能有TEM波, 只能是TE波和TM波。
x x E TEM波 k z y H y H
TM波 x TE波 E E k k zy H z
二、导行电磁波的纵向场量表达式
设电磁波在无耗媒质中向 (+z)方向传播,其角频率为 , 则其电场表达式可以记为:
jt z E Eme 由麦克斯韦方程组 E j H Ez Ez E y E y j H x j H x y z y Ez Ex Ez Ex j H y j H y x z x E y E x j H E y Ex z j H z x y y x
第一节 沿均匀导波装置传播的波的 一般特性
一、导波模式的分类 横电磁波(TEM波):在波传播的方向上没有电场或磁场 分量,即电场和磁场垂直于传播方向; 横磁波 (TM 波或 E 波 ): 在波传播的方向上有电场分量, 但没有磁场分量,即磁场垂直于传播方向; 横电波 (TE 波或 M 波 ): 在波传播的方向上有磁场分量, 但没有电场分量,即电场垂直于传播方向;
jt z E Eme
通过数学变形,可以得到用纵向场分量 Ez 、 Hz 分 量表示的ห้องสมุดไป่ตู้向场量,即:
Ez H z 1 Ex 2 ( j ) 2 k x y Ez H z 1 Ey 2 ( j ) 2 k y x H z Ez 1 ( j ) 和 Hx 2 2 k x y H z Ez 1 Hy 2 ( j ) 2 k y x
第八章 导行电磁波
导行电磁波(导波):沿导波装置(如传输线,波导)传 播的电磁波。导行波被限制在有限的空间内传播。
导波装置可以具有不同的截面形状和截面面积。
矩形波导
平行双线
圆波导
同轴线
微带线
均匀导波装置:在垂直于导波传播的方向的横截面上, 导波装置具有相同的截面形状和截面面积。
本章主要内容: 导行电磁波的一般特性 矩形波导中电磁波的特性 谐振腔 分析方法: 导行波是在有限区域内传播的电磁波,因此场量必 须满足波动方程,同时还必须满足一定的边界条件。 本章通过求解特定边界条件下的波动方程,得到导 波场的解,从中可以分析得出在各种导波装置中波的 性质。
相关文档
最新文档