2013数学建模国赛B题

合集下载

2013年数学建模国赛b题

2013年数学建模国赛b题

2013年数学建模国赛b题
摘要:
1.背景介绍:2009 年3 月合肥市非国有建筑专业职称资格评审通过人员名册
2.名册内容:通过人员名单、职称、资格等信息
3.意义:对非国有建筑行业的专业人才的肯定和鼓励
正文:
2009 年3 月,合肥市对非国有建筑专业职称资格进行了评审,并通过了一份详细的名册。

这份名册包含了通过人员名单、职称、资格等信息,是对非国有建筑行业的专业人才的肯定和鼓励。

在这个名册中,我们可以看到各位通过人员的姓名、工作单位、评审职称以及资格等信息。

他们经过了严格的评审,最终脱颖而出,获得了相应的职称资格。

这不仅是他们个人努力的结果,也是他们所在单位和行业的认可。

这份名册的意义不仅在于对个人的肯定,更在于对整个非国有建筑行业的
推动。

它鼓励了更多的专业人士积极投身于建筑行业,提高了整个行业的专业水平。

同时,它也为行业内外提供了一个参考,让人们更好地了解非国有建筑行业的发展和人才状况。

2013研究生数学建模B题建模

2013研究生数学建模B题建模

参赛密码(由组委会填写)第十届华为杯全国研究生数学建模竞赛学校广西民族大学参赛队号10608008队员姓名1.高洋洋2.黄慧冬3.李素娇参赛密码(由组委会填写)第十届华为杯全国研究生数学建模竞赛题目功率放大器非线性特性及预失真建模摘要信号的功率放大是电子通信系统的关键功能之一,其非线性失真对无线通信系统将产生诸多不良影响.功放非线性属于有源电子器件的固有特性,研究其机理并采取措施改善,具有重要意义.为了满足功率放大器线性度要求,功放线性化技术与预失真也就成为高效率发射机系统的关键技术之一.本文采用了正交多项式逼近函数、最小二乘法拟合、曲线拟合以及归一化以及NMSE评价法等.问题一,对题1给出的数据进行曲线拟合可得功放的多项式表达式,然后利用正交多项式求得预失真特性函数,最后以“输出幅度限制”为约束条件进行Matlab求解,得到了预失真补偿的结果.问题二,用一个无记忆的非线性系统来表征功率放大器的非线性,以“输出幅度限制”为约束条件进行Matlab求解,基于多项式的无记忆放大器的高效预失真结构推广到有记忆放大器的预失真中, 非线性多项式模型作为记忆预失真器模型实现了记忆非线性放大器的快速、高效的线性化.针对问题三,相邻信道功率比(Adjacent Channel Power Ratio,ACPR)是表示信道的带外失真的参数,利用Fourier变换计算功率谱密度函数,衡量由于非线性效应所产生的新频率分量对邻道信号的影响程度.文章中主要运用多项式曲线拟合的方法求出功放的非线性表达式的逼近形式,然后用NMSE参数评价了无记忆和有记忆的功放非线性模型, 结果相当乐观. 在满足预失真处理的“输出幅度限制”,且尽可能使功放的输出“功率最大化”的条件下,我们用最小二乘拟合的方法逼近功放模型的曲线,求出了无记忆和有记忆功放的放大倍数.建立预失真模型是我们还运用了正交多项式和间接学习结构,得到的预失真模型代入应用之后,结果与线性化的目标函数做归一化均方误差评价,得到的结果非常好,模型的精确度是很高的.关键词:功率放大器, 有记忆功放, 无记忆功放, 非线性失真, 预失真一、问题重述功放非线性属于有源电子器件的固有特性,研究其机理并采取措施改善,具有重要意义.目前已提出了各种技术来克服改善功放的非线性失真,其中预失真技术是被研究和应用较多的一项新技术.在数字预失真中,多项式模型由于其简单、易于实现而被普遍使用.然而多项式有效阶的确定,关系到预失真器后低通滤波器的设计和线性化的效果,因此具有非常重要的作用.针对间接结构多项式预失真器,本文提出了一种预失真无线通信中射频功率放大器预失真技术研究正交多项式模型得到预失真器的特性函数F (x ).通过理论分析及性能仿真,验证了该算法的有效性.文章给出了某功放无记忆和有记忆效应的复输入-输出测试数据,及其输入-输出幅度图,通过功放的非线性模型然后对其采取数值计算,用最小化目标误差函数的方法,求得近似的F (x ),放大器的预失真器的非线性参数,以达到预失真补偿的目的.总体原则是使预失真和功放的联合模型呈线性后误差最小.数值计算结果业界常用NMSE 参数评价其准确度.最后计算功放预失真补偿前后的功率谱密度.本文尝试解决以下三个问题:问题一,建立无记忆功放的非线性特性的数学模型和预失真模型,写出目标误差函数,计算线性化后最大可能的幅度放大倍数.问题二,建立有记忆功放的非线性特性的数学模型和预失真模型,写出目标误差函数,计算线性化后最大可能的幅度放大倍数.问题三,根据所附的数据采样频率1272.30⨯=s F MHz ,传输信道按照20MHz 来算,邻信道也是20MHz.根据给出的数据,请计算功放预失真补偿前后的功率谱密度,并用图形的方式表示三类信号的功率谱密度(输入信号、无预失真补偿的功率放大器输出信号、采用预失真补偿的功率放大器输出信号).二、问题分析这是一个功率放大器非线性及预失真问题,通过题意分析及查阅文献可知.功放的非线性特性特点在于各类功放的固有特性不同,特性函数G (·)差异较大,即使同一功放,由于输入信号类型、环境温度等的改变,其非线性特性也会发生变化.难点在于信号输入输出量大,以及怎样使有记忆及无记忆放大器精确反映实际功放的性能,利用曲线拟合的方式求特性函数G (·)及预失真器特性函数 F (·),如何选取最大可能的幅度放大倍数g .2.1 问题一无记忆效应的功率放大器,即当前的输出信号仅与当前时刻的输入信号有关,而与过去时刻的输入信号无关. 预失真的实质为功放模型的求逆问题,理论上如果功放模型在信号包络区间是单调的,则其逆存在。

2013高教社杯全国大学生数学建模竞赛题目

2013高教社杯全国大学生数学建模竞赛题目

2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)D题储药柜的设计储药柜的结构类似于书橱,通常由若干个横向隔板和竖向隔板将储药柜分割成若干个储药槽(如图1所示)。

为保证药品分拣的准确率,防止发药错误,一个储药槽内只能摆放同一种药品。

药品在储药槽中的排列方式如图2所示。

药品从后端放入,从前端取出。

一个实际储药柜中药品的摆放情况如图3所示。

为保证药品在储药槽内顺利出入,要求药盒与两侧竖向隔板之间、与上下两层横向隔板之间应留2mm的间隙,同时还要求药盒在储药槽内推送过程中不会出现并排重叠、侧翻或水平旋转。

在忽略横向和竖向隔板厚度的情况下,建立数学模型,给出下面几个问题的解决方案。

1.药房内的盒装药品种类繁多,药盒尺寸规格差异较大,附件1中给出了一些药盒的规格。

请利用附件1的数据,给出竖向隔板间距类型最少的储药柜设计方案,包括类型的数量和每种类型所对应的药盒规格。

2. 药盒与两侧竖向隔板之间的间隙超出2mm的部分可视为宽度冗余。

增加竖向隔板的间距类型数量可以有效地减少宽度冗余,但会增加储药柜的加工成本,同时降低了储药槽的适应能力。

设计时希望总宽度冗余尽可能小,同时也希望间距的类型数量尽可能少。

仍利用附件1的数据,给出合理的竖向隔板间距类型的数量以及每种类型对应的药品编号。

3.考虑补药的便利性,储药柜的宽度不超过2.5m、高度不超过2m,传送装置占用的高度为0.5m,即储药柜的最大允许有效高度为1.5m。

药盒与两层横向隔板之间的间隙超出2mm的部分可视为高度冗余,平面冗余=高度冗余×宽度冗余。

在问题2计算结果的基础上,确定储药柜横向隔板间距的类型数量,使得储药柜的总平面冗余量尽可能地小,且横向隔板间距的类型数量也尽可能地少。

4. 附件2给出了每一种药品编号对应的最大日需求量。

在储药槽的长度为1.5m、每天仅集中补药一次的情况下,请计算每一种药品需要的储药槽个数。

2013全国数学建模竞赛题目A-B

2013全国数学建模竞赛题目A-B

2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题车道被占用对城市道路通行能力的影响车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。

由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用,也可能降低路段所有车道的通行能力,即使时间短,也可能引起车辆排队,出现交通阻塞。

如处理不当,甚至出现区域性拥堵。

车道被占用的情况种类繁多、复杂,正确估算车道被占用对城市道路通行能力的影响程度,将为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。

视频1(附件1)和视频2(附件2)中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道。

请研究以下问题:1.根据视频1(附件1),描述视频中交通事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。

2.根据问题1所得结论,结合视频2(附件2),分析说明同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。

3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。

4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。

请估算,从事故发生开始,经过多长时间,车辆排队长度将到达上游路口。

附件1:视频1附件2:视频2附件3:视频1中交通事故位置示意图附件4:上游路口交通组织方案图附件5:上游路口信号配时方案图注:只考虑四轮及以上机动车、电瓶车的交通流量,且换算成标准车当量数。

附件3视频1中交通事故位置示意图附件4附件5上游路口信号配时方案本题附件1、2的数据量较大,请竞赛开始后从竞赛合作网站“中国大学生在线”网站下载:试题专题页面:/service/jianmo/index.shtml试题下载地址:/service/jianmo/sxjmtmhb/2013/0525/969401.shtml2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

数学建模国赛2013年b题

数学建模国赛2013年b题

数学建模国赛2013年b题(最新版)目录一、数学建模国赛 2013 年 b 题概述二、题目背景及要求三、解题思路与方法四、具体解题过程五、总结与展望正文【一、数学建模国赛 2013 年 b 题概述】数学建模国赛是一项面向全国大学生的竞技活动,旨在通过对现实问题进行抽象、建模和求解,培养学生的创新意识、团队协作精神和实际问题解决能力。

2013 年 b 题为该年度竞赛中的一道题目,具有一定的代表性和难度,本文将对此题进行分析和解答。

【二、题目背景及要求】2013 年 b 题的题目背景是关于某城市公交车站的乘客候车问题。

题目要求参赛选手建立一个数学模型,描述乘客的候车时间、乘客数量以及公交车的发车间隔等要素之间的关系,并通过模型求解在满足乘客舒适度的前提下,如何调整公交车的发车间隔,使得乘客的候车时间最短。

【三、解题思路与方法】针对这道题目,我们可以采用以下思路和方法:1.根据题目描述,建立乘客候车时间的数学模型。

我们可以将乘客的候车时间看作一个随机变量,其期望值表示乘客平均候车时间。

2.建立乘客数量与公交车发车间隔的关系。

根据题目描述,当公交车站内乘客数量超过一定阈值时,公交车会提前发车。

因此,我们可以将乘客数量作为一个影响发车间隔的因素。

3.利用数学方法求解最优的发车间隔。

根据乘客候车时间的数学模型和乘客数量与公交车发车间隔的关系,我们可以建立一个优化问题,求解在最小化乘客平均候车时间的前提下,公交车的最佳发车间隔。

【四、具体解题过程】具体解题过程如下:1.根据题目描述,建立乘客候车时间的数学模型。

假设乘客到达公交车站的间隔时间为{λ_i},每个乘客的候车时间为{t_i},则乘客平均候车时间为 E(t) = ∑(t_i * λ_i)。

2.建立乘客数量与公交车发车间隔的关系。

假设公交车发车间隔为Δt,当乘客数量超过阈值 K 时,公交车提前发车。

因此,我们可以得到以下关系式:E(t) = ∫(λ_i * min(t_i, Δt)) dλ_i + K * ∫(min(t_i, Δt - τ)) dλ_i,其中τ表示公交车提前发车的时间。

(完整word版)2013年数学建模b题

(完整word版)2013年数学建模b题

精心整理碎纸片的拼接复原【摘要】:碎纸片拼接技术是数字图像处理领域的一个重要研究方向,把计算机视觉和程序识别应用于碎纸片的复原,在考古、司法、古生物学等方面具有广泛的应用,具有重要的现实意义。

本文主要结合各种实际应用背景,针对碎纸机绞碎的碎纸片,基于计算机辅助对碎纸片进行自动拼接复原研究。

针对问题1,依据图像预处理理论,通过matlab程序处理图像,将图像转化成适合于计算机处理的数字图像,进行灰度分析,提取灰度矩阵。

对于仅纵切的碎纸片,根据矩阵的行提取理论,将。

建中的任一列与矩阵值,序列号。

将程序进行循环操作,得到最终的碎片自动拼接结果。

、;分别作为新生成的矩阵、。

,将矩阵中的任一列分别与矩阵中每一列代入模型,所得p值对应的值即为横排序;将矩阵中的任一行分别于矩阵中的任一行代入模型,所得q值对应的值即为列排序。

循环进行此程序,得计算机的最终运行结果。

所得结果有少许误差,需人工调制,更正排列顺序,得最终拼接结果。

针对问题3,基于碎纸片的文字行列特征,采用遗传算法,将所有的可能性拼接进行比较,进行择优性选择。

反面的排序结果用于对正面排序的检验,发现结果有误差,此时,进行人工干预,调换碎纸片的排序。

【关键词】:灰度矩阵欧式距离图像匹配自动拼接人工干预一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,大量的纸质物证复原工作都是以人工的方式完成的,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接不但耗费大量的人力、物力,而且还可能对物证造成一定的损坏。

随着计算机技术的发展,人们试图把计算机视觉和模式识别应用于碎纸片复原,开展对碎纸片自动拼接技术的研究,以提高拼接复原效率。

试讨论一下问题,并根据题目要求建立相应的模型和算法:、附件4(1)(2)(3)(4)纸片的自动拼接。

问题1:根据图像预处理理论,通过程序语言将图像导入matlab程序,对图像进行预处理,将碎纸片转换成适合于计算机处理的数字图像形式,并对数字图像进行灰度分析,提取灰度矩阵。

2013数模国赛B题(1)matlab源代码汇总

2013数模国赛B题(1)matlab源代码汇总

function p=start(p=cell(19,1; %%生成一个元胞数组。

cell 是matlab 中的一种数据类型,用大括号定义,括号里可以是任意类型的数据或矩阵。

fori=1:19ifi<=10imageName=strcat('00',num2str(i-1,'.bmp'; %strcat是连接字符串的函数连接字符串的函数 % num2str 是将数值转换成字符串的函数, 由于strcat 只能连接字符串,故此处需将(i-1)转换为字符串elseimageName=strcat('0',num2str(i-1,'.bmp';end %%将图片的文件名用同一变量imageName 表示,以便下一步的读取图片数据。

p{i,1}=imread(imageName; %%读取读取图片文件中的数据。

此题为图片的灰度值。

endsump=[];answer=[];fori=1:19answer(i=i;endfori=1:19sump(i=(sum(p{i}(:,1; %%将每一张图片所得数据的第一列的所有数加起来endA=find(sump==max(sump; %最大者即为左边第一张图片C=answer(A;answer(A=1;answer(1=C; %将answer(A的值与answer(1的值互换 B=p{A};p{A}=p{1};p{1}=B; %将p{A}的值与p{1}互换fori=2:19sump=[];for j=i:19a=p{i-1}(:,72;b=p{j}(:,1;s=abs(a-b;sump(j=sum(s; %求每张图片与前一张的吻合系数for k=1:(i-1sump(k=9999999; %因为find 函数是对每一个元素进行比较,因而此处必须对其他位置的元素赋值。

又因为其他元素与所求结果无关,为不影响结果,其值应大于1980*255*2endendA=find(sump==min(sump; %找出吻合系数最小的一个,即为下一张图片C=answer(A;answer(A=answer(i;answer(i=C; % %将answer(A的值与answer(i的值互换B=p{A};p{A}=p{i};p{i}=B; %% %将p{A}的值与p{i}互换endanswer-1%%输出answer-1的值,即为所求的图片编号的顺序 q=[p{1}];fori=2:19q=[q,p{i}];%%获得由最后所得按顺序排列的图片所组成的数组endimshow(q %%将所得的图像显示出来。

2013全国大学生数学建模竞赛B题

2013全国大学生数学建模竞赛B题

将008代表的矩阵C8的第二列元素与其它矩 阵的第一列元素进行两两匹配。记录元素相 同的个数,个数除以1980为C8矩阵第二列对 其它矩阵第一列的边缘匹配度,记为:
比较这18个数据,最大的即为与008匹配的 碎纸片。然后以所找到的碎纸片的第二列开 始,求出它与其它矩阵第一列的边缘匹配度, 找出最大的,以此类推把19张碎纸片拼接完 成。
三.问题2的分析
英文碎纸片的分析 通过观察可以发现英文字母的主要的 部分拥有同一上界和同一下界,例如:
将图片中每一行中黑色像素数少于13的及 字母的次要部分转变为二值化矩阵中的0, 将每一行中黑色像素大于等于13的及字母 的主要部分转化为二值化矩阵中的1,这样 得到的新的二值化矩阵 。例如图像转变为 如下图的方式:
二.问题1的分析
步骤一:使用matlab中的imread函数 可以做出图片的灰度矩阵 ,读取每 张图片文件的数据,其目的是将附件 中给的 bmp 格式的碎纸片图以灰度 值矩阵的形式存储。再将灰度值矩阵 转化为 0-1 矩阵,来得到模型的数 据基础;
由于该像素图片转换后为
的矩阵,ቤተ መጻሕፍቲ ባይዱ
论文中无法放置,所以仅简单举例说明:
以纸片000与001为例,匹配方式可能为:
将①②的边缘匹配度相加得到边缘匹配度 之和,将③④的边缘匹配度相加得边缘匹 配度之和,两者的和做出比较。若仅有一 个大于等于1.9,则计算机输出该匹配度, 人工判断是否碎纸片是否匹配;若两者均 大于等于1.9,计算机把两个匹配度之和输 出,人工选择判断碎纸片应是否匹配与如 何匹配;若两者均小于1.9,则计算输出最 大者,人工判断碎纸片是否匹配。这样可 以得到一些在同一横行的碎纸片的拼接。
总体思路
三步走:分行,行内排序,行间排序

2013年全国数学建模B题省一等奖

2013年全国数学建模B题省一等奖

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写) B我们的参赛报名号为(如果赛区设置报名号的话):024B03所属学校(请填写完整的全名):山东科技大学参赛队员(打印并签名) :1. 张鑫2. 吕彦全3. 孙红华指导教师或指导教师组负责人(打印并签名):赵文才(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。

针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。

数学建模国赛2013年b题

数学建模国赛2013年b题

数学建模国赛2013年b题摘要:一、数学建模国赛简介1.数学建模国赛背景2.2013 年数学建模国赛B 题内容二、2013 年数学建模国赛B 题解析1.题目背景及要求2.问题一解析3.问题二解析4.问题三解析三、数学建模竞赛对参赛者的意义1.提升实际问题解决能力2.增强团队协作能力3.培养创新思维四、数学建模竞赛的准备与建议1.积累建模知识与技能2.加强团队配合与沟通3.注重实际问题分析与解决正文:数学建模国赛是一项在我国有着广泛影响力的学科竞赛活动,旨在选拔优秀的数学建模人才,推动数学建模教育的发展。

2013 年的数学建模国赛B题,以一道实际问题为背景,要求参赛者运用数学方法解决实际问题。

2013 年数学建模国赛B 题的内容是:“输电线路的优化设计”。

该题目要求参赛者针对一个实际的输电线路工程,通过建立数学模型,分析并提出优化方案。

具体包括三个问题:1.根据给定的线路参数,计算输电线路的总电阻;2.分析不同输电线路的设计方案,确定最优设计方案;3.建立输电线路的运行维护模型,预测线路的运行状态。

通过参与数学建模竞赛,参赛者能够提升自己的实际问题解决能力。

在竞赛过程中,他们需要针对实际问题,灵活运用数学知识和方法,寻求问题的解决方案。

此外,数学建模竞赛也非常注重团队协作,参赛者需要与队友紧密配合,共同完成竞赛任务。

这不仅能够增强团队协作能力,还能培养参赛者的创新思维。

对于想要参加数学建模竞赛的同学们,有以下几点建议:1.积累建模知识与技能:熟练掌握常用的数学建模方法和工具,例如线性规划、动态规划、图论等;2.加强团队配合与沟通:与队友共同学习、讨论和解决问题,提高团队协作效率;3.注重实际问题分析与解决:在平时的学习和生活中,多关注实际问题,培养自己分析问题和解决问题的能力。

数学建模国赛对于参赛者来说,既是一次挑战,也是一次锻炼和成长的机会。

2013年全国研究生数学建模竞赛B题论文

2013年全国研究生数学建模竞赛B题论文

参赛密码(由组委会填写)第十届华为杯全国研究生数学建模竞赛学校南京邮电大学参赛队号10293015队员姓名1.仲伟奇2.卢诗尧3.江爱珍参赛密码(由组委会填写)第十届华为杯全国研究生数学建模竞赛题 目 功率放大器非线性特性及预失真建模摘 要:本文根据函数逼近Weierstrass 定理对功放的非线性特性建立多项式数学模型。

对于无记忆功放,直接用matlab 中polyfit 函数或矩阵运算求解,用NMSE 值来评价不同阶数所得的多项式模型,最终将多项式模型的阶数定为4,此时47.13NMS dB E -=,系数详见4.1.3;根据线性原则和两个约束条件建立预失真的多项式模型,采用查表法求得预失真器的输入和输出,建立目标误差函数21ˆmin |()()|Nn GE z n z n ==-∑,用polyfit 函数或矩阵运算求解,最终根据GE 值最小确定多项式阶数为12, 此时-50.877B NMSE d =,系数详见4.2.3。

对于有记忆功放,在无记忆的基础上建立模型,增加延迟项来表征记忆效应,通过矩阵运算求解,然后用NMSE 值评估确定记忆效应多项式阶数为4,记忆深度为3,此时44.3839NMSE dB =-,系数详见4.3.3;根据功放的非线性模型,,建立预失真器的有记忆效应多项式模型,利用功放的输入输出数据间接得到预失真器的输入输出,再用矩阵运算,用NMSE 值来评估确定阶数为4,记忆深度为3,系数详见4.4.3,此时19.0058NMSE dB =-。

运用自相关函数和功率谱密度是一对傅里叶变换对的性质,对自相关函数作傅里叶变换求得功率谱密度,分析得出传输信道范围,最终得出输入信号、有无预失真补偿三类信号的A C P R 值分别为47.1212dB-,37.4586dB -,38.7557dB -,得出预失真补偿后的ACPR 值要比补偿前要小。

关键词:数据拟合 查表法 NMSE/EVM 评价 矩阵运算 多项式模型功率放大器非线性特性及预失真建模一问题重述1.1 问题引入信号的功率放大是电子通信系统的关键功能之一,其实现模块称为功率放大器(PA,Power Amplifier),简称功放。

2013年全国数学建模竞赛B题

2013年全国数学建模竞赛B题

2013高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)B题碎纸片的拼接复原破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

请讨论以下问题:1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。

2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果表达要求同上。

3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。

附件5给出的是一页英文印刷文字双面打印文件的碎片数据。

请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。

【数据文件说明】(1)每一附件为同一页纸的碎片数据。

(2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片。

(3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片。

(4)附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面。

该附件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片的两面分别对应文件000a、000b。

【结果表达格式说明】复原图片放入附录中,表格表达格式如下:(1)附件1、附件2的结果:将碎片序号按复原后顺序填入1×19的表格;(2)附件3、附件4的结果:将碎片序号按复原后顺序填入11×19的表格;(3)附件5的结果:将碎片序号按复原后顺序填入两个11×19的表格;(4)不能确定复原位置的碎片,可不填入上述表格,单独列表。

数学建模2013年b题

数学建模2013年b题

数学建模2013年b题
一、题目背景介绍
数学建模2013年b题涉及到的背景知识如下:
1.题目背景:题目来源于现实生活中的某个实际问题,需要运用数学知识进行分析和解决。

2.知识点:题目涉及到的数学知识点包括线性规划、微分方程、概率论等。

二、数学建模方法概述
数学建模方法是指运用数学理论与方法对现实问题进行抽象、简化和求解的过程。

在本题中,我们需要根据题目背景,选择合适的数学方法进行建模和求解。

三、解题步骤与方法详解
1.步骤一:阅读题目,理解题意,提炼关键信息。

2.步骤二:根据题目背景和关键信息,选择合适的数学方法进行建模。

3.步骤三:建立数学模型,列写出相应的数学方程。

4.步骤四:求解数学方程,得到模型解。

5.步骤五:检验模型解的合理性,并对模型进行优化。

6.步骤六:根据模型解分析实际问题,撰写论文。

四、模型检验与优化
1.模型检验:检验模型解是否符合实际情况,可以通过与实际数据进行对比来验证。

2.模型优化:根据实际问题的变化,对模型进行调整和改进,以提高模型的准确性和实用性。

五、应用实例与分析
以下是一个与应用实例相关的问题:
某企业在生产过程中,需要对生产流程进行优化,以降低成本、提高效益。

我们可以通过数学建模方法,对企业生产流程进行分析,找到最优的生产策略。

六、总结与展望
1.总结:通过对2013年数学建模b题的分析,我们了解了如何运用数学建模方法解决实际问题,并掌握了线性规划、微分方程等数学知识。

2.展望:未来,我们可以将所学知识应用于更多实际问题,为各行各业提供有益的决策支持。

2013年全国研究生数学建模竞赛B题

2013年全国研究生数学建模竞赛B题

2013年全国研究生数学建模竞赛B 题(华为公司合作命题)功率放大器非线性特性及预失真建模一、背景介绍1.问题引入信号的功率放大是电子通信系统的关键功能之一,其实现模块称为功率放大器(PA ,Power Amplifier ),简称功放。

功放的输出信号相对于输入信号可能产生非线性变形,这将带来无益的干扰信号,影响信信息的正确传递和接收,此现象称为非线性失真。

传统电路设计上,可通过降低输出功率的方式减轻非线性失真效应。

功放非线性属于有源电子器件的固有特性,研究其机理并采取措施改善,具有重要意义。

目前已提出了各种技术来克服改善功放的非线性失真,其中预失真技术是被研究和应用较多的一项新技术,其最新的研究成果已经被用于实际的产品(如无线通信系统等),但在新算法、实现复杂度、计算速度、效果精度等方面仍有相当的研究价值。

本题从数学建模的角度进行探索。

若记输入信号)(t x ,输出信号为)(t z , t 为时间变量,则功放非线性在数学上可表示为))(()(t x G t z =,其中G 为非线性函数。

预失真的基本原理是:在功放前设置一个预失真处理模块,这两个模块的合成总效果使整体输入-输出特性线性化,输出功率得到充分利用。

原理框图如图1所示。

图1 预失真技术的原理框图示意其中)(t x 和)(t z 的含义如前所述,)(t y 为预失真器的输出。

设功放输入-输出传输特性为()G ,预失真器特性为()F ,那么预失真处理原理可表示为))(())(()))((())(()(t x L t x F G t x F G t y G t z ==== (1)L F G = 表示为()G 和()F 的复合函数等于()L 。

线性化则要求)())(()(t x g t x L t z ⋅== (2) 式中常数g 是功放的理想“幅度放大倍数”(g>1)。

因此,若功放特性()G 已知,则预失真技术的核心是寻找预失真器的特性()F ,使得它们复合后能满足)())(())()((t x g t x L t x F G ⋅== (3) 如果测得功放的输入和输出信号值,就能拟合功放的特性函数()G ,然后利用(3)式,可以求得()F 。

2013年全国大学生电工杯数学建模竞赛一等奖论文(B题)

2013年全国大学生电工杯数学建模竞赛一等奖论文(B题)

%
(1-2b)
化学不完全燃烧热损失是由于烟气中残留有诸如 CO ,H 2 ,CH 4 等可燃气体成分而 未释放出燃烧热就随烟气排出所造成的热损失。 气体不完全燃烧产物为 CO , H 2 , CH 4 等可燃气体,则其热损失应为烟气中各可燃 气体体积与它们的体积发热量乘积的总和。 题中说明过量空气系数对化学不完全燃烧热损失影响较小,故可视为常数处理。所 以,化学不完全燃烧热损失与过量空气系数没有直接关系,故可以假设化学不完全燃烧 热损失 q3 为一常数,即: q3 K (1-3) 5.1.4 机械不完全燃烧热损失 q4 的计算 机械不完全燃烧热损失是由于进入炉膛的燃料中, 有一部分没有参与燃烧或未燃尽 而被排出炉外引起的热损失。论其实质,是包含在灰渣(包括灰渣、漏煤、烟道灰、 飞 灰以及溢流灰、冷灰渣等)中的未燃尽的碳造成的热量的损失。对层燃炉而言,主要由 灰渣、漏煤、和飞灰三项组成。 在实际中因为漏煤的含量相对较少所以本文不考虑漏煤的量,对于运行中的锅炉, 分别收集它的每小时的灰渣和飞灰的质量 Ghz 和 G fh (kg/h) ,同时分析出它们所含可燃 物质的质量百分数 Chz 和 C fh (%)和可燃烧的发热量 Qhz 和 Q fh (kJ/kg)则灰渣和飞灰损
q2 q3 q4 q5 q6 I py
Qgy Qr H Wy Ghz G fh ahz a fh ahz
y
py hz
Ay (c ) hz
hz gl
5.模型的建立和求解
5.1 问题一:确定锅炉运行的最佳过量空气系数 5.1.1 问题的分析 因为 q 2 q3 q 4 先减少后增加,有一个最小值,与此最小值对应的空气系数称为最 佳过量空气系数。 所以首先要求出 q2 、q3 和 q4 的表达式。 然后求得 q 2 q3 q 4 的表达式, 在对这个表达式进行求导,让导数等于 0 这就是最佳过量空气系数。 5.1.2 排烟热损失 q2 的计算 由于技术经济条件的限制,烟气离开锅炉排入大气时,烟气温度比进入锅炉的空气 温度要高得多,排烟所带走的热量损失简称为排烟热损失。 排烟热损失可按如下公式计算[3]: (1-1) Q2 I py pyVk0 (ct ) amb kJ / kg

2013全国大学生数学建模比赛B题_答案

2013全国大学生数学建模比赛B题_答案

2013全国大学生数学建模比赛B题_答案在2013年全国大学生数学建模比赛中,B题的答案涉及了复杂的数学问题和模型建立。

本文将对B题的答案进行详细解析,包括问题的分析、数学模型的建立和结果的分析。

一、问题分析B题要求解答电气设备故障诊断问题。

在现代电气系统中,电气设备的故障可能导致整个系统的崩溃,因此及时准确地诊断故障是非常重要的。

本题给出了一组电气设备的故障数据,要求通过建立数学模型,诊断出可能的故障原因。

二、数学模型的建立1. 数据预处理首先,我们需要对给出的故障数据进行预处理,以便更好地分析和建立模型。

预处理包括数据清洗、异常值检测和数据归一化等步骤。

2. 特征选择在建立数学模型之前,我们需要选择合适的特征来描述电气设备的故障情况。

特征选择的原则是能够最大程度地包含有用的信息,同时减少冗余和噪声。

常用的特征选择方法包括相关系数分析、主成分分析和信息增益等。

3. 模型建立根据问题的要求,可以采用多种数学模型进行建立,如贝叶斯网络、支持向量机和神经网络等。

不同的模型有着不同的优劣势,在实际应用中需要根据具体情况选择合适的模型。

4. 模型训练和优化在建立好数学模型之后,需要使用给出的故障数据进行模型的训练和优化。

训练的目标是根据已知的故障数据,提高模型的准确性和泛化能力。

优化的过程包括参数调整和模型选择等。

三、结果分析经过模型的训练和优化,我们得到了电气设备故障的诊断结果。

在结果的分析中,我们需要评估模型的精度和可靠性,同时根据实际情况提出相应的改进策略。

四、小结通过对2013全国大学生数学建模比赛B题的答案进行详细解析,我们了解了电气设备故障诊断的数学建模过程。

建立数学模型涉及到数据预处理、特征选择、模型建立和结果分析等步骤。

这些步骤的正确和合理运用,对于解决实际问题具有重要意义。

注:本文仅为示例,实际的答案可能涉及更多细节和公式推导。

请根据具体题目要求进行解答。

2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B题-答案

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。

由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。

面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。

题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。

2013年数学建模b题

2013年数学建模b题

精心整理碎纸片的拼接复原【摘要】:碎纸片拼接技术是数字图像处理领域的一个重要研究方向,把计算机视觉和程序识别应用于碎纸片的复原,在考古、司法、古生物学等方面具有广泛的应用,具有重要的现实意义。

本文主要结合各种实际应用背景,针对碎纸机绞碎的碎纸片,基于计算机辅助对碎纸片进行自动拼接复原研究。

针对问题1,依据图像预处理理论,通过matlab程序处理图像,将图像转化成适合于计算机处理的数字图像,进行灰度分析,提取灰度矩阵。

对于仅纵切的碎纸片,根据矩阵的行提取理论,将每个灰度矩阵的第一列提取,作为新矩阵,提取每个灰度矩阵的最后一列,生成新矩阵。

建立碎纸片匹配模型:将矩阵中的任一列与矩阵中的每一列带入模型,所得p值对应的值,即为所拼接的碎片序列号。

将程序进行循环操作,得到最终的碎片自动拼接结果。

针对问题2,首先将图像信息进行灰度分析,提取灰度矩阵。

基于既纵切又横切的碎纸片,根据矩阵的行列提取理论,分别提取每个灰度矩阵的第一列和最后一列,分别生成新矩阵、;提取所有灰度矩阵的第一行和最后一行,分别作为新生成的矩阵、。

由于纸质文件边缘空白处的灰度值为常量,通过对灰度矩阵的检验提取,确定最左列的碎纸片排序。

在此基础上,采用从局部到整体,从左到右的方法,建立匹配筛选模型:,将矩阵中的任一列分别与矩阵中每一列代入模型,所得p值对应的值即为横排序;将矩阵中的任一行分别于矩阵中的任一行代入模型,所得q值对应的值即为列排序。

循环进行此程序,得计算机的最终运行结果。

所得结果有少许误差,需人工调制,更正排列顺序,得最终拼接结果。

针对问题3,基于碎纸片的文字行列特征,采用遗传算法,将所有的可能性拼接进行比较,进行择优性选择。

反面的排序结果用于对正面排序的检验,发现结果有误差,此时,进行人工干预,调换碎纸片的排序。

【关键词】:灰度矩阵欧式距离图像匹配自动拼接人工干预一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

2013年全国数学建模B题

2013年全国数学建模B题

2013年全国数学建模B题1、首先运用MATLAB的imread语句将图片转化为参数,每一张图片都得到一个1980*72的矩阵,抽取每个矩阵的第1列和第72列,共得到38列数据,并对其进行编号排序,运用MATLAB进行分布聚类分析,分为18类,得到各自的搭配图形,最后进行人工编排和绘图。

程序如下:(1)clc;clear allclose allI=imread('D:\B\附件1\010.bmp');I_gray=double(I);[m,n] = size(I);a=0.3;A=0;T1=0;S=0;for i=1:mfor j=1:nA=A+I_gray(i,j)endendA=A*0.9;while(S<A)T1=T1+1;for i=1:mfor j=1:nif(I_gray(i,j)==T1)S=S+I_gray(i,j);endendendendT2=zeros(m,n);T3=zeros(m,n);M=3;N=3;for i=M+1:m-Mfor j=N+1:n-Nmax=1;min=255;for k=i-M:i+Mfor l=j-N:j+Nif I_gray(k,l)>maxmax=I_gray(k,l);endif I_gray(k,l)<minmin=I_gray(k,l);endendendT2(i,j)=(max+min)/2;T3(i,j)=max-min;endendT4=medfilt2(T2,[M,N]);T5=(T1+T4)/2;I_bw=zeros(m,n);for i=1:mfor j=1:nif I_gray(i,j)>(1+a)*T1I_bw(i,j)=255;endif I_gray(i,j)<(1-a)*T1I_bw(i,j)=0;endif (1-a)*T1<=I_gray(i,j)<=(1-a)*T1 if T3(i,j)>a*T1if I_gray(i,j)>=T4(i,j)I_bw(i,j)=255;elseI_bw(i,j)=0;endelse if I_gray(i,j)>=T5(i,j)I_bw(i,j)=255;elseI_bw(i,j)=0;endendendendendsubplot(1,2,1),imshow(I)subplot(1,2,2),imshow(I_bw)(2)julei=data';julei2=zscore(julei);y=pdist(julei2);z=linkage(y);dendrogram(z,'average')[x,cmap]=imread('000.bmp '); %读取图像的数据阵和色图阵image(x);colormap(cmap);axis image off %保持宽高比并取消坐标轴2、。

2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B题-答案

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。

由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。

面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。

题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3v2013高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
B题碎纸片的拼接复原
破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

请讨论以下问题:
1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。

2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果表达要求同上。

3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。

附件5给出的是一页英文印刷文字双面打印文件的碎片数据。

请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。

【数据文件说明】
(1)每一附件为同一页纸的碎片数据。

(2)附件1、附件2为纵切碎片数据,每页纸被切为19条碎片。

(3)附件3、附件4为纵横切碎片数据,每页纸被切为11×19个碎片。

(4)附件5为纵横切碎片数据,每页纸被切为11×19个碎片,每个碎片有正反两面。

该附
件中每一碎片对应两个文件,共有2×11×19个文件,例如,第一个碎片的两面分别对应文件000a、000b。

【结果表达格式说明】
复原图片放入附录中,表格表达格式如下:
(1)附件1、附件2的结果:将碎片序号按复原后顺序填入1×19的表格;
(2)附件3、附件4的结果:将碎片序号按复原后顺序填入11×19的表格;
(3)附件5的结果:将碎片序号按复原后顺序填入两个11×19的表格;
(4)不能确定复原位置的碎片,可不填入上述表格,单独列表。

相关文档
最新文档