函数奇偶性说课

合集下载

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

函数的奇偶性前言函数的奇偶性是高中数学中的一个重要概念,也是数学中的常见性质之一。

片面地来讲,它们是课程表中的某一个知识点,但是如果它被用来将不同的数学概念联系起来,比如对称、周期性、等等,则可以把它作为基础知识点,引导学生探求数学中的奇美妙世界。

本文将围绕着函数的奇偶性来进行讲解。

正文什么是函数的奇偶性一个给定的函数,如果对于任意的x,都有f(−x)=−f(x),则称该函数为一个奇函数,如果对于任意的x,都有f(−x)=f(x),则称该函数为一个偶函数。

奇偶性的性质1.若f(x)是一个奇函数,则其图像关于原点对称。

若f(x)是一个偶函数,则其图像关于y轴对称。

2.对于任意的奇函数f(x),f(0)=0。

对于任意的偶函数f(x),f(0)是正的。

3.奇函数与奇函数相加,得到一个奇函数;奇函数与偶函数相加,得到一个奇函数;偶函数与偶函数相加,得到一个偶函数。

4.奇函数与奇函数相乘,得到一个偶函数;奇函数与偶函数相乘,得到一个奇函数;偶函数与偶函数相乘,得到一个偶函数。

5.如果f(x)是一个定义域为$[0,\\infty)$上的偶函,那么f(x)可以表示为一个关于x=0的偶函数的傅里叶级数。

奇偶性的应用对称性奇函数是关于原点对称的,而偶函数则是关于y轴对称的。

根据这一性质,我们可以很容易地画出函数的图像。

例如,对于函数f(x)=x3,其中f(x)是一个奇函数,我们可以得到关于原点的对称图像:奇函数对称性1同样地,对于函数g(x)=x2,其中g(x)是一个偶函数,我们可以得到关于y轴的对称图像:偶函数对称性1这种对称性不仅存在于函数的图像中,还可以应用于方程的解决。

例如,对于二次方程ax2+bx+c=0,如果b=0,那么该方程是一个偶函数。

如果我们知道一个根x0,那么−x0也是一个根。

这种对称性使得解方程变得更加简单。

周期性对于任意函数f(x),如果存在一个正数T,使得f(x+T)=f(x)对任意的x都成立,那么我们称f(x)是有周期的,T是这个周期。

函数的奇偶性教案(通用8篇)

函数的奇偶性教案(通用8篇)

函数的奇偶性教案(通用8篇)函数的奇偶性教案(通用8篇)作为一位兢兢业业的人民教师,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

来参考自己需要的教案吧!下面是小编收集整理的函数的奇偶性教案,欢迎阅读,希望大家能够喜欢。

函数的奇偶性教案篇1教学目标:了解奇偶性的含义,会判断函数的奇偶性。

能证明一些简单函数的奇偶性。

弄清函数图象对称性与函数奇偶性的关系。

重点:判断函数的奇偶性难点:函数图象对称性与函数奇偶性的关系。

一、复习引入1、函数的单调性、最值2、函数的奇偶性(1)奇函数(2)偶函数(3)与图象对称性的关系(4)说明(定义域的要求)二、例题分析例1、判断下列函数是否为偶函数或奇函数例2、证明函数在R上是奇函数。

例3、试判断下列函数的奇偶性三、随堂练习1、函数()是奇函数但不是偶函数是偶函数但不是奇函数既是奇函数又是偶函数既不是奇函数又不是偶函数2、下列4个判断中,正确的是_______.(1)既是奇函数又是偶函数;(2)是奇函数;(3)是偶函数;(4)是非奇非偶函数3、函数的图象是否关于某直线对称?它是否为偶函数?函数的奇偶性教案篇2一、教学目标【知识与技能】理解函数的奇偶性及其几何意义.【过程与方法】利用指数函数的图像和性质,及单调性来解决问题.【情感态度与价值观】体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣.二、教学重难点【重点】函数的奇偶性及其几何意义【难点】判断函数的奇偶性的方法与格式.三、教学过程(一)导入新课取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y 轴对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.(二)新课教学1.函数的奇偶性定义像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数.(1)偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(学生活动):仿照偶函数的定义给出奇函数的定义(2)奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).2.具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.3.典型例题(1)判断函数的奇偶性例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤) 解:(略)总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.(三)巩固提高1.教材P46习题1.3 B组每1题解:(略)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.2.利用函数的奇偶性补全函数的图象(教材P41思考题)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.(四)小结作业本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.课本P46 习题1.3(A组) 第9、10题, B组第2题.四、板书设计函数的奇偶性一、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.二、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.三、规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.函数的奇偶性教案篇3学习目标 1.函数奇偶性的概念2.由函数图象研究函数的奇偶性3.函数奇偶性的判断重点:能运用函数奇偶性的定义判断函数的奇偶性难点:理解函数的奇偶性知识梳理:1.轴对称图形:2中心对称图形:【概念探究】1、画出函数,与的图像;并观察两个函数图像的对称性。

说课(函数的奇偶性)

说课(函数的奇偶性)

三、程序设计
1、设疑导入、观图激趣 设疑导入、
(1)
y = x , y = 2| x |;
2
y
y
oxox来自1 (2) y = (x ≠ 0), y = −2x. x
y o x
y
o
x
2、指导观察、形成概念 指导观察、
x
y = x2
… …
-3
-2
-1
0
1
2
3

9
4
1
0
1
4
9

x
y = 2| x |
… …
说明:培养学生全面看待问题的习惯。 说明:培养学生全面看待问题的习惯。
四、作业与板书设计
【作业】1、必做题:P43,习题 、6、7; 作业】 、必做题: ,习题5、 、 ; 2、选做题:P94,复习题 、29。 、选做题: ,复习题23、 。 板书设计】 【板书设计】
函数的奇偶 性概念 例题及学生 解答 例题及学生 解答
2、教学目标
根据课程标准要求,我确定本节课的三维教学目标: 根据课程标准要求,我确定本节课的三维教学目标: (1)知识目标 了解函数奇偶性的概念、图象和性质, 了解函数奇偶性的概念、图象和性质,并能判断一 些简单函数的奇偶性。 些简单函数的奇偶性。 (2)能力目标 在奇偶性概念形成过程中,培养学生的观察、归纳、 在奇偶性概念形成过程中,培养学生的观察、归纳、 抽象、概括能力, 抽象、概括能力,同时渗透数形结合和特殊到一般的数学 思想方法。 思想方法。 (3)情感目标 在学生感受数学美的同时,激发学习的兴趣, 在学生感受数学美的同时,激发学习的兴趣,培养学生 乐于求索的精神。 乐于求索的精神。
概念分析及 强化

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿引言:函数是数学中非常重要的概念之一,我们在数学学习的过程中会经常遇到各种类型的函数。

不同种类的函数都有不同的性质,今天我将要给大家讲述的是函数的奇偶性。

一、教学目标1. 知识目标:掌握奇函数和偶函数的基本概念、性质及图像。

2. 技能目标:能通过函数的变化确定其奇偶性,并求出奇偶扩展函数。

3. 情感目标:培养学生的求知欲和思考能力,养成勇于解决问题的良好习惯。

二、教学内容1. 函数的基本概念。

2. 奇函数和偶函数的定义与性质。

3. 常见的奇偶函数及其图像。

三、教学过程1. 导入新课,激发学生的学习兴趣。

先让学生思考以下问题:如果用一种颜色区分正数和负数情况下,函数图象会有什么变化? 如图所示,请看以下函数:f(x) = x^2, g(x) = x^3, h(x) = x^4-4x^2。

当x取正数、负数时,f(x)、g(x)、h(x)的值呈现什么规律?2. 引入函数的奇偶性概念引导学生来解答思考的问题,由此,我们很自然地引出了什么是偶函数什么是奇函数。

学生能够理解并总结什么是奇函数,什么是偶函数等相关概念。

3. 探究正、负数时函数的变化规律将函数f(x)、g(x)、h(x)的x值依次取-2、-1、0、1、2,通过对比负数和正数时函数的值得出以下规律:当x取正数时,f(x)、g(x)、h(x)的值相等,即f(x) = g(x) = h(x);当x取负数时,f(x)、g(x)的值相等,而h(x)的值与两个函数值不等;即我们可以说,函数f(x) 和g(x)关于y轴对称,而h(x)没有任何对称轴,只有原点的对称性。

通过以上探究学生能够感受到奇偶性函数的性质,掌握函数的奇偶性。

4. 探究奇函数和偶函数的性质及图像接下来,我们将通过一些例子来探究奇函数和偶函数性质及图像。

首先将以下函数的图像画出:f(x) = x^3, g(x) = x^4从图像中发现,函数f(x)的图像表现了奇函数的性质,它对称于原点,当x取正数时,f(x)、g(x)的值相等,而x取负数时,f(x)、g(x)的值相等;而函数g(x)的图像表现了偶函数的性质,它对称于y轴,函数的图像无论用哪种方法旋转,都能使其与原图像一致,即不会改变原函数的形状。

函数的奇偶性的说课稿

函数的奇偶性的说课稿

函数的奇偶性的说课稿一、说教材本文是高中数学课程中关于函数性质的一个重要部分,主要探讨函数的奇偶性。

函数的奇偶性是研究函数对称性质的基础,是数学中一种基本的函数分类方式。

它不仅在数学理论中占有重要地位,而且在实际应用中也有广泛的影响。

(1)作用与地位:函数的奇偶性是函数概念的重要组成部分,对于深化学生对函数性质的理解,培养学生的抽象思维能力具有重要意义。

此外,它也是后续学习积分、微分等高级数学知识的基础。

(2)主要内容:本文主要介绍了函数的奇偶性的定义、判定方法以及奇偶函数的性质。

具体包括:奇函数的定义、偶函数的定义、奇偶函数的性质和判定方法。

二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解函数奇偶性的定义,掌握判定函数奇偶性的方法;(2)能够判断给定函数的奇偶性,并运用奇偶函数的性质解决相关问题;(3)通过奇偶函数的学习,培养学生的抽象思维能力,提高学生的数学素养。

三、说教学重难点(1)教学重点:1. 函数奇偶性的定义;2. 判定函数奇偶性的方法;3. 奇偶函数的性质。

(2)教学难点:1. 理解奇偶函数的定义,尤其是抽象函数的奇偶性判定;2. 运用奇偶函数性质解决实际问题。

四、说教法为了让学生更好地理解和掌握函数的奇偶性,我设计了一系列的教学方法,旨在激发学生的兴趣,引导他们主动探究,以下是我计划采用的教学方法及亮点:1. 启发法:- 在引入函数奇偶性概念时,我会通过具体的图形示例,如正弦和余弦函数的图像,来启发学生观察和思考这些函数的对称特点。

- 通过提问“为什么这些函数图像会有这样的对称性?”来激发学生的好奇心,引导他们主动探索背后的数学原理。

2. 问答法:- 在讲解奇偶性的定义时,我会采用问答法,让学生回答“什么是奇函数?什么是偶函数?”等问题,通过学生的回答来澄清概念,并纠正理解上的误区。

- 通过对比不同学生的回答,突出正确理解和表达的重要性,同时也能够及时发现并解决学生的疑惑。

高中数学《函数的奇偶性》优秀说课课件

高中数学《函数的奇偶性》优秀说课课件

教材 + 分析
l
教学目标
【知识目标】
理解定义,判断奇偶性
【能力目标】
培养数形结合的思维能力
【情感目标】
培养学生对美的认识及团队合作能力
教材 + 分析
重点、难点及解决方法
重点:函数奇偶性的概念及几何意义 难点:函数奇偶性的判断
解决方法:动态演示法、分层次提问法
三、教、学法设计
(一)
教法设计
(二)
( 1)
f x x
3
(2)
f x 2x 1
2
返流 程图
第三层次(约13分钟)
3 f ( x ) x , x [1, 2] 这个函数是奇函数吗? (1)
(2)奇偶函数的定义域有什么特点? (3)如何判断一个函数的奇偶性? (4)判断 f x x 1 和
函数的奇偶性
+
+
学情分析
教学反思
+
教材分析 教学过程设计
教、学法设计 退+ 出
返主 + 菜单
学情分析
返主 + 菜单
教材分析
教材的地位和作用 说课内容的处理
l
教学目标 重点、难点及解决方法
教材 + 分析
教材的地位和作用
教材 + 分析
说课内容的处理 教学难点
第一层次问题
第二层次问题
第三层次问题
图像关于y轴对称
称函数为偶函数.
动态演示
图像关于原点对称
称函数为奇函数.
不具有奇偶性的函数叫做非奇非偶函数. 返流 程图
3. 创设问题(约27分钟)
第一层次:根据下列函数图像判断函数的奇偶性(4分钟)

函数的奇偶性说课稿

函数的奇偶性说课稿

函数的奇偶性说课稿(一)一、教材分析1.教材所处的地位和作用"奇偶性"是人教A版第一章"集合与函数概念"的第3节"函数的基本性质"的第2小节。

奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。

从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。

因此,本节课起着承上启下的重要作用。

2.学情分析从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。

同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题。

3.教学目标基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:【知识与技能】1.能判断一些简单函数的奇偶性。

2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

【过程与方法】经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。

【情感、态度与价值观】通过自主探索,体会数形结合的思想,感受数学的对称美。

从课堂反应看,基本上达到了预期效果。

4、教学重点和难点重点:函数奇偶性的概念和几何意义。

几年的教学实践证明,虽然"函数奇偶性"这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。

他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。

因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。

因此,我把"函数的奇偶性概念"设计为本节课的重点。

在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

函数奇偶性-说课稿

函数奇偶性-说课稿

函数奇偶性一、教学内容分析函数的思想方法贯穿整个高中数学课程,函数的奇偶性是函数的重要性质之一,是对函数概念的深化,又是后续研究指数函数、对数函数、三角函数等内容的基础。

因此,对函数的奇偶性进行一个全面、准确的认识,并掌握好使用的技巧和方法,是非常必要的。

教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性。

二、学生情况分析:学生在初中已经学习过轴对称和中心对称图形,并且有了一定数量的简单函数的储备。

同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

另外,高一学生的思维能力正由具体形象向抽象理论转变,能够用假设、推理来思考和解决问题。

三、教学目标分析:1、知识与技能:使学生从形与数两方面理解函数奇偶性的概念,初步掌握利用函数图象和定义判断函数奇偶性的方法。

2、过程与方法:在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和从特殊到一般的数学思想方法。

3、情感态度与价值观:使学生体验数学的科学价值和应用价值,激发学习的兴趣,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

四、教学重难点分析:重点:函数奇偶性概念的理解及应用难点:函数奇偶性的判定及证明五、教学方法分析:我采用“启发式”、“探究式”教学方法,在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会所蕴涵的数学方法,使之获得内心感受。

六、教学过程设计1.新课导入本环节我采用了“开门见山”的导入方法,用多媒体展示一组图片,使学生感受到生活中的对称美,激发了学生浓厚的学习兴趣,使学生的思维迅速定向。

再让学生观察几个特殊函数图象,达到了明确目标,突出重点的效果。

2.探索新知请同学们观察函数f(x)=2|x|和f(x)=x 的图象,提出问题:这两个函数图象有什么共同特征?相应的函数值对应表是如何体现这些特征的?教师总结并板书,再以具体数值为例,加以概括总结。

函数奇偶性说课稿

函数奇偶性说课稿

函数奇偶性说课稿一、教材分析1、教材的地位函数是高中数学的重点和难点,而函数的单调性、奇偶性,周期性、贯穿于整个高中数学之中。

奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习基本初等函数的性质作好了坚实的准备和基础。

因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。

2、教学目标教学原则明确强调要将思想教育的内容渗透到数学教学中去,使学生获得知识和培养能力的同时,在思想教育方面受到良好的熏陶,依据教学目的和原则以及学生的学习现状,我制定了本节课将要完成的教学目标。

知识与技能:使学生理解函数的奇偶性及其几何意义,掌握判断函数的奇偶性的方法。

过程与方法:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;情感态度与价值观:培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力,使学生领会数形结合的数学思想方法。

根据上述教学目标,本节课的教学重点是判断函数的奇偶性的方法与格式。

虽然高一学生已经有一定的思维能力。

但函数奇偶性概念对他们来说还是比较抽象的,因此教学难点是函数奇偶性的概念及其几何意义。

3、教法学法分析为了实现本节课的教学目标,在教法上我采取了:(1)通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主动参与的积极性。

(2)在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

(3)在鼓励学生主动参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

在学法上,我重视让学生利用图形直观启迪思维,让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

4、学情分析从学生认知角度看:由于学生是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃,敏捷,却缺乏冷静,深刻,因此考虑问题会片面,不严谨。

函数奇偶性说课稿

函数奇偶性说课稿

函数奇偶性说课稿在数学中,函数的奇偶性是一个重要的概念,它描述了函数图像的对称性。

在本次说课中,我们将详细探讨函数奇偶性的定义、性质以及如何判断一个函数是奇函数还是偶函数。

首先,我们定义什么是奇函数和偶函数。

如果一个函数\( f(x) \)满足\( f(-x) = -f(x) \),那么我们称\( f(x) \)为奇函数。

相反,如果\( f(-x) = f(x) \),则称\( f(x) \)为偶函数。

这些定义反映了函数图像在y轴两侧的对称性。

奇函数的图像关于原点对称,而偶函数的图像关于y轴对称。

接下来,我们探讨函数奇偶性的性质。

对于奇函数,其图像在原点处的值总是0,即\( f(0) = 0 \)。

这是因为将\( x \)替换为0,我们得到\( f(0) = -f(0) \),唯一满足这个等式的是\( f(0) = 0 \)。

对于偶函数,其图像在y轴上是对称的,这意味着对于任意的\( x \)值,函数值在\( x \)和\( -x \)处是相同的。

为了判断一个函数是奇函数还是偶函数,我们可以通过检查函数的定义域和函数值的对称性来进行。

首先,确保函数的定义域是关于原点对称的,即如果\( x \)在定义域内,那么\( -x \)也应该在定义域内。

然后,通过代入\( -x \)并比较\( f(-x) \)和\( -f(x) \)或\( f(x) \)的值来确定函数的奇偶性。

此外,我们还可以通过函数的图像来直观地判断其奇偶性。

奇函数的图像会穿过原点,并且关于原点对称;而偶函数的图像会关于y轴对称。

在实际应用中,函数的奇偶性对于解决数学问题和理解函数的行为至关重要。

例如,在物理学中,描述力和位移关系的函数往往是奇函数,因为力和位移是相反的量。

在工程学中,偶函数的性质可以用来简化问题,因为它们在y轴两侧的行为是相同的。

总结来说,函数的奇偶性是数学中一个基础而重要的概念,它不仅帮助我们理解函数的对称性,而且在解决实际问题时提供了重要的工具。

函数的奇偶性的说课稿

函数的奇偶性的说课稿

函数的奇偶性的说课稿一、教学目标1、知识与技能目标:理解函数奇偶性的概念。

掌握判断函数奇偶性的方法。

能利用函数奇偶性的性质解决相关问题。

2、过程与方法目标:通过观察函数图象,引导学生发现函数奇偶性的特征,培养学生的观察能力和归纳能力。

通过对函数奇偶性的定义的探究,培养学生的逻辑推理能力和抽象概括能力。

通过函数奇偶性的应用,提高学生的分析问题和解决问题的能力。

3、情感态度与价值观目标:让学生感受数学的对称美,激发学生学习数学的兴趣。

通过探究函数奇偶性的过程,培养学生勇于探索、创新的精神。

二、教学重难点1、教学重点:函数奇偶性的判断方法。

2、教学难点:函数奇偶性概念的形成过程。

利用函数奇偶性的性质解决较复杂的问题。

三、教学方法1、讲授法:讲解函数奇偶性的概念、性质和判断方法。

2、探究法:引导学生通过观察函数图象、分析函数表达式,探究函数奇偶性的特征。

3、练习法:通过课堂练习和课后作业,巩固学生对函数奇偶性的理解和应用。

四、教学过程1、导入新课展示一些函数的图象,如 y = x²,y =|x|,y = sin x 等,让学生观察这些图象的特点。

提问:这些图象有什么共同的特征?引导学生发现图象关于 y 轴对称或关于原点对称。

2、讲授新课给出函数奇偶性的定义:设函数 f(x) 的定义域为 D,如果对于定义域 D 内的任意一个 x,都有 x ∈ D,且 f(x) = f(x),则称函数 f(x) 为偶函数;如果对于定义域 D 内的任意一个 x,都有 x ∈ D,且 f(x) = f(x),则称函数 f(x) 为奇函数。

强调定义中的关键条件,如定义域的对称性、f(x) 与 f(x) 的关系等。

判断函数的奇偶性举例说明如何判断函数的奇偶性,如判断函数f(x) =x²的奇偶性。

总结判断函数奇偶性的步骤:①确定函数的定义域;②计算f(x);③比较 f(x) 与 f(x) 的关系。

函数奇偶性的性质讲解函数奇偶性的性质,如偶函数的图象关于 y 轴对称,奇函数的图象关于原点对称;偶函数在对称区间上的单调性相反,奇函数在对称区间上的单调性相同等。

函数的奇偶性说课稿ppt

函数的奇偶性说课稿ppt

偶函数的定义与性质
偶函数的定义:如果对于函数$f(x)$的定 义域内任意$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
3. 若偶函数在$x=0$处有定义,则一定 有$f(0)=0$。
2. 偶函数在y轴两侧是对称的。
偶函数的性质 1. 偶函数的图像关于y轴对称。
奇偶性的判断方法
在数学分析中,奇函数和偶函数具有不同的性质。奇函数 图像关于原点对称,而偶函数图像关于y轴对称。这些性 质在解决一些数学问题时非常有用,例如求函数的积分、 求解微分方程等。
在微积分中的应用
在微积分中,奇偶性也是研究函数的重要工具之一。奇偶性可以帮助我们简化函 数的积分和微分计算。例如,对于一些具有对称性的函数,我们可以通过奇偶性 来简化计算过程,提高计算效率。
奇函数的定义与性质
95% 85% 75% 50% 45%
0 10 20 30 40 5
奇函数的定义:如果对于函数$f(x)$的定义域内任意$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。 奇函数的性质
1. 奇函数的图像关于原点对称。
2. 奇函数在原点有定义则一定过原点。
3. 若奇函数在$x=0$处有定义,则$f(0)=0$。
在微积分中,奇偶性还与一些重要的数学概念相关联,例如周期性和傅里叶分析 。奇偶性可以帮助我们更好地理解这些概念,并进一步研究函数的性质和行为。
在实际生活中的应用
奇偶性在实际生活中也有广泛的应用。例如,在物理学中,一些物理量(如质量、电荷等)是具有奇 偶性的,它们的性质和行为可以用奇偶性来描述和预测。
05
总结与展望
总结
回顾函数的奇偶性的定义和性质,包括奇函数、偶 函数、既奇又偶函数和非奇非偶函数。

函数的奇偶性说课稿-(精选五篇)

函数的奇偶性说课稿-(精选五篇)

函数的奇偶性说课稿-(精选五篇)第一篇:函数的奇偶性说课稿 -函数的奇偶性说课稿各位评委老师好:我今天说课的题目是《函数的奇偶性》接下来我从以下几个环节进行说课。

教材分析、学情分析、目标分析、教学目标、教学方法、教学设计、板书设计。

一.教材分析《函数奇偶性》是选自人教版中等职业教育课程改革国家规划新教材,数学基础模块上册第三章第四节的内容。

它的主要内容是函数奇偶性的概念,判断函数奇偶性的方法与步骤。

在此之前,学生已经学习了函数的概念、函数的表示方法、函数的单调性,为这一节的学习起到了铺垫作用,同时又是后面学习具体函数的基础。

《函数的奇偶性》是高中数学的一个重要内容,它不仅与现实生活中对称性密切相关联,而且是历年高考的热点,重点和必考点,它是函数概念的深化,学习函数奇偶性,能使学生再次体会数型结合思想,初步学会用数学的眼光去看待事物,感受数学的对称美。

二.学情分析认知水平与能力:高一学生具备了一定的观察、类比、分析、归纳能力,已初步具有数形结合思维能力,能在教师的引导下解决问题。

任教班级特点:这个班是医护班,学生数学基础较薄弱,上课注意力不够集中,理解能力不够强,可利用数形结合解决简单问题,但归纳转化的能力与观察讨论能力有待加强。

改进与提高:让学生利用图形直观感受;让学生“归纳、总结、运用”,重视学生的主动参与,注重信息反馈,通过引导学生多思多说多练,使认识得到深化。

三、教学目标根据对教学大纲、教材内容的分析,结合学生已有的认识能力,心理特征及知识水平,我制定教学目标如下。

知识和技能:使学生从形与数两方面理解函数奇偶性的定义,初步掌握利用函数图象和奇偶性定义判断函数奇偶性的方法。

过程与方法:通过对函数奇偶性定义的探究,渗透数形结合思想方法,培养学生的直观想象素养与数学抽象素养;提高学生的逻辑推理素养与运算素养。

情感、态度、价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.重点与难点重点:函数奇偶性的概念及判断。

《函数的奇偶性》说课稿-获奖说课稿

《函数的奇偶性》说课稿-获奖说课稿

函数的奇偶性尊敬的评委、各位老师、亲爱的同学们:大家好!今天我要说课的内容是《函数的奇偶性》。

在这堂课中,我们将一起探讨函数的奇偶性这一重要概念。

一、教学目标1.理解奇函数和偶函数的概念,掌握判断函数奇偶性的方法;2.会根据函数的奇偶性对函数进行分类;3.培养学生观察、分析、归纳和解决问题的能力。

二、教学内容与过程1.导入新课我们通过观察一些生活中的实例,如车轮、时钟等,可以发现这些物体的形状具有对称性。

那么,这种对称性在数学中是否也有对应的概念呢?答案是肯定的。

今天我们将一起探讨函数的奇偶性这一数学概念。

2.概念引入首先,我们来看一下函数的概念。

函数是一种关系,它将一个数集中的每一个元素映射到另一个数集中唯一确定的值。

为了更好地理解函数的概念,我们可以从以下几个方面进行探讨:(1)函数的定义域和值域定义域是指输入的数的范围,而值域是指输出的数的范围。

在函数的定义域中,每一个数都唯一对应着值域中的一个数。

(2)函数的对应关系函数的对应关系是函数的核心。

它描述了如何将输入转化为输出。

在定义域中,每一个数都对应着值域中唯一确定的一个数。

现在,我们来看一个函数的基本性质:奇偶性。

如果一个函数f(x)对于定义域内的任意x,都有f(-x)=f(x),那么这个函数就是偶函数;如果对于定义域内的任意x,都有f(-x)=-f(x),那么这个函数就是奇函数。

现在我们知道了如何判断一个函数的奇偶性,接下来我们来探讨奇偶性在数学中的应用。

3.奇偶性的应用(1)简化计算利用函数的奇偶性,我们可以简化一些复杂的计算。

例如,对于一个偶函数,它的图像是关于y轴对称的,因此我们只需要计算一半区域内的值就可以得到整个区域的值。

(2)对称性的应用函数的奇偶性反映了函数的对称性。

例如,我们可以利用函数的奇偶性来判断一个函数的图像是否具有对称性。

对于一个奇函数,它的图像是关于原点对称的;对于一个偶函数,它的图像是关于y轴对称的。

(3)化归思想的应用化归思想是一种非常重要的数学思想方法,它将复杂的问题转化为简单的问题进行处理。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理思考来解决问题。
教法 3 学法分析
3
教法分析:
根据本节教材内容及编排特点,为了更有效地
突出重点,突破难点,按照学生的认知规律,遵循
教师为指导,学生为主体,训练为主线的指导思想
,采用引导发现为主直观演示为辅。在教学过程中
,我设计了五连问来启发学生,促进其积极思考;
由生活到数学,创设情境,诱导学生思考,使学生
教学难点:判断函数的奇偶性的方法及格式。
学生 2 学情分析
2
学生学情分析:
从学生的认知基础看,学生在初中已经学习了
轴对称图形及中心对称图形,并且有了一定数量的
简单函数的储备。同时,刚刚学习了函数的单调性
,已经积累了研究函数的基本方法及初步经验。
从学生的思维发展看,高一学生思维能力正在
由形象经验型向抽象理论型转变,能够用假设、推
(x)
奇函数的定义
一般地,如果对于函数 f (x) 的定义域内 任意一个x,都有 f ( x) f (x),那么函数 f (x) 就叫做奇函数。
奇函数的定 义域也要关 于原点对称
可用图像法判定函数的奇偶性, 奇函数的图象关于原点对称,偶

2
找一位同 学分享一下
自己的收获

作业: 教材P45习题1.3A10 ,B1.
5
教学 设计说明
教学设计说明:
5
本节课始终努力贯彻“教师为主导、学生为主
体、探究为主线、思维为核心”的数学教学思想,
引导学生主动参及到课堂教学全过程中.但教师主
导作用也不可忽视,教会学生清晰的思维,严谨的
推理,顺利完成书面表达。在教学手段上,制作多
循序渐进地引导学生进入数学领域进行观察、归纳
,形成函数奇偶性概念。研究函数奇偶性的过程体
现了数学的“从特殊到一般”、“数形结合”的思
想方法,这对培养学生的思维能力和数学素养具有
重要的意义。
1
知识目标:从数及型两个方面理解函数奇偶性 的概念及其几何意义;学会运用函数图象理解和研
究函数的性质;学会判断函数的奇偶性;
始终处于主动探索问题的积极状态,从而培养思维
能力。
教学手段:
3
教学中使用多媒体辅助教学,目的是充分发挥
其快捷、生动、形象的特点,为学生提供直观感性
的材料,有助于学生对问题的理解和认识。
3
学习方法:
1、让学生利用图形直观启迪思维,并通过正、反
例的构造,来完成从感性认识到理性思维的质的飞
跃。
2、让学生从问题中质疑、尝试、归纳、总结、运
函数图象关 于y轴对称
对于R内的每一个x,都有
f ( x) f (x)
偶函数的定义
一般地,如果对于函数 f (x) 的定义域内 任意一个x,都有 f ( x) f (x) ,那么函数f (x) 就叫做偶函数。
问题2 函数 f (x) x2, x 1, 2 是偶函数吗?
不是,其函数图象关于y轴不对称;
函数奇偶性说课
2
学生学情
1
分析
教材分析
3
教法学法 分析
4
教学过程
5
教学设计
6
说明
板书设计
1 教材分析
函数是中学数学的重点和难点,函数的思想贯穿
1
于整个高中数学之中。从知识结构上看,本节课具
有承上启下的作用。它既是函数概念的延续和拓展
,又是后续研究指数函数、对数函数、三角函数等
内容的基础。教材从具体到抽象,从感性到理性,
对定义域 1, 2 内的 x 2, f (2) 不存在,即 f ( x) f (x)
不恒成立,所以它不是偶函数。
问题3 偶函数的定义域要有
什么特征?
关于原点对称
问题4:
除偶函数之外,还 有一类函数,形如 f (x) x 与 f (x) 1,我 们称之为奇函数,x 你能 类比偶函数的探究过程 给出奇函数的定义吗?
函数的图像关于y轴对称
函数是奇函数或是偶函数 这个性质称为 函数的奇偶性
单调性是函数的“局部” 性质,奇偶性为函数的“
整体”性质
例1 判断下列函数的奇偶性
:1、f x x4
2、f x x5
3、f x x 1
4 、f
x
1 x2
x
解:(1)对于函数 f x x,4 其定义 域为 , . 因为对定义域内的每一个 x,都有:
f xx4 x4 f x
所以,函数 f x x4 为偶函数.
问题5:你能写出解决此类题目的流程吗?
1.判断定义域是否关于原点对称
是 2.计算f(-x)
若否,则为非奇非偶函数
f(-x)=f(x)
偶函数
f(-x)=f(x)
奇函数
例2: 1 判断函数f(x)=x³+x的奇偶性。
2 下图为函数f(x)=x³+x图像的一
用,培养学生发现问题、研究问题和分析解决问题
的能力。
4 教学过程
欣赏自然之美
思考:前面展示的图片有什么共同特征? 生活中类似的例子多吗?你还能找出哪些 这样的“生活之美”?
y
发现
0
x函数
之美
问题1: 观下面察两个函数的图象,它们有何共同特征? 追问: 相应的两个函数值对应表是如何体现这些特征的?
能力目标:通过函数奇偶性概念的形成过程,
培养学生判断推理的能力,渗透数形结合、等价转
换等数学思想.
情感态度及价值观:使学生在学习过程中,欣
赏数学美,体验数学的科学价值和应用价值,养成
细心观察、 认真分析、严谨论证的良好思维习惯和
勇于探索的科学态度。
教学的重点和难点:
1 教学重点:奇偶函数的概念及其几何意义;
部分,你能根据f(x)的奇偶性画
y
出它在y轴左边的图像吗?
x 0
链接高考,深化提高: 例3:(2015江苏徐州统考)已知函数 f(x),x∈R,若对于任意实数a、b,都有 f(a+b)=f(a)+f(b). 求证: f(x)为奇函数。
反思小结
合上课本,
1
在导学案的“ 本节收获”处
默写出这节课
你学到的知识
媒体课件辅助教学,使得数学知识让学生更易于理
解和接受;课堂教学及现代教育技术的有机整合,
大大提高了课堂教学效率。以上是对本节课的一些
思考,不妥之处,敬请各位专家评委批评指正。
Thanks!
高中数学 王晨晨
谢谢!
相关文档
最新文档