微电子工艺技术 复习要点答案(完整版)

合集下载

微电子工艺技术-复习要点答案(完整版)

微电子工艺技术-复习要点答案(完整版)

微电⼦⼯艺技术-复习要点答案(完整版)第四章晶圆制造1.CZ法提单晶的⼯艺流程。

说明CZ法和FZ法。

⽐较单晶硅锭CZ、MCZ和FZ三种⽣长⽅法的优缺点。

答:1、溶硅2、引晶3、收颈4、放肩5、等径⽣长6、收晶。

CZ法:使⽤射频或电阻加热线圈,置于慢速转动的⽯英坩埚内的⾼纯度电⼦级硅在1415度融化(需要注意的是熔硅的时间不宜过长)。

将⼀个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表⾯得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。

当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。

使其沿着籽晶晶体的⽅向凝固。

籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。

FZ法:即悬浮区融法。

将⼀条长度50-100cm 的多晶硅棒垂直放在⾼温炉反应室。

加热将多晶硅棒的低端熔化,然后把籽晶溶⼊已经熔化的区域。

熔体将通过熔融硅的表⾯张⼒悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升⾼温度将熔融硅的上⽅部分多晶硅棒开始熔化。

此时靠近籽晶晶体⼀端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。

当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。

CZ法优点:①所⽣长的单晶的直径较⼤,成本相对较低;②通过热场调整及晶转,坩埚等⼯艺参数的优化,可以较好的控制电阻率径向均匀性。

缺点:⽯英坩埚内壁被熔融的硅侵蚀及⽯墨保温加热元件的影响,易引⼊氧、碳杂质,不易⽣长⾼电阻率单晶。

FZ法优点:①可重复⽣长,提纯单晶,单晶纯度较CZ法⾼。

②⽆需坩埚、⽯墨托,污染少③⾼纯度、⾼电阻率、低氧、低碳④悬浮区熔法主要⽤于制造分离式功率元器件所需要的晶圆。

缺点:直径不如CZ法,熔体与晶体界⾯复杂,很难得到⽆位错晶体,需要⾼纯度多晶硅棒作为原料,成本⾼。

MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作⽤,降低了缺陷密度,氧含量,提⾼了电阻分布的均匀性2.晶圆的制造步骤【填空】答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。

微电子工艺习题答案(整理供参考)

微电子工艺习题答案(整理供参考)

第一章1.集成电路:通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如Si、GaAs)上,封装在一个外壳内,执行特定电路或系统功能。

集成电路发展的五个时代及晶体管数目:小规模集成电路(小于100个)、中规模集成电路(100~999)、大规模集成电路(1000~99999)、超大规模集成电路(超过10万)、甚大规模集成电路(1000万左右)。

2、硅片制备(Wafer preparation)、硅片制造(Wafer fabrication)硅片测试/拣选(Wafer test/sort)、装配与封装(Assembly and packaging)、终测(Final test)。

3、半导体发展方向:提高性能、提高可靠性、降低价格。

摩尔定律:硅集成电路按照4年为一代,每代的芯片集成度要翻两番、工艺线宽约缩小30%,IC工作速度提高1.5倍等发展规律发展。

4、特征尺寸也叫关键尺寸,集成电路中半导体器件能够加工的最小尺寸。

5、more moore定律:芯片特征尺寸的不断缩小。

从几何学角度指的是为了提高密度、性能和可靠性在晶圆水平和垂直方向上的特征尺寸的继续缩小,more than moore定律:指的是用各种方法给最终用户提供附加价值,不一定要缩小特征尺寸,如从系统组件级向3D集成或精确的封装级(SiP)或芯片级(SoC)转移。

6、High-K:高介电系数;low-K:低介电系数;Fabless:无晶圆厂;Fablite:轻晶片厂;IDM:Integrated Device Manufactory集成器件制造商;Foundry:专业代工厂;Chipless:无晶片1、原因:更大直径硅片,更多的芯片,单个芯片成本减少;更大直径硅片,硅片边缘芯片减小,成品率提高;提高设备的重复利用率。

硅片尺寸变化:2寸(50mm)-4寸(100mm)-5寸(125mm)-6寸(150mm)-8寸(200mm)-12寸(300mm)-18寸(450mm).2、物理尺寸、平整度、微粗糙度、氧含量、晶体缺陷、颗粒、体电阻率。

微电子工艺习题参考解答【范本模板】

微电子工艺习题参考解答【范本模板】

CRYSTAL GROWTH AND EXPITAXY1.画出一50cm 长的单晶硅锭距离籽晶10cm 、20cm 、30cm 、40cm 、45cm 时砷的掺杂分布。

(单晶硅锭从融体中拉出时,初始的掺杂浓度为1017cm —3) 2.硅的晶格常数为5.43Å.假设为一硬球模型: (a)计算硅原子的半径。

(b)确定硅原子的浓度为多少(单位为cm —3)?(c)利用阿伏伽德罗(Avogadro)常数求出硅的密度。

3.假设有一l0kg 的纯硅融体,当硼掺杂的单晶硅锭生长到一半时,希望得到0。

01 Ω·cm 的电阻率,则需要加总量是多少的硼去掺杂?4.一直径200mm 、厚1mm 的硅晶片,含有5。

41mg 的硼均匀分布在替代位置上,求: (a)硼的浓度为多少?(b )硼原子间的平均距离.5.用于柴可拉斯基法的籽晶,通常先拉成一小直径(5。

5mm)的狭窄颈以作为无位错生长的开始.如果硅的临界屈服强度为2×106g/cm2,试计算此籽晶可以支撑的200mm 直径单晶硅锭的最大长度.6.在利用柴可拉斯基法所生长的晶体中掺入硼原子,为何在尾端的硼原子浓度会比籽晶端的浓度高?7.为何晶片中心的杂质浓度会比晶片周围的大?8.对柴可拉斯基技术,在k 0=0.05时,画出C s /C 0值的曲线。

9.利用悬浮区熔工艺来提纯一含有镓且浓度为5×1016cm -3的单晶硅锭。

一次悬浮区熔通过,熔融带长度为2cm ,则在离多远处镓的浓度会低于5×1015cm -3?10.从式L kx s e k C C /0)1(1/---=,假设k e =0.3,求在x/L=1和2时,C s /C 0的值。

11.如果用如右图所示的硅材料制造p +-n 突变结二极管,试求用传统的方法掺杂和用中子辐照硅的击穿电压改变的百分比。

12.由图10。

10,若C m =20%,在T b 时,还剩下多少比例的液体?13.用图10。

微电子工艺答案,整理好的了21页

微电子工艺答案,整理好的了21页

1.1.保护器件避免划伤和沾污2.限制带电载流子场区隔离(表面钝化)3.栅氧或存储单元结构中的介质材料4.掺杂中的注入掩蔽5.金属导电层间的电介质6.减少表面悬挂键2.化学反应:Si+2H2O->SiO2+2H2水汽氧化与干氧氧化相比速度更快,因为水蒸气比氧气在二氧化硅中扩散更快、溶解度更高3.、1.干氧:Si+O2 SiO2氧化速度慢,氧化层干燥、致密,均匀性、重复性好,与光刻胶的粘附性好2、水汽氧化:Si+H2O SiO2(固)+H2(气)氧化速度快,氧化层疏松,均匀性差,与光刻胶的粘附性差3、湿氧:氧气携带水汽,故既有Si与氧气反应,又有与水汽反应氧化速度、氧化质量介于以上两种方法之间4.掺杂物、晶体晶向、压力、温度、水蒸气5.界面陷阱电荷、可移动氧化物电荷6.工艺腔、硅片传输系统、气体分配系统、尾气系统、温控系统4.工艺腔是对硅片加热的场所,由垂直的石英罩钟、多区加热电阻丝和加热管套组成硅片传输系统在工艺腔中装卸硅片,自动机械在片架台、炉台、装片台、冷却台之间移动气体分配系统通过将正确的气体通到炉管中来维持炉中气氛控制系统控制炉子所有操作,如工艺时间和温度控制、工艺步骤的顺序、气体种类、气流速率、升降温速率、装卸硅片...1.(1)薄膜:指某一维尺寸远小于另外两维上的尺寸的固体物质。

. (2).好的台阶覆盖能力 ..高的深宽比填隙能力(>3:1)厚度均匀(避免针孔、缺陷) ..高纯度和高密度 ..受控的化学剂量..结构完整和低应力(导致衬底变形,..好的粘附性避免分层、开裂致漏电)2.(1)晶核形成分离的小膜层形成于衬底表面,是薄膜进一步生长的基础。

(2)凝聚成束形成(Si)岛,且岛不断长大(3)连续成膜岛束汇合并形成固态的连续的薄膜淀积的薄膜可以是单晶(如外延层)、多晶(多晶硅栅)和无定形(隔离介质,金属膜)的3.答:..多层金属化:用来连接硅片上高密度器件的金属层和绝缘层 ..关键层:线条宽度被刻蚀为器件特征尺寸的金属层。

微电子工艺复习

微电子工艺复习

微电子工艺复习第一章:1.看懂这是一个三极管利用基区、发射区扩散形成电阻的结构2.看懂电极外延层电阻结构3.看懂电极MOS集成电路中的多晶硅电阻4.电容结构包括哪些要素?两端是金属,中间是介电材料。

集成电路中电容的结构5.这是电容结构Pn结位于空间电荷区,是一个电容结构。

PN结电容结构6. MOS场效应晶体管中以SiO2为栅极层MOS场效应晶体管电容结构7.有源器件?二极管,三极管,MOS管集成电路中二极管的基本结构8.看懂二极管,三极管的结构集成电路中二极管的结构9.三极管分清npn与pnp?有什么区别?怎么画的?结构上,NPN三极管的中间是P区(空穴导电区),两端是N区(自由电子导电区),而PNP三极管正相反。

使用上,NPN三极管工作时是集电极接高电压,发射极接低电压,基极输入电压升高时趋向导通,基极输入电压降低时趋向截止;而PNP三极管工作时则是集电极接低电压,发射极接高电压,基极输入电压升高时趋向截止,基极输入电压降低时趋向导通。

晶体管的基本结构10.什么叫NMOS?什么叫PMOS?PMOS是指利用空穴来传导电性信号的金氧半导体。

NMOS是指利用电子来访传导电性信号的金氧半晶体管。

MOS管的结构图和示意图11.集成电路包括哪些阶段?核心阶段?阶段: 硅片(晶圆)的制备、掩膜版的制作、硅片的制造及元器件封装集成电路制造的阶段划分半导体芯片的制造框图半导体芯片制造的关键工艺12.硅的基本性质?它的优点?硅的禁带宽度较大(1.12eV),硅半导体的工作温度可以高达200℃。

硅片表面可以氧化出稳定且对掺杂杂质有极好阻挡作用的氧化层(SiO2)优点:(1)硅的丰裕度硅是地球上第二丰富的元素,占到地壳成分的25%,经合理加工,硅能够提纯到半导体制造所需的足够高的纯度,而消耗的成本比较低。

(2)更高的熔化温度允许更宽的工艺容限硅的熔点是1412℃,远高于锗937℃的熔点,更高的熔点使得硅可以承受高温工艺。

微电子工艺技术 复习要点答案完整版

微电子工艺技术 复习要点答案完整版

微电子工艺技术-复习要点答案)完整版(第四章晶圆制造法。

比法和FZ1.CZ法提单晶的工艺流程。

说明CZ FZ三种生长方法的优缺点。

较单晶硅锭CZ、MCZ和答:法:使用射频或电阻加热线圈,置于慢速转动的石CZ3、收颈4、放肩5、等径生长6、收晶。

1、溶硅2、引晶。

将一个慢速转动的夹具的单晶硅籽晶棒)英坩埚内的高纯度电子级硅在1415度融化(需要注意的是熔硅的时间不宜过长逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。

当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。

使其沿着籽晶晶体的方向凝固。

籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。

的多晶硅棒垂直放在高温炉反应室。

加热将多晶硅棒的低端熔化,然后50-100cm FZ法:即悬浮区融法。

将一条长度把籽晶溶入已经熔化的区域。

熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。

此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。

当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。

法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好CZ的控制电阻率径向均匀性。

缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。

③高纯度、高电阻率、低法高。

②无需坩埚、石墨托,污染少 CZFZ法优点:①可重复生长,提纯单晶,单晶纯度较法,熔体与晶体界面复杂,很④悬浮区熔法主要用于制造分离式功率元器件所需要的晶圆。

缺点:直径不如CZ氧、低碳难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。

优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀MC:改进直拉法性2.晶圆的制造步骤【填空】答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。

微电子工艺习题参考解答

微电子工艺习题参考解答

CRYSTAL GROWTH AND EXPITAXY1.画出一50cm 长的单晶硅锭距离籽晶10cm 、20cm 、30cm 、40cm 、45cm 时砷的掺杂分布。

(单晶硅锭从融体中拉出时,初始的掺杂浓度为1017cm -3) 2.硅的晶格常数为5.43Å.假设为一硬球模型: (a)计算硅原子的半径。

(b)确定硅原子的浓度为多少(单位为cm -3)?(c)利用阿伏伽德罗(Avogadro)常数求出硅的密度。

3.假设有一l0kg 的纯硅融体,当硼掺杂的单晶硅锭生长到一半时,希望得到0.01 Ω·cm 的电阻率,则需要加总量是多少的硼去掺杂?4.一直径200mm 、厚1mm 的硅晶片,含有5.41mg 的硼均匀分布在替代位置上,求: (a)硼的浓度为多少?(b)硼原子间的平均距离。

5.用于柴可拉斯基法的籽晶,通常先拉成一小直径(5.5mm)的狭窄颈以作为无位错生长的开始。

如果硅的临界屈服强度为2×106g/cm2,试计算此籽晶可以支撑的200mm 直径单晶硅锭的最大长度。

6.在利用柴可拉斯基法所生长的晶体中掺入硼原子,为何在尾端的硼原子浓度会比籽晶端的浓度高?7.为何晶片中心的杂质浓度会比晶片周围的大?8.对柴可拉斯基技术,在k 0=0.05时,画出C s /C 0值的曲线。

9.利用悬浮区熔工艺来提纯一含有镓且浓度为5×1016cm -3的单晶硅锭。

一次悬浮区熔通过,熔融带长度为2cm ,则在离多远处镓的浓度会低于5×1015cm -3?10.从式L kx s e k C C /0)1(1/---=,假设k e =0.3,求在x/L=1和2时,C s /C 0的值。

11.如果用如右图所示的硅材料制造p +-n 突变结二极管,试求用传统的方法掺杂和用中子辐照硅的击穿电压改变的百分比。

12.由图10.10,若C m =20%,在T b 时,还剩下多少比例的液体?13.用图10.11解释为何砷化镓液体总会变成含镓比较多?14.空隙n s 的平衡浓度为Nexp[-E s /(kT)],N 为半导体原子的浓度,而E s 为形成能量。

微电子学概论复习题及答案(详细版).

微电子学概论复习题及答案(详细版).
芯片(Chip, Die):没有封装的单个集成电路。 硅片(Wafer):包含许多芯片的大圆硅片。
双极逻辑门电路类型(几种主要的):
电阻耦合型---电阻-晶体管逻辑 (RTL):
二极管耦合----二极管-晶体管逻辑 (DTL)
晶体管耦合----晶体管-晶体管逻辑 (TTL)
合并晶体管----集成注入逻辑 (I2L)
6.双极晶体管工作原理,基本结构,直流特性(课件)
工作原理: 基本结构:由两个相距很近的 PN 结组成 直流特性: 1. 共发射极的直流特性曲线
2 . 共基极的直流特性曲线
7.MOS 晶体管基本结构、工作原理、I-V 方程、三个工作区的特性(课件)
基本结构:属于四端器件,有四个电极。由于结构对称,在不加偏压时,无法区分器件的源 和漏。源漏之间加偏压后,电位低的一端称为源,电位高的一端称为漏。 工作原理: 施加正电荷作用使半导体表面的空穴被排走,少子(电子)被吸引过来。继续增大正电压, 负空间电荷区加宽,同时被吸引到表面的电子也增加。形成耗尽层。电压超过一定值 Vt,吸 引到表面的电子浓度迅速增大,在表面形成一个电子导电层,反型层。 I-V 方程: 电流-电压表达式: 线性区:Isd=βp (|Vgs|-|Vtp|-|Vds|/2) |Vds| 饱和区:Isd=(βp/2)(|Vgs|-|Vtp|)² 三个工作区的特性: 线性区(Linear region) :
综上所述:
Vi<Vg-Vt 时,MOS 管无损地传输信号; Vi≥Vg-Vt 时,Vo=Vg-Vt 信号传输有损失,称为阈值损失,对于高电平’1’, NMOS 开关输出端损失一个 Vt;
为了解决 NMOS 管在传输’1’电平、PMOS 在传输’0’电平时的信号损失,通 常采用 CMOS 传输门作为开关使用。它是由一个 N 管和一个 P 管构成。工作时,NMOS 管的衬底接地,PMOS 管的衬底接电源,且 NMOS 管栅压 Vgn 与 PMOS 管的栅压 Vgp 极性相反。

微电子工艺习题参考解答

微电子工艺习题参考解答

CRYSTAL GROWTH AND EXPITAXY1.画出一50cm 长的单晶硅锭距离籽晶10cm 、20cm 、30cm 、40cm 、45cm 时砷的掺杂分布。

(单晶硅锭从融体中拉出时,初始的掺杂浓度为1017cm -3) 2.硅的晶格常数为5.43Å.假设为一硬球模型: (a)计算硅原子的半径。

(b)确定硅原子的浓度为多少(单位为cm -3)?(c)利用阿伏伽德罗(Avogadro)常数求出硅的密度。

3.假设有一l0kg 的纯硅融体,当硼掺杂的单晶硅锭生长到一半时,希望得到0.01 Ω·cm 的电阻率,则需要加总量是多少的硼去掺杂?4.一直径200mm 、厚1mm 的硅晶片,含有5.41mg 的硼均匀分布在替代位置上,求: (a)硼的浓度为多少?(b)硼原子间的平均距离。

5.用于柴可拉斯基法的籽晶,通常先拉成一小直径(5.5mm)的狭窄颈以作为无位错生长的开始。

如果硅的临界屈服强度为2×106g/cm2,试计算此籽晶可以支撑的200mm 直径单晶硅锭的最大长度。

6.在利用柴可拉斯基法所生长的晶体中掺入硼原子,为何在尾端的硼原子浓度会比籽晶端的浓度高?7.为何晶片中心的杂质浓度会比晶片周围的大?8.对柴可拉斯基技术,在k 0=0.05时,画出C s /C 0值的曲线。

9.利用悬浮区熔工艺来提纯一含有镓且浓度为5×1016cm -3的单晶硅锭。

一次悬浮区熔通过,熔融带长度为2cm ,则在离多远处镓的浓度会低于5×1015cm -3?10.从式L kx s e k C C /0)1(1/---=,假设k e =0.3,求在x/L=1和2时,C s /C 0的值。

11.如果用如右图所示的硅材料制造p +-n 突变结二极管,试求用传统的方法掺杂和用中子辐照硅的击穿电压改变的百分比。

12.由图10.10,若C m =20%,在T b 时,还剩下多少比例的液体?13.用图10.11解释为何砷化镓液体总会变成含镓比较多?14.空隙n s 的平衡浓度为Nexp[-E s /(kT)],N 为半导体原子的浓度,而E s 为形成能量。

微电子工艺复习重点

微电子工艺复习重点

1.干法氧化,湿法氧化和水汽氧化三种方式的优缺点。

20XX级《微电子工艺》复习提纲一.衬底制备1.硅单晶的制备方法。

直拉法悬浮区熔法1.硅外延多晶与单晶生长条件。

任意特左淀积温度下,存在最大淀积率,超过最大淀积率生成多晶薄膜,低于最大淀积率,生成单晶外延层。

三.薄膜制备1 •氧化干法氧化:干燥纯净氧气湿法氧化:既有纯净水蒸汽有又纯净氧气水汽氧化:纯净水蒸汽速度均匀重复性结构掩蔽性干氧慢好致密好湿氧快较好中基本满足水汽最快差疏松差2.理解氧化厚度的表达式和曲线图。

二氧化硅生长的快慢由氧化剂在二氧化硅中的扩散速度以及与硅反应速度中较慢的一个因素决左;当氧化时间很长时,抛物线规律,当氧化时间很短时,线性规律。

3.温度、气体分压、晶向、掺杂情况对氧化速率的影响。

温度:指数关系,温度越髙,氧化速率越快。

气体分压:线性关系,氧化剂分压升高,氧化速率加快晶向:(111)面键密度大于(100)而,氧化速率髙:髙温忽略。

掺杂:掺杂浓度高的氧化速率快:4.理解采用「法热氧化和掺氯措施提高栅氧层质量这个工艺。

m寧二氧化硅特恂提高氧化质量。

干法氧化中掺氯使氧化速率可提高1%$%。

四s薄膜制备2•化学气相淀积CVD1.三种常用的化学气相淀积方式,在台阶覆盖能力,呈膜质量等各方而的优缺点。

常压化学气相淀积APCVD:操作简单淀积速率快,台阶覆盖性和均匀性差低压化学气相淀积LPCVD:台阶覆盖性和均匀性好,对反应式结构要求不高,速率相对低,工作温度相对高,有气缺现象PECVD:温度低,速率高,覆盖性和均匀性好,主要方式。

2.本征SiCh,磷硅玻璃PSG,硼磷硅玻璃BPSG的特性和在集成电路中的应用。

USG:台阶覆盖好,黏附性好,击穿电压高,均匀致密:介质层,掩模(扩散和注入),钝化层,绝缘层。

PSG:台阶覆盖更好,吸湿性强,吸收碱性离子BPSG:吸湿性强,吸收碱性离子,金属互联层还有用(具体再查书)。

3.热生长SiO2和CVD淀积SiO?膜的区别。

微电子工艺习题参考解答

微电子工艺习题参考解答

CRYSTAL GROWTH AND EXPITAXY1.画出一50cm 长的单晶硅锭距离籽晶10cm 、20cm 、30cm 、40cm 、45cm 时砷的掺杂分布。

(单晶硅锭从融体中拉出时,初始的掺杂浓度为1017cm -3) 2.硅的晶格常数为?.假设为一硬球模型: (a)计算硅原子的半径。

(b)确定硅原子的浓度为多少(单位为cm -3)(c)利用阿伏伽德罗(Avogadro)常数求出硅的密度。

3.假设有一l0kg 的纯硅融体,当硼掺杂的单晶硅锭生长到一半时,希望得到 Ω·cm 的电阻率,则需要加总量是多少的硼去掺杂4.一直径200mm 、厚1mm 的硅晶片,含有的硼均匀分布在替代位置上,求: (a)硼的浓度为多少(b)硼原子间的平均距离。

5.用于柴可拉斯基法的籽晶,通常先拉成一小直径的狭窄颈以作为无位错生长的开始。

如果硅的临界屈服强度为2×106g/cm2,试计算此籽晶可以支撑的200mm 直径单晶硅锭的最大长度。

6.在利用柴可拉斯基法所生长的晶体中掺入硼原子,为何在尾端的硼原子浓度会比籽晶端的浓度高7.为何晶片中心的杂质浓度会比晶片周围的大8.对柴可拉斯基技术,在k 0=时,画出C s /C 0值的曲线。

9.利用悬浮区熔工艺来提纯一含有镓且浓度为5×1016cm -3的单晶硅锭。

一次悬浮区熔通过,熔融带长度为2cm ,则在离多远处镓的浓度会低于5×1015cm -3 10.从式L kx s e k C C /0)1(1/---=,假设k e =,求在x/L=1和2时,C s /C 0的值。

11.如果用如右图所示的硅材料制造p +-n 突变结二极管,试求用传统的方法掺杂和用中子辐照硅的击穿电压改变的百分比。

12.由图,若C m =20%,在T b 时,还剩下多少比例的液体13.用图解释为何砷化镓液体总会变成含镓比较多14.空隙n s 的平衡浓度为Nexp[-E s /(kT)],N 为半导体原子的浓度,而E s 为形成能量。

微电子工艺习题参考解答

微电子工艺习题参考解答

CRYSTAL GROWTH AND EXPITAXY1.画出一50cm 长的单晶硅锭距离籽晶10cm 、20cm 、30cm 、40cm 、45cm 时砷的掺杂分布。

(单晶硅锭从融体中拉出时,初始的掺杂浓度为1017cm -3) 2.硅的晶格常数为5.43Å.假设为一硬球模型: (a)计算硅原子的半径。

(b)确定硅原子的浓度为多少(单位为cm -3)?(c)利用阿伏伽德罗(Avogadro)常数求出硅的密度。

3.假设有一l0kg 的纯硅融体,当硼掺杂的单晶硅锭生长到一半时,希望得到0.01 Ω·cm 的电阻率,则需要加总量是多少的硼去掺杂?4.一直径200mm 、厚1mm 的硅晶片,含有5.41mg 的硼均匀分布在替代位置上,求: (a)硼的浓度为多少?(b)硼原子间的平均距离。

5.用于柴可拉斯基法的籽晶,通常先拉成一小直径(5.5mm)的狭窄颈以作为无位错生长的开始。

如果硅的临界屈服强度为2×106g/cm2,试计算此籽晶可以支撑的200mm 直径单晶硅锭的最大长度。

6.在利用柴可拉斯基法所生长的晶体中掺入硼原子,为何在尾端的硼原子浓度会比籽晶端的浓度高?7.为何晶片中心的杂质浓度会比晶片周围的大?8.对柴可拉斯基技术,在k 0=0.05时,画出C s /C 0值的曲线。

9.利用悬浮区熔工艺来提纯一含有镓且浓度为5×1016cm -3的单晶硅锭。

一次悬浮区熔通过,熔融带长度为2cm ,则在离多远处镓的浓度会低于5×1015cm -3?10.从式L kx s e k C C /0)1(1/---=,假设k e =0.3,求在x/L=1和2时,C s /C 0的值。

11.如果用如右图所示的硅材料制造p +-n 突变结二极管,试求用传统的方法掺杂和用中子辐照硅的击穿电压改变的百分比。

12.由图10.10,若C m =20%,在T b 时,还剩下多少比例的液体?13.用图10.11解释为何砷化镓液体总会变成含镓比较多?14.空隙n s 的平衡浓度为Nexp[-E s /(kT)],N 为半导体原子的浓度,而E s 为形成能量。

微电子工艺原理和技术复习题

微电子工艺原理和技术复习题

《微电子工艺原理和技术》复习题一、填空题1.半导体集成电路主要的衬底材料有单元晶体材料⎽Si⎽、⎽Ge⎽和化合物晶体材料⎽GaAs⎽、⎽InP⎽;硅COMS集成电路衬底单晶的晶向常选(100);TTL集成电路衬底材料的晶向常选(111);常用的硅集成电路介电薄膜是⎽SiO2⎽、⎽Si3N4;常用的IC互连线金属材料是⎽Al⎽⎽、⎽Cu⎽。

2.画出P型(100)、(111)和N型(100)、(111)单晶抛光硅片的外形判别示意图。

3.硅微电子器件常用硅片的三个晶向是:(100)⎽、(111)、(110)画出它们的晶向图。

4.⎽⎽热扩散⎽⎽和⎽离子注入⎽是半导体器件的最常用掺杂方法。

⎽P⎽、⎽⎽As⎽⎽⎽是Si常用的施主杂质;⎽⎽⎽B⎽⎽⎽⎽是Si常用的受主杂质;⎽Zn⎽⎽⎽是GaAs常用的P型掺杂剂;⎽⎽⎽Si⎽⎽⎽⎽是GaAs常用的N型掺杂剂。

5.摩尔定律的主要内容是:⎽晶体管特征尺寸每三年减小到约70%,30年内有效,也可表示为,集成电路的特征尺寸每三年缩小30%;集成度每三年翻二翻;集成电路工艺每三年升级一代;逻辑电路的速度每三年提高30%。

6. 集成电路用单晶硅的主要制备方法是⎽提拉法⎽和⎽区熔法⎽⎽⎽。

7.半导体材料的缺陷主要有点缺陷、位错、层错、孪晶。

8. 半导体晶体的晶胞具有⎽⎽立方⎽⎽⎽⎽⎽对称性, Si、Ge 、GaAs 晶体为⎽金刚石⎽⎽结构。

用⎽⎽密勒指数⎽⎽⎽h,k,l 表示晶胞晶面的方向。

9.电子和空穴是半导体的主要载流子,N型半导体中⎽电子⎽浓度高于⎽空穴⎽⎽⎽浓度,而P型半导体中⎽空穴⎽⎽浓度高于⎽电子浓度,⎽本证⎽半导体中的两种载流子浓度相等。

10. 半导体单晶材料中的电子能级由于价电子的共有化分裂成能带,价带是⎽0 K 条件下被 电子填充的能量最高的能带,导带是0 K 条件下未被电子填充的能量最低的能带 ,导 带底与价带顶之间称禁带。

施主能级靠近⎽导带底⎽⎽,受主能级靠近⎽价带顶⎽。

微电子工艺习题参考解答

微电子工艺习题参考解答

CRYSTAL GROWTH AND EXPITAXY1.画出一50cm 长的单晶硅锭距离籽晶10cm 、20cm 、30cm 、40cm 、45cm 时砷的掺杂分布.(单晶硅锭从融体中拉出时,初始的掺杂浓度为1017cm —3) 2.硅的晶格常数为5。

43Å.假设为一硬球模型: (a )计算硅原子的半径.(b)确定硅原子的浓度为多少(单位为cm —3)?(c )利用阿伏伽德罗(Avogadro )常数求出硅的密度。

3.假设有一l0kg 的纯硅融体,当硼掺杂的单晶硅锭生长到一半时,希望得到0.01 Ω·cm 的电阻率,则需要加总量是多少的硼去掺杂?4.一直径200mm 、厚1mm 的硅晶片,含有5。

41mg 的硼均匀分布在替代位置上,求: (a)硼的浓度为多少?(b)硼原子间的平均距离。

5.用于柴可拉斯基法的籽晶,通常先拉成一小直径(5.5mm)的狭窄颈以作为无位错生长的开始.如果硅的临界屈服强度为2×106g/cm2,试计算此籽晶可以支撑的200mm 直径单晶硅锭的最大长度。

6.在利用柴可拉斯基法所生长的晶体中掺入硼原子,为何在尾端的硼原子浓度会比籽晶端的浓度高?7.为何晶片中心的杂质浓度会比晶片周围的大?8.对柴可拉斯基技术,在k 0=0。

05时,画出C s /C 0值的曲线。

9.利用悬浮区熔工艺来提纯一含有镓且浓度为5×1016cm —3的单晶硅锭。

一次悬浮区熔通过,熔融带长度为2cm,则在离多远处镓的浓度会低于5×1015cm —3?10.从式L kx s e k C C /0)1(1/---=,假设k e =0.3,求在x/L=1和2时,C s /C 0的值。

11.如果用如右图所示的硅材料制造p +—n 突变结二极管,试求用传统的方法掺杂和用中子辐照硅的击穿电压改变的百分比。

12.由图10。

10,若C m =20%,在T b 时,还剩下多少比例的液体?13.用图10.11解释为何砷化镓液体总会变成含镓比较多?14.空隙n s 的平衡浓度为Nexp[—E s /(kT )],N 为半导体原子的浓度,而E s 为形成能量。

微电子工艺作业参考答案(第1-第10次)

微电子工艺作业参考答案(第1-第10次)

微电⼦⼯艺作业参考答案(第1-第10次)微电⼦⼯艺作业参考答案第⼀次作业(全体交)1、简单叙述微电⼦学对⼈类社会的作⽤答:⾃上世纪40年代晶体管诞⽣以来,微电⼦学科技术发展异常迅猛,⽬前已进⼊到巨⼤规模集成电路和系统集成时代,已经成为整个信息时代的标志和基础。

可以毫不夸张地说,没有微电⼦就没有今天的信息社会。

纵观⼈类社会发展的⽂明史,⼀切⽣产⽅式的重⼤变⾰都是由新的科学发明⽽引起的。

科学技术作为第⼀⽣产⼒,推动者社会向前发展。

1774年,英国格拉斯哥⼤学的修理⼯⽡特发明了蒸汽机,触发了第⼀次⼯业⾰命,产⽣了近代纺织业和机械制造业,使⼈类进⼊了利⽤机器延伸和发展⼈类体⼒劳动的时代。

1866年,德国科学家西门⼦发明了发发电机,引发了以电⽓化⼯业为代表的第⼆次技术⾰命。

当前,我们正在经历着⼀场新的技术⾰命,虽然第三次技术⾰命包含了新材料、新能源、⽣物⼯程、海洋⼯程、航天⼯程和电⼦信息技术等等,但影响最⼤、渗透性最强、最具有新技术⾰命代表性的仍是以微电⼦技术为核⼼的电⼦信息技术。

信息是客观事物状态和运动特征的⼀种普遍表现形式,是继材料和能源之后的第三⼤资源,是⼈类物质⽂明与精神⽂明赖以发展的三⼤⽀柱之⼀。

⽬前,全球正处在⼀场跨越时空的新的信息技术⾰命中,它将⽐⼈类历史上的任何⼀次技术⾰命对社会经济、政治、⽂化等带来的冲击都更为巨⼤,它将改变我们⼈类的⽣产⽅式、⽣活⽅式、⼯作⽅式,以及治理国家的⽅式。

实现社会信息化的关键是各种计算机和通讯设备,但其基础都是半导体和微电⼦技术。

1946年,美国宾⼣法尼亚⼤学莫尔学院诞⽣了世界第⼀台电⼦计算机ENIAC,运⾏速度只有每秒5000次,存储容量只有千位,平均稳定运⾏时间只有7分钟。

当时的专家认为,全世界只要有4台ENIAC就⾜够了。

然⽽,仅仅过了半多世纪,现在全世界的计算机数量已多达数亿台。

造成这个巨⼤变⾰的技术基础就是微电⼦。

现在,电⼦信息产业已经成为全球第⼀⼤产业。

微电子工艺复习整理

微电子工艺复习整理

微电子工艺复习整理第一章微电子工艺基础绪论1、描述分立器件和集成电路的区别①分立器件:就是由二极管、三极管等单一制的元器件共同组成的,通常就可以顺利完成单一功能,体积巨大。

②集成电路:把由若干个晶体管、电阻、电容等器件组成的、实现某种特定功能的电子线路,集中制造在一块小小的半导体芯片上,大体上可以分为三类,半导体集成电路,混合集成电路及薄膜集成电路。

半导体集成电路又可以分为双极型集成电路和金属-氧化物-半导体集成电路。

优点:a:减少互连的真菌效应;b:可充分利用半导体晶片的空间和面积;c:大幅度降低制造成本。

2、列出出来几种pn吴厝庄的构成方法并讲出平面工艺的特点①合金结方法a接触加热:将一个p型小球放在一个n型半导体上,加热到小球熔融b加热:p型小球以合金的形式混入半导体底片,加热后,小球下面构成一个再原产结晶区,这样就获得了一个pn结。

缺点:不能准确控制pn结的位置。

②生长结方法半导体单晶就是由掺有某种杂质(比如p型)的半导体熔液中生长出的。

缺点:不适合大批量生产。

③扩散结优点:扩散结结深能够精确控制。

④二氧化硅薄膜的优点a:做为遮蔽膜,有效率的遮蔽大多数杂质的蔓延b:提升半导体几何图形的控制精度c:熔融半导体器件表面,提升了器件的稳定性。

⑤平面工艺:利用二氧化硅掩蔽膜,通过光刻出窗口控制几何图形进行选择性扩散形成pn结3、生产半导体器件的四个阶段①.材料准备②晶体生长与晶圆准备③.芯片制造④.封装4、表述集成度的概念并根据集成度将集成电路分类概念:指单块芯片上所容纳的允许元件数目。

集成度越高,所容纳元件数目越多分类小规模中规模大规模超大规模甚大规模门的个数(集成度)最多12个12-19100-999910000-99999100000以上典型的集成电路逻辑门、触发器计数器、加法器小型存储器、门阵列大型存储器、微处理器可编程逻辑器件、多功能专用集成电路5、微电子工艺的特点①高技术含量:设备先进、技术先进②高精度:光刻图形的最轻线条尺寸在亚微米量级,制取的介质薄膜厚度也在纳米量级,而精度更在上述尺度之上。

微电子工艺技术-复习要点答案(完整版)教学内容

微电子工艺技术-复习要点答案(完整版)教学内容

第四章晶圆制造1.CZ法提单晶的工艺流程。

说明CZ法和FZ法。

比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。

答:1、溶硅2、引晶3、收颈4、放肩5、等径生长6、收晶。

CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化(需要注意的是熔硅的时间不宜过长)。

将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。

当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。

使其沿着籽晶晶体的方向凝固。

籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。

FZ法:即悬浮区融法。

将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室。

加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。

熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。

此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。

当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。

CZ法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好的控制电阻率径向均匀性。

缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。

FZ法优点:①可重复生长,提纯单晶,单晶纯度较CZ法高。

②无需坩埚、石墨托,污染少③高纯度、高电阻率、低氧、低碳④悬浮区熔法主要用于制造分离式功率元器件所需要的晶圆。

缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。

MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性2.晶圆的制造步骤【填空】答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。

2、切片3、磨片和倒角4、刻蚀5、化学机械抛光3. 列出单晶硅最常使用的两种晶向。

微电子工艺答案第四章离子注入习题参考答案

微电子工艺答案第四章离子注入习题参考答案
2
2. 离子注入技术的实施过程中包括注入和退火两个基本工艺 过程。试描述退火工艺过程的工艺目的。 答 :所谓退火,是一个工艺过程:将完成离子注入的硅片置 于特定的温度下,经过适当时间的热处理,则可达到两个目 的。第一个目的是使硅片由于高能离子注入而产生的表层晶 格损伤部分地或绝大部分得到消除;另一个目的是使处于电 离状态的掺杂离子得到激活还原为受主或施主状态,从而使 少数载流子的寿命、迁移率得到恢复。
3
3. 离子在靶内运动时,损失能量可分核阻止和电子阻止,解 释什么是核阻止、电子阻止?在一级近似下,两种阻止本领 与注入离子能量具有何关系?
答:核阻止即核碰撞,是注入离子与靶原子核之间的相互碰 撞。因两者质量是一个数量级,一次碰撞可以损失较多能量, 且可能发生大角度散射,使靶原子核离开原来的晶格位置, 留下空位,形成缺陷。
第四章 离子注入习题参考答案
1
1. 试叙述离子注入掺杂技术与常规热扩散掺杂技术的不同之 处。
1)掺杂纯度高; 2)注入剂量范围宽,同一平面内杂质分布的均匀性精度在
±1%以内; 3)不受固溶度限制、掩模材料范围大; 4)可精确控制掺杂的浓度分布和掺杂深度; 5)掺杂温度低,可避免产生热缺陷; 6)横向扩散效应小; 7)易于实现化合物半导体的掺杂; 8)可通过氧化硅膜进行注入,可有效防止污染。
7
5. 注入离子在无定形靶纵向服从何分布,有何特点?
服从高斯分布:
N(x)Nmaxexp12xRRpp
2
特点
1)在 x = RP 处的两边,注入离子浓度对称地下降,且下 降速度越来越快。
2)注入剂量为
N s0N (x)d x2N m aR x p
3)最大浓度Nmax位置在样品内的平均投影射程处

微电子工艺 制造技术 复习

微电子工艺  制造技术 复习

1.1 硅单晶的化学性质硅Si,密度为2.4 g/cm3,熔点1420℃,沸点2360℃。

硅分为单晶和多晶硅两种:单晶硅---〉集成电路等;多晶硅---〉太阳电池等。

硅单晶和酸在通常条件下不起反应,只与(HF+HNO3)混合酸反应。

在反应中。

硝酸起氧化剂作用。

而氢氟酸则起络合剂的作用。

因此,(HF+HNO3)混合酸可以硅的腐蚀液。

强碱能和单晶硅反应,生成硅酸盐并释放出氢气,如下式:Si+2KOH+H2O=K2SiO3+2H2↑ (1-2)Si+2NH4OH→(NH4)2SiO3+2H2↑ (1-3)Si+Ca(OH)2+NaOH=Na2SiO3+CaO+2H2↑ (1-5)在高温,气态氟化氢与硅进行反应:Si+4HF=SiF4↑+2H2↑ (1-4)(1) 二氧化硅Si+O2=SiO2+203 kJ (1-6)无色透明固体,熔点达1713℃。

石英(密度2.65g/cm3):水晶。

地壳(Qiao)二分子一以上是由二氧化硅组成。

熔化的SiO2仅在2590℃时才沸腾。

SiO2不溶于水,除HF外不和其它酸反应,SiO2+4HF =SiF4↑+2H2OSiO2与强碱反应:SiO2+2NaOH=Na2SiO3+H2O (1-7)SiO2+NaCO3=Na2SiO3+CO2↑ (1-8)(2)一氧化硅 (升华温度1700℃)高温:SiO2+Si=2SiO (1-9)(3)碳化硅(超硬材料) (又称金刚砂)2000℃:510.448J+ SiO2+3C=2CO+SiC (1-10)2500℃升华再结晶制成单晶碳化硅:金刚砂(不与酸反应,HF与HNO3混合酸除外)。

碳化硅:金刚砂与碱反应:SiC+4NaOH+3O2=Na2SiO3+Na2CO3+2H2O(4) 氮化硅(超硬材料)↗将硅与氮加热至1300℃以上,能直接化合成氮化硅(Si3N4),并释放出大量热(656.888 kJ/mol)。

3Si+2N2=Si3N4↗CVD法制备氮化硅薄膜,应用于IC制备中抗辐射:700-900℃:3SiH4+4NH3=Si3N4+12H2 (1-11) 硅烷(SiH4)↗高纯硅的制备:一般首先由硅石(SiO2)制得工业硅(粗硅),再制成高纯的多晶硅,最后拉制成半导体材料硅单晶。

微电子工艺习题参考解答

微电子工艺习题参考解答

CRYSTAL GROWTH AND EXPITAXY1.画出一50cm 长的单晶硅锭距离籽晶10cm 、20cm 、30cm 、40cm 、45cm 时砷的掺杂分布。

(单晶硅锭从融体中拉出时,初始的掺杂浓度为1017cm -3) 2.硅的晶格常数为5.43?.假设为一硬球模型: (a)计算硅原子的半径。

(b)确定硅原子的浓度为多少(单位为cm -3)?(c)利用阿伏伽德罗(Avogadro)常数求出硅的密度。

3.假设有一l0kg 的纯硅融体,当硼掺杂的单晶硅锭生长到一半时,希望得到0.01 Ω·cm 的电阻率,则需要加总量是多少的硼去掺杂?4.一直径200mm 、厚1mm 的硅晶片,含有5.41mg 的硼均匀分布在替代位置上,求: (a)硼的浓度为多少?(b)硼原子间的平均距离。

5.用于柴可拉斯基法的籽晶,通常先拉成一小直径(5.5mm)的狭窄颈以作为无位错生长的开始。

如果硅的临界屈服强度为2×106g/cm2,试计算此籽晶可以支撑的200mm 直径单晶硅锭的最大长度。

6.在利用柴可拉斯基法所生长的晶体中掺入硼原子,为何在尾端的硼原子浓度会比籽晶端的浓度高?7.为何晶片中心的杂质浓度会比晶片周围的大?8.对柴可拉斯基技术,在k 0=0.05时,画出C s /C 0值的曲线。

9.利用悬浮区熔工艺来提纯一含有镓且浓度为5×1016cm -3的单晶硅锭。

一次悬浮区熔通过,熔融带长度为2cm ,则在离多远处镓的浓度会低于5×1015cm -3?10.从式L kx s e k C C /0)1(1/---=,假设k e =0.3,求在x/L=1和2时,C s /C 0的值。

11.如果用如右图所示的硅材料制造p +-n 突变结二极管,试求用传统的方法掺杂和用中子辐照硅的击穿电压改变的百分比。

12.由图10.10,若C m =20%,在T b 时,还剩下多少比例的液体?13.用图10.11解释为何砷化镓液体总会变成含镓比较多?14.空隙n s 的平衡浓度为Nexp[-E s /(kT)],N 为半导体原子的浓度,而E s 为形成能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章晶圆制造1.CZ法提单晶的工艺流程。

说明CZ法和FZ法。

比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。

答:1、溶硅2、引晶3、收颈4、放肩5、等径生长6、收晶。

CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化(需要注意的是熔硅的时间不宜过长)。

将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。

当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。

使其沿着籽晶晶体的方向凝固。

籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。

FZ法:即悬浮区融法。

将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室。

加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。

熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。

此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。

当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。

CZ法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好的控制电阻率径向均匀性。

缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。

FZ法优点:①可重复生长,提纯单晶,单晶纯度较CZ法高。

②无需坩埚、石墨托,污染少③高纯度、高电阻率、低氧、低碳④悬浮区熔法主要用于制造分离式功率元器件所需要的晶圆。

缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。

MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性2.晶圆的制造步骤【填空】答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。

2、切片3、磨片和倒角4、刻蚀5、化学机械抛光3. 列出单晶硅最常使用的两种晶向。

【填空】答:111和100.4. 说明外延工艺的目的。

说明外延硅淀积的工艺流程。

答:在单晶硅的衬底上生长一层薄的单晶层。

5. 氢离子注入键合SOI晶圆的方法答:1、对晶圆A清洗并生成一定厚度的SO2层。

2、注入一定的H形成富含H的薄膜。

3、晶圆A翻转并和晶圆B键合,在热反应中晶圆A的H脱离A和B键合。

4、经过CMP和晶圆清洗就形成键合SOI晶圆6. 列出三种外延硅的原材料,三种外延硅掺杂物【填空】7、名词解释:CZ法提拉工艺、FZ法工艺、SOI、HOT(混合晶向)、应变硅答:CZ法:直拉单晶制造法。

FZ法:悬浮区融法。

SOI:在绝缘层衬底上异质外延硅获得的外延材料。

HOT:使用选择性外延技术,可以在晶圆上实现110和100混合晶向材料。

应变硅:通过向单晶硅施加应力,硅的晶格原子将会被拉长或者压缩不同与其通常原子的距离。

第五章热处理工艺1. 列举IC芯片制造过程中热氧化SiO2的用途?答:1、原生氧化层2、屏蔽氧化层3、遮蔽氧化层4、场区和局部氧化层5、衬垫氧化层6、牺牲氧化层7、栅极氧化层8、阻挡氧化层2. 栅氧化层生长的典型干法氧化工艺流程答:1、850度闲置状态通入吹除净化氮气。

2、通入工艺氮气充满炉管。

3、将石英或碳化硅晶圆载舟缓慢推入炉管中4、以大约10度每分钟升温。

5、工艺氮气气流下稳定温度。

6、关闭氮气,通入氧气和氯化氢,在晶圆表面生成SO2薄膜。

7、当氧化层达到厚度时,关掉氧气和氯化氢,通入氮气,进行氧化物退火。

8、工艺氮气气流下降温。

9、工艺氮气气流下将晶舟拉出,闲置状态下吹除净化氮气。

3. 影响扩散工艺中杂质分布的因素答:1、时间与温度,恒定表面源主要是时间。

2、硅晶体中存在其他类型的点缺陷p75-p774. 氮化硅在IC芯片上的用途答:1、硅局部氧化形成过程中,作为阻挡氧气扩散的遮蔽层。

2、作为化学抛光的遮挡层。

3、用于形成侧壁空间层、氧化物侧壁空间层的刻蚀停止层或空间层。

4、在金属淀积之前,作为掺杂物的扩散阻止层。

5、作为自对准工艺的刻蚀停止层。

5. 离子注入后的RTA流程答:1、晶圆进入2、温度急升3、温度趋稳4、退火5、晶圆冷却6、晶圆退出6. 为什么晶体晶格离子注入工艺后需要高温退火?使用RTA退火有什么优点【填空】答:消除晶格损伤,恢复载流子寿命以及迁移率,激活一定比列的掺杂原子。

P112 降低了退火温度或者说减少了退火时间,减少了退火时的表面污染,硅片不会产生变形,不会产生二次缺陷,对于高剂量注入时的电激活率较高。

7. SiO2-Si界面中存在几种电荷?对器件性能有哪些影响?工艺上如何降低它们的密度【综合】答:有5种。

Li RB+ Cs+ K+几乎没有影响Na+会引起mos晶体管阈值电压的不稳定。

P57 1、使用含氯的氧化工艺2、用氯周期性的清洗管道、炉管和相关的容器。

3、使用超纯净的化学物质4、保证气体及气体传输过程的清洁,保证栅电极材料不受污染。

8. 扩散掺杂工艺的三个步骤【填空】答:1、晶圆清洗。

2、生长遮蔽氧化层3、光刻4、刻蚀5、去光刻胶6、清洗7、掺杂氧化物淀积8、覆盖氧化反应9、掺杂物驱入9. 名词解释:结深、退火、RTP、RTA、RTO、合金化热处理答:结深:如果扩散杂质与硅衬底原有杂质的导电类型不同,在两种杂质浓度的相等处会形成PN结,此深度为结深。

退火:将注有离子的硅片在一定温度下,经过适当时间的热处理,则硅片中的损伤就可能部分或大部分得到消除,载流子寿命以及迁移率也会不同程度的恢复,掺杂原子得到一定比例的电激活。

这样的过程叫热退火。

RTP: 快速加热工艺。

是一种升温速度非常快的,保温时间很短的热处理方式。

RTA:快速加热退火系统。

高温退火消除损伤恢复单晶结构并激活掺杂原子RTO:快速加热氧化。

合金化热处理:利用热能使不同原子彼此结合成化学键而形成金属合金的一种加热工艺。

第六章光刻工艺1. 列出光刻胶的四种成分【填空】答:聚合物、感光剂、溶剂和添加剂2. 光刻工艺3个主要过程【填空】答:光刻胶涂敷、曝光和显影3. 显影工艺的3个过程【填空】答:显影、硬烘烤和图形检测4. 列出4种曝光技术,并说明那种分辨率最高,说明各种曝光技术的优缺点。

答:1、接触式曝光:分辨率较高,可在亚微米范围内。

接触时的微粒会在晶圆上产生缺陷,光刻版的寿命也会减短。

2、接近式曝光:光刻板寿命长,分辨率在2UM。

3、投影式曝光:解决了微粒污染,可以整片曝光,但是分辨率较低。

4、步进式曝光:分辨率高,nm级,无微粒污染。

但是不能整片曝光,价格昂贵。

步进式曝光的分辨率最高。

5. 光刻工艺的8道工序答:八道工序为:晶圆清洗、预烘培和底漆涂敷、光刻胶自旋涂敷、软烘烤、对准和曝光、曝光后烘烤,以及显影、硬烘烤和图形检测6. 软烘烤的目的是什么?列出烘烤过度和不足会产生什么后果?答:目的:将光刻胶从液态转变为固态,增强光刻胶在晶体表面的附着力。

使光刻胶含有5%-20%的残余溶剂。

不足后果: 1、光刻胶在后续工艺中因为附着力不足脱落2、过多的溶剂造成曝光不灵敏3、硬化不足,光刻胶会在晶圆表面产生微小震动,会在光刻胶上面产生模糊不清的图像。

过度后果:光刻胶过早聚合和曝光不灵敏①解释曝光后烘烤的目的。

PEB(曝光后烘烤)烘烤过度和不足会产生什么问题?答:目的:降低驻波效应不足:无法消除驻波效应,影响分辨率。

过度:造成光刻胶的聚合作用,影响显影过程,导致图形转移失败。

②解释硬烘烤的目的。

光刻胶硬烘烤过度和不足会产生什么问题?答:目的:除去光刻胶内的残余溶剂、增加光刻胶的强度,并通过进一步的聚合作用改进光刻胶的刻蚀与离子注入的抵抗力。

增强了光刻胶的附着力。

过度:影响光刻技术的分辨率。

不足:光刻胶强度不够7. 什么是驻波效应?如何减小驻波效应答:驻波效应:当曝光的光纤从光刻胶与衬底的界面反射时,会与入射的曝光光线产生干涉,会使曝光过度和不足的区域形成条纹状结构。

减小驻波效应的办法:1、光刻胶内加染料可以减小反射强度。

2、经验表面淀积金属薄膜与电介质层作为抗反射镀膜减少晶圆表面的反射。

3、采用有机抗反射镀膜层。

4、通过曝光后烘烤降低。

8. 名词解释:光刻技术、正光刻胶、负光刻胶、PSM移相掩膜、OPC光学临界校正、离轴照明、浸入式光刻答:光刻技术:图形化工艺中将设计好的图形从光刻板或背缩光刻板转印到晶圆表面的的光刻胶上使用的技术。

正光刻胶:曝光区域变软并最后被溶解。

负胶则相反。

PSM移相掩膜:相移掩膜上的电介质层在光刻版上开口部分以间隔的方式形成相移图形,通过没有相移涂敷开口部分的光线,会与通过有相移涂敷开口的光线产生破坏性干涉,相反的相移会在高密度排列区形成非常清晰的图像。

Opc光学临界校正:补偿当图形尺寸和曝光光线尺寸临近时所产生的衍射效应。

离轴照明:通过使用光圈将入射光以一定角度入射到光学系统的透镜上,收集光刻板上光栅的一级衍射,提高分辨率。

浸入式光刻:通过在物镜和晶圆表面空隙之间填充离子水以提高光刻分辨率第七章等离子体工艺1. 等离子体工艺在半导体制造中的应用答:(1) IC制造中所有图形化刻蚀均为等离子体刻蚀或干法刻蚀。

(2)应用于电介质积淀。

(3)离子注入使用等离子体源制造晶圆掺杂所需的离子,并提供电子中和晶圆表面上的正电荷。

(4)物理气相淀积用离子轰击金属靶表面,使金属溅镀淀积于晶圆表面。

(5)遥控等离子体广泛应用于清洁机台的反应室、薄膜去除、薄膜淀积工艺中。

2. 半导体工艺中等离子体最重要的三种碰撞【填空】答:离子化碰撞、激发-松弛碰撞、分解碰撞3. 名词解释:离子化碰撞、激发-松弛碰撞、分解碰撞、平均自由程、答:离子化碰撞:当电子和原子或者分子碰撞时,会将部分能量传递到受原子核或分子核束缚的轨道上。

激发-松弛碰撞:当电子和原子或者分子碰撞时,电子没有脱离核的束缚,而是跃迁到更高的能级叫激发。

处于激发状态的电子落回到基态或者最低能级叫松弛。

分解碰撞:当电子和分子碰撞时,碰撞的能量比分子的化学键能量高,打破了化学键的自由基。

叫分解碰撞。

平均自由程:粒子和粒子碰撞前能够移动的平均距离。

第八章离子注入工艺1. 离子注入工艺和扩散工艺相比的优点答:温度低,使用PR遮蔽层(扩散硬遮蔽层),非等向性掺杂轮廓,可独立控制掺杂浓度和结深,批量及单晶圆工艺(扩散为单晶圆工艺)2. 离子注入的两种阻滞机制【填空】答:原子核阻滞和电子阻滞。

3. 离子注入的通道效应和减小通道效应的方法答:通道效应:如果一个电子以正确的角度进入通道,它只需要很少的能量就可以行进很长的距离。

方法:(1)对大的离子,沿沟道轴向(110)偏离7-10度。

(2)表面用二氧化硅掩膜。

(3)用Si,Ge,F,Ar等离子使表面预非晶化,形成非晶层。

相关文档
最新文档